An archaeal origin of eukaryotes supports only two prin

Nature 504, 231-236 DOI: 10.1038/nature12779

Citation Report

#	Article	IF	CITATIONS
1	Genome-Wide miRNA Seeds Prediction in Archaea. Archaea, 2014, 2014, 1-6.	2.3	3
2	Archaea and the human gut: New beginning of an old story. World Journal of Gastroenterology, 2014, 20, 16062.	1.4	308
4	Origins and Emergent Evolution of Life: The Colloid Microsphere Hypothesis Revisited. Origins of Life and Evolution of Biospheres, 2014, 44, 87-110.	0.8	11
5	An Origin-of-Life Reactor to Simulate Alkaline Hydrothermal Vents. Journal of Molecular Evolution, 2014, 79, 213-227.	0.8	152
6	Generation of comprehensive transposon insertion mutant library for the model archaeon, Haloferax volcanii, and its use for gene discovery. BMC Biology, 2014, 12, 103.	1.7	17
7	Archaeal "Dark Matter―and the Origin of Eukaryotes. Genome Biology and Evolution, 2014, 6, 474-481.	1.1	81
8	A Bioenergetic Basis for Membrane Divergence in Archaea and Bacteria. PLoS Biology, 2014, 12, e1001926.	2.6	84
9	tRNA gene diversity in the three domains of life. Frontiers in Genetics, 2014, 5, 142.	1.1	103
10	Archaeal Chromosome Biology. Journal of Molecular Microbiology and Biotechnology, 2014, 24, 420-427.	1.0	9
11	Bayesian modelling of compositional heterogeneity in molecular phylogenetics. Statistical Applications in Genetics and Molecular Biology, 2014, 13, 589-609.	0.2	17
12	An Introduction to Phylogenetics and the Tree of Life. Methods in Microbiology, 2014, 41, 13-44.	0.4	2
13	Metabolic network motifs can provide novel insights into evolution: The evolutionary origin of Eukaryotic organelles as a case study. Computational Biology and Chemistry, 2014, 53, 242-250.	1.1	4
14	Bioenergetic Evolution in Proteobacteria and Mitochondria. Genome Biology and Evolution, 2014, 6, 3238-3251.	1.1	60
15	Mediators of Homologous DNA Pairing. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016451-a016451.	2.3	62
16	Fundamental Issues Related to the Origin of Melatonin and Melatonin Isomers during Evolution: Relation to Their Biological Functions. International Journal of Molecular Sciences, 2014, 15, 15858-15890.	1.8	153
17	Concatenated alignments and the case of the disappearing tree. BMC Evolutionary Biology, 2014, 14, 266.	3.2	54
18	Plastid origin: who, when and why?. Acta Societatis Botanicorum Poloniae, 2014, 83, 281-289.	0.8	10
19	Biosynthesis of wyosine derivatives in tRNA ^{Phe} of Archaea: role of a remarkable bifunctional tRNA ^{Phe} :m ¹ G/imG2 methyltransferase. Rna. 2014, 20, 747-753.	1.6	21

#	Article	IF	CITATIONS
20	Evolutionary mechanisms for establishing eukaryotic cellular complexity. Trends in Cell Biology, 2014, 24, 435-442.	3.6	26
21	Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 964-981.	0.5	78
22	Evolution: Rooting the Eukaryotic Tree of Life. Current Biology, 2014, 24, R151-R152.	1.8	13
23	The trouble with (group II) introns. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6536-6537.	3.3	19
24	â€~Geoarchaeote NAG1' is a deeply rooting lineage of the archaeal order Thermoproteales rather than a new phylum. ISME Journal, 2014, 8, 1353-1357.	4.4	19
25	The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nature Reviews Microbiology, 2014, 12, 449-455.	13.6	124
26	The Relative Ages of Eukaryotes and Akaryotes. Journal of Molecular Evolution, 2014, 79, 228-239.	0.8	25
27	How discordant morphological and molecular evolution among microorganisms can revise our notions of biodiversity on Earth. BioEssays, 2014, 36, 950-959.	1.2	36
28	The X-ray crystal structure of the euryarchaeal RNA polymerase in an open-clamp configuration. Nature Communications, 2014, 5, 5132.	5.8	36
30	Cellular domains and viral lineages. Trends in Microbiology, 2014, 22, 554-558.	3.5	48
31	The Neomuran Revolution and Phagotrophic Origin of Eukaryotes and Cilia in the Light of Intracellular Coevolution and a Revised Tree of Life. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016006-a016006.	2.3	53
32	The plastid ancestor originated among one of the major cyanobacterial lineages. Nature Communications, 2014, 5, 4937.	5.8	83
33	On the mechanism of respiratory complex I. Journal of Bioenergetics and Biomembranes, 2014, 46, 255-268.	1.0	42
34	Endosymbiotic theory for organelle origins. Current Opinion in Microbiology, 2014, 22, 38-48.	2.3	333
36	On How Many Fundamental Kinds of Cells are Present on Earth: Looking for Phylogenetic Traits that Would Allow the Identification of the Primary Lines of Descent. Journal of Molecular Evolution, 2014, 78, 313-320.	0.8	15
37	Crenactin from <i>Pyrobaculum calidifontis</i> is closely related to actin in structure and forms steep helical filaments. FEBS Letters, 2014, 588, 776-782.	1.3	25
39	Archaeal ancestors of eukaryotes: not so elusive any more. BMC Biology, 2015, 13, 84.	1.7	60
40	Toward the Darwinian transition: Switching between distributed and speciated states in a simple model of early life. Physical Review E, 2015, 92, 052909.	0.8	12

#	Article	IF	Citations
41	Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution. Microbiology Spectrum, 2015, 3, MDNA3-0050-2014.	1.2	119
42	真æ,生物誕生ã®ã,«ã,®ã,'æjã,‹åŽŸæ,生物ã,'発見. Nature Digest, 2015, 12, 30-31.	0.0	0
43	Human <scp>TLR</scp> 8 senses <scp>UR</scp> / <scp>URR</scp> motifs in bacterial and mitochondrial <scp>RNA</scp> . EMBO Reports, 2015, 16, 1656-1663.	2.0	110
44	Birth of the eukaryotes by a set of reactive innovations: New insights force us to relinquish gradual models. BioEssays, 2015, 37, 1268-1276.	1.2	37
45	9 Early life. , 0, , .		1
46	Late Proterozoic Transitions in Climate, Oxygen, and Tectonics, and the Rise of Complex Life. The Paleontological Society Papers, 2015, 21, 47-82.	0.8	20
47	Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution. , 2015, , 1209-1236.		12
48	A Multi-Functional Tubulovesicular Network as the Ancestral Eukaryotic Endomembrane System. Biology, 2015, 4, 264-281.	1.3	3
49	The universal tree of life: an update. Frontiers in Microbiology, 2015, 6, 717.	1.5	140
50	Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10139-10146.	3.3	102
51	Life: how it began and how it survives. Astronomy and Geophysics, 2015, 56, 1.15-1.18.	0.1	0
52	The 4D nucleome: Evidence for a dynamic nuclear landscape based on coâ€aligned active and inactive nuclear compartments. FEBS Letters, 2015, 589, 2931-2943.	1.3	211
53	Mutation Rates in Plastid Genomes: They Are Lower than You Might Think. Genome Biology and Evolution, 2015, 7, 1227-1234.	1.1	158
54	Rings Reconcile Genotypic and Phenotypic Evolution within the <i>Proteobacteria</i> . Genome Biology and Evolution, 2015, 7, 3434-3442.	1.1	4
55	Taxon-Rich Phylogenomic Analyses Resolve the Eukaryotic Tree of Life and Reveal the Power of Subsampling by Sites. Systematic Biology, 2015, 64, 406-415.	2.7	63
56	The Non-Biological Meaning of the Term "Prokaryote―and Its Implications. Journal of Molecular Evolution, 2015, 80, 98-101.	0.8	15
57	Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut, 2015, 64, 1732-1743.	6.1	261
58	Early evolution of the Eukaryota. Palaeontology, 2015, 58, 5-17.	1.0	161

	CITATION	n Report	
#	ARTICLE Big questions and skepsis: Review of " <i>In Search of Cell History</i> . BioEssays, 2015, 37, 349-351.	IF 1.2	CITATIONS
59		1.2	Ţ
60	The Eukaryotic Ancestor Had a Complex Ubiquitin Signaling System of Archaeal Origin. Molecular Biology and Evolution, 2015, 32, 726-739.	3.5	58
61	Ancient dynamin segments capture early stages of host–mitochondrial integration. Proceedings of the United States of America, 2015, 112, 2800-2805.	3.3	41
62	Mechanisms of Evolutionary Innovation Point to Genetic Control Logic as the Key Difference Between Prokaryotes and Eukaryotes. Journal of Molecular Evolution, 2015, 81, 34-53.	0.8	13
63	Evolutionary implications of localization of the signaling scaffold protein Parafusin to both cilia and the nucleus. Cell Biology International, 2015, 39, 136-145.	1.4	11
64	Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8827-8834.	3.3	236
65	Metabolic bacterial genes and the construction of high-level composite lineages of life. Trends in Ecology and Evolution, 2015, 30, 127-129.	4.2	4
66	The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiology Reviews, 2015, 39, 567-591.	3.9	362
67	Evolution of Eukaryotic DNA Polymerases via Interaction Between Cells and Large DNA Viruses. Journal of Molecular Evolution, 2015, 81, 24-33.	0.8	29
68	Bakterien – ihre Entdeckung und Bedeutung für Natur und Mensch. , 2015, , .		3
69	Universal RNA-degrading enzymes in Archaea: Prevalence, activities and functions of β-CASP ribonucleases. Biochimie, 2015, 118, 278-285.	1.3	25
70	Archaea associated with human surfaces: not to be underestimated. FEMS Microbiology Reviews, 2015, 39, 631-648.	3.9	88
71	The two-domain tree of life is linked to a new root for the Archaea. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6670-6675.	3.3	234
72	Evolution of centrosomes and the nuclear lamina: Amoebozoan assets. European Journal of Cell Biology, 2015, 94, 249-256.	1.6	37
73	Rap and chirp about X inactivation. Nature, 2015, 521, 170-171.	13.7	17
74	Lateral gene transfers and the origins of the eukaryote proteome: a view from microbial parasites. Current Opinion in Microbiology, 2015, 23, 155-162.	2.3	42
75	Mitonuclear Ecology. Molecular Biology and Evolution, 2015, 32, 1917-1927.	3.5	138
76	Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature, 2015, 521, 173-179.	13.7	995

#	Article	IF	CITATIONS
77	Steps on the road to eukaryotes. Nature, 2015, 521, 169-170.	13.7	39
78	Genesis of Chromatin and Transcription Dynamics in the Origin of Species. Cell, 2015, 161, 724-736.	13.5	64
79	Mitochondrial and plastid genome architecture: Reoccurring themes, but significant differences at the extremes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10177-10184.	3.3	327
80	The unseen world: reflections on Leeuwenhoek (1677) â€~Concerning little animals'. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140344.	1.8	131
81	Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140328.	1.8	40
82	Endosymbiotic theories for eukaryote origin. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140330.	1.8	390
83	Conservation of Transit Peptide-Independent Protein Import into the Mitochondrial and Hydrogenosomal Matrix. Genome Biology and Evolution, 2015, 7, 2716-2726.	1.1	51
84	Structure and Evolution of the Archaeal Lipid Synthesis Enzyme sn-Glycerol-1-phosphate Dehydrogenase. Journal of Biological Chemistry, 2015, 290, 21690-21704.	1.6	15
85	Endosymbiosis and Eukaryotic Cell Evolution. Current Biology, 2015, 25, R911-R921.	1.8	426
86	Archaea. Current Biology, 2015, 25, R851-R855.	1.8	45
87	Open Questions on the Origin of Eukaryotes. Trends in Ecology and Evolution, 2015, 30, 697-708.	4.2	107
88	Endosymbiotic origin and differential loss of eukaryotic genes. Nature, 2015, 524, 427-432.	13.7	251
89	The ring of life hypothesis for eukaryote origins is supported by multiple kinds of data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140323.	1.8	19
90	Horizontal gene flow from Eubacteria to Archaebacteria and what it means for our understanding of eukaryogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140337.	1.8	23
91	The Design and Structure of Outer Membrane Receptors from Peroxisomes, Mitochondria, and Chloroplasts. Structure, 2015, 23, 1783-1800.	1.6	2
92	Eukaryotic origins. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140321.	1.8	20
93	Probabilistic models of eukaryotic evolution: time for integration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140338.	1.8	11
94	Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier?. Philosophical Transactions of the Royal Society B: Biological Sciences 2015, 370, 20140333	1.8	118

#	Article	IF	CITATIONS
95	New substitution models for rooting phylogenetic trees. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140336.	1.8	55
96	Structures of archaeal DNA segregation machinery reveal bacterial and eukaryotic linkages. Science, 2015, 349, 1120-1124.	6.0	49
97	Changing ideas about eukaryotic origins. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140318.	1.8	21
98	Eukaryotes first: how could that be?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140322.	1.8	20
99	Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140327.	1.8	72
100	The phylogenomics of protein structures: The backstory. Biochimie, 2015, 119, 284-302.	1.3	15
101	The evolution of eukaryotic cells from the perspective of peroxisomes. BioEssays, 2015, 37, 195-203.	1.2	47
102	Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature, 2015, 517, 77-80.	13.7	238
103	Partitional Classification: A Complement to Phylogeny. Evolutionary Bioinformatics, 2016, 12, EBO.S38288.	0.6	0
104	Physiology, phylogeny, and LUCA. Microbial Cell, 2016, 3, 582-587.	1.4	31
104 105	Physiology, phylogeny, and LUCA. Microbial Cell, 2016, 3, 582-587. Arguments Reinforcing the Three-Domain View of Diversified Cellular Life. Archaea, 2016, 2016, 1-11.	1.4 2.3	31 25
105	Arguments Reinforcing the Three-Domain View of Diversified Cellular Life. Archaea, 2016, 2016, 1-11.	2.3	25
105 106	Arguments Reinforcing the Three-Domain View of Diversified Cellular Life. Archaea, 2016, 2016, 1-11. The Cosmic Zoo: The (Near) Inevitability of the Evolution of Complex, Macroscopic Life. Life, 2016, 6, 25. Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes. BMC	2.3	25 24
105 106 107	Arguments Reinforcing the Three-Domain View of Diversified Cellular Life. Archaea, 2016, 2016, 1-11. The Cosmic Zoo: The (Near) Inevitability of the Evolution of Complex, Macroscopic Life. Life, 2016, 6, 25. Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes. BMC Evolutionary Biology, 2016, 16, 197. NmPin from the marine thaumarchaeote Nitrosopumilus maritimus is an active membrane associated	2.3 1.1 3.2	25 24 40
105 106 107 108	Arguments Reinforcing the Three-Domain View of Diversified Cellular Life. Archaea, 2016, 2016, 1-11. The Cosmic Zoo: The (Near) Inevitability of the Evolution of Complex, Macroscopic Life. Life, 2016, 6, 25. Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes. BMC Evolutionary Biology, 2016, 16, 197. NmPin from the marine thaumarchaeote Nitrosopumilus maritimus is an active membrane associated prolyl isomerase. BMC Biology, 2016, 14, 53.	2.3 1.1 3.2 1.7	25 24 40 8
105 106 107 108	Arguments Reinforcing the Three-Domain View of Diversified Cellular Life. Archaea, 2016, 2016, 1-11. The Cosmic Zoo: The (Near) Inevitability of the Evolution of Complex, Macroscopic Life. Life, 2016, 6, 25. Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes. BMC Evolutionary Biology, 2016, 16, 197. NmPin from the marine thaumarchaeote Nitrosopumilus maritimus is an active membrane associated prolyl isomerase. BMC Biology, 2016, 14, 53. Energy for two: New archaeal lineages and the origin of mitochondria. BioEssays, 2016, 38, 850-856. A natural barrier to lateral gene transfer from prokaryotes to eukaryotes revealed from genomes: the	2.3 1.1 3.2 1.7 1.2	25 24 40 8 31

#	Article	IF	CITATIONS
114	Bacterial Vesicle Secretion and the Evolutionary Origin of the Eukaryotic Endomembrane System. Trends in Microbiology, 2016, 24, 525-534.	3.5	133
115	Chloroplast FBPase and SBPase are thioredoxin-linked enzymes with similar architecture but different evolutionary histories. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6779-6784.	3.3	60
116	Life With or Without Names. Evolutionary Biology, 2016, 43, 582-595.	0.5	8
117	One step beyond a ribosome: The ancient anaerobic core. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1027-1038.	0.5	51
118	An Ocean of Discovery: Biodiversity Beyond the Census of Marine Life. Planta Medica, 2016, 82, 790-799.	0.7	39
120	Archaeal DNA Replication Origins and Recruitment of the MCM Replicative Helicase. The Enzymes, 2016, 39, 169-190.	0.7	9
121	How Likely Are We? Evolution of Organismal Complexity. , 2016, , 255-272.		2
122	Evolution of bacterial recombinase A (recA) in eukaryotes explained by addition of genomic data of key microbial lineages. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161453.	1.2	10
123	Evolutionary insight into the ionotropic glutamate receptor superfamily of photosynthetic organisms. Biophysical Chemistry, 2016, 218, 14-26.	1.5	50
124	TbLOK1/ATOM19 is a novel subunit of the noncanonical mitochondrial outer membrane protein translocase of <i>Trypanosoma brucei</i> . Molecular Microbiology, 2016, 102, 520-529.	1.2	9
125	Biosynthesis of polyamines and polyamine-containing molecules. Biochemical Journal, 2016, 473, 2315-2329.	1.7	142
127	On the Origin and Early Evolution of Translation in Eukaryotes. , 2016, , 81-107.		0
128	Reply to â€~ls LUCA a thermophilic progenote?'. Nature Microbiology, 2016, 1, 16230.	5.9	14
129	What can we infer about the origin of sex in early eukaryotes?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150530.	1.8	18
130	Evolution of the Molecules Coupling mRNA Transport with Translational Control in Metazoans. , 2016, , 531-546.		4
131	Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor. Genome Biology and Evolution, 2016, 8, 1950-1970.	1.1	65
132	The physiology and habitat of the last universal common ancestor. Nature Microbiology, 2016, 1, 16116.	5.9	739
133	Evolution: A four billion year old metabolism. Nature Microbiology, 2016, 1, 16139.	5.9	15

ARTICLE IF CITATIONS # Protist Diversification., 2016,, 344-360. 134 13 Lokiarchaeon is hydrogen dependent. Nature Microbiology, 2016, 1, 16034. Computational pan-genomics: status, promises and challenges. Briefings in Bioinformatics, 2018, 19, 136 3.2 207 bbw089. Endosymbiotic Theory., 2016, , 511-517. A new view of the tree of life. Nature Microbiology, 2016, 1, 16048. 138 5.9 1,823 Microbial diversity: The tree of life comes of age. Nature Microbiology, 2016, 1, 16056. Development of a toolbox to dissect host-endosymbiont interactions and protein trafficking in the 140 3.2 26 trypanosomatid Angomonas deanei. BMC Evolutionary Biology, 2016, 16, 247. Are There Rab GTPases in Archaea?. Molecular Biology and Evolution, 2016, 33, 1833-1842. 141 3.5 26 142 The protozoan nucleus. Molecular and Biochemical Parasitology, 2016, 209, 76-87. 0.5 5 Molecular Mechanisms of Transcription Initiationâ€"Structure, Function, and Evolution of 143 TFE/TFIIE-Like Factors and Open Complex Formation. Journal of Molecular Biology, 2016, 428, 2592-2606. From microbiology to cell biology: when an intracellular bacterium becomes part of its host cell. 144 2.6 36 Current Opinion in Cell Biology, 2016, 41, 132-136. Symbiotic Associations: All About Chemistry. Advances in Environmental Microbiology, 2016, , 3-11. 0.1 Atypical ploidy cycles, Spo11, and the evolution of meiosis. Seminars in Cell and Developmental 146 2.3 30 Biology, 2016, 54, 158-164. Network-Thinking: Graphs to Analyze Microbial Complexity and Evolution. Trends in Microbiology, 3.5 2016, 24, 224-237 Algaeâ€"bacteria interactions: Evolution, ecology and emerging applications. Biotechnology Advances, 148 6.0 937 2016, 34, 14-29. 149 Mitochondria in the second act. Nature, 2016, 531, 39-40. 33 Early Microbial Evolution: The Age of Anaerobes. Cold Spring Harbor Perspectives in Biology, 2016, 8, 150 2.378 a018127. Peeping at TOMsâ€"Diverse Entry Gates to Mitochondria Provide Insights into the Evolution of 151 Eukaryotes. Molecular Biology and Evolution, 2016, 33, 337-351.

		CITATION RE	PORT	
#	Article		IF	CITATIONS
152	Genome-wide identification of SF1 and SF2 helicases from archaea. Gene, 2016, 576, 2	214-228.	1.0	18
153	Evolution of the archaeal and mammalian information processing systems: towards an model for human disease. Cellular and Molecular Life Sciences, 2017, 74, 183-212.	archaeal	2.4	12
154	Ancient, highly conserved proteins from a LUCA with complex cell biology provide evid of the nuclear compartment commonality (NuCom) hypothesis. Research in Microbiolo 395-412.	ence in support ogy, 2017, 168,	1.0	9
155	Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 2017, 5	41, 353-358.	13.7	882
156	Physiology, anaerobes, and the origin of mitosing cells 50 years on. Journal of Theoreti 2017, 434, 2-10.	cal Biology,	0.8	34
157	Physiology, phylogeny, early evolution, and GAPDH. Protoplasma, 2017, 254, 1823-18	34.	1.0	25
158	Symbiosis in eukaryotic evolution. Journal of Theoretical Biology, 2017, 434, 20-33.		0.8	113
159	Prokaryotic Cytoskeletons. Sub-Cellular Biochemistry, 2017, , .		1.0	0
160	The Structure, Function and Roles of the Archaeal ESCRT Apparatus. Sub-Cellular Bioch 84, 357-377.	nemistry, 2017,	1.0	23
161	Empirical genome evolution models root the tree of life. Biochimie, 2017, 138, 137-15	5.	1.3	19
162	Serial endosymbiosis or singular event at the origin of eukaryotes?. Journal of Theoreti 2017, 434, 58-67.	cal Biology,	0.8	53
163	Akaryotes and Eukaryotes are independent descendants of a universal common ances 2017, 138, 168-183.	tor. Biochimie,	1.3	19
164	The energy expansions of evolution. Nature Ecology and Evolution, 2017, 1, 138.		3.4	75
165	Proton gradients at the origin of life. BioEssays, 2017, 39, 1600217.		1.2	56
166	The indefinable term â€~prokaryote' and the polyphyletic origin of genes. Journal o 393-397.	f Genetics, 2017, 96,	0.4	13
167	Integrative modeling of gene and genome evolution roots the archaeal tree of life. Pro National Academy of Sciences of the United States of America, 2017, 114, E4602-E46	ceedings of the 11.	3.3	232
168	Phylogenomic analysis of integral diiron membrane histidine motif-containing enzymes provides insights into their function and evolutionary relationships. Molecular Phyloge Evolution, 2017, 114, 1-13.		1.2	8
169	The Physiology of Phagocytosis in the Context of Mitochondrial Origin. Microbiology a Biology Reviews, 2017, 81, .	nd Molecular	2.9	84

#	Article	IF	CITATIONS
170	Alternating terminal electronâ€acceptors at the basis of symbiogenesis: How oxygen ignited eukaryotic evolution. BioEssays, 2017, 39, 1600174.	1.2	27
171	Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis. Nature Communications, 2017, 8, 13932.	5.8	67
172	Too Much Eukaryote LGT. BioEssays, 2017, 39, 1700115.	1.2	106
173	Response of soil microbial communities and microbial interactions toÂlong-term heavy metal contamination. Environmental Pollution, 2017, 231, 908-917.	3.7	320
174	tRNAs and proteins use the same import channel for translocation across the mitochondrial outer membrane of trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7679-E7687.	3.3	19
175	Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nature Microbiology, 2017, 2, 1533-1542.	5.9	1,465
176	A review on comparative mechanistic studies of antimicrobial peptides against archaea. Biotechnology and Bioengineering, 2017, 114, 2457-2473.	1.7	18
177	Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science, 2017, 357, .	6.0	247
178	Cryptomonads: A Model Organism Sheds Light on the Evolutionary History of Genome Reorganization in Secondary Endosymbioses. Advances in Botanical Research, 2017, 84, 263-320.	0.5	9
179	Early photosynthetic eukaryotes inhabited low-salinity habitats. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7737-E7745.	3.3	244
180	Archaea and the origin of eukaryotes. Nature Reviews Microbiology, 2017, 15, 711-723.	13.6	388
181	Origin of the Eukaryotic Cell. Molecular Frontiers Journal, 2017, 01, 108-120.	0.9	2
182	Resurrecting the Dead (Molecules). Computational and Structural Biotechnology Journal, 2017, 15, 351-358.	1.9	4
183	Late Mitochondrial Origin Is an Artifact. Genome Biology and Evolution, 2017, 9, 373-379.	1.1	34
184	Locomotion and Transformation of Underwater Micrometer-Sized Molecular Aggregates under Chemical Stimuli. Journal of the Physical Society of Japan, 2017, 86, 101006.	0.7	4
185	Symbiogenesis, gradualism, and mitochondrial energy in eukaryote origin. Periodicum Biologorum, 2017, 119, 141-158.	0.1	31
186	Cryosphere and Psychrophiles: Insights into a Cold Origin of Life?. Life, 2017, 7, 25.	1.1	35
187	Characterization of Reconstructed Ancestral Proteins Suggests a Change in Temperature of the Ancient Biosphere. Life, 2017, 7, 33.	1.1	24

#	Article	IF	CITATIONS
188	A Complex Endomembrane System in the Archaeon Ignicoccus hospitalis Tapped by Nanoarchaeum equitans. Frontiers in Microbiology, 2017, 8, 1072.	1.5	52
189	In defence of the three-domains of life paradigm. BMC Evolutionary Biology, 2017, 17, 218.	3.2	13
190	Evolution of Life on Earth. , 2017, , 15-26.		0
191	On Earth, there would be a number of fundamental kinds of primary cells – cellular domains – greater than or equal to four. Journal of Theoretical Biology, 2018, 443, 10-17.	0.8	13
192	Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life. Cell, 2018, 172, 1181-1197.	13.5	498
193	Two or three domains: a new view of tree of life in the genomics era. Applied Microbiology and Biotechnology, 2018, 102, 3049-3058.	1.7	19
194	Symbiotic Origin of Eukaryotic Nucleus: From Cell Body to Neo-Energide. Plant Cell Monographs, 2018, , 39-66.	0.4	23
195	Concepts in Cell Biology - History and Evolution. Plant Cell Monographs, 2018, , .	0.4	0
196	Selenoprotein synthesis and regulation in Archaea. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2451-2462.	1.1	26
197	Making microbes matter: essay review of Maureen A. O'Malley's Philosophy of Microbiology. Biology and Philosophy, 2018, 33, 1.	0.7	0
198	Four domains: The fundamental unicell and Post-Darwinian Cognition-Based Evolution. Progress in Biophysics and Molecular Biology, 2018, 140, 49-73.	1.4	33
199	Modern views of ancient metabolic networks. Current Opinion in Systems Biology, 2018, 8, 117-124.	1.3	49
200	Microbial Dark Matter Investigations: How Microbial Studies Transform Biological Knowledge and Empirically Sketch a Logic of Scientific Discovery. Genome Biology and Evolution, 2018, 10, 707-715.	1.1	82
201	A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiology Reviews, 2018, 42, 205-231.	3.9	115
202	The Effect of Nonreversibility on Inferring Rooted Phylogenies. Molecular Biology and Evolution, 2018, 35, 984-1002.	3.5	12
203	PhyloChromoMap, a Tool for Mapping Phylogenomic History along Chromosomes, Reveals the Dynamic Nature of Karyotype Evolution in Plasmodium falciparum. Genome Biology and Evolution, 2018, 10, 553-561.	1.1	8
204	Formation of chimeric genes with essential functions at the origin of eukaryotes. BMC Biology, 2018, 16, 30.	1.7	19
205	Failure to Recover Major Events of Gene Flux in Real Biological Data Due to Method Misapplication. Genome Biology and Evolution, 2018, 10, 1198-1209.	1.1	4

	CHAIC	ON REPORT	
#	Article	IF	CITATIONS
206	Constraining the Time Interval for the Origin of Life on Earth. Astrobiology, 2018, 18, 343-364.	1.5	71
207	Biological information systems: Evolution as cognition-based information management. Progress in Biophysics and Molecular Biology, 2018, 134, 1-26.	1.4	53
208	The Cosmic Evolution of Biochemistry. , 2018, , 75-87.		1
209	Evolutionary epistemology: Reviewing and reviving with new data the research programme for distributed biological intelligence. BioSystems, 2018, 163, 23-35.	0.9	14
210	Genome size evolution in the Archaea. Emerging Topics in Life Sciences, 2018, 2, 595-605.	1.1	23
211	Rooting Phylogenies and the Tree of Life While Minimizing Ad Hoc and Auxiliary Assumptions. Evolutionary Bioinformatics, 2018, 14, 117693431880510.	0.6	40
213	Archaea, from obscurity to superhero microbes: 40 years of surprises and critical biological insights. Emerging Topics in Life Sciences, 2018, 2, 453-458.	1.1	4
214	The structure and evolution of eukaryotic chaperonin-containing TCP-1 and its mechanism that folds actin into a protein spring. Biochemical Journal, 2018, 475, 3009-3034.	1.7	36
215	The eukaryotic ancestor shapes up. Nature, 2018, 562, 352-353.	13.7	22
216	The Tree of Life. Grand Challenges in Biology and Biotechnology, 2018, , 55-99.	2.4	8
217	Universal common ancestry, LUCA, and the Tree of Life: three distinct hypotheses about the evolution of life. Biology and Philosophy, 2018, 33, 1.	0.7	32
218	Structure and function of archaeal histones. PLoS Genetics, 2018, 14, e1007582.	1.5	74
219	Mitochondrial Glycolysis in a Major Lineage of Eukaryotes. Genome Biology and Evolution, 2018, 10, 2310-2325.	1.1	62
220	A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree. Frontiers in Microbiology, 2018, 9, 1896.	1.5	25
221	Dividing the Archaeal Way: The Ancient Cdv Cell-Division Machinery. Frontiers in Microbiology, 2018, 9, 174.	1.5	56
222	Evolution of Phototrophy in the Chloroflexi Phylum Driven by Horizontal Gene Transfer. Frontiers in Microbiology, 2018, 9, 260.	1.5	143
223	The last universal common ancestor between ancient Earth chemistry and the onset of genetics. PLoS Genetics, 2018, 14, e1007518.	1.5	120
224	Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin. Nature Ecology and Evolution, 2018, 2, 1556-1562.	3.4	274

		CITATION REPOR	RT	
#	Article	IF		CITATIONS
225	History of Life from the Hydrocarbon Fossil Record. , 2018, , 1-35.			1
226	Evidence of an Epigenetics System in Archaea. Epigenetics Insights, 2019, 12, 25168657198652	28. 0.	6	6
227	The Methodology Behind Network Thinking: Graphs to Analyze Microbial Complexity and Evoluti Methods in Molecular Biology, 2019, 1910, 271-308.	on. 0.4	4	4
228	Key Concepts and Challenges in Archaeal Transcription. Journal of Molecular Biology, 2019, 431, 4184-4201.	2.0)	35
229	Introduction to Genome Biology and Diversity. Methods in Molecular Biology, 2019, 1910, 3-31.	0.	4	8
230	Possible mechanisms of CO ₂ reduction by H ₂ via prebiotic vectorial electrochemistry. Interface Focus, 2019, 9, 20190073.	1.5	5	21
231	Metabolic and microbial perspectives on the "evolution of evolution― Journal of Experiment Zoology Part B: Molecular and Developmental Evolution, 2019, 332, 321-330.	al o.	6	3
233	The Enduring Legacy of Aristotle: The Battle over Life as Self-Organization or (Genetic-Based) Reproduction. , 2019, , 8-32.			0
234	Why Life Cannot Be Defined. , 2019, , 33-62.			0
235	What Is a Scientific Theory?. , 2019, , 63-81.			0
236	How Scientific Theories Develop. , 2019, , 82-104.			0
237	Challenges for a Universal Theory of Life. , 2019, , 105-131.			0
238	Rethinking the Traditional Paradigm for Life: Lessons from the World of Microbes. , 2019, , 132-1	.60.		0
239	Artificial Life: Could ALife Solve theNÂ=Â1N=1 Problem?. , 2019, , 161-171.			0
240	Searching for Extraterrestrial Life Without a Definition or Universal Theory of Life. , 2019, , 172-1	94.		1
241	A Shadow Biosphere: Alien Microbes on Earth?. , 2019, , 195-216.			ο
245	Crenarchaeal 3D Genome: A Prototypical Chromosome Architecture for Eukaryotes. Cell, 2019, 3 56-58.	179, 13	.5	1
246	Physical and Functional Compartmentalization of Archaeal Chromosomes. Cell, 2019, 179, 165-	179.e18. 13	.5	62

# 247	ARTICLE The mechanism of splicing as told by group II introns: Ancestors of the spliceosome. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194390.	IF 0.9	Citations 29
248	Why is Life the Way it Is?. Molecular Frontiers Journal, 2019, 03, 20-28.	0.9	0
249	Eukaryotes. , 2019, , 155-231.		0
250	Generalizing rate heterogeneity across sites in statistical phylogenetics. Statistical Modelling, 2019, , 1471082X1882993.	0.5	1
251	Archaeal Histone Contributions to the Origin of Eukaryotes. Trends in Microbiology, 2019, 27, 703-714.	3.5	38
252	Inferring the Evolutionary History of Your Favorite Protein: A Guide for Molecular Biologists. BioEssays, 2019, 41, 1900006.	1.2	14
253	Investigating the Origins of Membrane Phospholipid Biosynthesis Genes Using Outgroup-Free Rooting. Genome Biology and Evolution, 2019, 11, 883-898.	1.1	34
254	Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nature Microbiology, 2019, 4, 1129-1137.	5.9	96
255	Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nature Microbiology, 2019, 4, 1138-1148.	5.9	143
256	Energy metabolism in anaerobic eukaryotes and Earth's late oxygenation. Free Radical Biology and Medicine, 2019, 140, 279-294.	1.3	32
257	Archaea, the tree of life, and cellular evolution in eukaryotes. Science China Earth Sciences, 2019, 62, 489-506.	2.3	5
258	Viewing the Ediacaran biota as a failed experiment is unhelpful. Nature Ecology and Evolution, 2019, 3, 512-514.	3.4	17
259	Start Codon Recognition in Eukaryotic and Archaeal Translation Initiation: A Common Structural Core. International Journal of Molecular Sciences, 2019, 20, 939.	1.8	14
260	The Common Ancestor of All Modern Life. , 2019, , 91-103.		3
261	Messages From the Past: New Insights in Plant Lectin Evolution. Frontiers in Plant Science, 2019, 10, 36.	1.7	35
262	Plant Systematics: An Overview. , 2019, , 3-16.		7
263	Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nature Communications, 2019, 10, 5477.	5.8	197
264	The Emergence of Life. Space Science Reviews, 2019, 215, 1.	3.7	53

#	Article	IF	CITATIONS
265	A qualitative criterion for identifying the root of the tree of life. Journal of Theoretical Biology, 2019, 464, 126-131.	0.8	11
266	Coevolution of the coagulation and immune systems. Inflammation Research, 2019, 68, 117-123.	1.6	20
267	The universal ancestor, the deeper nodes of the tree of life, and the fundamental types of primary cells (cellular domains). Journal of Theoretical Biology, 2019, 460, 142-143.	0.8	15
268	The molecular foundations of zygosis. Cellular and Molecular Life Sciences, 2020, 77, 323-330.	2.4	3
269	Development of archaeal communities in biological soil crusts along a revegetation chronosequence in the Tengger Desert, north central China. Soil and Tillage Research, 2020, 196, 104443.	2.6	21
270	Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications. Renewable and Sustainable Energy Reviews, 2020, 118, 109563.	8.2	210
271	Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes,) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 502
272	Evolutionary relationships between Archaea and eukaryotes. Nature Ecology and Evolution, 2020, 4, 20-21.	3.4	11
273	Phylogenomics provides robust support for a two-domains tree of life. Nature Ecology and Evolution, 2020, 4, 138-147.	3.4	159
274	Common ancestry of eukaryotes and Asgardarchaeota: Three, two or more cellular domains of life?. Journal of Theoretical Biology, 2020, 486, 110083.	0.8	10
275	Scalable Empirical Mixture Models That Account for Across-Site Compositional Heterogeneity. Molecular Biology and Evolution, 2020, 37, 3616-3631.	3.5	32
276	LUCA as well as the ancestors of archaea, bacteria and eukaryotes were progenotes: Inference from the distribution and diversity of the reading mechanism of the AUA and AUG codons in the domains of life. BioSystems, 2020, 198, 104239.	0.9	12
277	Evolutionary considerations of the oligosaccharyltransferase AglB and other aspects of N-glycosylation across Archaea. Molecular Phylogenetics and Evolution, 2020, 153, 106951.	1.2	13

279	Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution. Nature Communications, 2020, 11, 3939.	5.8	102
280	The aerobic mitochondrial ATP synthesis from a comprehensive point of view. Open Biology, 2020, 10, 200224.	1.5	17

	200224.		
281	History of Life from the Hydrocarbon Fossil Record. , 2020, , 409-443.		0
282	Symmetry Breaking of Phospholipids. Symmetry, 2020, 12, 1488.	1.1	9
283	Pre-Darwinian Evolution Before LUCA. Biological Theory, 2020, 15, 175-179.	0.8	0

.

	CITATION	KEPUKI	
#	Article	IF	CITATIONS
284	Recent Advances in Archaeal Translation Initiation. Frontiers in Microbiology, 2020, 11, 584152.	1.5	23
285	Regulation of Mitochondrial Respiratory Chain Complex Levels, Organization, and Function by Arginyltransferase 1. Frontiers in Cell and Developmental Biology, 2020, 8, 603688.	1.8	19
286	Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms. Biotechnology Advances, 2021, 53, 107682.	6.0	130
287	Emerging views of genome organization in Archaea. Journal of Cell Science, 2020, 133, .	1.2	14
288	The Archaeal Roots of the Eukaryotic Dynamic Actin Cytoskeleton. Current Biology, 2020, 30, R521-R526.	1.8	31
289	The phylogenetic distribution of the glutaminyl-tRNA synthetase and Clu-tRNACIn amidotransferase in the fundamental lineages would imply that the ancestor of archaea, that of eukaryotes and LUCA were progenotes. BioSystems, 2020, 196, 104174.	0.9	11
290	The origin of phagocytosis in Earth history. Interface Focus, 2020, 10, 20200019.	1.5	33
291	The ambiguity of the basic terms related to eukaryotes and the more consistent etymology based on eukaryotic signatures in Asgard archaea. BioSystems, 2020, 197, 104178.	0.9	1
292	Bacterial Genes Outnumber Archaeal Genes in Eukaryotic Genomes. Genome Biology and Evolution, 2020, 12, 282-292.	1.1	39
293	Eukaryotes Are a Holophyletic Group of Polyphyletic Origin. Frontiers in Microbiology, 2020, 11, 1380.	1.5	1
294	Generalizing rate heterogeneity across sites in statistical phylogenetics. Statistical Modelling, 2020, 20, 410-436.	0.5	1
295	Nâ€glycosylation in Archaea—New roles for an ancient posttranslational modification. Molecular Microbiology, 2020, 114, 735-741.	1.2	19
296	The merger that made us. BMC Biology, 2020, 18, 72.	1.7	9
297	Evolution: Two Domains of Life or Three?. Current Biology, 2020, 30, R177-R179.	1.8	17
298	Bacterial Origin and Reductive Evolution of the CPR Group. Genome Biology and Evolution, 2020, 12, 103-121.	1.1	11
299	Cellular-Molecular Mechanisms in Epigenetic Evolutionary Biology. , 2020, , .		8
300	Tree of motility – A proposed history of motility systems in the tree of life. Genes To Cells, 2020, 25, 6-21.	0.5	108
301	Did giant and large dsDNA viruses originate before their eukaryotic hosts?. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2747-2748.	3.3	6

#	Article	IF	CITATIONS
302	Division of labour in a matrix, rather than phagocytosis or endosymbiosis, as a route for the origin of eukaryotic cells. Biology Direct, 2020, 15, 8.	1.9	3
303	Retinal energy metabolism in health and glaucoma. Progress in Retinal and Eye Research, 2021, 81, 100881.	7.3	52
304	Mechanical and structural properties of archaeal hypernucleosomes. Nucleic Acids Research, 2021, 49, 4338-4349.	6.5	16
305	High Pressure and High-Pressure Environments. , 2021, , 1-29.		0
306	Sexual Reproduction. , 2021, , 7456-7462.		0
307	Natural and Constructed Cyanobacteria-Based Consortia for Enhancing Crop Growth and Soil Fertility. Microorganisms for Sustainability, 2021, , 333-362.	0.4	5
308	Hydrothermal Vents: The Inhabitants, Their Way of Life and Their Adaptation to High Pressure. , 2021, , 231-270.		0
309	Prokaryotic Basis of Eukaryotic Eco-Evo Development. , 2021, , 313-330.		0
310	Evolutionary Cell Biology (ECB): Lessons, challenges, and opportunities for the integrative study of cell evolution. Journal of Biosciences, 2021, 46, 1.	0.5	3
312	Inferring the Deep Past from Molecular Data. Genome Biology and Evolution, 2021, 13, .	1.1	19
313	Comparative population genomic analyses of transporters within the Asgard archaeal superphylum. PLoS ONE, 2021, 16, e0247806.	1.1	5
314	Evolution of Reproductive Division of Labor – Lessons Learned From the Social Amoeba Dictyostelium discoideum During Its Multicellular Development. Frontiers in Cell and Developmental Biology, 2021, 9, 599525.	1.8	1
316	Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature, 2021, 593, 553-557.	13.7	161
317	Illuminating the first bacteria. Science, 2021, 372, 574-575.	6.0	1
318	Evolution of default genetic control mechanisms. PLoS ONE, 2021, 16, e0251568.	1.1	0
319	The Origin(s) of Cell(s): Pre-Darwinian Evolution from FUCAs to LUCA. Journal of Molecular Evolution, 2021, 89, 427-447.	0.8	1
320	Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
321	The Role of Gene Duplication in the Divergence of Enzyme Function: A Comparative Approach. Frontiers in Genetics, 2021, 12, 641817.	1.1	8

#	Article	IF	Citations
322	The Evolutionary Origins of Extreme Halophilic Archaeal Lineages. Genome Biology and Evolution, 2021, 13, .	1.1	20
323	Probing the Role of Chirality in Phospholipid Membranes. ChemBioChem, 2021, 22, 3148-3157.	1.3	18
324	Life on Mars: Independent Genesis or Common Ancestor?. Astrobiology, 2021, 21, 802-812.	1.5	3
325	Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. Science China Life Sciences, 2022, 65, 818-829.	2.3	18
326	The Evolution of the Hallmarks of Aging. Frontiers in Genetics, 2021, 12, 693071.	1.1	28
327	Building Better Barrels – β-barrel Biogenesis and Insertion in Bacteria and Mitochondria. Journal of Molecular Biology, 2021, 433, 166894.	2.0	22
328	Expanding Archaeal Diversity and Phylogeny: Past, Present, and Future. Annual Review of Microbiology, 2021, 75, 359-381.	2.9	34
329	New approaches for archaeal genome-guided cultivation. Science China Earth Sciences, 2021, 64, 1658-1673.	2.3	7
330	Initiation of DNA Replication in the Archaea. Advances in Experimental Medicine and Biology, 2017, 1042, 99-115.	0.8	12
332	Paraphyly and (yeast) classification. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 4924-4929.	0.8	20
340	Towards understanding the evolution and functional diversification of DNA-containing plant organelles. F1000Research, 2016, 5, 330.	0.8	13
341	Asgard archaea are the closest prokaryotic relatives of eukaryotes. PLoS Genetics, 2018, 14, e1007080.	1.5	114
342	The role of archaea in the origin of eukaryotes. Ecological Genetics, 2017, 15, 52-59.	0.1	2
343	Human microbial ecology and the rising new medicine. Annals of Translational Medicine, 2019, 7, 342-342.	0.7	18
344	Archaeal histones: dynamic and versatile genome architects. AIMS Microbiology, 2015, 1, 72-81.	1.0	16
345	Biology, Peirce, and Biosemiotics. The American Journal of Semiotics, 2014, 30, 173-188.	0.2	2
346	Astrobiology - an opposing view. Bioinformation, 2018, 14, 346-349.	0.2	2
347	Archaeal TFEÎ \pm /Î ² is a hybrid of TFIIE and the RNA polymerase III subcomplex hRPC62/39. ELife, 2015, 4, e08378.	2.8	50

		CITATION REPORT	
#	Article	IF	Сітатіс
348	A mitochondrial DNA hypomorph of cytochrome oxidase specifically impairs male fertility in Drosophila melanogaster. ELife, 2016, 5, .	2.8	74
349	Genome expansion in early eukaryotes drove the transition from lateral gene transfer to meiotic ELife, 2020, 9, .	c sex. 2.8	10
350	What is an archaeon and are the Archaea really unique?. PeerJ, 2018, 6, e5770.	0.9	8
352	Generation of comprehensive transposon insertion mutant library for the model archaeon, Halc volcanii , and its use for gene discovery. BMC Biology, 2014, 12, 103.	oferax 1.7	12
353	A Decade of Giant Virus Genomics: Surprising Discoveries Opening New Questions. , 2015, , 14	7-160.	1
354	Genomes. , 2017, , 1-20.		0
355	Zellen und Genome. , 0, , 1-47.		0
356	Energieumwandlung: Mitochondrien und Chloroplasten. , 0, , 853-918.		0
358	Reef-Building Corals as a Tool for Climate Change Research in the Genomics Era. Results and Prinn Cell Differentiation, 2018, 65, 529-546.	oblems 0.2	3
361	Asgardarchaeota $\hat{a} \in$ " A Novel Prokaryotic Group Discovered in Aquatic Sediments that Might Sl on the Origin and Early Evolution of Eukaryotes , 2019, , .	ned Light	1
366	Importance of Prokaryotes for the Origin of Eukaryotes and the Global Environment at 2.4-2.0 (Journal of Geography (Chigaku Zasshi), 2020, 129, 899-912.	Ga. 0.1	2
367	Four Domains: Cognition-Based Evolution. , 2020, , 103-112.		0
368	Sexual Reproduction. , 2020, , 1-7.		0
372	The Molecular Clock as a Tool for Understanding Host-Parasite Evolution. Topics in Geobiology, , 417-450.	2021, _{0.6}	9
373	A divide-and-conquer phylogenomic approach based on character supermatrices resolves early in the evolution of the Archaea. Bmc Ecology and Evolution, 2022, 22, 1.	steps 0.7	32
374	Archaeal Communities: The Microbial Phylogenomic Frontier. Frontiers in Genetics, 2021, 12, 6	93193. 1.1	6
375	Determination of the Amino Acid Recruitment Order in Early Life by Genome-Wide Analysis of A Acid Usage Bias. Biomolecules, 2022, 12, 171.	mino 1.8	4
376	Conservation of magnetite biomineralization genes in all domains of life and implications for magnetic sensing. Proceedings of the National Academy of Sciences of the United States of Am 2022, 119, .	nerica, 3.3	20

#	ARTICLE The earliest history of eukaryotic life: uncovering an evolutionary story through the integration of	IF	Citations
377	biological and geological data. Trends in Ecology and Evolution, 2022, 37, 246-256.	4.2	17
378	Synthesis of Phospholipids Under Plausible Prebiotic Conditions and Analogies with Phospholipid Biochemistry for Origin of Life Studies. Astrobiology, 2022, 22, 598-627.	1.5	14
379	Evolving Perspective on the Origin and Diversification of Cellular Life and the Virosphere. Genome Biology and Evolution, 2022, 14, .	1.1	13
381	The evolutionarily conserved arginyltransferase 1 mediates a pVHL-independent oxygen-sensing pathway in mammalian cells. Developmental Cell, 2022, 57, 654-669.e9.	3.1	5
382	Looking through the Lens of the Ribosome Biogenesis Evolutionary History: Possible Implications for Archaeal Phylogeny and Eukaryogenesis. Molecular Biology and Evolution, 2022, 39, .	3.5	11
384	The Relevance of the Bacterial Microbiome, Archaeome and Mycobiome in Pediatric Asthma and Respiratory Disorders. Cells, 2022, 11, 1287.	1.8	5
413	Eukaryogenesis and oxygen in Earth history. Nature Ecology and Evolution, 2022, 6, 520-532.	3.4	48
414	Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Natural Product Reports, 2022, 39, 1226-1263.	5.2	18
415	Minimal Yet Powerful: The Role of Archaeal Small Heat Shock Proteins in Maintaining Protein Homeostasis. Frontiers in Molecular Biosciences, 2022, 9, .	1.6	3
416	Woese's Three Domains of Cellular Life. , 2022, , 7304-7306.		0
418	Ancestral State Reconstructions Trace Mitochondria But Not Phagocytosis to the Last Eukaryotic Common Ancestor. Genome Biology and Evolution, 2022, 14, .	1.1	10
419	Assembling a Reference Phylogenomic Tree of Bacteria and Archaea by Summarizing Many Gene Phylogenies. Methods in Molecular Biology, 2022, , 137-165.	0.4	1
420	Perspectives and potential applications of endophytic microorganisms in cultivation of medicinal and aromatic plants. Frontiers in Plant Science, 0, 13, .	1.7	9
421	Sex in protists: A new perspective on the reproduction mechanisms of trypanosomatids. Genetics and Molecular Biology, 2022, 45, .	0.6	0
422	Microbes "R―Us. Environmental Microbiology, 0, , .	1.8	1
423	It Took Me a While to Figure out What Science I Really Wanted to Do. Genome Biology and Evolution, 2022, 14, .	1.1	0
424	Renewing <scp>L</scp> innaean taxonomy: a proposal to restructure the highest levels of the <scp>N</scp> atural <scp>S</scp> ystem. Biological Reviews, 2023, 98, 584-602.	4.7	3
425	Ancestral Sequence Reconstruction of the Ribosomal Protein uS8 and Reduction of Amino Acid Usage to a Smaller Alphabet. Journal of Molecular Evolution, 2023, 91, 10-23.	0.8	3

	CITATION	CITATION REPORT		
#	Article	IF	Citations	
426	Is an archaeon the ancestor of eukaryotes?. Environmental Microbiology, 2023, 25, 775-779.	1.8	2	
427	Mysterious Asgard archaea microbes reveal their inner secrets. Nature, 0, , .	13.7	1	
428	Biosynthesis of Hybrid Neutral Lipids with Archaeal and Eukaryotic Characteristics in Engineered <i>Saccharomyces cerevisiae</i> . Angewandte Chemie, 2023, 135, .	1.6	0	
429	Biosynthesis of Hybrid Neutral Lipids with Archaeal and Eukaryotic Characteristics in Engineered <i>Saccharomyces cerevisiae</i> . Angewandte Chemie - International Edition, 2023, 62, .	7.2	2	
430	Archaea as a Model System for Molecular Biology and Biotechnology. Biomolecules, 2023, 13, 114.	1.8	7	
431	Linking Catalysis in Biochemical and Geochemical CO ₂ Fixation at the Emergence of Life. ChemCatChem, 2023, 15, .	1.8	8	
434	Systematic comparison of unilamellar vesicles reveals that archaeal core lipid membranes are more permeable than bacterial membranes. PLoS Biology, 2023, 21, e3002048.	2.6	6	
435	Metabolic compatibility and the rarity of prokaryote endosymbioses. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	0	
436	Inference of phylogenetic trees directly from raw sequencing reads using Read2Tree. Nature Biotechnology, 2024, 42, 139-147.	9.4	11	
441	Evolution, Theory of. , 2024, , 1-13.		0	

445 First Life. , 2023, , 205-217.