The Exopolysaccharide Matrix

Journal of Dental Research 92, 1065-1073 DOI: 10.1177/0022034513504218

Citation Report

#	Article	IF	CITATIONS
1	An In Vitro Study on the Effect of Free Amino Acids Alone or in Combination with Nisin on Biofilms as well as on Planktonic Bacteria of Streptococcus mutans. PLoS ONE, 2014, 9, e99513.	1.1	45
2	Composition and functions of the extracellular polymer matrix of bacterial biofilms. Microbiology, 2014, 83, 713-722.	0.5	18
3	Analysis of the mechanical stability and surface detachment of mature <i>Streptococcus mutans</i> biofilms by applying a range of external shear forces. Biofouling, 2014, 30, 1079-1091.	0.8	61
4	Beyond Mucosal Infection: a Role for C. albicans-Streptococcal Interactions in the Pathogenesis of Dental Caries. Current Oral Health Reports, 2014, 1, 86-93.	0.5	5
5	Posttranscriptional Regulation of Oral Bacterial Adaptive Responses. Current Oral Health Reports, 2014, 1, 50-58.	0.5	12
6	Annual review of selected scientific literature: Report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. Journal of Prosthetic Dentistry, 2014, 112, 1038-1087.	1.1	2
7	One-pot synthesis of antibacterial monomers with dual biocidal modes. Journal of Dentistry, 2014, 42, 1078-1095.	1.7	25
8	Cross-feeding and interkingdom communication in dual-species biofilms of <i>Streptococcus mutans</i> and <i>Candida albicans</i> . ISME Journal, 2014, 8, 2256-2271.	4.4	195
9	Biocultural implications of oral pathology in an ancient Central California population. American Journal of Physical Anthropology, 2014, 154, 171-188.	2.1	16
10	Streptococcus mutans copes with heat stress by multiple transcriptional regulons modulating virulence and energy metabolism. Scientific Reports, 2015, 5, 12929.	1.6	31
11	Saliva as the Sole Nutritional Source in the Development of Multispecies Communities in Dental Plaque. Microbiology Spectrum, 2015, 3, .	1.2	42
12	Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Frontiers in Cellular and Infection Microbiology, 2015, 5, 10.	1.8	248
13	Biopolymers from lactic acid bacteria. Novel applications in foods and beverages. Frontiers in Microbiology, 2015, 6, 834.	1.5	151
14	Effect of Twice-Daily Blue Light Treatment on Matrix-Rich Biofilm Development. PLoS ONE, 2015, 10, e0131941.	1.1	44
15	The Effect of Essential Oils and Bioactive Fractions on <i>Streptococcus mutans</i> and <i>Candida albicans</i> Biofilms: A Confocal Analysis. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-9.	0.5	27
16	General Overview on Nontuberculous Mycobacteria, Biofilms, and Human Infection. Journal of Pathogens, 2015, 2015, 1-10.	0.9	104
17	Extracellular DNA in oral microbial biofilms. Microbes and Infection, 2015, 17, 531-537.	1.0	40
18	The expanding roles of c-di-GMP in the biosynthesis of exopolysaccharides and secondary metabolites. Natural Product Reports, 2015, 32, 663-683.	5.2	81

#	Article	IF	CITATIONS
19	pH-Activated Nanoparticles for Controlled Topical Delivery of Farnesol To Disrupt Oral Biofilm Virulence. ACS Nano, 2015, 9, 2390-2404.	7.3	266
20	Advances in Salivary Diagnostics. , 2015, , .		14
21	Combinatorial Effects of Arginine and Fluoride on Oral Bacteria. Journal of Dental Research, 2015, 94, 344-353.	2.5	89
22	Production of exopolysaccharide by Rhizobium leguminosarum bv. trifolii and its role in bacterial attachment and surface properties. Plant and Soil, 2015, 388, 211-227.	1.8	45
23	(1→3)-α-d-Glucan hydrolases in dental biofilm prevention and control: A review. International Journal of Biological Macromolecules, 2015, 79, 761-778.	3.6	62
24	Sharply Tuned pH Response of Genetic Competence Regulation in Streptococcus mutans: a Microfluidic Study of the Environmental Sensitivity of <i>comX</i> . Applied and Environmental Microbiology, 2015, 81, 5622-5631.	1.4	46
25	Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation. Microbiology and Immunology, 2015, 59, 28-36.	0.7	47
26	Nicotine promotes Streptococcus mutans extracellular polysaccharide synthesis, cell aggregation and overall lactate dehydrogenase activity. Archives of Oral Biology, 2015, 60, 1083-1090.	0.8	34
27	Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. FEMS Microbiology Reviews, 2015, 39, 234-245.	3.9	237
28	Surface-Induced Changes in the Conformation and Glucan Production of Glucosyltransferase Adsorbed on Saliva-Coated Hydroxyapatite. Langmuir, 2015, 31, 4654-4662.	1.6	15
29	The Collagen Binding Protein Cnm Contributes to Oral Colonization and Cariogenicity of Streptococcus mutans OMZ175. Infection and Immunity, 2015, 83, 2001-2010.	1.0	48
30	Nontuberculous mycobacteria pathogenesis and biofilm assembly. International Journal of Mycobacteriology, 2015, 4, 36-43.	0.3	59
31	Anti-biofilm activity of α-mangostin isolated from <i>Garcinia mangostana</i> L Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2015, 70, 313-318.	0.6	3
32	Inhibitory effect of <i>Lactobacillus salivarius</i> on <i>Streptococcus mutans</i> biofilm formation. Molecular Oral Microbiology, 2015, 30, 16-26.	1.3	84
33	The pH-dependent effects of combining ethanol with fluoride on proton permeability inStreptococcus mutans. Journal of Korean Academy of Oral Health, 2016, 40, 255.	0.1	1
34	The Role of Human Oral Microbiome in Dental Biofilm Formation. , 2016, , .		10
35	Effect of dietary sugars on dual-species biofilms of Streptococcus mutans and Streptococcus sobrinus – a pilot study. Universidade Estadual Paulista Revista De Odontologia, 2016, 45, 90-96.	0.3	2
36	Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms. Frontiers in Microbiology, 2015, 6, 1529.	1.5	64

#	Article	IF	Citations
37	The rnc Gene Promotes Exopolysaccharide Synthesis and Represses the vicRKX Gene Expressions via MicroRNA-Size Small RNAs in Streptococcus mutans. Frontiers in Microbiology, 2016, 7, 687.	1.5	37
38	Photoinactivation Using Visible Light Plus Water-Filtered Infrared-A (vis+wIRA) and Chlorine e6 (Ce6) Eradicates Planktonic Periodontal Pathogens and Subgingival Biofilms. Frontiers in Microbiology, 2016, 7, 1900.	1.5	31
39	The well-coordinated linkage between acidogenicity and aciduricity via insoluble glucans on the surface of Streptococcus mutans. Scientific Reports, 2016, 5, 18015.	1.6	64
40	Frequency of sucrose exposure on the cariogenicity of a biofilm-caries model. European Journal of Dentistry, 2016, 10, 345-350.	0.8	33
41	<scp>d</scp> â€Alanine metabolism is essential for growth and biofilm formation of <i>Streptococcus mutans</i> . Molecular Oral Microbiology, 2016, 31, 435-444.	1.3	41
42	Simultaneous spatiotemporal mapping of in situ pH and bacterial activity within an intact 3D microcolony structure. Scientific Reports, 2016, 6, 32841.	1.6	72
43	<scp>l</scp> -Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms. Journal of Bacteriology, 2016, 198, 2651-2661.	1.0	99
44	High-Velocity Microsprays Enhance Antimicrobial Activity in <i>Streptococcus mutans</i> Biofilms. Journal of Dental Research, 2016, 95, 1494-1500.	2.5	17
45	Topical delivery of low-cost protein drug candidates made in chloroplasts for biofilm disruption and uptake by oral epithelial cells. Biomaterials, 2016, 105, 156-166.	5.7	46
46	Influence of fluoride on the bacterial composition of a dual-species biofilm composed of <i>Streptococcus mutans</i> and <i>Streptococcus oralis</i> . Biofouling, 2016, 32, 1079-1087.	0.8	12
47	Caries-resistant bonding layer in dentin. Scientific Reports, 2016, 6, 32740.	1.6	3
48	Antibacterial activity of a modified unfilled resin containing a novel polymerizable quaternary ammonium salt MAE-HB. Scientific Reports, 2016, 6, 33858.	1.6	24
49	Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries inÂvivo. Biomaterials, 2016, 101, 272-284.	5.7	236
50	Understanding Dental Caries. , 2016, , .		11
51	Effect of anti-biofilm glass–ionomer cement on Streptococcus mutans biofilms. International Journal of Oral Science, 2016, 8, 76-83.	3.6	58
52	Physical disruption of oral biofilms by sodium bicarbonate: an <i>inÂvitro</i> study. International Journal of Dental Hygiene, 2016, 14, 209-214.	0.8	19
53	Mutan: A mixed linkage α-[(1,3)- and (1,6)]-d-glucan from Streptococcus mutans, that induces osteoclast differentiation and promotes alveolar bone loss. Carbohydrate Polymers, 2016, 137, 561-569.	5.1	15
54	Targeted, triggered drug delivery to tumor and biofilm microenvironments. Nanomedicine, 2016, 11, 873-879.	1.7	91

#	Article	IF	CITATIONS
55	Long-term anti-cariogenic biofilm activity of glass ionomers related to fluoride release. Journal of Dentistry, 2016, 47, 34-40.	1.7	12
56	Effect of fermented broth from lactic acid bacteria on pathogenic bacteria proliferation. Journal of Dairy Science, 2016, 99, 2654-2665.	1.4	30
57	Baccharis dracunculifolia-based mouthrinse alters the exopolysaccharide structure in cariogenic biofilms. International Journal of Biological Macromolecules, 2016, 84, 301-307.	3.6	5
58	Exploiting the commons: cyclic diguanylate regulation of bacterial exopolysaccharide production. Current Opinion in Microbiology, 2016, 30, 36-43.	2.3	36
59	Modulation of the <i>eps</i> -ome transcription of bifidobacteria through simulation of human intestinal environment. FEMS Microbiology Ecology, 2016, 92, fiw056.	1.3	44
60	Effect of the association of maltodextrin and sucrose on the acidogenicity and adherence of cariogenic bacteria. Archives of Oral Biology, 2016, 65, 72-76.	0.8	9
61	Reduction of Candida biofilm adhesion by incorporation of prereacted glass ionomer filler in denture base resin. Journal of Dentistry, 2016, 44, 37-43.	1.7	51
62	Characterization and optimization of pH-responsive polymer nanoparticles for drug delivery to oral biofilms. Journal of Materials Chemistry B, 2016, 4, 3075-3085.	2.9	69
63	Enzymes in therapy of biofilmâ€related oral diseases. Biotechnology and Applied Biochemistry, 2017, 64, 337-346.	1.4	37
64	Do catalytic nanoparticles offer an improved therapeutic strategy to combat dental biofilms?. Nanomedicine, 2017, 12, 275-279.	1.7	15
65	Crystal Structure of 4,6-α-Glucanotransferase Supports Diet-Driven Evolution of GH70 Enzymes from α-Amylases in Oral Bacteria. Structure, 2017, 25, 231-242.	1.6	45
66	Advances and Challenges in Oral Biofilm Control. Current Oral Health Reports, 2017, 4, 29-33.	0.5	7
67	Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Scientific Reports, 2017, 7, 41332.	1.6	148
68	Origins of heterogeneity in <i>Streptococcus mutans</i> competence: interpreting an environment-sensitive signaling pathway. Physical Biology, 2017, 14, 015001.	0.8	25
69	Dental biofilm: ecological interactions in health and disease. Journal of Clinical Periodontology, 2017, 44, S12-S22.	2.3	300
70	Influence of sucrose on growth and sensitivity of Candida albicans alone and in combination with Enterococcus faecalis and Streptococcus mutans to photodynamic therapy. Lasers in Medical Science, 2017, 32, 1237-1243.	1.0	15
71	Biofilm over teeth and restorations: What do we need to know?. Dental Materials, 2017, 33, 667-680.	1.6	40
72	The caries preventive effect of 1-year use of low-dose xylitol chewing gum. A randomized placebo-controlled clinical trial in high-caries-risk adults. Clinical Oral Investigations, 2017, 21, 2733-2740	1.4	25

#	Article	IF	CITATIONS
74	Extracellular DNA and lipoteichoic acids interact with exopolysaccharides in the extracellular matrix of <i>Streptococcus mutans</i> biofilms. Biofouling, 2017, 33, 722-740.	0.8	63
75	Intercellular Communication via the <i>comX</i> -Inducing Peptide (XIP) of Streptococcus mutans. Journal of Bacteriology, 2017, 199, .	1.0	22
76	Interfacial degradation of adhesive composite restorations mediated by oral biofilms and mechanical challenge in an extracted tooth model of secondary caries. Journal of Dentistry, 2017, 66, 62-70.	1.7	18
77	Extracellular DNA Contributes to Dental Biofilm Stability. Caries Research, 2017, 51, 436-442.	0.9	27
78	Quantification of dental plaque in oral cavity was enabled by a novel algorithm of image processing. Journal of Oral Biosciences, 2017, 59, 157-162.	0.8	2
79	Visualizing the dental biofilm matrix by means of fluorescence lectin-binding analysis. Journal of Oral Microbiology, 2017, 9, 1345581.	1.2	19
80	Ecological Effect of Arginine on Oral Microbiota. Scientific Reports, 2017, 7, 7206.	1.6	46
81	Effects of Xylitol and Sucrose Mint Products on Streptococcus mutans Colonization in a Dental Simulator Model. Current Microbiology, 2017, 74, 1153-1159.	1.0	14
82	Modulation of Streptococcus mutans virulence by dental adhesives containing anti-caries agents. Dental Materials, 2017, 33, 1084-1092.	1.6	29
83	Characterization of the clustered regularly interspaced short palindromic repeats sites in Streptococcus mutans isolated from early childhood caries patients. Archives of Oral Biology, 2017, 83, 174-180.	0.8	30
84	Antibacterial effect on mature biofilms of oral streptococci and antioxidant activity of 3β,6β,16β-trihydroxylup-20(29)-ene from Combretum leprosum. Medicinal Chemistry Research, 2017, 26, 3296-3306.	1.1	6
85	Nanosized Building Blocks for Customizing Novel Antibiofilm Approaches. Journal of Dental Research, 2017, 96, 128-136.	2.5	16
86	A Critical Role for Extracellular DNA in Dental Plaque Formation. Journal of Dental Research, 2017, 96, 208-216.	2.5	33
87	Differences in carbon source usage by dental plaque in children with and without early childhood caries. International Journal of Oral Science, 2017, 9, e6-e6.	3.6	10
88	Hydrogel Containing an Extract of Tormentillae Rhizoma for the Treatment of Biofilm-Related Oral Diseases. Natural Product Communications, 2017, 12, 1934578X1701200.	0.2	5
89	Anti-Biofilm Activity of a Self-Aggregating Peptide against Streptococcus mutans. Frontiers in Microbiology, 2017, 8, 488.	1.5	41
90	Removal of Foodborne Pathogen Biofilms by Acidic Electrolyzed Water. Frontiers in Microbiology, 2017, 8, 988.	1.5	97
91	RNA-Seq Reveals Enhanced Sugar Metabolism in Streptococcus mutans Co-cultured with Candida albicans within Mixed-Species Biofilms. Frontiers in Microbiology, 2017, 8, 1036.	1.5	71

#	Article	IF	CITATIONS
92	Impact of a 7-Day Field Training on Oral Health Condition in Japan Ground Self-Defense Force Personnel. Military Medicine, 2017, 182, e1869-e1877.	0.4	4
93	Inhibitory capacity of Rhus coriaria L. extract and its major component methyl gallate on Streptococcus mutans biofilm formation by optical profilometry: Potential applications for oral health. Molecular Medicine Reports, 2017, 16, 949-956.	1.1	33
94	Biofilm extracellular polysaccharides degradation during starvation and enamel demineralization. PLoS ONE, 2017, 12, e0181168.	1.1	33
95	Exopolysaccharides regulate calcium flow in cariogenic biofilms. PLoS ONE, 2017, 12, e0186256.	1.1	23
96	The Regulator Gene <i>rnc</i> Is Closely Involved in Biofilm Formation in <i>Streptococcus mutans</i> . Caries Research, 2018, 52, 347-358.	0.9	22
97	Antibacterial properties of bioactive glass particle abraded titanium against <i>Streptococcus mutans</i> . Biomedical Physics and Engineering Express, 2018, 4, 045002.	0.6	11
98	A confocal microscopy based method to monitor extracellular pH in fungal biofilms. FEMS Yeast Research, 2018, 18, .	1.1	7
99	Hydroalcoholic extracts of Myracrodruon urundeuva All. and Qualea grandiflora Mart. leaves on Streptococcus mutans biofilm and tooth demineralization. Archives of Oral Biology, 2018, 91, 17-22.	0.8	17
100	Effect of a mouthrinse containing <i>Malva sylvestris</i> on the viability and activity of microcosm biofilm and on enamel demineralization compared to known antimicrobials mouthrinses. Biofouling, 2018, 34, 252-261.	0.8	22
101	Role of Secondary Metabolites from Plant Growth-Promoting Rhizobacteria in Combating Salinity Stress. Microorganisms for Sustainability, 2018, , 127-163.	0.4	38
102	In Sickness and in Health—What Does the Oral Microbiome Mean to Us? An Ecological Perspective. Advances in Dental Research, 2018, 29, 60-65.	3.6	138
103	Getting to Know "The Known Unknownsâ€؛ Heterogeneity in the Oral Microbiome. Advances in Dental Research, 2018, 29, 66-70.	3.6	29
104	Therapeutic Strategies Targeting Cariogenic Biofilm Microenvironment. Advances in Dental Research, 2018, 29, 86-92.	3.6	62
105	pH-Activated nanoparticles with targeting for the treatment of oral plaque biofilm. Journal of Materials Chemistry B, 2018, 6, 586-592.	2.9	40
106	Electrochemical behavior of titanium exposed to a biofilm supplemented with different sucrose concentrations. Journal of Prosthetic Dentistry, 2018, 120, 290-298.	1.1	16
107	Whole genome sequence and phenotypic characterization of a Cbm ⁺ serotype <i>e</i> strain of <i>Streptococcus mutans</i> . Molecular Oral Microbiology, 2018, 33, 257-269.	1.3	4
108	A cytometric approach to follow variation and dynamics of the salivary microbiota. Methods, 2018, 134-135, 67-79.	1.9	21
109	Oral Biofilms: Pathogens, Matrix, and Polymicrobial Interactions in Microenvironments. Trends in Microbiology, 2018, 26, 229-242.	3.5	600

7

#	Article	IF	CITATIONS
110	Effect of brief periodic fluoride treatments on the virulence and composition of a cariogenic biofilm. Biofouling, 2018, 34, 53-61.	0.8	12
111	Differential oxidative stress tolerance ofStreptococcus mutansisolates affects competition in an ecological mixedâ€species biofilm model. Environmental Microbiology Reports, 2018, 10, 12-22.	1.0	36
112	Early Biofilm Formation on UV Light Activated Nanoporous TiO ₂ Surfaces <i>In Vivo</i> . International Journal of Biomaterials, 2018, 2018, 1-8.	1.1	3
113	In vitro effects of commercial mouthwashes on several virulence traits of Candida albicans, viridans streptococci and Enterococcus faecalis colonizing the oral cavity. PLoS ONE, 2018, 13, e0207262.	1.1	37
114	An Update on the Evolution of Glucosyltransferase (Gtf) Genes in Streptococcus. Frontiers in Microbiology, 2018, 9, 2979.	1.5	19
115	Evaluation of the effects of different remineralizing agents on Streptococcus mutans biofilm adhesion. Journal of Adhesion Science and Technology, 2018, 32, 2617-2630.	1.4	3
116	Influence of Helicobacter pylori culture supernatant on the ecological balance of a dual-species oral biofilm. Journal of Applied Oral Science, 2018, 26, e20170113.	0.7	12
117	Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections. Nature Communications, 2018, 9, 3713.	5.8	141
118	Streptococcus mutans extracellular DNA levels depend on the number of bacteria in a biofilm. Scientific Reports, 2018, 8, 13313.	1.6	18
119	Curcumin as a Promising Antibacterial Agent: Effects on Metabolism and Biofilm Formation in <i>S. mutans</i> . BioMed Research International, 2018, 2018, 1-11.	0.9	48
120	Early Childhood Caries: Epidemiology, Aetiology, and Prevention. International Journal of Dentistry, 2018, 2018, 1-7.	0.5	91
121	Antibiofilm effect of drug-free and cationic poly(D,L-lactide-co-glycolide) nanoparticles via nano–bacteria interactions. Nanomedicine, 2018, 13, 1093-1106.	1.7	36
122	Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans. PLoS ONE, 2018, 13, e0192694.	1.1	66
123	Effect of sodium chloride on gene expression of Streptococcus mutans and zeta potential of demineralized dentin. Journal of Oral Biology and Craniofacial Research, 2019, 9, 1-4.	0.8	2
124	Effect of sucrose on biofilm formed <i>in situ</i> on titanium material. Journal of Periodontology, 2019, 90, 141-148.	1.7	29
125	Antimicrobial efficacy of alternative compounds for use in oral care toward biofilms from cariesâ€associated bacteria in vitro. MicrobiologyOpen, 2019, 8, e00695.	1.2	38
126	Identification of glucosyl transferase inhibitors from Psidium guajava against Streptococcus mutans in dental caries. Journal of Traditional and Complementary Medicine, 2019, 9, 124-137.	1.5	12
127	Combined Effectiveness of β-Cyclodextrin Nanoparticles in Photodynamic Antimicrobial Chemotherapy on <i>In Vitro</i> Oral Biofilms. Photobiomodulation, Photomedicine, and Laser Surgery, 2019, 37, 567-573.	0.7	8

		CITATION REPORT	
#	Article	IF	CITATIONS
128	Theaflavin-3,3′-Digallate Suppresses Biofilm Formation, Acid Production, and Acid Tolerance in Streptococcus mutans by Targeting Virulence Factors. Frontiers in Microbiology, 2019, 10, 1705.	1.5	14
129	Characterization of biofilm production by Pseudomonas fluorescens isolated from refrigerated rav buffalo milk. Journal of Food Science and Technology, 2019, 56, 4595-4604.	v 1.4	8
130	Effect of Photodynamic Therapy on Microorganisms Responsible for Dental Caries: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 2019, 20, 3585.	1.8	60
131	Air Abrasion with Bioactive Glass Eradicates <i>Streptococcus mutans</i> Biofilm from a Sandblas and Acid-Etched Titanium Surface. Journal of Oral Implantology, 2019, 45, 444-450.	sted 0.4	5
132	Activity of sodium trimetaphosphate, associated or not with fluoride, on dual-species biofilms. Biofouling, 2019, 35, 710-718.	0.8	15
133	Role of Candida albicans on enamel demineralization and on acidogenic potential of Streptococcu mutans in vitro biofilms. Journal of Applied Oral Science, 2019, 27, e20180593.	IS 0.7	16
134	Bacterial biofilm destruction by size/surface charge-adaptive micelles. Nanoscale, 2019, 11, 1410-	1422. 2.8	68
135	The role of natural salivary defences in maintaining a healthy oral microbiota. Journal of Dentistry, 2019, 80, S3-S12.	1.7	231
136	pH-Responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms. Biomaterials Science, 2019, 7, 1643-1651.	2.6	54
137	Dual-Targeting Approach Degrades Biofilm Matrix and Enhances Bacterial Killing. Journal of Dental Research, 2019, 98, 322-330.	2.5	38
138	Electrolyzed Water in Food: Fundamentals and Applications. , 2019, , .		8
139	Application of Electrolyzed Water on Aquatic Product. , 2019, , 157-175.		0
140	Anti-Biofilm and Hemolytic Effects of Cymbopogon citratus (Dc) Stapf Essential Oil. Pesquisa Brasileira Em Odontopediatria E Clinica Integrada, 2019, 19, 1-10.	0.7	1
141	Rational design of peptides with enhanced antimicrobial and antiâ€biofilm activities against cario bacterium <i>Streptococcus mutans</i> . Chemical Biology and Drug Design, 2019, 94, 1768-178		14
142	Dietary Nitrite Drives Disease Outcomes in Oral Polymicrobial Infections. Journal of Dental Researd 2019, 98, 1020-1026.	ch, 2.5	19
143	Viscoelastic response of <i>Escherichia coli</i> biofilms to genetically altered expression of extracellular matrix components. Soft Matter, 2019, 15, 5042-5051.	1.2	22
144	Inactivation of Streptococcus mutans genes lytST and dltAD impairs its pathogenicity in vivo. Jour of Oral Microbiology, 2019, 11, 1607505.	nal 1,2	18
145	A Multispecies Biofilm In Vitro Screening Model of Dental Caries for High-Throughput Susceptibilit Testing. High-Throughput, 2019, 8, 14.	.y 4.4	7

#	Article	IF	CITATIONS
146	A Century of Change towards Prevention and Minimal Intervention in Cariology. Journal of Dental Research, 2019, 98, 611-617.	2.5	85
147	The Role of Exopolysaccharides in Oral Biofilms. Journal of Dental Research, 2019, 98, 739-745.	2.5	71
148	Nanoparticles for Oral Biofilm Treatments. ACS Nano, 2019, 13, 4869-4875.	7.3	139
149	Polyphenols Inhibit Candida albicans and Streptococcus mutans Biofilm Formation. Dentistry Journal, 2019, 7, 42.	0.9	27
150	Oral Microbiology. , 2019, , .		0
151	Comparative genomics of the transportome of Ten Treponema species. Microbial Pathogenesis, 2019, 132, 87-99.	1.3	12
152	In Vivo Rodent Models for Studying Dental Caries and Pulp Disease. Methods in Molecular Biology, 2019, 1922, 393-403.	0.4	2
153	Dual-species biofilms of <i>Streptococcus mutans</i> and <i>Candida albicans</i> exhibit more biomass and are mutually beneficial compared with single-species biofilms. Journal of Oral Microbiology, 2019, 11, 1581520.	1.2	52
154	Streptococcus pneumoniae. Methods in Molecular Biology, 2019, , .	0.4	1
155	Growing and Characterizing Biofilms Formed by Streptococcus pneumoniae. Methods in Molecular Biology, 2019, 1968, 147-171.	0.4	9
156	Antibacterial Profile of Copaifera multijuga Oleoresin and Hydroalcoholic Extract of Leaves Against Oral Pathogens. Current Research in Dentistry, 2019, 1, 53-60.	1.0	2
157	Antibacterial and Antibiofilm Activity of Temporin-GHc and Temporin-GHd Against Cariogenic Bacteria, Streptococcus mutans. Frontiers in Microbiology, 2019, 10, 2854.	1.5	26
158	Phyto and Rhizo Remediation. Microorganisms for Sustainability, 2019, , .	0.4	2
159	Understanding the Role of Shape and Composition of Star-Shaped Polymers and their Ability to Both Bind and Prevent Bacteria Attachment on Oral Relevant Surfaces. Journal of Functional Biomaterials, 2019, 10, 56.	1.8	9
160	Biofilms in Human Diseases: Treatment and Control. , 2019, , .		6
161	Effects of Norspermidine on Dualâ€5pecies Biofilms Composed of <i>Streptococcus mutans</i> and <i>Streptococcus sanguinis</i> . BioMed Research International, 2019, 2019, 1-9.	0.9	9
162	Nanoparticles for the Treatment of Oral Biofilms: Current State, Mechanisms, Influencing Factors, and Prospects. Advanced Healthcare Materials, 2019, 8, e1901301.	3.9	42
163	Clinical Trials with Herbal Products for the Prevention of Dental Caries and Their Quality: A Scoping Study. Biomolecules, 2019, 9, 884.	1.8	3

#	Article	IF	CITATIONS
164	Therapeutic applications of multifunctional nanozymes. Nanoscale, 2019, 11, 21046-21060.	2.8	89
165	Effects of <i>S. mutans</i> gene-modification and antibacterial calcium phosphate nanocomposite on secondary caries and marginal enamel hardness. RSC Advances, 2019, 9, 41672-41683.	1.7	9
166	Glycosyltransferase-Mediated Biofilm Matrix Dynamics and Virulence of Streptococcus mutans. Applied and Environmental Microbiology, 2019, 85, .	1.4	68
167	Bacterial exopolysaccharide promotes acid tolerance in Bacillus amyloliquefaciens and improves soil aggregation. Molecular Biology Reports, 2019, 46, 1079-1091.	1.0	32
169	<i>Candida albicans</i> Increases Dentine Demineralization Provoked by <i> Streptococcus mutans</i> Biofilm. Caries Research, 2019, 53, 322-331.	0.9	45
170	Genomic and phenotypic diversity of Streptococcus mutans. Journal of Oral Biosciences, 2019, 61, 22-31.	0.8	24
171	Dextran-Coated Iron Oxide Nanoparticles as Biomimetic Catalysts for Localized and pH-Activated Biofilm Disruption. ACS Nano, 2019, 13, 4960-4971.	7.3	243
172	<i>Streptococcus mutans yidC1</i> and <i>yidC2</i> Impact Cell Envelope Biogenesis, the Biofilm Matrix, and Biofilm Biophysical Properties. Journal of Bacteriology, 2019, 201, .	1.0	26
173	pH-Responsive mineralized nanoparticles for bacteria-triggered topical release of antibiotics. Journal of Industrial and Engineering Chemistry, 2019, 71, 210-219.	2.9	21
174	Chemical biofilm removal capacity of endodontic irrigants as a function of biofilm structure: optical coherence tomography, confocal microscopy and viscoelasticity determination as integrated assessment tools. International Endodontic Journal, 2019, 52, 461-474.	2.3	28
175	A novel pH-responsive quaternary ammonium chitosan-liposome nanoparticles for periodontal treatment. International Journal of Biological Macromolecules, 2019, 129, 1113-1119.	3.6	69
176	Novel dental composite with capability to suppress cariogenic species and promote non-cariogenic species in oral biofilms. Materials Science and Engineering C, 2019, 94, 587-596.	3.8	54
177	Effects of S. mutans gene-modification and antibacterial monomer dimethylaminohexadecyl methacrylate on biofilm growth and acid production. Dental Materials, 2020, 36, 296-309.	1.6	17
178	The effect of Padma-hepaten herbal combination on the caries-inducing properties of Streptococcus mutans on orthodontic surfaces. Journal of Herbal Medicine, 2020, 20, 100321.	1.0	3
179	Zinc-based particle with ionic liquid as a hybrid filler for dental adhesive resin. Journal of Dentistry, 2020, 102, 103477.	1.7	13
180	The effect of polyphenol-containing solutions on in situ biofilm formation on enamel and dentin. Journal of Dentistry, 2020, 102, 103482.	1.7	9
181	Inhibitory effects of xylitol and sorbitol on Streptococcus mutans and Candida albicans biofilms are repressed by the presence of sucrose. Archives of Oral Biology, 2020, 119, 104886.	0.8	11
182	Parental perspectives on early childhood caries: A qualitative study. International Journal of Paediatric Dentistry, 2020, 30, 451-458.	1.0	16

~		n
(ITAT	ION	Report
011/11		

#	Article	IF	CITATIONS
183	Phytocompounds vs. Dental Plaque Bacteria: In vitro Effects of Myrtle and Pomegranate Polyphenolic Extracts Against Single-Species and Multispecies Oral Biofilms. Frontiers in Microbiology, 2020, 11, 592265.	1.5	12
184	Repurposing Napabucasin as an Antimicrobial Agent against Oral Streptococcal Biofilms. BioMed Research International, 2020, 2020, 1-9.	0.9	9
185	The role of sodium alginate and gellan gum in the design of new drug delivery systems intended for antibiofilm activity of morin. International Journal of Biological Macromolecules, 2020, 162, 1944-1958.	3.6	23
186	Effect of arginine on microorganisms involved in dental caries: a systematic literature review of <i>inÂvitro</i> studies. Biofouling, 2020, 36, 696-709.	0.8	5
187	Lactobacillus Plantarum 108 Inhibits Streptococcus mutans and Candida albicans Mixed-Species Biofilm Formation. Antibiotics, 2020, 9, 478.	1.5	22
188	Bioactive Dental Adhesive System With tt-Farnesol: Effects on Dental Biofilm and Bonding Properties. Frontiers in Bioengineering and Biotechnology, 2020, 8, 865.	2.0	7
189	In vitro evaluation of composite containing DMAHDM and calcium phosphate nanoparticles on recurrent caries inhibition at bovine enamel-restoration margins. Dental Materials, 2020, 36, 1343-1355.	1.6	23
190	Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clinical Oral Investigations, 2020, 24, 4237-4260.	1.4	87
191	Effects of sodium citrate on the structure and microbial community composition of an early-stage multispecies biofilm model. Scientific Reports, 2020, 10, 16585.	1.6	3
192	Effect of divalent ions on cariogenic biofilm formation. BMC Microbiology, 2020, 20, 287.	1.3	10
193	The Exo-Polysaccharide Component of Extracellular Matrix is Essential for the Viscoelastic Properties of Bacillus subtilis Biofilms. International Journal of Molecular Sciences, 2020, 21, 6755.	1.8	21
194	Extracellular biofilm matrix leads to microbial dysbiosis and reduces biofilm susceptibility to antimicrobials on titanium biomaterial: An in vitro and in situ study. Clinical Oral Implants Research, 2020, 31, 1173-1186.	1.9	25
195	Novel Nanocomposite Inhibiting Caries at the Enamel Restoration Margins in an In Vitro Saliva-Derived Biofilm Secondary Caries Model. International Journal of Molecular Sciences, 2020, 21, 6369.	1.8	15
196	Environmental concentrations of pharmaceuticals alter metabolism, denitrification, and diatom assemblages in artificial streams. Freshwater Science, 2020, 39, 256-267.	0.9	23
197	Inhibition of Streptococcus mutans Biofilm Formation and Virulence by Lactobacillus plantarum K41 Isolated From Traditional Sichuan Pickles. Frontiers in Microbiology, 2020, 11, 774.	1.5	38
198	Combined effects of Allium sativum and Cuminum cyminum essential oils on planktonic and biofilm forms of Salmonella typhimurium isolates. 3 Biotech, 2020, 10, 315.	1.1	17
199	Regulation of Exopolysaccharide Production by ProE, a Cyclic-Di-GMP Phosphodiesterase in Pseudomonas aeruginosa PAO1. Frontiers in Microbiology, 2020, 11, 1226.	1.5	20
200	Virulence Factors of <i>Streptococcus mutans</i> Related to Dental Caries. , 0, , .		2

#	Article	IF	CITATIONS
201	Antimicrobial effect of anacardic acid–loaded zein nanoparticles loaded on Streptococcus mutans biofilms. Brazilian Journal of Microbiology, 2020, 51, 1623-1630.	0.8	24
202	Antibacterial efficacy and remineralization capacity of glycyrrhizic acid added casein phosphopeptideâ€amorphous calcium phosphate. Microscopy Research and Technique, 2020, 83, 744-754.	1.2	9
203	Changes in the salivary electrolytic dynamic after sucrose exposure in children with Early Childhood Caries. Scientific Reports, 2020, 10, 4146.	1.6	10
204	The Role of Candida albicans Secreted Polysaccharides in Augmenting Streptococcus mutans Adherence and Mixed Biofilm Formation: In vitro and in vivo Studies. Frontiers in Microbiology, 2020, 11, 307.	1.5	49
205	Small noncoding RNA sRNA0426 is involved in regulating biofilm formation in <i>Streptococcus mutans</i> . MicrobiologyOpen, 2020, 9, e1096.	1.2	9
206	A 3D printed microfluidic flow-cell for microscopy analysis of in situ-grown biofilms. Journal of Microbiological Methods, 2020, 171, 105876.	0.7	13
207	Monitoring Extracellular pH in Cross-Kingdom Biofilms using Confocal Microscopy. Journal of Visualized Experiments, 2020, , .	0.2	1
208	Sucrose promotes caries progression by disrupting the microecological balance in oral biofilms: an in vitro study. Scientific Reports, 2020, 10, 2961.	1.6	40
209	Oral biofilm elimination by combining iron-based nanozymes and hydrogen peroxide-producing bacteria. Biomaterials Science, 2020, 8, 2447-2458.	2.6	38
210	Azorhizobium caulinodans c-di-GMP phosphodiesterase Chp1 involved in motility, EPS production, and nodulation of the host plant. Applied Microbiology and Biotechnology, 2020, 104, 2715-2729.	1.7	15
211	S. mutans gene-modification and antibacterial resin composite as dual strategy to suppress biofilm acid production and inhibit caries. Journal of Dentistry, 2020, 93, 103278.	1.7	23
212	Comparison of human and bovine enamel in a microbial caries model at different biofilm maturations. Journal of Dentistry, 2020, 96, 103328.	1.7	13
213	Characterization and effect of nanocomplexed fluoride solutions on the inhibition of enamel demineralization created by a multispecies cariogenic biofilm model. Clinical Oral Investigations, 2020, 24, 3947-3959.	1.4	2
214	The Impact of Photosensitizer Selection on Bactericidal Efficacy Of PDT against Cariogenic Biofilms: A Systematic Review and Meta-Analysis. Photodiagnosis and Photodynamic Therapy, 2021, 33, 102046.	1.3	9
215	Direct interactions with commensal streptococci modify intercellular communication behaviors of <i>Streptococcus mutans</i> . ISME Journal, 2021, 15, 473-488.	4.4	18
216	Limited antimicrobial efficacy of oral care antiseptics in microcosm biofilms and phenotypic adaptation of bacteria upon repeated exposure. Clinical Oral Investigations, 2021, 25, 2939-2950.	1.4	24
217	Fluoride Binding to <i>Streptococcus mutans</i> Pellets Rich in Extracellular Polysaccharides. Caries Research, 2021, 55, 234-237.	0.9	1
218	Does Curcumin Have an Anticaries Effect? A Systematic Review of In Vitro Studies. Advances in Experimental Medicine and Biology, 2021, 1291, 213-227.	0.8	3

#	Article	IF	CITATIONS
219	Step-by-step dual stimuli-responsive nanoparticles for efficient bacterial biofilm eradication. Biomaterials Science, 2021, 9, 6889-6902.	2.6	7
220	A novel dextranase gene from the marine bacterium <i>Bacillus aquimaris</i> S5 and its expression and characteristics. FEMS Microbiology Letters, 2021, 368, .	0.7	14
221	Targeting implant-associated infections: titanium surface loaded with antimicrobial. IScience, 2021, 24, 102008.	1.9	84
222	Effect of exopolysaccharides from cariogenic bacteria on human gingival fibroblasts. International Journal of Medical Sciences, 2021, 18, 2666-2672.	1.1	2
223	Starvation Survival and Biofilm Formation under Subminimum Inhibitory Concentration of QAMs. BioMed Research International, 2021, 2021, 1-10.	0.9	6
224	Ozone Water Bactericidal and Cleaning Effects on Oral Diseases-related Planktonic and Bacterial Biofilms. Journal of Hard Tissue Biology, 2021, 30, 27-32.	0.2	5
225	Novel lactotransferrin-derived synthetic peptides suppress cariogenic bacteria <i>in vitro</i> and arrest dental caries <i>in vivo</i> . Journal of Oral Microbiology, 2021, 13, 1943999.	1.2	8
226	The Route of Sucrose Utilization by Streptococcus mutans Affects Intracellular Polysaccharide Metabolism. Frontiers in Microbiology, 2021, 12, 636684.	1.5	17
227	EpsR Negatively Regulates <i>Streptococcus mutans</i> Exopolysaccharide Synthesis. Journal of Dental Research, 2021, 100, 002203452110006.	2.5	19
228	Quaternary ammonium silane (k21) based intracanal medicament triggers biofilm destruction. BMC Oral Health, 2021, 21, 116.	0.8	5
229	The dental plaque biofilm matrix. Periodontology 2000, 2021, 86, 32-56.	6.3	153
230	A Novel Small Molecule, LCG-N25, Inhibits Oral Streptococcal Biofilm. Frontiers in Microbiology, 2021, 12, 654692.	1.5	7
231	Spatial scale in analysis of the dental plaque microbiome. Periodontology 2000, 2021, 86, 97-112.	6.3	21
232	Development of a herbal mouthwash containing a mixture of essential oils and plant extracts and <i>inÂvitro</i> testing of its antimicrobial efficiency against the planktonic and biofilm-enclosed cariogenic bacterium <i>Streptococcus mutans</i> . Biofouling, 2021, 37, 397-409.	0.8	6
233	Incorporation of Apigenin and tt-Farnesol into dental composites to modulate the Streptococcus mutans virulence. Dental Materials, 2021, 37, e201-e212.	1.6	6
234	Understanding the Basis of METH Mouth Using a Rodent Model of Methamphetamine Injection, Sugar Consumption, and Streptococcus mutans Infection. MBio, 2021, 12, .	1.8	6
235	Single DNase or Proteinase Treatment Induces Change in Composition and Structural Integrity of Multispecies Oral Biofilms. Antibiotics, 2021, 10, 400.	1.5	5
236	Inhibition of S. mutans after nanoparticle mediated photodynamic antimicrobial chemotherapy on oral biofilm flow-cell system using laser or LED. Lasers in Dental Science, 2021, 5, 137-145.	0.3	0

#	Article	IF	CITATIONS
237	Study of the ultrastructure of Enterococcus faecalis and Streptococcus mutans incubated with salivary antimicrobial peptides. Clinical and Experimental Dental Research, 2021, 7, 365-375.	0.8	9
238	Preventive Applications of Polyphenols in Dentistry—A Review. International Journal of Molecular Sciences, 2021, 22, 4892.	1.8	28
239	Antimicrobial and selfâ€crosslinking potential of experimentally developed dioctadecyldimethyl ammonium bromide and riboflavin dentin adhesive. Journal of Biomedical Materials Research - Part A, 2021, 109, 2392-2406.	2.1	1
240	Antibacterial and Anti-Inflammatory Potential of Mouthwash Composition Based on Natural Extracts. Applied Sciences (Switzerland), 2021, 11, 4227.	1.3	1
241	Inhibition of <i>Streptococcus mutans</i> biofilm formation by strategies targeting the metabolism of exopolysaccharides. Critical Reviews in Microbiology, 2021, 47, 667-677.	2.7	55
242	Fluorescent nanosensors reveal dynamic pH gradients during biofilm formation. Npj Biofilms and Microbiomes, 2021, 7, 50.	2.9	19
243	Antimicrobial photodynamic therapy mediated by methylene blue coupled to β-cyclodextrin reduces early colonizing microorganisms from the oral biofilm. Photodiagnosis and Photodynamic Therapy, 2021, 34, 102283.	1.3	8
244	Anticariogenic activities of Libidibia ferrea, gallic acid and ethyl gallate against Streptococcus mutans in biofilm model. Journal of Ethnopharmacology, 2021, 274, 114059.	2.0	14
245	The Bond Strength and Antibacterial Activity of the Universal Dentin Bonding System: A Systematic Review and Meta-Analysis. Microorganisms, 2021, 9, 1230.	1.6	22
246	Lactobacillus reuteri BM53-1 Produces a Compound That Inhibits Sticky Glucan Synthesis by Streptococcus mutans. Microorganisms, 2021, 9, 1390.	1.6	5
247	The influence of biofilm maturation on fluoride's anticaries efficacy. Clinical Oral Investigations, 2022, 26, 1269-1282.	1.4	4
248	CÃįrie na infância: epidemiologia, etiologia e prevenção Brazilian Journal of Implantology and Health Sciences, 2021, 3, 30-48.	0.0	0
249	Cariogenic Biofilms: Development, Properties, and Biomimetic Preventive Agents. Dentistry Journal, 2021, 9, 88.	0.9	23
250	Effect of blue light plus chlorhexidine therapy on Streptococcus mutans biofilm and its regrowth in an inÂvitro orthodontic model. American Journal of Orthodontics and Dentofacial Orthopedics, 2021, , .	0.8	2
251	Regulation of Biofilm Exopolysaccharide Production by Cyclic Di-Guanosine Monophosphate. Frontiers in Microbiology, 2021, 12, 730980.	1.5	28
252	Transcriptional Activity of Predominant Streptococcus Species at Multiple Oral Sites Associate With Periodontal Status. Frontiers in Cellular and Infection Microbiology, 2021, 11, 752664.	1.8	7
253	MapZ deficiency leads to defects in the envelope structure and changes stress tolerance of <i>Streptococcus mutans</i> . Molecular Oral Microbiology, 2021, 36, 295-307.	1.3	1
254	Stimuli-Responsive Nanoplatform-Assisted Photodynamic Therapy Against Bacterial Infections. Frontiers in Medicine, 2021, 8, 729300.	1.2	8

# 255	ARTICLE Anti-infection mechanism of a novel dental implant made of titanium-copper (TiCu) alloy and its mechanism associated with oral microbiology. Bioactive Materials, 2022, 8, 381-395.	IF 8.6	CITATIONS
256	Spatial Correlations and Distribution of Competence Gene Expression in Biofilms of Streptococcus mutans. Frontiers in Microbiology, 2020, 11, 627992.	1.5	2
257	Ratiometric imaging of extracellular pH in <i>Streptococcus mutans</i> biofilms exposed to different flow velocities and saliva film thicknesses. Journal of Oral Microbiology, 2021, 13, 1949427.	1.2	4
258	Antimicrobial activities of a small molecule compound II-6s against oral streptococci. Journal of Oral Microbiology, 2021, 13, 1909917.	1.2	8
259	Low-Temperature Plasma as an Approach for Inhibiting a Multi-Species Cariogenic Biofilm. Applied Sciences (Switzerland), 2021, 11, 570.	1.3	5
261	Biofilm-Mediated Dental Diseases. , 2019, , 91-116.		1
262	Dental Biofilms in Health and Disease. , 2016, , 41-52.		7
263	Exopolysaccharide from Rhizobia: Production and Role in Symbiosis. Soil Biology, 2017, , 257-292.	0.6	3
264	Salivary Diagnostics and the Oral Microbiome. , 2015, , 83-119.		4
265	Molecular Principles of Adhesion and Biofilm Formation. Springer Series on Biofilms, 2015, , 23-53.	0.0	13
266	Plant Growth-Promoting Rhizospheric Microbes for Remediation of Saline Soils. Microorganisms for Sustainability, 2019, , 121-146.	0.4	10
267	Biofilm and swarming emergent behaviours controlled through the aid of biophysical understanding and tools. Biochemical Society Transactions, 2020, 48, 2903-2913.	1.6	13
268	Recombinant bacteriophage T4 Rnl1 impacts Streptococcus mutans biofilm formation. Journal of Oral Microbiology, 2021, 13, 1860398.	1.2	7
270	Saliva as the Sole Nutritional Source in the Development of Multispecies Communities in Dental Plaque. , 0, , 263-277.		4
271	Khat Chewing Induces a Floral Shift in Dental Material-Associated Microbiota: A Preliminary Study. Medical Science Monitor, 2020, 26, e918219.	0.5	9
273	α-Mangostin Disrupts the Development of Streptococcus mutans Biofilms and Facilitates Its Mechanical Removal. PLoS ONE, 2014, 9, e111312.	1.1	40
274	Tantalum Nitride-Decorated Titanium with Enhanced Resistance to Microbiologically Induced Corrosion and Mechanical Property for Dental Application. PLoS ONE, 2015, 10, e0130774.	1.1	44
275	Understanding LrgAB Regulation of Streptococcus mutans Metabolism. Frontiers in Microbiology, 2020, 11, 2119.	1.5	7

#	Article	IF	CITATIONS
276	Caries Risk Assessment by CAMBRA in Children Attending a Basic Health Unit. Pesquisa Brasileira Em Odontopediatria E Clinica Integrada, 2016, 16, 195-205.	0.7	2
277	pH Stress Alters Cytoplasmic Membrane Fluidity and atpB Gene Expression in Streptococcus mutans. Journal of Life Science, 2017, 27, 15-22.	0.2	1
278	Bacterial Cell-Free Probiotics Using Effective Substances Produced by Probiotic Bacteria, for Application in the Oral Cavity. , 0, , .		2
279	Fitting pieces into the puzzle: The impact of titanium-based dental implant surface modifications on bacterial accumulation and polymicrobial infections. Advances in Colloid and Interface Science, 2021, 298, 102551.	7.0	42
280	24. Passive immunoglobulin Y immunotherapy targeting oral diseases. Human Health Handbooks, 2015, , 427-446.	0.1	0
281	Streptococcus mutans biofilm inhibition using antisense oligonucleotide to glucosyltransferases B and C. Acta Medica Lituanica, 2015, 22, 85-92.	0.2	3
282	Application of Green Synthesized Iron Nanoparticles for Enhanced Antimicrobial Activity of Selected Traditional and Commonly Exploited Drug Amoxicillin Against Streptococcus mutans. Biosciences, Biotechnology Research Asia, 2017, 14, 1135-1141.	0.2	5
283	Cariogenicity of Vitamin Supplements for Children. The Journal of the Korean Academy of Pedtatric Dentistry, 2018, 45, 195-202.	0.1	Ο
285	Isolation of Lactic acid bacteria showing antagonistic activity against Streptococcus mutans. Y Hoc Thanh Pho Ho Chi Minh, 2020, 4, 23-33.	0.1	0
286	Culture dependent and independent detection of multiple extended beta-lactamase producing and biofilm forming Salmonella species from leafy vegetables. Biocatalysis and Agricultural Biotechnology, 2021, 38, 102202.	1.5	7
287	Establishment of microcosm biofilm models that reproduce a cariogenic diet intake. Biofouling, 2020, 36, 1-14.	0.8	0
288	Strategies for <i>Streptococcus mutans</i> biofilm dispersal through extracellular polymeric substances disruption. Molecular Oral Microbiology, 2022, 37, 1-8.	1.3	22
289	Combination Effect of Diurnal Exposure to Sucrose and Nocturnal Exposure to Lactose on Enamel Demineralization. Caries Research, 2022, 56, 47-54.	0.9	0
292	Validation of a cariogenic biofilm model by evaluating the effect of fluoride on enamel demineralization. Journal of Microbiological Methods, 2022, 192, 106386.	0.7	3
293	Effect of sodium hexametaphosphate and fluoride on dual-species biofilms of <i>Candida albicans</i> and <i>Streptococcus mutans</i> . Biofouling, 2021, 37, 939-948.	0.8	7
294	Graphene Oxide-Copper Nanocomposites Suppress Cariogenic Streptococcus mutans Biofilm Formation. International Journal of Nanomedicine, 2021, Volume 16, 7727-7739.	3.3	23
295	Potassium iodide enhances inactivation of Streptococcus mutans biofilm in antimicrobial photodynamic therapy with red laser. Photodiagnosis and Photodynamic Therapy, 2022, 37, 102622.	1.3	4
296	Study protocol for a randomized clinical trial to evaluate the effect of the use of Xylitol gum in the prevention of caries lesions in children living in Ladakh—the Caries Prevention Xylitol in Children (CaPreXCh) trial. Trials, 2021, 22, 871.	0.7	0

#	Article	IF	CITATIONS
297	Acetylation of glucosyltransferases regulates Streptococcus mutans biofilm formation and virulence. PLoS Pathogens, 2021, 17, e1010134.	2.1	22
299	The <i>rnc</i> Gene Regulates the Microstructure of Exopolysaccharide in the Biofilm of <i>Streptococcus mutans</i> through the β-Monosaccharides. Caries Research, 2021, 55, 534-545.	0.9	3
300	Arginine-induced metabolomic perturbation in <i>Streptococcus mutans</i> . Journal of Oral Microbiology, 2022, 14, 2015166.	1.2	8
301	Regulatory Effect of Irresistin-16 on Competitive Dual-Species Biofilms Composed of Streptococcus mutans and Streptococcus sanguinis. Pathogens, 2022, 11, 70.	1.2	3
302	A New pH-Responsive Nano Micelle for Enhancing the Effect of a Hydrophobic Bactericidal Agent on Mature Streptococcus mutans Biofilm. Frontiers in Microbiology, 2021, 12, 761583.	1.5	10
303	Immunometabolism in biofilm infection: lessons from cancer. Molecular Medicine, 2022, 28, 10.	1.9	18
304	Unsweetened and sucrose-sweetened black and green tea modifies the architecture of in vitro oral biofilms. Archives of Oral Biology, 2022, 135, 105368.	0.8	0
305	Biosurfactants in the pharmaceuticalsciences. , 2022, , 319-335.		1
306	Polysaccharides in Bacterial Biofilm. , 2022, , 599-624.		0
307	Engineered Salivary Peptides Reduce Enamel Demineralization Provoked by Cariogenic S. mutans Biofilm. Microorganisms, 2022, 10, 742.	1.6	6
308	Antisense vicR-Loaded Dendritic Mesoporous Silica Nanoparticles Regulate the Biofilm Organization and Cariogenicity of Streptococcus mutans. International Journal of Nanomedicine, 2022, Volume 17, 1255-1272.	3.3	7
309	Nicotinamide could reduce growth and cariogenic virulence of <i>Streptococcus mutans</i> . Journal of Oral Microbiology, 2022, 14, 2056291.	1.2	10
310	The reciprocal interaction between fluoride release of glass ionomers and acid production of <i>Streptococcus mutans</i> biofilm. Journal of Oral Microbiology, 2022, 14, 2055267.	1.2	1
311	Nitrite Triggers Reprogramming of the Oral Polymicrobial Metabolome by a Commensal Streptococcus. Frontiers in Cellular and Infection Microbiology, 2022, 12, 833339.	1.8	6
312	The vicK gene of Streptococcus mutans mediates its cariogenicity via exopolysaccharides metabolism. International Journal of Oral Science, 2021, 13, 45.	3.6	16
313	Mucoadhesive controlled-release formulations containing morin for the control of oral biofilms. Biofouling, 2022, 38, 71-83.	0.8	5
315	Effect of Plasma Activated Water in Caries Prevention: The Caries Related Biofilm Inhibition Effects and Mechanisms. Plasma Chemistry and Plasma Processing, 2022, 42, 801-814.	1.1	4
333	Diaryl Urea Derivative Molecule Inhibits Cariogenic Streptococcus mutans by Affecting Exopolysaccharide Synthesis, Stress Response, and Nitrogen Metabolism. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	2

#	Article	IF	CITATIONS
334	Differentiation of PC12 cell line into neuron by Valproic acid encapsulated in the stabilized core-shell liposome-chitosan Nano carriers. International Journal of Biological Macromolecules, 2022, 210, 252-260.	3.6	6
335	Anti-biofilm studies of synthetic imidazolium salts on dental biofilm in vitro. Journal of Oral Microbiology, 2022, 14, .	1.2	5
336	Polymicrobial biofilms related to dental implant diseases: unravelling the critical role of extracellular biofilm matrix. Critical Reviews in Microbiology, 2023, 49, 370-390.	2.7	10
337	Psychophysiological Reactions of Internet Users Exposed to Fluoride Information and Disinformation: Protocol for a Randomized Controlled Trial. JMIR Research Protocols, 2022, 11, e39133.	0.5	0
338	Bacterial biofilm microenvironment responsive copper-doped zinc peroxide nanocomposites for enhancing chemodynamic therapy. Chemical Engineering Journal, 2022, 446, 137214.	6.6	14
339	Copper Doped Carbon Dots for Addressing Bacterial Biofilm Formation, Wound Infection, and Tooth Staining. ACS Nano, 2022, 16, 9479-9497.	7.3	63
340	Topical Application of 4â€2-Hydroxychalcone in Combination with <i>tt-</i> Farnesol Is Effective against <i>Candida albicans</i> and <i>Streptococcus mutans</i> Biofilms. ACS Omega, 2022, 7, 22773-22786.	1.6	1
341	Biofilm accumulation and sucrose rinse modulate calcium and fluoride bioavailability in the saliva of children with early childhood caries. Scientific Reports, 2022, 12, .	1.6	2
342	Nanoparticle-based antimicrobial for dental restorative materials. , 2022, , 661-700.		0
343	ASSESSMENT OF DMFT INDEXES, SALIVARY FLOW RATE, PH, AND DETECTIONS OF S.MUTANS SALIVARY LEVELS BY A QUANTITATIVE REAL-TIME PCR IN POLYCYSTIC OVARY SYNDROME. Cumhuriyet Dental Journal, 0, , .	0.1	0
344	D-alanylation of lipoteichoic acid contributes to biofilm formation and acidogenesis capacity of Streptococcus mutans. Microbial Pathogenesis, 2022, 169, 105666.	1.3	3
345	Dental plaque-inspired versatile nanosystem for caries prevention and tooth restoration. Bioactive Materials, 2023, 20, 418-433.	8.6	24
346	The Influence of Salivary pH on the Prevalence of Dental Caries. Dentistry, 0, , .	0.0	1
347	Farnesol delivery via polymeric nanoparticle carriers inhibits cariogenic crossâ€kingdom biofilms and prevents enamel demineralization. Molecular Oral Microbiology, 2022, 37, 218-228.	1.3	3
348	An in vitro study on the degradation of multispecies biofilm of periodontitis-related microorganisms by bovine trypsin. Frontiers in Microbiology, 0, 13, .	1.5	5
349	Bacterial-derived extracellular polysaccharides reduce antimicrobial susceptibility on biotic and abiotic surfaces. Archives of Oral Biology, 2022, 142, 105521.	0.8	10
350	Flavonoid Baicalein Suppresses Oral Biofilms and Protects Enamel Hardness to Combat Dental Caries. International Journal of Molecular Sciences, 2022, 23, 10593.	1.8	6
351	Does potassium iodide help in the microbial reduction of oral microcosm biofilms after photodynamic therapy with methylene blue and red laser?. Photodiagnosis and Photodynamic Therapy, 2022, 40, 103123.	1.3	1

#	Article	IF	CITATIONS
352	RNase III coding genes modulate the cross-kingdom biofilm of Streptococcus mutans and Candida albicans. Frontiers in Microbiology, 0, 13, .	1.5	2
353	Glucosyltransferaseâ€modulated <i>Streptococcus mutans</i> adhesion to different surfaces involved in biofilm formation by atomic force microscopy. Microbiology and Immunology, 2022, 66, 493-500.	0.7	2
354	Oral mitis group streptococci: A silent majority in our oral cavity. Microbiology and Immunology, 2022, 66, 539-551.	0.7	10
355	Candida albicans CHK1 gene regulates its cross-kingdom interactions with Streptococcus mutans to promote caries. Applied Microbiology and Biotechnology, 2022, 106, 7251-7263.	1.7	3
356	Effects of photodynamic therapy on Streptococcus mutans and enamel remineralization of multifunctional TiO2-HAP composite nanomaterials. Photodiagnosis and Photodynamic Therapy, 2023, 42, 103141.	1.3	5
357	Targeted Anti-Biofilm Therapy: Dissecting Targets in the Biofilm Life Cycle. Pharmaceuticals, 2022, 15, 1253.	1.7	3
358	Characterization of <i>Leuconostoc mesenteroides</i> MJM60376 as an oral probiotic and its antibiofilm activity. Molecular Oral Microbiology, 2023, 38, 145-157.	1.3	2
359	Streptococcus mutans <i>dexA</i> affects exopolysaccharides production and biofilm homeostasis. Molecular Oral Microbiology, 0, , .	1.3	1
360	Effects of Carbonated Beverage Consumption on Oral pH and Bacterial Proliferation in Adolescents: A Randomized Crossover Clinical Trial. Life, 2022, 12, 1776.	1.1	1
361	Albumin-coated pH-responsive dimeric prodrug-based nano-assemblies with high biofilm eradication capacity. Biomaterials Science, 2023, 11, 1031-1041.	2.6	3
362	Antibacterial features of material surface: strong enough to serve as antibiotics?. Journal of Materials Chemistry B, 2023, 11, 280-302.	2.9	4
363	Dual function of anti-biofilm and modulating biofilm equilibrium of orthodontic cement containing quaternary ammonium salt. Dental Materials Journal, 2023, 42, 149-157.	0.8	3
364	Antimicrobial behavior of titanium coating with chlorhexidine-doped thin film exposed to a biofilm supplemented with nicotine. Dental Materials Journal, 2023, , .	0.8	0
365	The potency of herbal extracts and its green synthesized nanoparticle formulation as antibacterial agents against Streptococcus mutans associated biofilms. Biotechnology Reports (Amsterdam,) Tj ETQq1 1 0.784	132 1.1 4 rgBT	/Øverlock 1
366	Caries Management—The Role of Surface Interactions in De- and Remineralization-Processes. Journal of Clinical Medicine, 2022, 11, 7044.	1.0	11
367	Illuminating the oral microbiome and its host interactions: tools and approaches for molecular ecological studies. FEMS Microbiology Reviews, 2023, 47, .	3.9	5
368	Smoothie Drinks: Possible Source of Resistant and Biofilm-Forming Microorganisms. Foods, 2022, 11, 4039.	1.9	0
369	Ecological influence by colonization of fluoride-resistant Streptococcus mutans in oral biofilm. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1

#	Article	IF	CITATIONS
370	Growth with Commensal Streptococci Alters <i>Streptococcus mutans</i> Behaviors. Journal of Dental Research, 2023, 102, 450-458.	2.5	3
371	New Technological Approaches for Dental Caries Treatment: From Liquid Crystalline Systems to Nanocarriers. Pharmaceutics, 2023, 15, 762.	2.0	7
372	Strontium/zinc phytate-based self-assembled monolayers on titanium surfaces enhance osteogenesis and antibacterial performance in vitro. Applied Surface Science, 2023, 620, 156818.	3.1	2
373	Purification of exopolysaccharides from Lactobacillus rhamnosus and changes in their characteristics by regulating quorum sensing genes via polyphenols. International Journal of Biological Macromolecules, 2023, 240, 124414.	3.6	1
374	The Activity of Calcium Glycerophosphate and Fluoride against Cariogenic Biofilms of Streptococcus mutans and Candida albicans Formed In Vitro. Antibiotics, 2023, 12, 422.	1.5	1
375	Biofilm Battles: Beneficial Commensals vs. <i>Streptococcus Mutans</i> . Journal of the California Dental Association, 2017, 45, 547-556.	0.0	0
376	Evaluation of Probiotic Effects of Lactobacilli on Mutans Streptococci: An In Vitro Study. Journal of Contemporary Dental Practice, 2023, 23, 984-990.	0.2	0
377	Promising applications of D-amino acids in periprosthetic joint infection. Bone Research, 2023, 11, .	5.4	8
378	Novel Lactotransferrin-Derived Antimicrobial Peptide LF-1 Inhibits the Cariogenic Virulence Factors of Streptococcus mutans. Antibiotics, 2023, 12, 563.	1.5	1
379	Development, characterization and antimicrobial activity of multilayer silica nanoparticles with chlorhexidine incorporated into dental composites. Dental Materials, 2023, 39, 469-477.	1.6	2
380	Bis-quaternary ammonium betulin-based dimethacrylate: synthesis, characterization, and application in dental restorative resins. Materials Advances, 2023, 4, 2127-2137.	2.6	4
382	In Situ Raman Analysis of Biofilm Exopolysaccharides Formed in Streptococcus mutans and StreptococcusÂsanguinis Commensal Cultures. International Journal of Molecular Sciences, 2023, 24, 6694.	1.8	1
383	Dental caries and their microbiomes in children: what do we do now?. Journal of Oral Microbiology, 2023, 15, .	1.2	9