Deep Dermatophytosis and Inherited CARD9 Deficiency

New England Journal of Medicine 369, 1704-1714

DOI: 10.1056/nejmoa1208487

Citation Report

#	Article	IF	CITATIONS
1	An ACT1 Mutation Selectively Abolishes Interleukin-17 Responses in Humans with Chronic Mucocutaneous Candidiasis. Immunity, 2013, 39, 676-686.	6.6	262
3	Primary immunodeficiencies underlying fungal infections. Current Opinion in Pediatrics, 2013, 25, 736-747.	1.0	190
4	Host genetics and opportunistic fungal infections. Clinical Microbiology and Infection, 2014, 20, 1254-1264.	2.8	30
5	Neither Dectin-2 nor the Mannose Receptor Is Required for Resistance to Coccidioides immitis in Mice. Infection and Immunity, 2014, 82, 1147-1156.	1.0	26
6	Mendelian Genetics of Human Susceptibility to Fungal Infection. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a019638-a019638.	2.9	81
7	CARD9 mediates Dectin-1–induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity. Journal of Experimental Medicine, 2014, 211, 2307-2321.	4.2	122
8	Cutaneous Fungal Infectionsâ~†., 2014, , 793-793.		0
9	Fungal Nail Infections (Onychomycosis): A Never-Ending Story?. PLoS Pathogens, 2014, 10, e1004105.	2.1	94
12	Evolution of the Definition of Primary Immunodeficiencies. , 2014, , 29-40.		2
13	Immunotherapy. Current Opinion in Infectious Diseases, 2014, 27, 511-516.	1.3	23
13 14	Immunotherapy. Current Opinion in Infectious Diseases, 2014, 27, 511-516. Cytokine immunomodulation for the treatment of infectious diseases: lessons from primary immunodeficiencies. Expert Review of Clinical Immunology, 2014, 10, 1069-1100.	1.3	23
	Cytokine immunomodulation for the treatment of infectious diseases: lessons from primary		
14	Cytokine immunomodulation for the treatment of infectious diseases: lessons from primary immunodeficiencies. Expert Review of Clinical Immunology, 2014, 10, 1069-1100. Clinical Features of Candidiasis in Patients With Inherited Interleukin 12 Receptor Î ² 1 Deficiency. Clinical	1.3	11
14 15	Cytokine immunomodulation for the treatment of infectious diseases: lessons from primary immunodeficiencies. Expert Review of Clinical Immunology, 2014, 10, 1069-1100. Clinical Features of Candidiasis in Patients With Inherited Interleukin 12 Receptor Î ² 1 Deficiency. Clinical Infectious Diseases, 2014, 58, 204-213. The mycobiota: interactions between commensal fungi and the host immune system. Nature Reviews	1.3 2.9	11 98
14 15 16	Cytokine immunomodulation for the treatment of infectious diseases: lessons from primary immunodeficiencies. Expert Review of Clinical Immunology, 2014, 10, 1069-1100. Clinical Features of Candidiasis in Patients With Inherited Interleukin 12 Receptor β1 Deficiency. Clinical Infectious Diseases, 2014, 58, 204-213. The mycobiota: interactions between commensal fungi and the host immune system. Nature Reviews Immunology, 2014, 14, 405-416.	1.3 2.9 10.6	11 98 525
14 15 16	Cytokine immunomodulation for the treatment of infectious diseases: lessons from primary immunodeficiencies. Expert Review of Clinical Immunology, 2014, 10, 1069-1100. Clinical Features of Candidiasis in Patients With Inherited Interleukin 12 Receptor β1 Deficiency. Clinical Infectious Diseases, 2014, 58, 204-213. The mycobiota: interactions between commensal fungi and the host immune system. Nature Reviews Immunology, 2014, 14, 405-416. IL-17 and infections. Actas Dermo-sifiliográficas, 2014, 105, 34-40. Common Dermatologic Manifestations of Primary Immune Deficiencies. Current Allergy and Asthma	1.3 2.9 10.6	11 98 525 49
14 15 16 17	Cytokine immunomodulation for the treatment of infectious diseases: lessons from primary immunodeficiencies. Expert Review of Clinical Immunology, 2014, 10, 1069-1100. Clinical Features of Candidiasis in Patients With Inherited Interleukin 12 Receptor β1 Deficiency. Clinical Infectious Diseases, 2014, 58, 204-213. The mycobiota: interactions between commensal fungi and the host immune system. Nature Reviews Immunology, 2014, 14, 405-416. IL-17 and infections. Actas Dermo-sifiliogr¡ficas, 2014, 105, 34-40. Common Dermatologic Manifestations of Primary Immune Deficiencies. Current Allergy and Asthma Reports, 2014, 14, 480. CARD9 Deficiency and Spontaneous Central Nervous System Candidiasis: Complete Clinical Remission	1.3 2.9 10.6 0.2 2.4	11 98 525 49

#	Article	IF	Citations
25	Human Invasive Mycoses: Immunogenetics on the Rise. Journal of Infectious Diseases, 2015, 211, 1205-7.	1.9	6
27	Interleukin-1 Receptor but Not Toll-Like Receptor 2 Is Essential for MyD88-Dependent Th17 Immunity to Coccidioides Infection. Infection and Immunity, 2014, 82, 2106-2114.	1.0	33
29	Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects. Blood, 2014, 124, 590-597.	0.6	152
30	Case of dermatophyte abscess caused by <i>Trichophyton rubrum</i> : a case report and review of the literature. Mycoses, 2015, 58, 318-323.	1.8	25
31	Chronic Candida albicans Meningitis in a 4-Year-Old Girl with a Homozygous Mutation in the CARD9 Gene (Q295X). Pediatric Infectious Disease Journal, 2015, 34, 999-1002.	1.1	66
32	Chronic widespread dermatophytosis due to Trichophyton rubrum: a syndrome associated with a Trichophyton-specific functional defect of phagocytes. Frontiers in Microbiology, 2015, 6, 801.	1.5	26
33	Dermatophytosis (Ringworm) and Other Superficial Mycoses. , 2015, , 2985-2994.e1.		3
34	Effect of Culture Supernatant Derived from Trichophyton Rubrum Grown in the Nail Medium on the Innate Immunity-related Molecules of HaCaT. Chinese Medical Journal, 2015, 128, 3094-3100.	0.9	11
35	Posaconazole Treatment of Extensive Skin and Nail Dermatophytosis Due to Autosomal Recessive Deficiency of CARD9. JAMA Dermatology, 2015, 151, 192.	2.0	71
36	Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7128-37.	3.3	194
37	Inherited CARD9 deficiency in otherwise healthy children and adults with Candida species–induced meningoencephalitis, colitis, or both. Journal of Allergy and Clinical Immunology, 2015, 135, 1558-1568.e2.	1.5	208
38	Orf Infection in a Patient with Stat1 Gain-of-Function. Journal of Clinical Immunology, 2015, 35, 80-83.	2.0	25
39	Management of Hypereosinophilic Syndromes. Immunology and Allergy Clinics of North America, 2015, 35, 561-575.	0.7	25
40	Compartment-Specific and Sequential Role of MyD88 and CARD9 in Chemokine Induction and Innate Defense during Respiratory Fungal Infection. PLoS Pathogens, 2015, 11, e1004589.	2.1	93
41	Pulmonary Nontuberculous Mycobacterial Infection. A Multisystem, Multigenic Disease. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 618-628.	2.5	136
42	Genetic variation in pattern recognition receptors: functional consequences and susceptibility to infectious disease. Future Microbiology, 2015, 10, 989-1008.	1.0	22
43	The Evolving View of IL-17-Mediated Immunity in Defense Against Mucocutaneous Candidiasis in Humans. International Reviews of Immunology, 2015, 34, 348-363.	1.5	17
44	A Homozygous CARD9 Mutation in a Brazilian Patient with Deep Dermatophytosis. Journal of Clinical Immunology, 2015, 35, 486-490.	2.0	89

#	Article	IF	CITATIONS
45	Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. Journal of Experimental Medicine, 2015, 212, 619-631.	4.2	162
46	CARD9 Deficiencies Linked to Impaired Neutrophil Functions Against Phialophora verrucosa. Mycopathologia, 2015, 179, 347-357.	1.3	36
47	New Insights into Genes, Immunity, and the Occurrence of Dermatophytosis. Journal of Investigative Dermatology, 2015, 135, 655-657.	0.3	42
48	Ubiquitin Ligase TRIM62 Regulates CARD9-Mediated Anti-fungal Immunity and Intestinal Inflammation. Immunity, 2015, 43, 715-726.	6.6	102
49	Genetic errors of the human caspase recruitment domain–B-cell lymphoma 10–mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (CBM) complex: Molecular, immunologic, and clinical heterogeneity. Journal of Allergy and Clinical Immunology, 2015, 136, 1139-1149.	1.5	65
50	Primary immunodeficiency update. Journal of the American Academy of Dermatology, 2015, 73, 367-381.	0.6	26
51	Practice parameter for the diagnosis and management of primary immunodeficiency. Journal of Allergy and Clinical Immunology, 2015, 136, 1186-1205.e78.	1.5	564
52	New developments in the genetics, pathogenesis, and therapy of IgA nephropathy. Kidney International, 2015, 88, 974-989.	2.6	211
53	Immune Interactions with Pathogenic and Commensal Fungi: A Two-Way Street. Immunity, 2015, 43, 845-858.	6.6	117
54	Host genetics of invasive Aspergillus and Candida infections. Seminars in Immunopathology, 2015, 37, 173-186.	2.8	33
55	Inherited CARD9 Deficiency in 2 Unrelated Patients With Invasive Exophiala Infection. Journal of Infectious Diseases, 2015, 211, 1241-1250.	1.9	141
56	Endogenous <i>Candida</i> endophthalmitis and osteomyelitis associated with CARD9 deficiency. BMJ Case Reports, 2016, 2016, bcr2015214117.	0.2	24
57	Personalized medicine. Journal of King Abdulaziz University, Islamic Economics, 2016, 37, 1309-1311.	0.5	10
58	Mechanistic Insights into the Role of C-Type Lectin Receptor/CARD9 Signaling in Human Antifungal Immunity. Frontiers in Cellular and Infection Microbiology, 2016, 6, 39.	1.8	103
59	Severe Dermatophytosis and Acquired or Innate Immunodeficiency: A Review. Journal of Fungi (Basel,) Tj ETQq0 (0 0 rgBT /0	Overlock 10 Tr
60	When the Fight against Fungi Goes Wrong. PLoS Pathogens, 2016, 12, e1005400.	2.1	12
61	Chronic mucocutaneous candidiasis disease associated with inborn errors of ILâ€17 immunity. Clinical and Translational Immunology, 2016, 5, e114.	1.7	148
62	Fungal skin and soft tissue infections. Current Opinion in Infectious Diseases, 2016, 29, 124-130.	1.3	25

#	ARTICLE	IF	CITATIONS
63	Dectin-1 and Dectin-2 promote control of the fungal pathogen <i>Trichophyton rubrum</i> independently of IL-17 and adaptive immunity in experimental deep dermatophytosis. Innate Immunity, 2016, 22, 316-324.	1.1	27
64	Clinical Immunophenotype at Disease Onset in Previously Healthy Patients With Cryptococcal Meningitis. Medicine (United States), 2016, 95, e2744.	0.4	1
65	Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood, 2016, 127, 3154-3164.	0.6	465
66	Primary deep cutaneous candidiasis caused by <i>Candida duobushaemulonii</i> in a 68â€yearâ€old man: the first case report and literature review. Mycoses, 2016, 59, 818-821.	1.8	21
67	Antibiotic and Antifungal Therapies in Dermatology. , 2016, , .		0
68	<i> <scp>CARD </scp> 9 </i> mutation linked to <i>Corynespora cassiicola </i> infection in a Chinese patient. British Journal of Dermatology, 2016, 174, 176-179.	1.4	70
69	How neutrophils kill fungi. Immunological Reviews, 2016, 273, 299-311.	2.8	136
70	Impairment of Immune Response against Dematiaceous Fungi in Card9 Knockout Mice. Mycopathologia, 2016, 181, 631-642.	1.3	24
71	Primary immunodeficiencies associated with eosinophilia. Allergy, Asthma and Clinical Immunology, 2016, 12, 27.	0.9	31
72	A Case Report of Majocchi's Granuloma Associated with Combined Therapy of Topical Steroids and Adalimumab. Medicine (United States), 2016, 95, e2245.	0.4	7
73	New clinical phenotypes of fungal infections in special hosts. Clinical Microbiology and Infection, 2016, 22, 681-687.	2.8	56
74	Impaired RASGRF1/ERK–mediated GM-CSF response characterizes CARD9 deficiency in French-Canadians. Journal of Allergy and Clinical Immunology, 2016, 137, 1178-1188.e7.	1.5	92
75	Chronic and Invasive Fungal Infections in a Family with CARD9 Deficiency. Journal of Clinical Immunology, 2016, 36, 204-209.	2.0	98
76	Basic Genetics and Immunology of Candida Infections. Infectious Disease Clinics of North America, 2016, 30, 85-102.	1.9	26
77	Invasive Candidiasis. New England Journal of Medicine, 2016, 374, 793-795.	13.9	47
78	Human Neutrophils Use Different Mechanisms To Kill <i>Aspergillus fumigatus</i> Conidia and Hyphae: Evidence from Phagocyte Defects. Journal of Immunology, 2016, 196, 1272-1283.	0.4	162
79	Defects of Innate Immunity. , 2016, , 101-111.e3.		1
80	30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell, 2017, 168, 37-57.	13.5	1,437

#	Article	IF	Citations
81	Dermatophytic disease with deficit in CARD9: A new case with a brain impairment. Journal De Mycologie Medicale, 2017, 27, 250-253.	0.7	35
82	Primary Immunodeficiencies and Dermatophytosis. , 2017, , 121-133.		5
83	Chronic Candidiasis in Children. Current Allergy and Asthma Reports, 2017, 17, 31.	2.4	15
84	Immunity to Fungal Infections. , 2017, , 35-83.		3
85	Primary Immunodeficiency Diseases. , 2017, , .		22
86	Candidemia in the Intensive Care Unit. Clinics in Chest Medicine, 2017, 38, 493-509.	0.8	37
87	Fungi that Infect Humans. Microbiology Spectrum, 2017, 5, .	1.2	149
88	Fungal dysbiosis: immunity and interactions at mucosal barriers. Nature Reviews Immunology, 2017, 17, 635-646.	10.6	283
89	Immunogenetics of Fungal Diseases. , 2017, , .		2
90	Invasive Fungal Infection in Primary Immunodeficiencies Other Than Chronic Granulomatous Disease. Current Fungal Infection Reports, 2017, 11, 25-34.	0.9	4
91	Fungal Infections in Primary and Acquired Immunodeficiencies. , 2017, , 1-34.		0
92	Genetics of Chronic Mucocutaneous Candidiasis. , 2017, , 85-103.		1
93	A Unique Clinicopathological Manifestation of Fungal Infection: A Case Series of Deep Dermatophytosis in Immunosuppressed Patients. American Journal of Clinical Dermatology, 2017, 18, 697-704.	3.3	31
94	Introduction on Primary Immunodeficiency Diseases. , 2017, , 1-81.		3
95	An invertebrate infection model for evaluating anti-fungal agents against dermatophytosis. Scientific Reports, 2017, 7, 12289.	1.6	24
96	Small-molecule inhibitors directly target CARD9 and mimic its protective variant in inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11392-11397.	3.3	45
97	Skin Fungi from Colonization to Infection. Microbiology Spectrum, 2017, 5, .	1.2	33
98	Inborn errors of immunity underlying fungal diseases in otherwise healthy individuals. Current Opinion in Microbiology, 2017, 40, 46-57.	2.3	101

#	ARTICLE	IF	Citations
99	Invasive <i>Trichophyton rubrum</i> mimicking blastomycosis in a patient with solid organ transplant. Journal of Cutaneous Pathology, 2017, 44, 798-800.	0.7	6
100	Assessment of Immune Responses to Fungal Infections: Identification and Characterization of Immune Cells in the Infected Tissue. Methods in Molecular Biology, 2017, 1508, 167-182.	0.4	17
101	The microbiome-metabolome crosstalk in the pathogenesis of respiratory fungal diseases. Virulence, 2017, 8, 673-684.	1.8	25
102	Genetic Predictors of Susceptibility to Dermatophytoses. Mycopathologia, 2017, 182, 67-76.	1.3	21
103	Tinea Capitis: Current Status. Mycopathologia, 2017, 182, 87-93.	1.3	149
104	An In Vitro Model for the Study of the Macrophage Response Upon Trichophyton rubrum Challenge. Mycopathologia, 2017, 182, 241-250.	1.3	8
105	The Role of Phagocytes and NETs in Dermatophytosis. Mycopathologia, 2017, 182, 263-272.	1.3	11
106	Are Th17 Cells Playing a Role in Immunity to Dermatophytosis?. Mycopathologia, 2017, 182, 251-261.	1.3	20
108	Fungi that Infect Humans., 2017,, 811-843.		8
109	TLR2â^'/â^' Mice Display Increased Clearance of Dermatophyte Trichophyton mentagrophytes in the Setting of Hyperglycemia. Frontiers in Cellular and Infection Microbiology, 2017, 7, 8.	1.8	8
110	Cellular and Molecular Defects Underlying Invasive Fungal Infectionsâ€"Revelations from Endemic Mycoses. Frontiers in Immunology, 2017, 8, 735.	2.2	57
111	Lessons from Genetic Studies of Primary Immunodeficiencies in a Highly Consanguineous Population. Frontiers in Immunology, 2017, 8, 737.	2.2	24
112	CARD9 Deficiency. , 2017, , 1-22.		0
113	Prototheca zopfii Colitis in Inherited CARD9 Deficiency. Journal of Infectious Diseases, 2018, 218, 485-489.	1.9	29
114	Myeloid Differentiation Factor 88 and Interleukin- $1R1$ Signaling Contribute to Resistance to Coccidioides immitis. Infection and Immunity, 2018, 86, .	1.0	10
115	Impaired Specific Antifungal Immunity inÂCARD9-Deficient Patients withÂPhaeohyphomycosis. Journal of Investigative Dermatology, 2018, 138, 607-617.	0.3	54
116	Human genetics of infectious diseases: Unique insights into immunological redundancy. Seminars in Immunology, 2018, 36, 1-12.	2.7	82
117	Non-culture based assays for the detection of fungal pathogens. Journal De Mycologie Medicale, 2018, 28, 236-248.	0.7	16

#	Article	IF	CITATIONS
118	IL-17–Mediated Immunity Controls SkinÂInfection and T Helper 1 Response during Experimental Microsporum canisÂDermatophytosis. Journal of Investigative Dermatology, 2018, 138, 1744-1753.	0.3	35
119	New insights in dermatophyte research. Medical Mycology, 2018, 56, S2-S9.	0.3	55
120	Novel biâ€allelic splice mutations in <i><scp>CARD</scp>9</i> causing adultâ€onset <i>Candida</i> endophthalmitis. Mycoses, 2018, 61, 61-65.	1.8	18
121	Severe dermatophytosis in solid organ transplant recipients: A French retrospective series and literature review. Transplant Infectious Disease, 2018, 20, e12799.	0.7	44
122	Host Control of Fungal Infections: Lessons from Basic Studies and Human Cohorts. Annual Review of Immunology, 2018, 36, 157-191.	9.5	151
123	Chronic mucocutaneous candidiasis: what can we conclude about IL-17 antagonism?. Journal of Dermatological Treatment, 2018, 29, 475-480.	1.1	3
124	Invasive dermatophyte infection with <i>Trichophyton interdigitale</i> is associated with prurigo-induced pseudoperforation and a signal transducer and activator of transcription 3 mutation. British Journal of Dermatology, 2018, 179, 750-754.	1.4	14
125	CARD9 Deficiency. , 2018, , 1-22.		0
126	A CARD9 Founder Mutation Disrupts NF-κB Signaling by Inhibiting BCL10 and MALT1 Recruitment and Signalosome Formation. Frontiers in Immunology, 2018, 9, 2366.	2.2	46
127	Patients with Primary Immunodeficiencies: How Are They at Risk for Fungal Disease?. Current Fungal Infection Reports, 2018, 12, 170-178.	0.9	2
128	Early-Onset Invasive Infection Due to Corynespora cassiicola Associated with Compound Heterozygous CARD9 Mutations in a Colombian Patient. Journal of Clinical Immunology, 2018, 38, 794-803.	2.0	40
129	Picomolar zinc binding modulates formation of Bcl10-nucleating assemblies of the caspase recruitment domain (CARD) of CARD9. Journal of Biological Chemistry, 2018, 293, 16803-16817.	1.6	10
130	Frequency and Geographic Distribution of CARD9 Mutations in Patients With Severe Fungal Infections. Frontiers in Microbiology, 2018, 9, 2434.	1.5	78
131	STAT3 and inherited susceptibility to invasive dermatophytosis. British Journal of Dermatology, 2018, 179, 567-568.	1.4	1
132	CARD9S12N facilitates the production of IL-5 by alveolar macrophages for the induction of type 2 immune responses. Nature Immunology, 2018, 19, 547-560.	7.0	66
134	Role of Deficits in Pathogen Recognition Receptors in Infection Susceptibility. , 2018, , 115-131.		0
135	In vitro models of dermatophyte infection to investigate epidermal barrier alterations. Experimental Dermatology, 2018, 27, 915-922.	1.4	24
136	Diagnosis of dermatophytosis using single fungus endogenous fluorescence spectrometry. Biomedical Optics Express, 2018, 9, 2733.	1.5	7

#	Article	IF	CITATIONS
137	Majocchi's granuloma: current perspectives. Infection and Drug Resistance, 2018, Volume 11, 751-760.	1.1	51
138	Regulation of C-Type Lectin Receptor-Mediated Antifungal Immunity. Frontiers in Immunology, 2018, 9, 123.	2.2	74
139	The Role of AIRE in the Immunity Against Candida Albicans in a Model of Human Macrophages. Frontiers in Immunology, 2018, 9, 567.	2.2	12
140	Dermatophyte Resistance to Antifungal Drugs: Mechanisms and Prospectus. Frontiers in Microbiology, 2018, 9, 1108.	1.5	114
141	IL-17 Takes Center Stage inÂDermatophytosis. Journal of Investigative Dermatology, 2018, 138, 1691-1693.	0.3	4
142	Candidiasis of the Central Nervous System in Neonates and Children With Primary Immunodeficiencies. Current Fungal Infection Reports, 2018, 12, 92-97.	0.9	13
143	Inherited CARD9 Deficiency: Invasive Disease Caused by Ascomycete Fungi in Previously Healthy Children and Adults. Journal of Clinical Immunology, 2018, 38, 656-693.	2.0	130
144	Human CARD9: A Critical Molecule of Fungal Immune Surveillance. Frontiers in Immunology, 2018, 9, 1836.	2.2	110
145	Recurrent fungal infections in a Chinese patient with <scp>CARD</scp> 9 deficiency and a review of 48 cases. British Journal of Dermatology, 2019, 180, 1221-1225.	1.4	22
146	The Phytopathogenic Fungus Pallidocercospora crystallina-Caused Localized Subcutaneous Phaeohyphomycosis in a Patient with a Homozygous Missense CARD9 Mutation. Journal of Clinical Immunology, 2019, 39, 713-725.	2.0	12
147	Invasive fungal infections in the immunocompromised host: Mechanistic insights in an era of changing immunotherapeutics. Medical Mycology, 2019, 57, S307-S317.	0.3	23
148	Fungal immunology in clinical practice: Magical realism or practical reality?. Medical Mycology, 2019, 57, S294-S306.	0.3	8
149	Structures of autoinhibited and polymerized forms of CARD9 reveal mechanisms of CARD9 and CARD11 activation. Nature Communications, 2019, 10, 3070.	5.8	33
150	Changing Concepts and Current Definition of Majocchi's Granuloma. Mycopathologia, 2019, 185, 187-192.	1.3	8
151	Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Microbes and Infection, 2019, 21, 237-245.	1.0	28
152	Phaeohyphomycosis caused by <i>Phialophora americana</i> with <i>CARD9</i> mutation and 20â€year literature review in China. Mycoses, 2019, 62, 908-919.	1.8	38
153	Trichophyton rubrum Elicits Phagocytic and Pro-inflammatory Responses in Human Monocytes Through Toll-Like Receptor 2. Frontiers in Microbiology, 2019, 10, 2589.	1.5	15
154	The Rise of Coccidioides: Forces Against the Dust Devil Unleashed. Frontiers in Immunology, 2019, 10, 2188.	2.2	37

#	ARTICLE	IF	Citations
155	Species distribution and epidemiological characteristics of superficial fungal infections in Southeastern Serbia. Mycoses, 2019, 62, 458-465.	1.8	16
156	Successful Allogenic Stem Cell Transplantation in Patients with Inherited CARD9 Deficiency. Journal of Clinical Immunology, 2019, 39, 462-469.	2.0	34
157	Deep dermatophytosis caused by Microsporum ferrugineum in a patient with CARD 9 mutations. British Journal of Dermatology, 2019, 181, 1093-1095.	1.4	20
158	Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Genes and Immunity, 2019, 20, 403-414.	2.2	55
159	Trichophyton rubrum LysM proteins bind to fungal cell wall chitin and to the N-linked oligosaccharides present on human skin glycoproteins. PLoS ONE, 2019, 14, e0215034.	1.1	20
160	CARD9+ microglia promote antifungal immunity via IL- \hat{l}^2 - and CXCL1-mediated neutrophil recruitment. Nature Immunology, 2019, 20, 559-570.	7. O	162
161	Interleukin-17 in Antifungal Immunity. Pathogens, 2019, 8, 54.	1.2	57
162	Why are so many cases of invasive aspergillosisÂmissed?. Medical Mycology, 2019, 57, S94-S103.	0.3	33
163	The Skin as a Window into Primary Immune Deficiency Diseases: Atopic Dermatitis and Chronic Mucocutaneous Candidiasis. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 788-798.	2.0	22
164	CARD9 Signaling in Intestinal Immune Homeostasis and Oncogenesis. Frontiers in Immunology, 2019, 10, 419.	2.2	23
165	First Case of Patient With Two Homozygous Mutations in MYD88 and CARD9 Genes Presenting With Pyogenic Bacterial Infections, Elevated IgE, and Persistent EBV Viremia. Frontiers in Immunology, 2019, 10, 130.	2,2	26
166	The molecular immunology of human susceptibility to fungal diseases: lessons from single gene defects of immunity. Expert Review of Clinical Immunology, 2019, 15, 461-486.	1.3	6
167	Simultaneous dermatophytosis and keratomycosis caused by Trichophyton interdigitale infection: a case report and literature review. BMC Infectious Diseases, 2019, 19, 983.	1.3	16
168	Proteome-Wide Identification of Lysine Propionylation in the Conidial and Mycelial Stages of Trichophyton rubrum. Frontiers in Microbiology, 2019, 10, 2613.	1.5	17
169	Genetic Variation and Fungal Infection Risk: State of the Art. Current Fungal Infection Reports, 2019, 13, 250-259.	0.9	6
170	Lessons learned from the study of human inborn errors of innate immunity. Journal of Allergy and Clinical Immunology, 2019, 143, 507-527.	1.5	46
172	Pulmonary Manifestations of Defects in Innate Immunity., 2019, , 169-192.		0
173	Organ-specific mechanisms linking innate and adaptive antifungal immunity. Seminars in Cell and Developmental Biology, 2019, 89, 78-90.	2.3	27

#	ARTICLE	IF	CITATIONS
174	Novel CARD9 mutation in a patient with chronic invasive dermatophyte infection (tinea profunda). Journal of Cutaneous Pathology, 2020, 47, 166-170.	0.7	24
175	Immune disruption occurs through altered gut microbiome and NOD2 in arsenic induced mice: Correlation with colon cancer markers. Chemosphere, 2020, 246, 125791.	4.2	18
176	Molecular systems in inflammatory bowel disease. , 2020, , 367-388.		1
177	Innate Inspiration: Antifungal Peptides and Other Immunotherapeutics From the Host Immune Response. Frontiers in Immunology, 2020, 11, 2177.	2.2	23
178	CARD9 Deficiency in a Chinese Man with Cutaneous Mucormycosis, Recurrent Deep Dermatophytosis and a Review of the Literature. Mycopathologia, 2020, 185, 1041-1050.	1.3	15
179	Clinical Presentation of Immunodeficiency, Overview. , 2020, , 173-175.		0
180	Mycetoma caused by Microsporum canis in a patient with renal transplant: A case report and review of the literature. Transplant Infectious Disease, 2020, 23, e13516.	0.7	5
181	Epidemiology and Diagnostic Perspectives of Dermatophytoses. Journal of Fungi (Basel, Switzerland), 2020, 6, 310.	1.5	40
182	Isolated Nocardiosis, an Unrecognized Primary Immunodeficiency?. Frontiers in Immunology, 2020, 11, 590239.	2.2	36
183	Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduction and Targeted Therapy, 2020, 5, 209.	7.1	669
184	Comparative Analysis of Clinical and Environmental Strains of Exophiala spinifera by Long-Reads Sequencing and RNAseq Reveal Adaptive Strategies. Frontiers in Microbiology, 2020, 11, 1880.	1.5	6
185	Dermatomicosi. EMC - AKOS - Trattato Di Medicina, 2020, 22, 1-12.	0.0	O
186	Skin Immunity to Dermatophytes: From Experimental Infection Models to Human Disease. Frontiers in Immunology, 2020, 11, 605644.	2.2	36
188	Global perspectives on primary immune deficiency diseases. , 2020, , 1129-1142.		0
189	A critical role for <scp>CARD9</scp> in pneumocystis pneumonia host defence. Cellular Microbiology, 2020, 22, e13235.	1.1	10
190	Mutant CARD10 in a family with progressive immunodeficiency and autoimmunity. Cellular and Molecular Immunology, 2020, 17, 782-784.	4.8	6
191	Chronic mucocutaneous candidiasis and invasive fungal infection susceptibility., 2020,, 961-989.		0
192	Infections associated with the new â€~nibs and mabs' and cellular therapies. Current Opinion in Infectious Diseases, 2020, 33, 281-289.	1.3	10

#	Article	IF	CITATIONS
193	Common presentations and diagnostic approaches. , 2020, , 3-59.		1
194	Advances in Understanding Human Genetic Variations That Influence Innate Immunity to Fungi. Frontiers in Cellular and Infection Microbiology, 2020, 10, 69.	1.8	23
195	HumanÂinborn errors of immunity underlying superficial or invasive candidiasis. Human Genetics, 2020, 139, 1011-1022.	1.8	59
196	Complete clinical remission of invasive Candida infection with CARD9 deficiency after G-CSF treatment. Comparative Immunology, Microbiology and Infectious Diseases, 2020, 70, 101417.	0.7	15
197	Th17 Cells in Inflammatory Bowel Disease: An Update for the Clinician. Inflammatory Bowel Diseases, 2020, 26, 653-661.	0.9	34
198	Inherited CARD9 Deficiency in a Patient with Both Exophiala spinifera and Aspergillus nomius Severe Infections. Journal of Clinical Immunology, 2020, 40, 359-366.	2.0	25
199	Human BCL10 Deficiency due to Homozygosity for a Rare Allele. Journal of Clinical Immunology, 2020, 40, 388-398.	2.0	17
200	The role of neutrophils in host defense and disease. Journal of Allergy and Clinical Immunology, 2020, 145, 1535-1544.	1.5	71
201	Lethal Infectious Diseases as Inborn Errors of Immunity: Toward a Synthesis of the Germ and Genetic Theories. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 23-50.	9.6	77
202	In vitro pharmacokinetics/pharmacodynamics modeling and efficacy against systemic candidiasis in Drosophila melanogaster of a bisaryloxypropanamine derivative. Medical Mycology, 2021, 59, 58-66.	0.3	1
203	Multidrugâ€resistant <i>Trichophyton mentagrophytes</i> genotype VIII in an Iranian family with generalized dermatophytosis: report of four cases and review of literature. International Journal of Dermatology, 2021, 60, 686-692.	0.5	44
204	Host genetics and infectious disease: new tools, insights and translational opportunities. Nature Reviews Genetics, 2021, 22, 137-153.	7.7	98
205	Investigation of in vitro antifungal susceptibility testing and genetic diversity of clinical isolates of <i>Trichophyton benhamiae</i> and <i>Trichophyton eriotrephon</i> in Iran. Mycoses, 2021, 64, 316-323.	1.8	3
206	Invasive dermatophyte infection: A systematic review. Mycoses, 2021, 64, 340-348.	1.8	40
207	The impact of the Fungus-Host-Microbiota interplay upon <i>Candida albicans</i> iiinfections: current knowledge and new perspectives. FEMS Microbiology Reviews, 2021, 45, .	3.9	139
208	Primary Cutaneous Aspergillosis in a Patient with CARD9 Deficiency and Aspergillus Susceptibility of Card9 Knockout Mice. Journal of Clinical Immunology, 2021, 41, 427-440.	2.0	16
209	Regional Differences in Antifungal Susceptibility of the Prevalent Dermatophyte Trichophyton rubrum. Mycopathologia, 2021, 186, 53-70.	1.3	11
210	A new case of deep dermatophytic disease with inherited CARD9 deficiency. International Journal of Dermatology, 2021, 60, e15-e16.	0.5	3

#	Article	IF	CITATIONS
211	Fungal Infections in the Setting of Biological Therapies (in the Non-Transplant Host)., 2021,, 803-812.		0
212	Genetic Predictors of Susceptibility to Dermatophytosis. , 2021, , 181-196.		0
213	Unusual Dermatophytosis Presentations and New Emerging Dermatophytes Species., 2021,, 87-114.		0
214	Host immune responses in dermatophytes infection. Mycoses, 2021, 64, 477-483.	1.8	22
215	Genetic Predisposition and its Heredity in the Context of Increased Prevalence of Dermatophytoses. Mycopathologia, 2021, 186, 163-176.	1.3	15
216	Superficial mycoses, a matter of concern: Global and Indian scenarioâ€an updated analysis. Mycoses, 2021, 64, 890-908.	1.8	16
217	<i>In Vivo</i> and <i>In Vitro</i> Impairments in T Helper Cell and Neutrophil Responses against <i>Mucor irregularis</i> in <i>Card9</i> Knockout Mice. Infection and Immunity, 2021, 89, .	1.0	6
218	Painless rash in a transplant patient. Transplant Infectious Disease, 2021, 23, e13613.	0.7	4
219	The Role of IL-17-Producing Cells in Cutaneous Fungal Infections. International Journal of Molecular Sciences, 2021, 22, 5794.	1.8	9
220	Characterization of the cutaneous mycobiota in Persian cats with severe dermatophytosis. Veterinary Dermatology, 2021, 32, 319.	0.4	1
221	Case Report: Talaromyces marneffei Infection in a Chinese Child With a Complex Heterozygous CARD9 Mutation. Frontiers in Immunology, 2021, 12, 685546.	2.2	11
223	Cutaneous and subcutaneous fungal infections: recent developments on host–fungus interactions. Current Opinion in Microbiology, 2021, 62, 93-102.	2.3	9
224	State-of-the-Art Dermatophyte Infections: Epidemiology Aspects, Pathophysiology, and Resistance Mechanisms. Journal of Fungi (Basel, Switzerland), 2021, 7, 629.	1.5	34
225	A Case of Recalcitrant Phaeohyphomycosis of the Face Caused by <i>Exophiala lecanii-corni</i> Medical Mycology Journal, 2021, 62, 35-39.	0.5	3
226	Transcriptome of Host–Dermatophyte Interactions Using Infection Models. , 2021, , 161-179.		0
227	Invasive Saprochaete capitata Infection in a Patient with Autosomal Recessive CARD9 Deficiency and a Review of the Literature. Journal of Clinical Immunology, 2020, 40, 466-474.	2.0	10
228	Genetic susceptibility to fungal infection in children. Current Opinion in Pediatrics, 2020, 32, 780-789.	1.0	9
229	Host- and pathogen-dependent susceptibility and predisposition to dermatophytosis. Journal of Medical Microbiology, 2019, 68, 823-836.	0.7	46

#	Article	IF	CITATIONS
230	Skin Fungi from Colonization to Infection. , 0, , 855-871.		6
231	Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight, 2016, 1, e89890.	2.3	141
232	Inherited BCL10 deficiency impairs hematopoietic and nonhematopoietic immunity. Journal of Clinical Investigation, 2014, 124, 5239-5248.	3.9	97
233	CARD14 Expression in Dermal Endothelial Cells in Psoriasis. PLoS ONE, 2014, 9, e111255.	1.1	52
234	CARD9-Dependent Neutrophil Recruitment Protects against Fungal Invasion of the Central Nervous System. PLoS Pathogens, 2015, 11, e1005293.	2.1	184
235	In situ immune response in human dermatophytosis: possible role of Langerhans cells (CD1a+) as a risk factor for dermatophyte infection. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2019, 61, e56.	0.5	13
236	Epidemiology of dermatophytosis in northeastern Iran; A subtropical region. Current Medical Mycology, 2019, 5, 16-21.	0.8	22
237	A Case of Granuloma Trichophyticum after Left Lung Transplantation. Nishinihon Journal of Dermatology, 2018, 80, 45-50.	0.0	1
238	The menace of chronic and recurrent dermatophytosis in India: Is the problem deeper than we perceive?. Indian Dermatology Online Journal, 2016, 7, 73.	0.2	124
239	Severe Disseminated Phaeohyphomycosis in a Patient with Inherited CARD9 Deficiency. Archives of Clinical Infectious Diseases, 2018, 13, .	0.1	7
240	sQuiz your knowledge: Giant ulcerative plaque on the trunk. European Journal of Dermatology, 2021, 31, 593-595.	0.3	0
241	Editorial overview: Niche-specific and species-specific host-fungal interactions â€" how do they impact human health?. Current Opinion in Microbiology, 2021, 64, 162-165.	2.3	0
242	Dermatophyte Infections in Humans: Current Trends and Future Prospects., 2015,, 3-27.		0
243	Fungal Infections of the Skin. , 2016, , 157-186.		1
244	Defects in Intrinsic and Innate Immunity: Receptors and Signaling Components., 2017,, 339-392.		0
245	Host Defense Mechanisms Against Fungi. , 2017, , 1171-1174.e2.		0
246	CLINICAL PROFILE OF PATIENTS WITH CHRONIC DERMATOPHYTOSIS- A DESCRIPTIVE STUDY FROM A TERTIARY CARE CENTRE IN KERALA. Journal of Evidence Based Medicine and Healthcare, 2017, 4, 2863-2866.	0.0	3
247	OUP accepted manuscript. Clinical Infectious Diseases, 2022, 74, 1257-1259.	2.9	O

#	Article	IF	CITATIONS
249	Unusual Inflammatory Tinea Infections: Majocchi's Granuloma and Deep/Systemic Dermatophytosis. Journal of Fungi (Basel, Switzerland), 2021, 7, 929.	1.5	6
250	CARD9 Deficiency. , 2020, , 96-117.		0
251	Cutaneous manifestations in primary immunodeficiency diseases. Journal of Skin and Sexually Transmitted Diseases, 0, 3, 143-150.	0.0	1
252	The role and mechanism of CARD9 gene polymorphism in diseases. Biomedical Journal, 2021, 44, 560-566.	1.4	15
253	The adaptor protein CARD9, from fungal immunity to tumorigenesis. American Journal of Cancer Research, 2020, 10, 2203-2225.	1.4	5
254	Clinico-Mycological Profile of Treatment-NaÃ-ve, Chronic, Recurrent and Steroid-Modified Dermatophytosis at a Tertiary Care Centre in Eastern India: An Institution-Based Cross-SectionalStudy. Indian Dermatology Online Journal, 2021, 12, 714-721.	0.2	1
255	Clinical and Immunological Features of Human BCL10 Deficiency. Frontiers in Immunology, 2021, 12, 786572.	2.2	13
256	CARD9 Expression Pattern, Gene Dosage, and Immunodeficiency Phenotype Revisited. Journal of Clinical Immunology, 2022, 42, 336-349.	2.0	6
258	Trends in the epidemiology of dermatophytosis in the Middle East and North Africa region. International Journal of Dermatology, 2022, 61, 935-968.	0.5	7
259	Defects in Innate Immunity: Receptors and Signaling Components. , 2021, , .		0
260	Clinico-mycological profile of treatment-na \tilde{A} -ve, chronic, recurrent and steroid-modified dermatophytosis at a tertiary care centre in Eastern India: An institution-based cross-sectional study. Indian Dermatology Online Journal, 2021, 12, 714.	0.2	5
262	Aspects cliniques des dermatophytes et modalités de prélèvement. Revue Francophone Des Laboratoires, 2022, 2022, 41-47.	0.0	0
263	Dermatophytes and Dermatophytosis. , 2022, , 397-407.		2
264	An ancient haplotype containing antimicrobial peptide gene variants is associated with severe fungal skin disease in Persian cats. PLoS Genetics, 2022, 18, e1010062.	1.5	6
265	Fungal microbiome in inflammatory bowel disease: a critical assessment. Journal of Clinical Investigation, 2022, 132, .	3.9	35
266	Trichophyton onychomycosis and deep dermatophytosis in a postâ€heart transplant patient. Transplant Infectious Disease, 2022, 24, .	0.7	2
267	Pathogenesis and virulence of <i>Candida albicans</i> . Virulence, 2022, 13, 89-121.	1.8	107
300	Invasive Rhinosinusitis Caused by Alternaria infectoria in a Patient with Autosomal Recessive CARD9 Deficiency and a Review of the Literature. Journal of Fungi (Basel, Switzerland), 2022, 8, 446.	1.5	2

#	Article	IF	CITATIONS
301	A nucleation barrier spring-loads the CBM signalosome for binary activation. ELife, 0, 11 , .	2.8	6
303	Molecular exploration of hidden pleiotropic activities of azoles on dermatophytes in human tinea corporis infection. Journal De Mycologie Medicale, 2022, , 101311.	0.7	0
304	Genomeâ€wide association study of dermatophytosis in the <scp>UK</scp> Biobank cohort. Journal of the European Academy of Dermatology and Venereology, 0, , .	1.3	3
305	Pearls & Deficiency Masquerading as a Longitudinally Extensive Transverse Myelitis. Neurology, 2022, 99, 475-479.	1.5	4
306	Main human inborn errors of immunity leading to fungal infections. Clinical Microbiology and Infection, 2022, 28, 1435-1440.	2.8	9
307	From rare disorders of immunity to common determinants of infection: Following the mechanistic thread. Cell, 2022, 185, 3086-3103.	13.5	57
308	An Inflammatory Scalp Lesion with Hair Loss. Clinical Cases in Dermatology, 2022, , 127-131.	0.0	0
309	Case report: Severe deep ulcer on the left abdomen mimicking mycosis fungoides caused by Trichophyton tonsurans in a patient with novel CARD9 mutation. Frontiers in Immunology, $0,13,.$	2.2	4
310	Review on host-pathogen interaction in dermatophyte infections. Journal De Mycologie Medicale, 2023, 33, 101331.	0.7	5
311	Strategies to improve the diagnosis and clinical treatment of dermatophyte infections. Expert Review of Anti-Infective Therapy, 2023, 21, 29-40.	2.0	3
313	Human Dectin-1 deficiency impairs macrophage-mediated defense against phaeohyphomycosis. Journal of Clinical Investigation, 2022, 132, .	3.9	9
314	CARD9 in host immunity to fungal, bacterial, viral, and parasitic infections: An update. Frontiers in Microbiology, 0, 13, .	1.5	3
316	A Review of Antifungal Susceptibility Testing for Dermatophyte Fungi and It's Correlation with Previous Exposure and Clinical Responses. Journal of Fungi (Basel, Switzerland), 2022, 8, 1290.	1.5	2
317	Alveolar echinococcosis in immunocompromised hosts. Clinical Microbiology and Infection, 2023, 29, 593-599.	2.8	4
318	CARD9 balances <i>Aspergillus fumigatus</i> à€induced antiâ€fungal immunity and allergic inflammation. Clinical and Experimental Allergy, 2023, 53, 659-663.	1.4	0
319	Inborn Errors of Immunity Causing Pediatric Susceptibility to Fungal Diseases. Journal of Fungi (Basel,) Tj ETQq1	1 0,78431 1.5	4 rgBT /Over
320	Exploiting antifungal immunity in the clinical context. Seminars in Immunology, 2023, 67, 101752.	2.7	3
321	Dermatophytic Biofilms: Characteristics, Significance and Treatment Approaches. Journal of Fungi (Basel, Switzerland), 2023, 9, 228.	1.5	1

#	Article	IF	CITATIONS
322	Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases. Pathogens, 2023, 12, 456.	1.2	3
323	Histopathology in the Diagnosis of Tinea Capitis: When to Do, How to Interpret?. Mycopathologia, 0, , .	1.3	1
324	Genetics of Inborn Errors of Immunity in highly consanguineous Middle Eastern and North African populations. Seminars in Immunology, 2023, 67, 101763.	2.7	1
325	Generalized nodular tinea profunda in an immunosuppressed patient caused by Trichophyton rubrum. Anais Brasileiros De Dermatologia, 2023, , .	0.5	1
333	Superficial and Subcutaneous Mycoses. , 2024, , 483-494.		0