Behavioral, Virologic, and Immunologic Factors Associa of Primary Epstein–Barr Virus Infection in University

Journal of Infectious Diseases 207, 80-88

DOI: 10.1093/infdis/jis646

Citation Report

#	Article	IF	CITATIONS
1	Human Natural Killer Cells Prevent Infectious Mononucleosis Features by Targeting Lytic Epstein-Barr Virus Infection. Cell Reports, 2013, 5, 1489-1498.	6.4	196
2	A Distinct Subpopulation of Human NK Cells Restricts B Cell Transformation by EBV. Journal of Immunology, 2013, 191, 4989-4995.	0.8	59
3	The need and challenges for development of an Epstein-Barr virus vaccine. Vaccine, 2013, 31, B194-B196.	3.8	77
4	Innate immune responses against Epstein Barr virus infection. Journal of Leukocyte Biology, 2013, 94, 1185-1190.	3.3	39
5	Primary Epstein–Barr Virus Infection: Impact of Age at Acquisition, Coinfection, and Viral Load. Journal of Infectious Diseases, 2013, 207, 1787-1789.	4.0	24
6	Age-Specific Prevalence of Epstein–Barr Virus Infection Among Individuals Aged 6–19 Years in the United States and Factors Affecting Its Acquisition. Journal of Infectious Diseases, 2013, 208, 1286-1293.	4.0	202
8	Epstein–Barr Virus and Infectious Mononucleosis: What Students Can Teach Us. Journal of Infectious Diseases, 2013, 207, 6-8.	4.0	10
9	Activation of MSRV-Type Endogenous Retroviruses during Infectious Mononucleosis and Epstein-Barr Virus Latency: The Missing Link with Multiple Sclerosis?. PLoS ONE, 2013, 8, e78474.	2.5	64
10	Seroprevalence of Cytomegalovirus, Epstein Barr Virus and Varicella Zoster Virus among Pregnant Women in Bradford: A Cohort Study. PLoS ONE, 2013, 8, e81881.	2.5	75
11	Primary EBV Infection Induces an Expression Profile Distinct from Other Viruses but Similar to Hemophagocytic Syndromes. PLoS ONE, 2014, 9, e85422.	2.5	41
12	Role of Human Natural Killer Cells during Epstein-Barr Virus Infection. Critical Reviews in Immunology, 2014, 34, 501-507.	0.5	20
13	Age-Specific Prevalence of Epstein-Barr Virus Infection Among Minnesota Children: Effects of Race/Ethnicity and Family Environment. Clinical Infectious Diseases, 2014, 59, 501-508.	5.8	65
14	A Genetic Basis for Infectious Mononucleosis: Evidence From a Family Study of Hospitalized Cases in Denmark. Clinical Infectious Diseases, 2014, 58, 1684-1689.	5.8	30
15	XMEN disease: a new primary immunodeficiency affecting Mg2+ regulation of immunity against Epstein-Barr virus. Blood, 2014, 123, 2148-2152.	1.4	147
16	Season of infectious mononucleosis and risk of multiple sclerosis at different latitudes; the EnvIMS Study. Multiple Sclerosis Journal, 2014, 20, 669-674.	3.0	30
17	Sibship structure and risk of infectious mononucleosis: a population-based cohort study. International Journal of Epidemiology, 2014, 43, 1607-1614.	1.9	21
18	T Cells Modulate Epstein-Barr Virus Latency Phenotypes during Infection of Humanized Mice. Journal of Virology, 2014, 88, 3235-3245.	3.4	31
19	Comparative evaluation of the new ARCHITECT EBV assays considering different testing algorithms. Diagnostic Microbiology and Infectious Disease, 2014, 79, 310-316.	1.8	9

#	Article	IF	Citations
20	Cellular immune controls over Epstein–Barr virus infection: new lessons from the clinic and the laboratory. Trends in Immunology, 2014, 35, 159-169.	6.8	121
21	Editorial Commentary: Genetics and Infectious Mononucleosis. Clinical Infectious Diseases, 2014, 58, 1690-1691.	5.8	2
22	Cancers in People with HIV and AIDS. , 2014, , .		2
23	Acute acalculous cholecystitis, a rare complication of Epstein–Barr virus primary infection: Report of two cases and review. Journal of Clinical Virology, 2014, 61, 173-175.	3.1	29
24	The correlation between the presence of viremia and clinical severity in patients with enterovirus 71 infection: a multi-center cohort study. BMC Infectious Diseases, 2014, 14, 417.	2.9	37
25	Cutting Edge: NKG2ChiCD57+ NK Cells Respond Specifically to Acute Infection with Cytomegalovirus and Not Epstein–Barr Virus. Journal of Immunology, 2014, 192, 4492-4496.	0.8	153
26	Progress, prospects, and problems in Epstein-Barr virus vaccine development. Current Opinion in Virology, 2014, 6, 1-5.	5.4	43
27	Role for early-differentiated natural killer cells in infectious mononucleosis. Blood, 2014, 124, 2533-2543.	1.4	169
29	Primary immunodeficiencies and the control of Epstein–Barr virus infection. Annals of the New York Academy of Sciences, 2015, 1356, 22-44.	3.8	42
30	Dynamic expression of viral and cellular microRNAs in infectious mononucleosis caused by primary Epstein-Barr virus infection in children. Virology Journal, 2015, 12, 208.	3.4	38
31	Diagnosis of infectious mononucleosis. Nurse Practitioner, 2015, 40, 13-16.	0.3	3
32	The Impact of Donor Viral Replication at Transplant on Recipient Infections Posttransplant. Transplantation, 2015, 99, 602-608.	1.0	25
33	A Large-Scale Seroprevalence of Epstein-Barr Virus in Taiwan. PLoS ONE, 2015, 10, e0115836.	2.5	50
34	HLA Allele E*01:01 Is Associated with a Reduced Risk of EBV-Related Classical Hodgkin Lymphoma Independently of HLA-A*01/*02. PLoS ONE, 2015, 10, e0135512.	2.5	9
35	Epstein-Barr Virus (Infectious Mononucleosis, Epstein-Barr Virus–Associated Malignant Diseases, and) Tj ETQqC) 0 0 rgBT	/Oyerlock 10
36	The Immunology of Epstein-Barr Virus–Induced Disease. Annual Review of Immunology, 2015, 33, 787-821.	21.8	416
37	Epstein–barr virus vaccines. Clinical and Translational Immunology, 2015, 4, e32.	3.8	128
38	Targeting Epstein-Barr virus infection as an intervention against multiple sclerosis. Acta Neurologica Scandinavica, 2015, 131, 69-79.	2.1	18

#	Article	IF	Citations
39	Infectious mononucleosis. Clinical and Translational Immunology, 2015, 4, e33.	3.8	167
40	A chimeric EBV gp350/220-based VLP replicates the virion B-cell attachment mechanism and elicits long-lasting neutralizing antibodies in mice. Journal of Translational Medicine, 2015, 13, 50.	4.4	51
41	Cytokine-Mediated Loss of Blood Dendritic Cells During Epstein-Barr Virus–Associated Acute Infectious Mononucleosis: Implication for Immune Dysregulation. Journal of Infectious Diseases, 2015, 212, 1957-1961.	4.0	22
42	Impaired Epstein-Barr Virus-Specific Neutralizing Antibody Response during Acute Infectious Mononucleosis Is Coincident with Global B-Cell Dysfunction. Journal of Virology, 2015, 89, 9137-9141.	3.4	21
43	Early Virological and Immunological Events in Asymptomatic Epstein-Barr Virus Infection in African Children. PLoS Pathogens, 2015, 11, e1004746.	4.7	64
44	Fatal Autoimmune Hemolytic Anemia Due to Immunoglobulin G Autoantibody Exacerbated by Epstein-Barr Virus. Laboratory Medicine, 2015, 46, 55-59.	1.2	13
45	Infectious Mononucleosis. Current Topics in Microbiology and Immunology, 2015, 390, 211-240.	1.1	148
46	T-Cell Responses to EBV. Current Topics in Microbiology and Immunology, 2015, 391, 325-353.	1.1	25
47	Innate Immune Recognition of EBV. Current Topics in Microbiology and Immunology, 2015, 391, 265-287.	1.1	29
48	Identification of the critical attribute(s) of EBV gp350 antigen required for elicitation of a neutralizing antibody response in vivo. Vaccine, 2015, 33, 6771-6777.	3.8	20
49	Viral load of equine herpesviruses 2 and 5 in nasal swabs of actively racing Standardbred trotters: Temporal relationship of shedding to clinical findings and poor performance. Veterinary Microbiology, 2015, 179, 142-148.	1.9	39
50	A Gene Expression Signature That Correlates with CD8+ T Cell Expansion in Acute EBV Infection. Journal of Immunology, 2015, 195, 4185-4197.	0.8	25
51	EBV and Autoimmunity. Current Topics in Microbiology and Immunology, 2015, 390, 365-385.	1.1	99
52	The Human NK Cell Response to Yellow Fever Virus 17D Is Primarily Governed by NK Cell Differentiation Independently of NK Cell Education. Journal of Immunology, 2015, 195, 3262-3272.	0.8	47
53	The high burden of hospitalizations for primary EBV infection: a 6-year prospective survey in a French hospital. Clinical Microbiology and Infection, 2015, 21, 1041.e1-1041.e7.	6.0	12
54	Role of the 2B4 Receptor in CD8 ⁺ T-Cell-Dependent Immune Control of Epstein-Barr Virus Infection in Mice With Reconstituted Human Immune System Components. Journal of Infectious Diseases, 2015, 212, 803-807.	4.0	30
55	Early virological and immunological events in Epstein–Barr virus infection. Current Opinion in Virology, 2015, 15, 75-79.	5.4	18
56	Immune control of oncogenic γ-herpesviruses. Current Opinion in Virology, 2015, 14, 79-86.	5.4	16

#	ARTICLE	IF	Citations
57	Coprevalence of Epstein-Barr Virus, Cytomegalovirus, and Herpes Simplex Virus Type-1 Antibodies Among United States Children and Factors Associated With Their Acquisition. Journal of the Pediatric Infectious Diseases Society, 2015, 4, 323-329.	1.3	12
58	Infectious Mononucleosis Triggers Generation of IgG Auto-Antibodies against Native Myelin Oligodendrocyte Glycoprotein. Viruses, 2016, 8, 51.	3.3	24
59	Incidence of Infectious Mononucleosis in Universities and U.S. Military Settings. Journal of Diagnostic Techniques and Biomedical Analysis, 2016, 5, .	0.1	8
60	EBV AND HHV-6 CIRCULATING SUBTYPES IN PEOPLE LIVING WITH HIV IN BURKINA FASO, IMPACT ON CD4 T CELL COUNT AND HIV VIRAL LOAD. Mediterranean Journal of Hematology and Infectious Diseases, 2016, 9, 2017049.	1.3	8
61	The Correlation between the Virus- and Brain Antigen-Specific B Cell Response in the Blood of Patients with Multiple Sclerosis. Viruses, 2016, 8, 105.	3.3	3
62	NK Cell Influence on the Outcome of Primary Epstein–Barr Virus Infection. Frontiers in Immunology, 2016, 7, 323.	4.8	48
63	NKG2A-Expressing Natural Killer Cells Dominate the Response to Autologous Lymphoblastoid Cells Infected with Epstein–Barr Virus. Frontiers in Immunology, 2016, 7, 607.	4.8	46
64	Early T Cell Recognition of B Cells following Epstein-Barr Virus Infection: Identifying Potential Targets for Prophylactic Vaccination. PLoS Pathogens, 2016, 12, e1005549.	4.7	36
65	Epstein-Barr Virus. , 2016, , 523-547.		0
66	DR3 regulation of apoptosis of naive T-lymphocytes in children with acute infectious mononucleosis. Acta Microbiologica Et Immunologica Hungarica, 2016, 63, 339-357.	0.8	5
67	Antiviral agents for infectious mononucleosis (glandular fever). The Cochrane Library, 2016, 2016, CD011487.	2.8	35
68	Epstein-Barr virus infection of infants: implications of early age of infection on viral control and risk for Burkitt lymphoma. BoletÃn Médico Del Hospital Infantil De México (English Edition), 2016, 73, 41-46.	0.0	1
69	Kinetics of Epstein-Barr Virus (EBV) Neutralizing and Virus-Specific Antibodies after Primary Infection with EBV. Vaccine Journal, 2016, 23, 363-369.	3.1	34
70	Identification of GLA/SE as an effective adjuvant for the induction of robust humoral and cell-mediated immune responses to EBV-gp350 in mice and rabbits. Vaccine, 2016, 34, 2562-2569.	3.8	23
71	Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature, 2016, 532, 512-516.	27.8	848
72	Antibody producing B lineage cells invade the central nervous system predominantly at the time of and triggered by acute Epstein–Barr virus infection: A hypothesis on the origin of intrathecal immunoglobulin synthesis in multiple sclerosis. Medical Hypotheses, 2016, 91, 109-113.	1.5	21
73	Post-transplant Lymphoproliferative Disorder (PTLD): Infection, Cancer?. Current Transplantation Reports, 2016, 3, 145-153.	2.0	0
74	Epstein Barr virus — a tumor virus that needs cytotoxic lymphocytes to persist asymptomatically. Current Opinion in Virology, 2016, 20, 34-39.	5.4	14

#	ARTICLE	IF	CITATIONS
75	Prospective studies of infectious mononucleosis in university students. Clinical and Translational Immunology, 2016, 5, e94.	3.8	35
76	Epstein–Barr Virus Infection and Lymphoproliferative Disorders After Transplantation. , 2016, , 477-512.		2
77	Severe Epstein–Barr virus infection in primary immunodeficiency and the normal host. British Journal of Haematology, 2016, 175, 559-576.	2.5	47
78	Oncogenic Î ³ Herpesviruses EBV and HHV8 in Kidney Transplantation. Seminars in Nephrology, 2016, 36, 362-371.	1.6	6
79	Epstein–Barr virus dynamics in asymptomatic immunocompetent adults: an intensive 6â€month study. Clinical and Translational Immunology, 2016, 5, e81.	3.8	23
80	Epstein-Barr virus infection of infants: implications of early age of infection on viral control and risk for Burkitt lymphoma. BoletÃn Médico Del Hospital Infantil De México, 2016, 73, 41-46.	0.3	6
81	Induction of the Lytic Cycle Sensitizes Epstein-Barr Virus-Infected B Cells to NK Cell Killing That Is Counteracted by Virus-Mediated NK Cell Evasion Mechanisms in the Late Lytic Cycle. Journal of Virology, 2016, 90, 947-958.	3.4	26
82	A rare case of acute pancreatitis and life-threatening hemolytic anemia associated with Epstein–Barr virus infection in a young healthy adult. Journal of Infection and Public Health, 2016, 9, 98-101.	4.1	7
83	Human immunity against EBVâ€"lessons from the clinic. Journal of Experimental Medicine, 2017, 214, 269-283.	8.5	132
84	Designing an effective vaccine to prevent Epstein-Barr virus-associated diseases: challenges and opportunities. Expert Review of Vaccines, 2017, 16, 377-390.	4.4	20
85	Analysis of BZLF1 mRNA detection in saliva as a marker for active replication of Epstein-Barr virus. Journal of Virological Methods, 2017, 244, 11-16.	2.1	6
86	A Tale of Two Mononucleosis Syndromes. Physician Assistant Clinics, 2017, 2, 287-296.	0.1	0
87	The Immune Response to Epstein Barr Virus and Implications for Posttransplant Lymphoproliferative Disorder. Transplantation, 2017, 101, 2009-2016.	1.0	74
88	Epstein–Barr virus and renal transplantation. Transplantation Reviews, 2017, 31, 55-60.	2.9	39
89	Asymptomatic Primary Infection with Epstein-Barr Virus: Observations on Young Adult Cases. Journal of Virology, 2017, 91, .	3.4	56
90	Severity of Acute Infectious Mononucleosis Correlates with Cross-Reactive Influenza CD8 T-Cell Receptor Repertoires. MBio, 2017, 8, .	4.1	36
91	Whole transcriptome profiling reveals major cell types in the cellular immune response against acute and chronic active Epstein-Barr virus infection. Scientific Reports, 2017, 7, 17775.	3.3	16
92	Fighting Viral Infections and Virus-Driven Tumors with Cytotoxic CD4+ T Cells. Frontiers in Immunology, 2017, 8, 197.	4.8	34

#	Article	IF	CITATIONS
93	Evolution of EBV seroprevalence and primary infection age in a French hospital and a city laboratory network, 2000–2016. PLoS ONE, 2017, 12, e0175574.	2.5	54
94	Viral Diseases Transmissible by Kissing. , 2017, , 53-92.		7
95	A study of Epstein-Barr virus infection in the Chinese tree shrew(Tupaia belangeri chinensis). Virology Journal, 2017, 14, 193.	3.4	15
96	Clinical Mimics: An Emergency Medicine-Focused Review of Streptococcal Pharyngitis Mimics. Journal of Emergency Medicine, 2018, 54, 619-629.	0.7	21
97	Primary Epstein-Barr virus infection. Journal of Clinical Virology, 2018, 102, 84-92.	3.1	252
98	Evaluation of Epstein-Barr Virus Salivary Shedding in HIV/AIDS Patients and HAART Use: A Retrospective Cohort Study. Virologica Sinica, 2018, 33, 227-233.	3.0	11
99	Epstein-Barr Virus (Mononucleosis and Lymphoproliferative Disorders)., 2018,, 1088-1095.e4.		2
100	No detectable human herpesvirusâ€8 oral shedding in seronegativeâ€healthy, immunocompetent individuals from nonâ€endemic regions for Kaposi's sarcoma: A pilot study. Journal of Investigative and Clinical Dentistry, 2018, 9, e12278.	1.8	4
101	Low intrathecal antibody production despite high seroprevalence of Epstein–Barr virus in multiple sclerosis: a review of the literature. Journal of Neurology, 2018, 265, 239-252.	3.6	20
102	Early Epstein-Barr Virus Genomic Diversity and Convergence toward the B95.8 Genome in Primary Infection. Journal of Virology, 2018, 92, .	3.4	28
103	Clinical features of Epstein-Barr Virus-associated Infectious Mononucleosis According to Age Group in Children. Kosin Medical Journal, 2018, 33, 347.	0.3	1
104	Diagnostic Performance and Comparative Evaluation of the Architect, Liaison, and Platelia Epstein-Barr Virus Antibody Assays. Annals of Laboratory Medicine, 2018, 38, 458-465.	2.5	5
105	Acute Acalculous Cholecystitis due to primary acute Epstein-Barr virus infection treated with laparoscopic cholecystectomy; a case report. Annals of Medicine and Surgery, 2018, 35, 189-191.	1.1	14
106	Infecciones por virus del grupo herpes. SÃndrome mononucleósido. Medicine, 2018, 12, 3298-3305.	0.0	0
107	Dynamics of Viral and Host Immune Cell MicroRNA Expression during Acute Infectious Mononucleosis. Frontiers in Microbiology, 2018, 8, 2666.	3.5	10
108	Epstein–Barr Virus Epidemiology, Serology, and Genetic Variability of LMP-1 Oncogene Among Healthy Population: An Update. Frontiers in Oncology, 2018, 8, 211.	2.8	199
109	Impact of Epsteinâ€Barr virus serological status on clinical outcomes in adult patients with inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 2018, 48, 723-730.	3.7	35
110	Vaccine Development for Epstein-Barr Virus. Advances in Experimental Medicine and Biology, 2018, 1045, 477-493.	1.6	92

#	Article	IF	CITATIONS
111	Epstein-Barr Virus Vaccines., 2018,, 295-300.e2.		0
112	Epstein-Barr Virus DNA in Parental Oral Secretions: A Potential Source of Infection for Their Young Children. Clinical Infectious Diseases, 2019, 68, 306-312.	5.8	12
113	Bioproduction of High-Concentration 4-Vinylguaiacol Using Whole-Cell Catalysis Harboring an Organic Solvent-Tolerant Phenolic Acid Decarboxylase From Bacillus atrophaeus. Frontiers in Microbiology, 2019, 10, 1798.	3.5	22
114	Epstein-Barr Virus Infection and Posttransplant Lymphoproliferative Disease., 2019,, 643-666.		O
115	The T-cell Response to Epstein-Barr Virus–New Tricks From an Old Dog. Frontiers in Immunology, 2019, 10, 2193.	4.8	61
116	Immunodeficiencies that predispose to pathologies by human oncogenic \hat{I}^3 -herpesviruses. FEMS Microbiology Reviews, 2019, 43, 181-192.	8.6	49
117	Epstein-Barr Virus and the Human Leukocyte Antigen Complex. Current Clinical Microbiology Reports, 2019, 6, 175-181.	3.4	15
118	NK cells are activated and primed for skin-homing during acute dengue virus infection in humans. Nature Communications, 2019, 10, 3897.	12.8	46
119	Lifestyle factors during acute Epstein–Barr virus infection in adolescents predict physical activity six months later. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 1521-1526.	1.5	2
120	Epstein-Barr virus infection is associated with a higher Child-Pugh score and may predict poor prognoses for patients with liver cirrhosis. BMC Gastroenterology, 2019, 19, 94.	2.0	10
121	Epstein-Barr Virus Seroprevalence and Primary Infection at the University Hospital Luigi Vanvitelli of Naples from 2007 to 2017. Intervirology, 2019, 62, 15-22.	2.8	12
122	Viral, bacterial, and fungal infections of the oral mucosa: Types, incidence, predisposing factors, diagnostic algorithms, and management. Periodontology 2000, 2019, 80, 148-176.	13.4	27
123	Prophylactic and therapeutic strategies for Epstein–Barr virus-associated diseases: emerging strategies for clinical development. Expert Review of Vaccines, 2019, 18, 457-474.	4.4	26
124	Screening for Epstein–Barr virus (EBV) infection status in university freshmen: acceptability of a gingival swab method. Epidemiology and Infection, 2019, 147, e140.	2.1	9
125	Progress in EBV Vaccines. Frontiers in Oncology, 2019, 9, 104.	2.8	61
126	Infection and immune control of human oncogenic \hat{l}^3 -herpesviruses in humanized mice. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180296.	4.0	23
127	EBV miRNA expression profiles in different infection stages: A prospective cohort study. PLoS ONE, 2019, 14, e0212027.	2.5	19
128	Revisiting the Tissue Microenvironment of Infectious Mononucleosis: Identification of EBV Infection in T Cells and Deep Characterization of Immune Profiles. Frontiers in Immunology, 2019, 10, 146.	4.8	28

#	Article	IF	CITATIONS
129	Primary Epstein-Barr virus infection with and without infectious mononucleosis. PLoS ONE, 2019, 14, e0226436.	2.5	67
130	Epstein-Barr Virus Seroprevalence and Force of Infection in a Multiethnic Pediatric Cohort, Singapore. Pediatric Infectious Disease Journal, 2019, 38, 1173-1176.	2.0	5
131	Immune Control and Vaccination against the Epstein–Barr Virus in Humanized Mice. Vaccines, 2019, 7, 217.	4.4	6
132	Pathogenesis and Immune Response Caused by Vector-Borne and Other Viral Infections in a Tupaia Model. Microorganisms, 2019, 7, 686.	3.6	6
133	Sephin1, which prolongs the integrated stress response, is a promising therapeutic for multiple sclerosis. Brain, 2019, 142, 344-361.	7.6	55
134	Epsteinâ€Barr virus associated smooth muscle tumors in solid organ transplant recipients: Incidence over 31Âyears at a single institution and review of the literature. Transplant Infectious Disease, 2019, 21, e13010.	1.7	24
135	The promise of a prophylactic Epstein–Barr virus vaccine. Pediatric Research, 2020, 87, 345-352.	2.3	37
136	Probing Reconstituted Human Immune Systems in Mice With Oncogenic \hat{I}^3 -Herpesvirus Infections. Frontiers in Immunology, 2020, 11, 581419.	4.8	3
137	Immunology of EBV-Related Lymphoproliferative Disease in HIV-Positive Individuals. Frontiers in Oncology, 2020, 10, 1723.	2.8	34
138	Innate and Adaptive Immune Correlates of Chronic and Self-limiting EBV DNAemia in Solid-organ Transplant Recipients. Transplantation, 2020, 104, 2373-2382.	1.0	3
139	TLR4 896A/G and TLR9 1174G/A polymorphisms are associated with the risk of infectious mononucleosis. Scientific Reports, 2020, 10, 13154.	3.3	18
140	Natural Killer cell transcriptome during primary EBV infection and EBV associated Hodgkin Lymphoma in childrenâ€"A preliminary observation. Immunobiology, 2020, 225, 151907.	1.9	2
141	MRI of benign hyperplasia in the nasopharynx: is there an association with Epstein–Barr virus?. Clinical Radiology, 2020, 75, 711.e13-711.e18.	1.1	1
142	Epstein–Barr virus peptides derived from latent cycle proteins alter NKG2A + NK cell effector function. Scientific Reports, 2020, 10, 19973.	3.3	16
143	Spontaneous splenic rupture secondary to Epstein-Barr Virus-induced infectious mononucleosis. Journal of Pediatric Surgery Case Reports, 2020, 63, 101680.	0.2	1
144	The role of Epstein-Barr virus in the etiology of multiple sclerosis: a current review. Expert Review of Clinical Immunology, 2020, 16, 1143-1157.	3.0	27
145	Complete Epstein-Barr virus seropositivity in a large cohort of patients with early multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 681-686.	1.9	66
146	An Update on XMEN Disease. Journal of Clinical Immunology, 2020, 40, 671-681.	3.8	53

#	Article	IF	CITATIONS
147	Therapeutic nanovaccines sensitize EBV-associated tumors to checkpoint blockade therapy. Biomaterials, 2020, 255, 120158.	11.4	31
148	Role of Epstein-Barr Virus in Pathogenesis and Racial Distribution of IgA Nephropathy. Frontiers in Immunology, 2020, 11, 267.	4.8	16
149	Septic Shock Caused by Fusobacterium Necrophorum after Sexual Intercourse during Recovery from Infectious Mononucleosis in an Adolescent: A Case Report. Journal of Pediatric and Adolescent Gynecology, 2020, 33, 566-569.	0.7	2
150	Epstein-Barr virus infection status among first year undergraduate university students. Journal of American College Health, 2022, 70, 22-25.	1.5	8
151	Immunological and epidemiological evaluation of EBV infections among HIV-1 infected individuals in Abakaliki, Nigeria supports the potential use of neutrophils as a marker of EBV in HIV disease progression and as useful markers of immune activation. Journal of Immunoassay and Immunochemistry, 2020, 41, 158-170.	1.1	5
152	Dermatological manifestations of Epsteinâ€Barr virus systemic infection: a case report and literature review. International Journal of Dermatology, 2020, 59, 1202-1209.	1.0	24
153	Predictors of Epstein-Barr virus serostatus and implications for vaccine policy: A systematic review of the literature. Journal of Global Health, 2020, 10, 010404.	2.7	27
154	Donor-Derived Disease Transmission in Lung Transplantation. Current Pulmonology Reports, 2020, 9, 1-9.	1.3	O
155	Immunosuppressive FK506 treatment leads to more frequent EBV-associated lymphoproliferative disease in humanized mice. PLoS Pathogens, 2020, 16, e1008477.	4.7	22
156	Dynamic Distribution and Clinical Value of Peripheral Lymphocyte Subsets in Children with Infectious Mononucleosis. Indian Journal of Pediatrics, 2021, 88, 113-119.	0.8	5
157	Attenuated immune control of Epstein–Barr virus in humanized mice is associated with the multiple sclerosis risk factor HLAâ€DR15. European Journal of Immunology, 2021, 51, 64-75.	2.9	53
159	Modification of EBV Associated Lymphomagenesis and Its Immune Control by Co-Infections and Genetics in Humanized Mice. Frontiers in Immunology, 2021, 12, 640918.	4.8	3
160	The Role of Lytic Infection for Lymphomagenesis of Human \hat{I}^3 -Herpesviruses. Frontiers in Cellular and Infection Microbiology, 2021, 11, 605258.	3.9	16
161	Pathobiology and treatment of viral keratitis. Experimental Eye Research, 2021, 205, 108483.	2.6	23
162	Influence of Childhood Adversity and Infection on Timing of Menarche in a Multiethnic Sample of Women. International Journal of Environmental Research and Public Health, 2021, 18, 4080.	2.6	4
163	Self-collected oral flocked swabs to measure prevalence of Epstein-Barr Virus antibodies and DNA amongst university students. Diagnostic Microbiology and Infectious Disease, 2021, 100, 115295.	1.8	0
164	Comparison of the interleukin 27 expression for the acute and chronic phase of mononucleosis in children. Cytokine, 2021, 141, 155395.	3.2	1
166	Splenic morphometric characteristics in infectious mononucleosis (ultrasonic study). Russian Journal of Infection and Immunity, 2021, 11, 556-564.	0.7	2

#	Article	IF	CITATIONS
167	The Status and Prospects of Epstein–Barr Virus Prophylactic Vaccine Development. Frontiers in Immunology, 2021, 12, 677027.	4.8	23
168	Clinical Features and Prognostic Factors of Children with Chronic Active Epstein-Barr Virus Infection: A Retrospective Analysis of a Single Center. Journal of Pediatrics, 2021, 238, 268-274.e2.	1.8	5
169	Human Herpetic Viruses and Immune Profiles. , 0, , .		1
170	Clinical characteristics and sick leave associated with infectious mononucleosis in a realâ€world setting in Germany. International Journal of Clinical Practice, 2021, 75, e14690.	1.7	5
171	Follow-up after infectious mononucleosis in search of serological similarities with presymptomatic multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 56, 103288.	2.0	8
172	Illness duration and symptom profile in symptomatic UK school-aged children tested for SARS-CoV-2. The Lancet Child and Adolescent Health, 2021, 5, 708-718.	5.6	304
173	Technical Aspects of Epstein-Barr Viral Load Assays. , 2021, , 65-107.		1
174	Immune Responses to EBV in the Immunocompromised Host. , 2021, , 51-63.		1
175	Epstein-Barr Virus., 2021,,.		0
176	Genetic variation and dynamics of infections of equid herpesvirus 5 in individual horses. Journal of General Virology, 2016, 97, 169-178.	2.9	10
177	Comparison of two automated instruments for Epstein–Barr virus serology in a large adult hospital and implementation of an Epstein–Barr virus nuclear antigen-based testing algorithm. Journal of Medical Microbiology, 2017, 66, 1628-1634.	1.8	4
178	Epstein–Barr virus, the germinal centre and the development of Hodgkin's lymphoma. Journal of General Virology, 2014, 95, 1861-1869.	2.9	11
179	HLA-DQ \hat{I}^21 alleles associated with Epstein-Barr virus (EBV) infectivity and EBV gp42 binding to cells. JCI Insight, 2017, 2, e85687.	5.0	9
180	Cognate HLA absence in trans diminishes human NK cell education. Journal of Clinical Investigation, 2016, 126, 3772-3782.	8.2	33
181	Natural killer cells in herpesvirus infections. F1000Research, 2017, 6, 1231.	1.6	9
182	Increased level and interferon- \hat{l}^3 production of circulating natural killer cells in patients with scrub typhus. PLoS Neglected Tropical Diseases, 2017, 11, e0005815.	3.0	19
183	The Incubation Period of Primary Epstein-Barr Virus Infection: Viral Dynamics and Immunologic Events. PLoS Pathogens, 2015, 11, e1005286.	4.7	90
184	Therapeutic vaccination strategies to treat nasopharyngeal carcinoma. Chinese Clinical Oncology, 2016, 5, 23-23.	1.2	30

#	Article	IF	CITATIONS
185	Seasonality of infection caused by Epstein – Barr virus. Jurnal Infektologii, 2020, 12, 93-100.	0.3	5
186	Splenomegaly from Recurrent Infectious Mononucleosis in an NCAA Division I Athlete. Current Sports Medicine Reports, 2021, 20, 511-513.	1.2	1
187	Predictive risk factors for the development of diseases with lymphoproliferative syndrome in children. Acta Biomedica Scientifica, 2021, 6, 173-179.	0.2	0
188	Epstein Barr Virus Exploits Genetic Susceptibility to Increase Multiple Sclerosis Risk. Microorganisms, 2021, 9, 2191.	3.6	13
190	Epstein–Barr Virus. , 2014, , 75-85.		1
191	Epstein-Barr Virus. , 0, , 1738-1753.		3
192	Assessment of Apoptosis Level of Naive CD8+ T-lymphocytes in Children with Acute Infectious Mononucleosis in CD95 and DR3 Receptors Activation. Sovremennye Tehnologii V Medicine, 2015, 7, 109-118.	1.1	3
193	Epstein-Barr Virus and Cytomegalovirus. , 0, , 563-577.		0
195	Epstein - Barr Virus Capsid Antigen (EBV-VCA) IgM antibodies among HIV infected individuals in Jos, Nigeria Trends Journal of Sciences Research, 2019, 4, 99-104.	0.1	2
196	Đ'ĐŸĐ›Đ~Đ' Đ¡Đ¢ĐĐ•ĐŸĐ¢ĐžĐšĐžĐšĐĐĐĐ¡Đ›Đ~ЗОВОЇ ОБОЛОĐĐŠĐ~ ĐĐŽĐ¡ĐžĐĐĐĐĐĐ ĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐĐ	šĐ~ dDĐ• Ц:	Đ ~Đ ¢ĐžĐšĐ†
197	Immunopathogenetic role of plasmocytoid dendritic cells in Epstein-Barr virus infection. Medical Alphabet, 2020, 3, 24-28.	0.2	0
198	CD8 ^{dim} CD3 ⁺ lymphocytes in fever patients might be biomarkers of active EBV infection and exclusion indicator of T-LGLL. Biomarkers in Medicine, 2020, 14, 1703-1715.	1.4	1
199	The positivity rate of Epstein-Barr virus anti-viral capsid antigen IgG among children with infectious mononucleosis in Diyala-Iraq. GSC Biological and Pharmaceutical Sciences, 2020, 13, 019-024.	0.3	0
200	Dynamics of Epstein-Barr virus after cord blood transplantation: A nationwide survey in Japan. BLOOD CELL THERAPY / the Official Journal of APBMT, 2020, 3, .	0.1	0
201	Epstein–Barr virus. , 2020, , 754-763.		0
202	The Positivity Rate of Epstein-Barr Virus Anti-Viral Capsid Antigen IgG among Children with Infectious Mononucleosis in Diyala-Iraq. Advances in Microbiology, 2020, 10, 53-59.	0.6	0
203	An Atypical Presentation of Epstein-Barr Virus Associated Infectious Mononucleosis Mistaken for Pyelonephritis. Cureus, 2020, 12, e7583.	0.5	3

#	Article	IF	CITATIONS
205	Cumulative Roles for Epstein-Barr Virus, Human Endogenous Retroviruses, and Human Herpes Virus-6 in Driving an Inflammatory Cascade Underlying MS Pathogenesis. Frontiers in Immunology, 2021, 12, 757302.	4.8	27
206	Natural Killer Cell Responses during Human Î ³ -Herpesvirus Infections. Vaccines, 2021, 9, 655.	4.4	7
207	AGE FEATURES OF SOME FORMS OF HERPESVIRUS INFECTION. International Medical Journal, 2020, , 79-82.	0.0	0
208	The ambiguous boundary between EBV-related hemophagocytic lymphohistiocytosis and systemic EBV-driven T cell lymphoproliferative disorder. International Journal of Clinical and Experimental Pathology, 2014, 7, 5738-49.	0.5	38
209	Case Report: Splenic Infarction in Infectious Mononucleosis due to Epstein–Barr Virus Infection. American Journal of Tropical Medicine and Hygiene, 2022, 106, 623-625.	1.4	6
210	STUDY OF MCP-1 LEVELS IN PATIENTS WITH INFECTIOUS MONONUCLEOSIS CAUSED BY EPSTEIN-BARR VIRUS. Bulletin of Problems Biology and Medicine, 2021, 4, 159.	0.1	0
211	MATHEMATICAL PROGNOSIS OF THE COURSE OF INFECTIOUS MONONUCLEOSIS CAUSED BY EPSHTEIN-BARR VIRUS. Bulletin of Problems Biology and Medicine, 2021, 3, 220.	0.1	0
212	Immortalization and functional screening of natively paired human T cell receptor repertoires. Protein Engineering, Design and Selection, 2022, 35, .	2.1	2
213	Long COVID symptoms and duration in SARS-CoV-2 positive children — a nationwide cohort study. European Journal of Pediatrics, 2022, 181, 1597-1607.	2.7	164
214	The elimination of circulating Epstein-Barr virus infected B cells underlies anti-CD20 monoclonal antibody activity in multiple sclerosis: A hypothesis. Multiple Sclerosis and Related Disorders, 2022, 59, 103678.	2.0	7
215	Cytotoxic CD4+ T-cells specific for EBV capsid antigen BORF1 are maintained in long-term latently infected healthy donors. PLoS Pathogens, 2021, 17, e1010137.	4.7	7
216	Childcare attendance and risk of infectious mononucleosis: A population-based Danish cohort study. PLoS ONE, 2021, 16, e0261665.	2.5	6
224	EBV protection―and susceptibilityâ€related HLA alleles and EBV status in the Chinese population: A singleâ€eenter study. Immunity, Inflammation and Disease, 2022, 10, .	2.7	0
226	Plasma Immunoglobulin-G (IgG) Against Epstein Barr Virus Nuclear Antigens Among University Students in Port Harcourt, Nigeria. Biotechnology, 2022, 21, 110-119.	0.1	0
227	Role of Microglia in Herpesvirus-Related Neuroinflammation and Neurodegeneration. Pathogens, 2022, 11, 809.	2.8	12
228	Clinical and immunological efficiency of different therapy schemes in patients with infectious mononucleosis caused by Epstein-Barr virus. Journal of V N Karazin Kharkiv National University: Series Medicine, 2021, , 73-82.	0.0	0
229	Rapid antibody responses to Epstein-Barr virus correlate with reduced severity of primary infection. Journal of Clinical Virology, 2022, 155, 105267.	3.1	3
230	Natural killer cell responses to human oncogenic γ-herpesvirus infections. Seminars in Immunology, 2022, 60, 101652.	5. 6	5

#	ARTICLE	IF	CITATIONS
231	Declining Epstein-Barr Virus Antibody Prevalence in College Freshmen Strengthens the Rationale for a Prophylactic EBV Vaccine. Vaccines, 2022, 10, 1399.	4.4	2
232	Altered Immune Response to the Epstein–Barr Virus as a Prerequisite for Multiple Sclerosis. Cells, 2022, 11, 2757.	4.1	9
233	Evolution of functional antibodies following acute Epstein-Barr virus infection. PLoS Pathogens, 2022, 18, e1010738.	4.7	5
234	Epstein-Barr virus: Biology and clinical disease. Cell, 2022, 185, 3652-3670.	28.9	78
235	Acute Epstein-Barr Virus Infection Complicated by Rhabdomyolysis: A Case Report and Literature Review. Cureus, 2022, , .	0.5	0
236	Epstein-Barr virus, interleukin-10 and multiple sclerosis: A ménage à trois. Frontiers in Immunology, 0, 13, .	4.8	6
237	Epstein-Barr Virus (Mononucleosis and Lymphoproliferative Disorders)., 2023,, 1107-1113.e4.		1
238	Human Herpesviruses: Infectious Mononucleosis and Other Non-Malignant Diseases. , 2022, , 1-64.		0
239	The pathophysiologic significance of lymphocyte subset determination in children with infectious mononucleosis, mycoplasma pneumonia and Henoch–Schönlein purpura. BMC Pediatrics, 2022, 22, .	1.7	1
240	Co-Infection of the Epstein–Barr Virus and the Kaposi Sarcoma-Associated Herpesvirus. Viruses, 2022, 14, 2709.	3.3	7
241	Epstein–Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nature Reviews Neurology, 2023, 19, 160-171.	10.1	48
242	Prediction of the course and consequences of infectious mononucleosis caused by the Epstein-Barr virus. Actual Problems of Modern Medicine, 2021, , 60-68.	0.1	0
243	The Role of NK Cells in EBV Infection and Related Diseases: Current Understanding and Hints for Novel Therapies. Cancers, 2023, 15, 1914.	3.7	2
244	Concordance of adenosine deaminase with immunoglobulins and lymphocyte subsets in EBV-related diseases. Italian Journal of Pediatrics, 2023, 49, .	2.6	1
245	Fever with atypical lymphocytosis: pearls and pitfalls in Epstein-Barr virus serology. BMJ Case Reports, 2023, 16, e250081.	0.5	0
246	Cell activation-based screening of natively paired human T cell receptor repertoires. Scientific Reports, 2023, 13, .	3.3	0
247	T cell-mediated immunity during Epstein–Barr virus infections in children. Infection, Genetics and Evolution, 2023, 112, 105443.	2.3	4
248	The IPTA Nashville Consensus Conference on Postâ€Transplant lymphoproliferative disorders after solid organ transplantation in children: III – Consensus guidelines for Epsteinâ€Barr virus load and other biomarker monitoring. Pediatric Transplantation, 2024, 28, .	1.0	2

#	Article	IF	CITATIONS
249	Epstein-Barr virus and neuroinflammation. , 2023, , 221-238.		0
250	Infectious disease in sport. , 2023, , 203-209.		0
251	Human Herpesviruses: Infectious Mononucleosis and Other Non-Malignant Diseases. , 2023, , 1-64.		0
252	<scp>Epstein–Barr</scp> virus and multiple sclerosis: moving from questions of association to questions of mechanism. Clinical and Translational Immunology, 2023, 12, .	3.8	9
253	Epstein–Barr Virus Vaccines. , 2023, , 341-347.		0
254	Interleukin-37 is involved in the immunopathogenesis of infectious mononucleosis. Italian Journal of Pediatrics, 2023, 49, .	2.6	O
255	Molecular Mechanisms of Severe Diseases Caused by Epstein-Barr Virus Infection. Current Clinical Microbiology Reports, 0, , .	3.4	0
256	Cytotoxic CD4+ T cells in chronic viral infections and cancer. Frontiers in Immunology, 0, 14, .	4.8	1
257	Case report: A rare case of Epstein-Barr virus with ocular manifestation. Indian Journal of Ophthalmology Case Reports, 2023, 3, 1123-1125.	0.1	0
258	Epstein–Barr virusâ€associated lymphomas decoded. British Journal of Haematology, 2024, 204, 415-433.	2.5	0
260	Update of Natural Products and Their Derivatives Targeting Epstein–Barr Infection. Viruses, 2024, 16, 124.	3.3	0
261	Acalculous Cholecystitis as a Complication of Primary Epstein-Barr Virus Infection: A Case-Based Scoping Review of the Literature. Viruses, 2024, 16, 463.	3.3	O