Efficient multiplex biallelic zebrafish genome editing us

Proceedings of the National Academy of Sciences of the Unite 110, 13904-13909

DOI: 10.1073/pnas.1308335110

Citation Report

#	Article	IF	CITATIONS
1	Repurposing CRISPR/Cas9 for in situ functional assays. Genes and Development, 2013, 27, 2602-2614.	2.7	110
2	Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development (Cambridge), 2013, 140, 4982-4987.	1.2	418
3	The Importance of Olfactory and Motor Endpoints for Zebrafish Models of Neurodegenerative Disease. , 2013, , 651-678.		0
4	Correction of a Genetic Disease in Mouse via Use of CRISPR-Cas9. Cell Stem Cell, 2013, 13, 659-662.	5.2	541
5	Staying on target with CRISPR-Cas. Nature Biotechnology, 2013, 31, 807-809.	9.4	55
6	Gene Therapy Strategies for HIV/AIDS: Preclinical Modeling in Humanized Mice. Viruses, 2013, 5, 3119-3141.	1.5	11
7	Evolution of transcriptional enhancers and animal diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130017.	1.8	67
8	New Model Systems to Illuminate Thyroid Organogenesis. Part I: An Update on the Zebrafish Toolbox. European Thyroid Journal, 2013, 2, 229-242.	1.2	30
9	Efficient Gene Knockout in Goats Using CRISPR/Cas9 System. PLoS ONE, 2014, 9, e106718.	1.1	192
10	sgRNAcas9: A Software Package for Designing CRISPR sgRNA and Evaluating Potential Off-Target Cleavage Sites. PLoS ONE, 2014, 9, e100448.	1.1	327
11	Targeted Mutagenesis in Atlantic Salmon (Salmo salar L.) Using the CRISPR/Cas9 System Induces Complete Knockout Individuals in the F0 Generation. PLoS ONE, 2014, 9, e108622.	1.1	169
12	High-Throughput Genome Editing and Phenotyping Facilitated by High Resolution Melting Curve Analysis. PLoS ONE, 2014, 9, e114632.	1.1	112
13	A review of piscine islet xenotransplantation using wildâ€ŧype tilapia donors and the production of transgenic tilapia expressing a "humanized―tilapia insulin. Xenotransplantation, 2014, 21, 485-495.	1.6	16
14	Constraint and opportunity in genome innovation. RNA Biology, 2014, 11, 186-196.	1.5	4
15	Reprogramming homing endonuclease specificity through computational design and directed evolution. Nucleic Acids Research, 2014, 42, 2564-2576.	6.5	31
16	A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology, 2014, 14, 327.	1.6	1,133
17	Efficient and Heritable Gene Targeting in Tilapia by CRISPR/Cas9. Genetics, 2014, 197, 591-599.	1.2	191
18	Production of Transgenic Fish. , 2014, , 305-334.		8

ATION REDO

#	Article	IF	Citations
19	High-Efficiency Targeted Editing of Large Viral Genomes by RNA-Guided Nucleases. PLoS Pathogens, 2014, 10, e1004090.	2.1	136
20	A Streamlined CRISPR Pipeline to Reliably Generate Zebrafish Frameshifting Alleles. Zebrafish, 2014, 11, 583-585.	0.5	129
21	Probing the actions of endocrine disrupting compounds through genetic approaches in zebrafish. Endocrine Disruptors (Austin, Tex), 2014, 2, e975547.	1.1	1
22	Fishing for causes and cures of motor neuron disorders. DMM Disease Models and Mechanisms, 2014, 7, 799-809.	1.2	60
23	Targeted mutagenesis using CRISPR/Cas system in medaka. Biology Open, 2014, 3, 362-371.	0.6	197
24	Mutagenesis and phenotyping resources in zebrafish for studying development and human disease. Briefings in Functional Genomics, 2014, 13, 82-94.	1.3	39
25	Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development (Cambridge), 2014, 141, 4827-4830.	1.2	256
26	Nucleaseâ€mediated genome editing: At the frontâ€line of functional genomics technology. Development Growth and Differentiation, 2014, 56, 2-13.	0.6	60
27	Simple and Rapid InÂVivo Generation of Chromosomal Rearrangements using CRISPR/Cas9 Technology. Cell Reports, 2014, 9, 1219-1227.	2.9	186
28	Cas9-Based Genome Editing in Zebrafish. Methods in Enzymology, 2014, 546, 377-413.	0.4	41
29	Targeted Genome Editing in Human Cells Using CRISPR/Cas Nucleases and Truncated Guide RNAs. Methods in Enzymology, 2014, 546, 21-45.	0.4	43
30	Targeted mutagenesis of multiple and paralogous genes in <i>Xenopus laevis</i> using two pairs of transcription activatorâ€ike effector nucleases. Development Growth and Differentiation, 2014, 56, 108-114.	0.6	30
31	Efficient chromosomal gene modification with CRISPR/cas9 and PCR-based homologous recombination donors in cultured Drosophila cells. Nucleic Acids Research, 2014, 42, e89-e89.	6.5	110
32	Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution. EvoDevo, 2014, 5, 43.	1.3	85
33	Generation of multi-gene knockout rabbits using the Cas9/gRNA system. Cell Regeneration, 2014, 3, 3:12.	1.1	81
34	Endothelial cell–cell adhesion during zebrafish vascular development. Cell Adhesion and Migration, 2014, 8, 136-145.	1.1	10
35	Genome engineering using the CRISPR/Cas system. World Journal of Medical Genetics, 2014, 4, 69.	1.0	10
36	Gene Editing. , 2014, , 229-248.		9

#	Article	IF	CITATIONS
37	Advances in genome editing technology and its promising application in evolutionary and ecological studies. GigaScience, 2014, 3, 24.	3.3	47
38	Zebrafish models of cancer: progress and future challenges. Current Opinion in Genetics and Development, 2014, 24, 38-45.	1.5	49
39	Genome Engineering with Targetable Nucleases. Annual Review of Biochemistry, 2014, 83, 409-439.	5.0	472
40	Engineering Xenopus embryos for phenotypic drug discovery screening. Advanced Drug Delivery Reviews, 2014, 69-70, 225-246.	6.6	55
41	Precision genetic modifications: a new era in molecular biology and crop improvement. Planta, 2014, 239, 921-939.	1.6	48
42	CRISPR-based technologies: prokaryotic defense weapons repurposed. Trends in Genetics, 2014, 30, 111-118.	2.9	92
43	CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32, 347-355.	9.4	2,648
44	CRISPR/Cas9 for genome editing: progress, implications and challenges. Human Molecular Genetics, 2014, 23, R40-R46.	1.4	487
45	CRISPR–Cas system: a powerful tool for genome engineering. Plant Molecular Biology, 2014, 85, 209-218.	2.0	51
46	Dissecting the Causal Genetic Mechanisms of Coronary Heart Disease. Current Atherosclerosis Reports, 2014, 16, 406.	2.0	11
47	Methods for targeted mutagenesis in zebrafish using TALENs. Methods, 2014, 69, 76-84.	1.9	30
48	Fineâ€mapping natural alleles: quantitative complementation to the rescue. Molecular Ecology, 2014, 23, 2377-2382.	2.0	39
49	Endonucleases: new tools to edit the mouse genome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1942-1950.	1.8	56
50	Multiple genome modifications by the <scp>CRISPR</scp> /Cas9 system in zebrafish. Genes To Cells, 2014, 19, 555-564.	0.5	98
51	Targeted genome engineering techniques in Drosophila. Methods, 2014, 68, 29-37.	1.9	64
52	Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 2014, 32, 279-284.	9.4	1,706
53	A transgenic zebrafish model for monitoring glucocorticoid receptor activity. Genes, Brain and Behavior, 2014, 13, 478-487.	1.1	40
54	CRISPR/Cas9-mediated conversion of eGFP- into Gal4-transgenic lines in zebrafish. Nature Protocols, 2014, 9, 2823-2840.	5.5	62

		CITATION REPC	DRT	
#	Article	I	F	CITATIONS
55	A zebrafish model of hyperammonemia. Molecular Genetics and Metabolism, 2014, 113, 142-2	L47. C).5	15
56	In vivo cell biology in zebrafish – providing insights into vertebrate development and disease of Cell Science, 2014, 127, 485-495.	. Journal 1	.2	60
57	Target specificity of the CRISPR as9 system. Quantitative Biology, 2014, 2, 59-70.	C).3	262
58	The new CRISPR–Cas system: RNA-guided genome engineering to efficiently produce any de alteration in animals. Transgenic Research, 2014, 23, 707-716.	sired genetic 1	L.3	68
59	ldentification of Annexin A4 as a hepatopancreas factor involved in liver cell survival. Developn Biology, 2014, 395, 96-110.	iental c).9	46
60	Efficient homologous recombination-mediated genome engineering in zebrafish using TALE πι Development (Cambridge), 2014, 141, 3807-3818.	cleases. 1	.2	121
61	Genome modification by <scp>CRISPR</scp> /Cas9. FEBS Journal, 2014, 281, 5186-5193.	2	2.2	139
62	CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods, 2014, 69, 142-	150. 1	.9	149
63	Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zyg Developmental Biology, 2014, 393, 3-9.	gotes. ().9	270
64	Disruptive CHD8 Mutations Define a Subtype of Autism Early in Development. Cell, 2014, 158	, 263-276. 1	13.5	637
65	Zebrafish as a model to assess cancer heterogeneity, progression and relapse. DMM Disease N and Mechanisms, 2014, 7, 755-762.	Iodels 1	.2	42
66	Fish is Fish: the use of experimental model species to reveal causes of skeletal diversity in evolu and disease. Journal of Applied Ichthyology, 2014, 30, 616-629.	ution).3	49
67	A CRISPR view of development. Genes and Development, 2014, 28, 1859-1872.	2	2.7	194
68	A Defined Zebrafish Line for High-Throughput Genetics and Genomics: NHGRI-1. Genetics, 201 167-170.	4, 198, ₁	.2	99
69	Disrupting the male germ line to find infertility and contraception targets. Annales D'Endocrin 2014, 75, 101-108.	ologie, c).6	17
70	Zebrafish models of human motor neuron diseases: Advantages and limitations. Progress in Neurobiology, 2014, 118, 36-58.	2	2.8	166
71	A highly effective TALEN-mediated approach for targeted gene disruption in Xenopus tropicalis zebrafish. Methods, 2014, 69, 58-66.	and 1	9	52
72	Efficient Gene Targeting in Zebrafish Mediated by a Zebrafish-Codon-Optimized Cas9 and Eval Off-Targeting Effect. Journal of Genetics and Genomics, 2014, 41, 43-46.	uation of1	1.7	73

#	Article	IF	CITATIONS
73	Interpreting human genetic variation with in vivo zebrafish assays. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1960-1970.	1.8	63
74	Targeted Genome Editing Tools for Disease Modeling and Gene Therapy. Current Gene Therapy, 2014, 14, 2-9.	0.9	50
75	Asymmetric parental genome engineering by Cas9 during mouse meiotic exit. Scientific Reports, 2014, 4, 7621.	1.6	49
76	Functional Analysis of SPECC1L in Craniofacial Development and Oblique Facial Cleft Pathogenesis. Plastic and Reconstructive Surgery, 2014, 134, 748-759.	0.7	27
77	Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs. Scientific Reports, 2015, 5, 13348.	1.6	62
78	Accumulation of the Vitamin D Precursor Cholecalciferol Antagonizes Hedgehog Signaling to Impair Hemogenic Endothelium Formation. Stem Cell Reports, 2015, 5, 471-479.	2.3	17
79	Progenitor potential of nkx6.1-expressing cells throughout zebrafish life and during beta cell regeneration. BMC Biology, 2015, 13, 70.	1.7	53
80	From Gene Targeting to Genome Editing: Transgenic animals applications and beyond. Anais Da Academia Brasileira De Ciencias, 2015, 87, 1323-1348.	0.3	37
81	Using the zebrafish lateral line to uncover novel mechanisms of action and prevention in drug-induced hair cell death. Frontiers in Cellular Neuroscience, 2015, 9, 46.	1.8	30
82	Advanced Echocardiography in Adult Zebrafish Reveals Delayed Recovery of Heart Function after Myocardial Cryoinjury. PLoS ONE, 2015, 10, e0122665.	1.1	69
83	Functional Assessment of Disease-Associated Regulatory Variants In Vivo Using a Versatile Dual Colour Transgenesis Strategy in Zebrafish. PLoS Genetics, 2015, 11, e1005193.	1.5	31
84	TopBP1 Governs Hematopoietic Stem/Progenitor Cells Survival in Zebrafish Definitive Hematopoiesis. PLoS Genetics, 2015, 11, e1005346.	1.5	21
85	In vivo Modeling Implicates APOL1 in Nephropathy: Evidence for Dominant Negative Effects and Epistasis under Anemic Stress. PLoS Genetics, 2015, 11, e1005349.	1.5	45
86	Efficient Multiple Genome Modifications Induced by the crRNAs, tracrRNA and Cas9 Protein Complex in Zebrafish. PLoS ONE, 2015, 10, e0128319.	1.1	84
87	The Wnt Co-Receptor Lrp5 Is Required for Cranial Neural Crest Cell Migration in Zebrafish. PLoS ONE, 2015, 10, e0131768.	1.1	29
88	Inactivation of ca10a and ca10b Genes Leads to Abnormal Embryonic Development and Alters Movement Pattern in Zebrafish. PLoS ONE, 2015, 10, e0134263.	1.1	16
89	A molecular toolbox for genetic manipulation of zebrafish. Advances in Genomics and Genetics, 0, , 151.	0.8	31
90	Advances in New Technology for Targeted Modification of Plant Genomes. , 2015, , .		13

	Сітат	ion Report	
# 91	ARTICLE Developing CRISPR Technology in Major Crop Plants. , 2015, , 145-159.	IF	CITATIONS
92	Autophagy in zebrafish. Methods, 2015, 75, 172-180.	1.9	42
93	Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9. Development (Cambridge), 2015, 142, 1113-24.	1.2	55
94	The application of genome editing in studying hearing loss. Hearing Research, 2015, 327, 102-108.	0.9	46
95	Variations in sister chromatid cohesion dysfunction in <i>esco2</i> mutant zebrafish reflects the phenotypic diversity of Roberts Syndrome. DMM Disease Models and Mechanisms, 2015, 8, 941-55.	1.2	23
96	A Platform for Reverse Genetics in Endothelial Cells. Circulation Research, 2015, 117, 107-108.	2.0	5
97	TAF1 Variants Are Associated with Dysmorphic Features, Intellectual Disability, and Neurological Manifestations. American Journal of Human Genetics, 2015, 97, 922-932.	2.6	101
98	VEGF Signaling. Methods in Molecular Biology, 2015, 1332, v-vi.	0.4	5
99	Genome Editing and Its Applications in Model Organisms. Genomics, Proteomics and Bioinformatics, 2015, 13, 336-344.	3.0	55
100	Sox4 regulates choroid fissure closure by limiting Hedgehog signaling during ocular morphogenesis. Developmental Biology, 2015, 399, 139-153.	0.9	41
101	A Platform for Rapid Exploration of Aging and Diseases in a Naturally Short-Lived Vertebrate. Cell, 2015, 160, 1013-1026.	13.5	199
102	Personalized therapeutic strategies for patients with retinitis pigmentosa. Expert Opinion on Biological Therapy, 2015, 15, 391-402.	1.4	43
103	Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. Science China Life Sciences, 2015, 58, 124-136.	2.3	334
104	Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus) Tj ETQ	q1 1 0.784314 rgl 1.914 rgl	BT ₄ Overlock
105	Creation of fragrant rice by targeted knockout of the <i>Os<scp>BADH</scp>2</i> gene using <scp>TALEN</scp> technology. Plant Biotechnology Journal, 2015, 13, 791-800.	4.1	276
106	CRISPR/Cas9: The Leading Edge of Genome Editing Technology. , 2015, , 25-41.		12
107	Using Engineered Endonucleases to Create Knockout and Knockin Zebrafish Models. Methods in Molecular Biology, 2015, 1239, 291-305.	0.4	26
108	Targeted Genome Editing Using Site-Specific Nucleases. , 2015, , .		7

#	Article	IF	Citations
109	Zebrafish: A New Companion for Translational Research in Oncology. Clinical Cancer Research, 2015, 21, 969-975.	3.2	92
110	A CRISPR/Cas9 Vector System for Tissue-Specific Gene Disruption in Zebrafish. Developmental Cell, 2015, 32, 756-764.	3.1	325
111	PIAS-like protein Zimp7 is required for the restriction of the zebrafish organizer and mesoderm development. Developmental Biology, 2015, 403, 89-100.	0.9	18
112	A conserved role of αA-crystallin in the development of the zebrafish embryonic lens. Experimental Eye Research, 2015, 138, 104-113.	1.2	24
113	High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Research, 2015, 25, 1030-1042.	2.4	458
114	Application of CRISPR/Cas9 for biomedical discoveries. Cell and Bioscience, 2015, 5, 33.	2.1	52
115	Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature, 2015, 524, 230-233.	13.7	1,043
116	RNAi-Mediated Gene silencing in Zebrafish Triggered by Convergent Transcription. Scientific Reports, 2014, 4, 5222.	1.6	17
117	The chromatin remodeler chd5 is necessary for proper head development during embryogenesis of Danio rerio. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1040-1050.	0.9	10
118	CRISPR-Cas9-Mediated Single-Gene and Gene Family Disruption in Trypanosoma cruzi. MBio, 2015, 6, e02097-14.	1.8	186
119	Methods for studying the zebrafish brain: past, present and future. European Journal of Neuroscience, 2015, 42, 1746-1763.	1.2	54
120	RNA-guided CRISPR-Cas technologies for genome-scale investigation of disease processes. Journal of Hematology and Oncology, 2015, 8, 31.	6.9	8
121	Epigenetics and locust life phase transitions. Journal of Experimental Biology, 2015, 218, 88-99.	0.8	68
122	CRISPR. Methods in Molecular Biology, 2015, , .	0.4	15
123	Phenotype-driven chemical screening in zebrafish for compounds that inhibit collective cell migration identifies multiple pathways potentially involved in metastatic invasion. DMM Disease Models and Mechanisms, 2015, 8, 565-576.	1.2	47
124	Utilization of TALEN and CRISPR/Cas9 technologies for gene targeting and modification. Experimental Biology and Medicine, 2015, 240, 1065-1070.	1.1	20
125	CRISPR MultiTargeter: A Web Tool to Find Common and Unique CRISPR Single Guide RNA Targets in a Set of Similar Sequences. PLoS ONE, 2015, 10, e0119372.	1.1	123
126	Genome Editing in Zebrafish and Medaka. , 2015, , 119-131.		2

#	Article	IF	CITATIONS
127	Connecting by breaking and repairing: mechanisms of <scp>DNA</scp> strand exchange in meiotic recombination. FEBS Journal, 2015, 282, 2444-2457.	2.2	74
128	Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs. Genetics, 2015, 200, 431-441.	1.2	128
129	Efficient Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas. Cell Systems, 2015, 1, 88-96.	2.9	266
130	Rapid reverse genetic screening using CRISPR in zebrafish. Nature Methods, 2015, 12, 535-540.	9.0	330
131	Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology, 2015, 16, 144.	3.8	767
132	Upregulation of uncoupling protein Ucp2 through acute cold exposure increases post-thaw sperm quality in zebrafish. Cryobiology, 2015, 71, 464-471.	0.3	15
133	Modeling Disease In Vivo With CRISPR/Cas9. Trends in Molecular Medicine, 2015, 21, 609-621.	3.5	91
134	A human laterality disorder caused by a homozygous deleterious mutation in <i>MMP21</i> . Journal of Medical Genetics, 2015, 52, 840-847.	1.5	46
135	Genetic Defects in TAPT1 Disrupt Ciliogenesis and Cause a Complex Lethal Osteochondrodysplasia. American Journal of Human Genetics, 2015, 97, 521-534.	2.6	39
136	Targeted Mutagenesis in Zebrafish Using CRISPR RNA-Guided Nucleases. Methods in Molecular Biology, 2015, 1311, 317-334.	0.4	18
137	CRISPR/Cas9-mediated mutagenesis in the sea lamprey, <i>Petromyzon marinus</i> : a powerful tool for understanding ancestral gene functions in vertebrates. Development (Cambridge), 2015, 142, 4180-7.	1.2	61
138	Challenges in understanding psychiatric disorders and developing therapeutics: a role for zebrafish. DMM Disease Models and Mechanisms, 2015, 8, 647-656.	1.2	38
139	The Autotaxin-Lysophosphatidic Acid Axis Modulates Histone Acetylation and Gene Expression during Oligodendrocyte Differentiation. Journal of Neuroscience, 2015, 35, 11399-11414.	1.7	37
140	CRISPR-STAT: an easy and reliable PCR-based method to evaluate target-specific sgRNA activity. Nucleic Acids Research, 2015, 43, e157-e157.	6.5	126
141	Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. Science Signaling, 2015, 8, rs9.	1.6	113
142	CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nature Methods, 2015, 12, 982-988.	9.0	1,024
143	Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries. Nature Communications, 2015, 6, 8083.	5.8	109
144	Generation of Targeted Mutations in Zebrafish Using the CRISPR/Cas System. Methods in Molecular Biology, 2015, 1332, 205-217.	0.4	34

#	Article	IF	CITATIONS
145	A Serotonin Circuit Acts as an Environmental Sensor to Mediate Midline Axon Crossing through EphrinB2. Journal of Neuroscience, 2015, 35, 14794-14808.	1.7	24
146	<scp>CRISPR</scp> / <scp>C</scp> as9â€mediated genome modification in the mollusc, <i>Crepidula fornicata</i> . Genesis, 2015, 53, 237-244.	0.8	88
147	A Mouse Geneticist's Practical Guide to CRISPR Applications. Genetics, 2015, 199, 1-15.	1.2	290
149	Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Scientific Reports, 2014, 4, 5405.	1.6	187
150	Closing the genotype–phenotype gap: Emerging technologies for evolutionary genetics in ecological model vertebrate systems. BioEssays, 2015, 37, 213-226.	1.2	59
151	CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Molecular Biology, 2015, 87, 99-110.	2.0	293
152	CRISPR/Cas9 Systems: The Next Generation Gene Targeted Editing Tool. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2015, 85, 377-387.	0.4	1
153	A new model army: Emerging fish models to study the genomics of vertebrate Evoâ€Đevo. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 316-341.	0.6	98
154	HoxA Genes and the Fin-to-Limb Transition in Vertebrates. Journal of Developmental Biology, 2016, 4, 10.	0.9	18
155	A CRISPR-Based Toolbox for Studying T Cell Signal Transduction. BioMed Research International, 2016, 2016, 1-10.	0.9	24
156	Defects of the Glycinergic Synapse in Zebrafish. Frontiers in Molecular Neuroscience, 2016, 9, 50.	1.4	10
157	Function Over Form: Modeling Groups of Inherited Neurological Conditions in Zebrafish. Frontiers in Molecular Neuroscience, 2016, 9, 55.	1.4	69
158	The Molecular Stress Response. Fish Physiology, 2016, , 113-166.	0.2	58
159	Deletion of Pr130 Interrupts Cardiac Development in Zebrafish. International Journal of Molecular Sciences, 2016, 17, 1746.	1.8	12
160	Homology Directed Knockin of Point Mutations in the Zebrafish tardbp and fus Genes in ALS Using the CRISPR/Cas9 System. PLoS ONE, 2016, 11, e0150188.	1.1	107
161	Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis. PLoS ONE, 2016, 11, e0166020.	1.1	31
162	Advancing toxicology research using in vivo high throughput toxicology with small fish models. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 435-452.	0.9	48
163	Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with Anemia. American Journal of Human Genetics, 2016, 99, 174-187.	2.6	124

#	Article	IF	CITATIONS
164	Genomic Access to Monarch Migration Using TALEN and CRISPR/Cas9-Mediated Targeted Mutagenesis. G3: Genes, Genomes, Genetics, 2016, 6, 905-915.	0.8	92
165	Zebrafish as a Model for the Study of Chaperonopathies. Journal of Cellular Physiology, 2016, 231, 2107-2114.	2.0	8
166	CRISPRâ€Casâ€Assisted Multiplexing (CAM): Simple Sameâ€Day Multiâ€Locus Engineering in Yeast. Journal of Cellular Physiology, 2016, 231, 2563-2569.	2.0	20
167	Utilising polymorphisms to achieve allele-specific genome editing in zebrafish. Biology Open, 2017, 6, 125-131.	0.6	19
168	Biallelic editing of a lamprey genome using the CRISPR/Cas9 system. Scientific Reports, 2016, 6, 23496.	1.6	49
169	Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Scientific Reports, 2016, 6, 22953.	1.6	101
170	The zebrafish homologs of SET/I2PP2A oncoprotein: expression patterns and insights into their physiological roles during development. Biochemical Journal, 2016, 473, 4609-4627.	1.7	12
171	Alternative Methods Used to Assess Potential Embryo-Fetal Developmental Risk of Pharmaceuticals. Methods in Pharmacology and Toxicology, 2016, , 235-259.	0.1	1
172	TAEL: A zebrafish-optimized optogenetic gene expression system with fine spatial and temporal control. Development (Cambridge), 2017, 144, 345-355.	1.2	67
173	The seahorse genome and the evolution of its specialized morphology. Nature, 2016, 540, 395-399.	13.7	186
174	Development of an Efficient Genome Editing Method by CRISPR/Cas9 in a Fish Cell Line. Marine Biotechnology, 2016, 18, 449-452.	1.1	49
175	CRISPR/Cas9 for Human Genome Engineering and Disease Research. Annual Review of Genomics and Human Genetics, 2016, 17, 131-154.	2.5	80
176	Zebrafish Rhabdomyosarcoma. Advances in Experimental Medicine and Biology, 2016, 916, 371-389.	0.8	0
177	Baiting for Cancer: Using the Zebrafish as a Model in Liver and Pancreatic Cancer. Advances in Experimental Medicine and Biology, 2016, 916, 391-410.	0.8	7
178	Highly Efficient and Rapid Detection of the Cleavage Activity of Cas9/gRNA via a Fluorescent Reporter. Applied Biochemistry and Biotechnology, 2016, 180, 655-667.	1.4	15
179	Animal Models of Thrombosis From Zebrafish to Nonhuman Primates. Circulation Research, 2016, 118, 1363-1379.	2.0	71
180	Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes Development (Cambridge), 2016, 143, 2025-37.	1.2	244
181	Approaches to Inactivate Genes in Zebrafish. Advances in Experimental Medicine and Biology, 2016, 916, 61-86.	0.8	5

#	Article	IF	CITATIONS
182	Allograft Cancer Cell Transplantation in Zebrafish. Advances in Experimental Medicine and Biology, 2016, 916, 265-287.	0.8	21
183	The Toolbox for Conditional Zebrafish Cancer Models. Advances in Experimental Medicine and Biology, 2016, 916, 21-59.	0.8	17
184	Applications of CRISPR Genome Engineering in Cell Biology. Trends in Cell Biology, 2016, 26, 875-888.	3.6	68
185	Analysis of the retina in the zebrafish model. Methods in Cell Biology, 2016, 134, 257-334.	0.5	25
186	Precise genome editing by homologous recombination. Methods in Cell Biology, 2016, 135, 121-147.	0.5	37
187	Investigation of septin biology in vivo using zebrafish. Methods in Cell Biology, 2016, 136, 221-241.	0.5	8
188	The zebrafish genome editing toolkit. Methods in Cell Biology, 2016, 135, 149-170.	0.5	35
189	DNA-Free CRISPR-Cas9 Gene Editing. Genetic Engineering and Biotechnology News, 2016, 36, 16-17.	0.1	0
190	Optimized CRISPR–Cas9 System for Genome Editing in Zebrafish. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot086850.	0.2	67
191	Deciphering Combinatorial Genetics. Annual Review of Genetics, 2016, 50, 515-538.	3.2	16
192	Efficient genome engineering approaches for the short-lived African turquoise killifish. Nature Protocols, 2016, 11, 2010-2028.	5.5	68
193	Copy-Number Variation Contributes to the Mutational Load of Bardet-Biedl Syndrome. American Journal of Human Genetics, 2016, 99, 318-336.	2.6	112
194	Increased trabecular bone and improved biomechanics in an osteocalcin null rat model created by CRISPR/Cas9 technology. DMM Disease Models and Mechanisms, 2016, 9, 1169-1179.	1.2	66
196	Crossâ€species models of human melanoma. Journal of Pathology, 2016, 238, 152-165.	2.1	65
197	Detection of Multiple Genome Modifications Induced by the CRISPR/Cas9 System. Methods in Molecular Biology, 2016, 1451, 53-63.	0.4	1
198	Accelerated genome engineering through multiplexing. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 5-21.	6.6	16
199	Live Imaging of Host–Pathogen Interactions in Zebrafish Larvae. Methods in Molecular Biology, 2016, 1451, 207-223.	0.4	30
200	Homology-Independent Integration of Plasmid DNA into the Zebrafish Genome. Methods in Molecular Biology, 2016, 1451, 31-51.	0.4	4

		CITATION R	EPORT	
#	Article		IF	CITATIONS
201	Tissue-specific gene targeting using CRISPR/Cas9. Methods in Cell Biology, 2016, 135,	189-202.	0.5	25
202	Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system. Methods 2016, 135, 3-17.	in Cell Biology,	0.5	16
203	Mespaa can potently induce cardiac fates in zebrafish. Developmental Biology, 2016, 4	ŧ18, 17-27 .	0.9	8
204	Micro <scp>RNA</scp> s in neutrophils: potential next generation therapeutics for infla ailments. Immunological Reviews, 2016, 273, 29-47.	mmatory	2.8	40
205	Studying Protein-Tyrosine Phosphatases in Zebrafish. Methods in Molecular Biology, 20	016, 1447, 351-372.	0.4	4
206	Digits and fin rays share common developmental histories. Nature, 2016, 537, 225-228	8.	13.7	133
207	Internal epitope tagging informed by relative lack of sequence conservation. Scientific 6, 36986.	Reports, 2016,	1.6	20
208	In vivo mutagenesis of miRNA gene families using a scalable multiplexed CRISPR/Cas9 Scientific Reports, 2016, 6, 32386.	nuclease system.	1.6	32
209	ELMO1 protects renal structure and ultrafiltration in kidney development and under di conditions. Scientific Reports, 2016, 6, 37172.	abetic	1.6	34
210	Knockout of Zebrafish Ovarian Aromatase Gene (cyp19a1a) by TALEN and CRISPR/Cas Offspring Due to Failed Ovarian Differentiation. Scientific Reports, 2016, 6, 37357.	9 Leads to All-male	1.6	158
211	Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transf Reports, 2016, 6, 33675.	er. Scientific	1.6	39
212	Zebrafish. Methods in Molecular Biology, 2016, , .		0.4	9
213	Methods of genome engineering: a new era of molecular biology. Biochemistry (Moscc 662-677.	w), 2016, 81,	0.7	7
214	Genome editing revolutionize the creation of genetically modified pigs for modeling hu Human Genetics, 2016, 135, 1093-1105.	ıman diseases.	1.8	41
215	Cloche is a bHLH-PAS transcription factor that drives haemato-vascular specification. N 535, 294-298.	lature, 2016,	13.7	151
216	Genetic screens for mutations affecting adult traits and parental-effect genes. Method Biology, 2016, 135, 39-87.	s in Cell	0.5	15
217	CRISPR/Cas9 in locusts: Successful establishment of an olfactory deficiency line by targ mutagenesis of an odorant receptor co-receptor (Orco). Insect Biochemistry and Molec 2016, 79, 27-35.	geting the cular Biology,	1.2	119
218	Tissue- and time-directed electroporation of CAS9 protein–gRNA complexes in vivo y multigene knockout for studying gene function in regeneration. Npj Regenerative Med 16002.	ields efficient licine, 2016, 1,	2.5	29

		CITATION REP	ORT	
#	Article		IF	Citations
219	Regulation of Vegf signaling by natural and synthetic ligands. Blood, 2016, 128, 2359-2366.		0.6	54
220	Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation Atlantic salmon. Scientific Reports, 2016, 6, 21284.	n in	1.6	193
221	Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism–dystonia. Nature Communications, 2016, 7, 11601.		5.8	233
222	A novel technique based on in vitro oocyte injection to improve CRISPR/Cas9 gene editing in Scientific Reports, 2016, 6, 34555.	zebrafish.	1.6	25
223	Zebrafish as an in vivo model for sustainable chemical design. Green Chemistry, 2016, 18, 64	10-6430.	4.6	26
224	Plexins function in epithelial repair in both Drosophila and zebrafish. Nature Communications 12282.	s, 2016, 7,	5.8	40
225	Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detect off-target effects in sheep. Scientific Reports, 2016, 6, 32271.	table	1.6	68
226	A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish. Nature Protocols, 2016, 11, 2357-2375.		5.5	185
227	Zebrafish Genome Engineering Using the CRISPR–Cas9 System. Trends in Genetics, 2016,	32, 815-827.	2.9	128
228	Increasing the Efficiency of CRISPR/Cas9-mediated Precise Genome Editing of HSV-1 Virus in Cells. Scientific Reports, 2016, 6, 34531.	Human	1.6	73
229	Smyd5 plays pivotal roles in both primitive and definitive hematopoiesis during zebrafish embryogenesis. Scientific Reports, 2016, 6, 29157.		1.6	29
230	Electric fish genomics: Progress, prospects, and new tools for neuroethology. Journal of Phys (Paris), 2016, 110, 259-272.	iology	2.1	10
231	ge-CRISPR - An integrated pipeline for the prediction and analysis of sgRNAs genome editing for CRISPR/Cas system. Scientific Reports, 2016, 6, 30870.	efficiency	1.6	38
232	Sema3d controls collective endothelial cell migration by distinct mechanisms via Nrp1 and Pl Journal of Cell Biology, 2016, 215, 415-430.	xnD1.	2.3	68
233	High Throughput Danio Rerio Energy Expenditure Assay. Journal of Vis Experiments, 2016, , e53297.	ualized	0.2	10
234	Observing Mitotic Division and Dynamics in a Live Zebrafish Embryo. Journal of Visualized Exp 2016, , .	beriments,	0.2	7
235	Ancestral genomic duplication of the insulin gene in tilapia: An analysis of possible implicatio clinical islet xenotransplantation using donor islets from transgenic tilapia expressing a huma insulin gene. Islets, 2016, 8, e1187352.	ns for anized	0.9	4
236	Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvatur Science, 2016, 352, 1341-1344.	re.	6.0	235

#	Article	IF	Citations
237	Zebrafish Model for Safety and Toxicity Testing of Nutraceuticals. , 2016, , 333-339.		4
238	Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2333-2344.	1.9	112
239	Zebrafish: a vertebrate tool for studying basal body biogenesis, structure, and function. Cilia, 2016, 5, 16.	1.8	8
240	Using Zebrafish to Study Human Deafness and Hearing Regeneration. Monographs in Human Genetics, 2016, , 110-131.	0.5	7
241	A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science, 2016, 351, aad2197.	6.0	339
242	Evolution of the fish heart by sub/neofunctionalization of an elastin gene. Nature Communications, 2016, 7, 10397.	5.8	63
243	Efficient dual sgRNA-directed large gene deletion in rabbit with CRISPR/Cas9 system. Cellular and Molecular Life Sciences, 2016, 73, 2959-2968.	2.4	83
244	Enhanced genome editing in mammalian cells with a modified dual-fluorescent surrogate system. Cellular and Molecular Life Sciences, 2016, 73, 2543-2563.	2.4	39
245	Vesicular monoamine transporter 2 (Vmat2) knockdown elicits anxiety-like behavior in zebrafish. Biochemical and Biophysical Research Communications, 2016, 470, 792-797.	1.0	28
246	Recent Progress in CRISPR/Cas9 Technology. Journal of Genetics and Genomics, 2016, 43, 63-75.	1.7	94
247	Genome editing in zebrafish: a practical overview. Briefings in Functional Genomics, 2016, 15, 322-330.	1.3	31
248	Applications of CRISPR–Cas systems in neuroscience. Nature Reviews Neuroscience, 2016, 17, 36-44.	4.9	245
249	Genome editing in sea urchin embryos by using a CRISPR/Cas9 system. Developmental Biology, 2016, 409, 420-428.	0.9	68
250	Approaching Perfection: New Developments in Zebrafish Genome Engineering. Developmental Cell, 2016, 36, 595-596.	3.1	7
251	Advancements in zebrafish applications for 21st century toxicology. , 2016, 161, 11-21.		199
252	Precise Editing of the Zebrafish Genome Made Simple and Efficient. Developmental Cell, 2016, 36, 654-667.	3.1	183
253	Efficient identification of CRISPR/Cas9-induced insertions/deletions by direct germline screening in zebrafish. BMC Genomics, 2016, 17, 259.	1.2	31
254	A Neural Basis for Control of Cichlid Female Reproductive Behavior by Prostaglandin F 2α. Current Biology, 2016, 26, 943-949.	1.8	84

#	Article	IF	CITATIONS
255	Leptin signaling regulates glucose homeostasis, but not adipostasis, in the zebrafish. Proceedings of the United States of America, 2016, 113, 3084-3089.	3.3	136
256	The short-lived African turquoise killifish: an emerging experimental model for ageing. DMM Disease Models and Mechanisms, 2016, 9, 115-129.	1.2	102
257	Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases. Cell Chemical Biology, 2016, 23, 57-73.	2.5	42
258	Targeted candidate gene screens using CRISPR/Cas9 technology. Methods in Cell Biology, 2016, 135, 89-106.	0.5	23
259	2C-Cas9: a versatile tool for clonal analysis of gene function. Genome Research, 2016, 26, 681-692.	2.4	57
260	<i>aura/mid1ip1L</i> regulates the cytoskeleton at the zebrafish egg-to-embryo transition. Development (Cambridge), 2016, 143, 1585-99.	1.2	32
261	A Rapid and Cheap Methodology for CRISPR/Cas9 Zebrafish Mutant Screening. Molecular Biotechnology, 2016, 58, 73-78.	1.3	24
262	Quantitative proteomics identify DAB2 as a cardiac developmental regulator that inhibits WNT/β-catenin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1002-1007.	3.3	53
263	Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nature Methods, 2016, 13, 41-50.	9.0	99
264	Genome editing in Ustilago maydis using the CRISPR–Cas system. Fungal Genetics and Biology, 2016, 89, 3-9.	0.9	192
265	CRISPRz: a database of zebrafish validated sgRNAs. Nucleic Acids Research, 2016, 44, D822-D826.	6.5	53
266	The application of CRISPR technology to high content screening in primary neurons. Molecular and Cellular Neurosciences, 2017, 80, 170-179.	1.0	15
267	Towards a CRISPR view of early human development: applications, limitations and ethical concerns of genome editing in human embryos. Development (Cambridge), 2017, 144, 3-7.	1.2	51
268	Gene editing nuclease and its application in tilapia. Science Bulletin, 2017, 62, 165-173.	4.3	29
269	Molecular Genetic and Genomic Analyses of Zebrafish Circadian Rhythmicity. , 2017, , 193-209.		2
270	Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research. BMC Genomics, 2017, 18, 191.	1.2	155
271	Exogenous gene integration mediated by genome editing technologies in zebrafish. Bioengineered, 2017, 8, 287-295.	1.4	7
272	Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes. Genome Biology, 2017, 18, 48.	3.8	72

#	ARTICLE	IF	CITATIONS
273	Flotillins control zebrafish epiboly through their role in cadherinâ€mediated cell–cell adhesion. Biology of the Cell, 2017, 109, 210-221.	0.7	6
274	Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Scientific Reports, 2017, 7, 42081.	1.6	106
275	Understanding Idiopathic Scoliosis: A New Zebrafish School of Thought. Trends in Genetics, 2017, 33, 183-196.	2.9	80
276	Cognitive skills and the evolution of social systems. Journal of Experimental Biology, 2017, 220, 103-113.	0.8	36
277	Mutagenesis and Transgenesis in Zebrafish. , 2017, , 1-31.		2
278	Ca 2+ release via two-pore channel type 2 (TPC2) is required for slow muscle cell myofibrillogenesis and myotomal patterning in intact zebrafish embryos. Developmental Biology, 2017, 425, 109-129.	0.9	22
279	Chemical biology reveals CARF as a positive regulator of canonical Wnt signaling by promoting TCF/ \hat{I}^2 -catenin transcriptional activity. Cell Discovery, 2017, 3, 17003.	3.1	21
280	CRISPR/Cas9: at the cutting edge of hepatology. Gut, 2017, 66, 1329-1340.	6.1	31
281	Gene Therapy of Adult Neuronal Ceroid Lipofuscinoses with CRISPR/Cas9 in Zebrafish. Human Gene Therapy, 2017, 28, 588-597.	1.4	12
282	Novel degenerative and developmental defects in a zebrafish model of mucolipidosis type IV. Human Molecular Genetics, 2017, 26, 2701-2718.	1.4	16
283	Little Fish, Big Data: Zebrafish as a Model for Cardiovascular and Metabolic Disease. Physiological Reviews, 2017, 97, 889-938.	13.1	250
284	Developmental history and application of CRISPR in human disease. Journal of Gene Medicine, 2017, 19, e2963.	1.4	9
285	Application of CRISPR-Cas9 in eye disease. Experimental Eye Research, 2017, 161, 116-123.	1.2	10
286	Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field. Science China Life Sciences, 2017, 60, 458-467.	2.3	40
287	Nuclear Pores Regulate Muscle Development and Maintenance by Assembling a Localized Mef2C Complex. Developmental Cell, 2017, 41, 540-554.e7.	3.1	68
288	The complex genetics of hypoplastic left heart syndrome. Nature Genetics, 2017, 49, 1152-1159.	9.4	177
289	CRISPR/Cas9-mediated correction of human genetic disease. Science China Life Sciences, 2017, 60, 447-457.	2.3	34
290	Wnt8a expands the pool of embryonic kidney progenitors in zebrafish. Developmental Biology, 2017, 425, 130-141.	0.9	8

#	Article	IF	CITATIONS
291	Histone demethylases Kdm6ba and Kdm6bb redundantly promote cardiomyocyte proliferation during zebrafish heart ventricle maturation. Developmental Biology, 2017, 426, 84-96.	0.9	30
292	Transcriptome analysis of pancreatic cells across distant species highlights novel important regulator genes. BMC Biology, 2017, 15, 21.	1.7	41
293	Aipl1 is required for cone photoreceptor function and survival through the stability of Pde6c and Gc3 in zebrafish. Scientific Reports, 2017, 7, 45962.	1.6	18
294	ZNHIT3 is defective in PEHO syndrome, a severe encephalopathy with cerebellar granule neuron loss. Brain, 2017, 140, 1267-1279.	3.7	23
295	A truncating mutation in CEP55 is the likely cause of MARCH, a novel syndrome affecting neuronal mitosis. Journal of Medical Genetics, 2017, 54, 490-501.	1.5	45
296	A Precise Genome Editing Method Reveals Insights into the Activity of Eukaryotic Promoters. Cell Reports, 2017, 18, 275-286.	2.9	9
297	Molecular basis, applications and challenges of CRISPR/Cas9: a continuously evolving tool for genome editing. Briefings in Functional Genomics, 2017, 16, elw038.	1.3	9
298	An ongoing role for <i>Wnt</i> signaling in differentiating melanocytes inÂvivo. Pigment Cell and Melanoma Research, 2017, 30, 219-232.	1.5	28
299	HuD and the Survival Motor Neuron Protein Interact in Motoneurons and Are Essential for Motoneuron Development, Function, and mRNA Regulation. Journal of Neuroscience, 2017, 37, 11559-11571.	1.7	40
300	Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11181-11186.	3.3	131
301	Re-evaluating functional landscape of the cardiovascular system during development. Biology Open, 2017, 6, 1756-1770.	0.6	6
302	Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7516-E7525.	3.3	64
303	Functional characterization of PBP1 gene in Helicoverpa armigera (Lepidoptera: Noctuidae) by using the CRISPR/Cas9 system. Scientific Reports, 2017, 7, 8470.	1.6	53
304	RAC1 Missense Mutations in Developmental Disorders with Diverse Phenotypes. American Journal of Human Genetics, 2017, 101, 466-477.	2.6	119
305	Generation of biallelic FO mutants in medaka using the <scp>CRISPR</scp> /Cas9 system. Genes To Cells, 2017, 22, 756-763.	0.5	25
306	Genome-wide analysis of facial skeletal regionalization in zebrafish. Development (Cambridge), 2017, 144, 2994-3005.	1.2	40
307	Insights from zebrafish on human pigment cell disease and treatment. Developmental Dynamics, 2017, 246, 889-896.	0.8	26
308	A Gene Implicated in Activation of Retinoic Acid Receptor Targets Is a Novel Renal Agenesis Gene in Humans. Genetics, 2017, 207, 215-228.	1.2	62

~			<u>_</u>
CIT	ΑΤΙ	ON I	REPORT
\sim			

#	Article	IF	CITATIONS
309	CRISPR/Cas9â€Directed Gene Editing for the Generation of Lossâ€ofâ€Function Mutants in Highâ€Throughput Zebrafish F ₀ Screens. Current Protocols in Molecular Biology, 2017, 119, 31.9.1-31.9.22.	2.9	24
310	Rare coding variants in <i>MAPK7</i> predispose to adolescent idiopathic scoliosis. Human Mutation, 2017, 38, 1500-1510.	1.1	39
311	Dlx3b/4b is required for early-born but not later-forming sensory hair cells during zebrafish inner ear development. Biology Open, 2017, 6, 1270-1278.	0.6	9
312	Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nature Communications, 2017, 8, 118.	5.8	154
313	Wnt signaling positively regulates endothelial cell fate specification in the Fli1a-positive progenitor population via Lef1. Developmental Biology, 2017, 430, 142-155.	0.9	20
314	Gene Delivery Approaches for Mesenchymal Stem Cell Therapy: Strategies to Increase Efficiency and Specificity. Stem Cell Reviews and Reports, 2017, 13, 725-740.	5.6	74
315	Wnt signaling controls pro-regenerative Collagen XII in functional spinal cord regeneration in zebrafish. Nature Communications, 2017, 8, 126.	5.8	146
316	Generation of Myostatin Gene-Edited Channel Catfish (Ictalurus punctatus) via Zygote Injection of CRISPR/Cas9 System. Scientific Reports, 2017, 7, 7301.	1.6	109
317	Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes. Nature Communications, 2017, 8, 1799.	5.8	40
318	CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nature Communications, 2017, 8, 2024.	5.8	232
319	Precision Medicine, CRISPR, and Genome Engineering. Advances in Experimental Medicine and Biology, 2017, , .	0.8	2
320	Genome Editing to Study Ca2+ Homeostasis in Zebrafish Cone Photoreceptors. Advances in Experimental Medicine and Biology, 2017, 1016, 91-100.	0.8	3
321	Medaka and zebrafish <i>contactin1</i> mutants as a model for understanding neural circuits for motor coordination. Genes To Cells, 2017, 22, 723-741.	0.5	10
322	NOD1 deficiency impairs CD44a/Lck as well as PI3K/Akt pathway. Scientific Reports, 2017, 7, 2979.	1.6	37
323	RICE CRISPR: Rapidly increased cut ends by an exonuclease Cas9 fusion in zebrafish. Genesis, 2017, 55, e23044.	0.8	11
324	Endogenous melatonin promotes rhythmic recruitment of neutrophils toward an injury in zebrafish. Scientific Reports, 2017, 7, 4696.	1.6	12
325	Genetic approaches to retinal research in zebrafish. Journal of Neurogenetics, 2017, 31, 70-87.	0.6	15
326	Pnrc2 regulates 3'UTR-mediated decay of segmentation clock-associated transcripts during zebrafish segmentation. Developmental Biology, 2017, 429, 225-239.	0.9	6

	Сіт	ation Report	
# 327	ARTICLE Biochemical characterization of a medaka (<i>Oryzias latipes</i>) orthologue for mammalian Factor	IF 2.2	CITATIONS 8
328	CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling. Human Genetics, 2017, 136, 1-12.	1.8	83
329	CRISPR Guide RNA Validation <i>In Vitro</i> . Zebrafish, 2017, 14, 383-386.	0.5	13
330	Exploring the potential of genome editing CRISPR-Cas9 technology. Gene, 2017, 599, 1-18.	1.0	119
331	Gene editing for cell engineering: trends and applications. Critical Reviews in Biotechnology, 2017, 37, 672-684.	5.1	86
332	A Zebrafish Model for a Human Myopathy Associated with Mutation of the Unconventional Myosin MYO18B. Genetics, 2017, 205, 725-735.	1.2	25
333	Autolysosome biogenesis and developmental senescence are regulated by both Spns1 and v-ATPase. Autophagy, 2017, 13, 386-403.	4.3	49
334	Studying Diabetes Through the Eyes of a Fish: Microdissection, Visualization, and Analysis of the Adult tg(fli:EGFP) Zebrafish Retinal Vasculature. Journal of Visualized Experiments, 2017, , .	0.2	16
335	Myotube differentiation in clustered regularly interspaced short palindromic repeat/Cas9-mediated MyoD knockout quail myoblast cells. Asian-Australasian Journal of Animal Sciences, 2017, 30, 1029-10	36. ^{2.4}	11
336	Zebrafish as a Model for the Study of Microvascular Complications of Diabetes and Their Mechanisms. International Journal of Molecular Sciences, 2017, 18, 2002.	1.8	41
337	Opportunities for CRISPR/Cas9 Gene Editing in Retinal Regeneration Research. Frontiers in Cell and Developmental Biology, 2017, 5, 99.	1.8	13
338	Zebrafish Developmental Models of Skeletal Diseases. Current Topics in Developmental Biology, 2017, 124, 81-124.	1.0	21
339	Studying disorders of vertebrate iron and heme metabolism using zebrafish. Methods in Cell Biology, 2017, 138, 193-220.	0.5	7
340	Studying Autophagy in Zebrafish. Cells, 2017, 6, 21.	1.8	59
341	CRISPR/Cas9-Mediated Zebrafish Knock-in as a Novel Strategy to Study Midbrain-Hindbrain Boundary Development. Frontiers in Neuroanatomy, 2017, 11, 52.	0.9	37
342	Analysis of myelinated axon formation in zebrafish. Methods in Cell Biology, 2017, 138, 383-414.	0.5	24
343	An ancient neurotrophin receptor code; a single Runx/Cbfî² complex determines somatosensory neuro fate specification in zebrafish. PLoS Genetics, 2017, 13, e1006884.	n 1.5	12
344	Zebrafish Models of Epilepsy and Epileptic Seizures. , 2017, , 369-384.		12

#	Article	IF	CITATIONS
345	Rapid functional analysis of computationally complex rare human IRF6 gene variants using a novel zebrafish model. PLoS Genetics, 2017, 13, e1007009.	1.5	28
346	TNFa/TNFR2 signaling is required for glial ensheathment at the dorsal root entry zone. PLoS Genetics, 2017, 13, e1006712.	1.5	18
347	G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish. PLoS Genetics, 2017, 13, e1007069.	1.5	41
348	Klf8 regulates left-right asymmetric patterning through modulation of Kupffer's vesicle morphogenesis and spaw expression. Journal of Biomedical Science, 2017, 24, 45.	2.6	10
349	Acquisition of resistance to avian leukosis virus subgroup B through mutations on tvb cysteine-rich domains in DF-1 chicken fibroblasts. Veterinary Research, 2017, 48, 48.	1.1	16
350	The Smart Programmable CRISPR Technology: A Next Generation Genome Editing Tool for Investigators. Current Drug Targets, 2017, 18, 1653-1663.	1.0	8
351	Zebrafish: A Model System to Study the Architecture of Human Genetic Disease. , 2017, , 651-670.		2
352	The Importance of Olfactory and Motor Endpoints for Zebrafish Models of Neurodegenerative Disease. , 2017, , 525-554.		1
353	From huntingtin gene toÂHuntington's disease-altering strategies. , 2017, , 251-276.		0
354	Microinjection of CRISPR/Cas9 Protein into Channel Catfish, lctalurus punctatus , Embryos for Gene Editing. Journal of Visualized Experiments, 2018, , .	0.2	20
355	Making Waves: New Developments in Toxicology With the Zebrafish. Toxicological Sciences, 2018, 163, 5-12.	1.4	196
356	A Systems Biology Approach to Advancing Adverse Outcome Pathways for Risk Assessment. , 2018, , .		8
357	How Surrogate and Chemical Genetics in Model Organisms Can Suggest Therapies for Human Genetic Diseases. Genetics, 2018, 208, 833-851.	1.2	16
358	CRISPR/Cas9-mediated genome editing in a reef-building coral. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5235-5240.	3.3	110
359	FGF signaling deregulation is associated with early developmental skeletal defects in animal models for mucopolysaccharidosis type II (MPSII). Human Molecular Genetics, 2018, 27, 2262-2275.	1.4	27
360	Etiology and functional validation of gastrointestinal motility dysfunction in a zebrafish model of <scp>CHARGE</scp> syndrome. FEBS Journal, 2018, 285, 2125-2140.	2.2	24
361	Lipoprotein lipase regulates hematopoietic stem progenitor cell maintenance through DHA supply. Nature Communications, 2018, 9, 1310.	5.8	22
362	A Rapid CRISPR/Cas-based Mutagenesis Assay in Zebrafish for Identification of Genes Involved in Thyroid Morphogenesis and Function. Scientific Reports, 2018, 8, 5647.	1.6	46

#	Article	IF	CITATIONS
363	Kinesin 1 regulates cilia length through an interaction with the Bardet-Biedl syndrome related protein CCDC28B. Scientific Reports, 2018, 8, 3019.	1.6	16
364	Nuclear Androgen Receptor Regulates Testes Organization and Oocyte Maturation in Zebrafish. Endocrinology, 2018, 159, 980-993.	1.4	74
365	Zebrafish embryo: A new model for studying thyroid morphogenesis. Current Opinion in Endocrine and Metabolic Research, 2018, 2, 3-9.	0.6	1
366	The multiplexed CRISPR targeting platforms. Drug Discovery Today: Technologies, 2018, 28, 53-61.	4.0	9
367	Zebrafish Embryonic Slow Muscle Is a Rapid System for Genetic Analysis of Sarcomere Organization by CRISPR/Cas9, but Not NgAgo. Marine Biotechnology, 2018, 20, 168-181.	1.1	12
368	Modeling hypercholesterolemia and vascular lipid accumulation in LDL receptor mutant zebrafish. Journal of Lipid Research, 2018, 59, 391-399.	2.0	34
369	Hif-1α and Hif-2α regulate hemogenic endothelium and hematopoietic stem cell formation in zebrafish. Blood, 2018, 131, 963-973.	0.6	35
370	The evolution of CRISPR/Cas9 and their cousins: hope or hype?. Biotechnology Letters, 2018, 40, 465-477.	1.1	20
371	Production of Wilson Disease Model Rabbits with Homology-Directed Precision Point Mutations in the ATP7B Gene Using the CRISPR/Cas9 System. Scientific Reports, 2018, 8, 1332.	1.6	18
372	Targeted copy number screening highlights an intragenic deletion of <i>WDR63</i> as the likely cause of human occipital encephalocele and abnormal CNS development in zebrafish. Human Mutation, 2018, 39, 495-505.	1.1	17
373	Comparison of Various Nuclear Localization Signal-Fused Cas9 Proteins and <i>Cas9</i> mRNA for Genome Editing in Zebrafish. G3: Genes, Genomes, Genetics, 2018, 8, 823-831.	0.8	35
374	Systematic Screens in Zebrafish Shed Light on Cellular and Molecular Mechanisms of Complex Brain Phenotypes. , 2018, , 385-400.		1
375	Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science, 2018, 360, 981-987.	6.0	653
376	Optimized Target-AID system efficiently induces single base changes in zebrafish. Journal of Genetics and Genomics, 2018, 45, 215-217.	1.7	6
377	TBX20 Regulates Angiogenesis Through the Prokineticin 2–Prokineticin Receptor 1 Pathway. Circulation, 2018, 138, 913-928.	1.6	31
378	CRISPR mutagenesis confirms the role of oca2 in melanin pigmentation in Astyanax mexicanus. Developmental Biology, 2018, 441, 313-318.	0.9	90
379	Whole-organism clone tracing using single-cell sequencing. Nature, 2018, 556, 108-112.	13.7	345
380	Entering the post-epigenomic age: back to epigenetics. Open Biology, 2018, 8, 180013.	1.5	5

# 381	ARTICLE Mouse Embryogenesis. Methods in Molecular Biology, 2018, , .	lF 0.4	Citations 0
382	Analysis of hpf1 expression and function in early embryonic development of zebrafish. Development Genes and Evolution, 2018, 228, 141-147.	0.4	3
383	Genome Editing During Development Using the CRISPR-Cas Technology. Methods in Molecular Biology, 2018, 1752, 177-190.	0.4	0
384	Csy4-based vector system enables conditional chimeric gene editing in zebrafish without interrupting embryogenesis. Journal of Molecular Cell Biology, 2018, 10, 586-588.	1.5	9
385	Crosstalk between nuclear and G protein-coupled estrogen receptors. General and Comparative Endocrinology, 2018, 261, 190-197.	0.8	45
386	Recent Advances in CRISPRâ€Cas9 Genome Editing Technology for Biological and Biomedical Investigations. Journal of Cellular Biochemistry, 2018, 119, 81-94.	1.2	74
387	Fatty acid synthase knockout impairs early embryonic development via induction of endoplasmic reticulum stress in pigs. Journal of Cellular Physiology, 2018, 233, 4225-4234.	2.0	3
388	The zebrafish as a promising tool for modeling human brain disorders: A review based upon an IBNS Symposium. Neuroscience and Biobehavioral Reviews, 2018, 85, 176-190.	2.9	57
389	Inducible CRISPR genome-editing tool: classifications and future trends. Critical Reviews in Biotechnology, 2018, 38, 573-586.	5.1	24
390	Genome editing in fishes and their applications. General and Comparative Endocrinology, 2018, 257, 3-12.	0.8	60
391	Loss of αB-crystallin function in zebrafish reveals critical roles in the development of the lens and stress resistance of the heart. Journal of Biological Chemistry, 2018, 293, 740-753.	1.6	24
392	Modeling Cancer in the CRISPR Era. Annual Review of Cancer Biology, 2018, 2, 111-131.	2.3	15
393	Nr2f1a balances atrial chamber and atrioventricular canal size via BMP signaling-independent and -dependent mechanisms. Developmental Biology, 2018, 434, 7-14.	0.9	24
394	OBSOLETE: Zebrafish as a Tool to Study Congenital Heart Diseases. , 2018, , .		0
395	VCAM-1+ macrophages guide the homing of HSPCs to a vascular niche. Nature, 2018, 564, 119-124.	13.7	102
396	Precise A•T to G•C base editing in the zebrafish genome. BMC Biology, 2018, 16, 139.	1.7	34
397	A novel zebrafish intestinal tumor model reveals a role for <i>cyp7a1</i> dependent tumor-liver crosstalk in tumor's adverse effects on host. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	29
398	Wnt/β-catenin signaling regulates VE-cadherin-mediated anastomosis of brain capillaries by counteracting S1pr1 signaling. Nature Communications, 2018, 9, 4860.	5.8	66

#	Article	IF	CITATIONS
399	Conditional mutagenesis by oligonucleotide-mediated integration of loxP sites in zebrafish. PLoS Genetics, 2018, 14, e1007754.	1.5	39
400	Synaptic Regulation of Metabolism. Advances in Experimental Medicine and Biology, 2018, 1090, 49-77.	0.8	2
402	Effects of CRISPR/Cas9 dosage on TICAM1 and RBL gene mutation rate, embryonic development, hatchability and fry survival in channel catfish. Scientific Reports, 2018, 8, 16499.	1.6	34
403	A transcriptomics analysis of the Tbx5 paralogues in zebrafish. PLoS ONE, 2018, 13, e0208766.	1.1	11
404	Multiplexed CRISPR/Cas9-mediated knockout of 19 Fanconi anemia pathway genes in zebrafish revealed their roles in growth, sexual development and fertility. PLoS Genetics, 2018, 14, e1007821.	1.5	49
405	Zebrafish Mutants Carrying Leptin a (lepa) Gene Deficiency Display Obesity, Anxiety, Less Aggression and Fear, and Circadian Rhythm and Color Preference Dysregulation. International Journal of Molecular Sciences, 2018, 19, 4038.	1.8	54
406	Advances in the Use of Zebrafish in Developmental Toxicology: Linking Genetics, Behavior, and High-Throughput Testing Strategies. , 2018, , 298-326.		1
407	Analysis of novel domain-specific mutations in the zebrafish ndr2/cyclops gene generated using CRISPR-Cas9 RNPs. Journal of Genetics, 2018, 97, 1315-1325.	0.4	11
408	Rare Genetic Blood Disease Modeling in Zebrafish. Frontiers in Genetics, 2018, 9, 348.	1.1	21
409	Generation of Cas9 transgenic zebrafish and their application in establishing an ERV-deficient animal model. Biotechnology Letters, 2018, 40, 1507-1518.	1.1	6
410	The Trim family of genes and the retina: Expression and functional characterization. PLoS ONE, 2018, 13, e0202867.	1.1	7
411	Hrg1 promotes heme-iron recycling during hemolysis in the zebrafish kidney. PLoS Genetics, 2018, 14, e1007665.	1.5	21
412	Zebrafish knock-ins swim into the mainstream. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	26
413	Hey2 regulates the size of the cardiac progenitor pool during vertebrate heart development. Development (Cambridge), 2018, 145, .	1.2	26
414	Transparent Danionella translucida as a genetically tractable vertebrate brain model. Nature Methods, 2018, 15, 977-983.	9.0	62
415	Pgrmc1 Knockout Impairs Oocyte Maturation in Zebrafish. Frontiers in Endocrinology, 2018, 9, 560.	1.5	41
416	Color opponency with a single kind of bistable opsin in the zebrafish pineal organ. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11310-11315.	3.3	23
417	smarce1 mutants have a defective endocardium and an increased expression of cardiac transcription factors in zebrafish. Scientific Reports, 2018, 8, 15369.	1.6	9

#	Article	IF	CITATIONS
418	PGE ₂ production at sites of tissue injury promotes an anti-inflammatory neutrophil phenotype and determines the outcome of inflammation resolution in vivo. Science Advances, 2018, 4, eaar8320.	4.7	165
419	Efficient Production and Identification of CRISPR/Cas9-generated Gene Knockouts in the Model System Danio rerio . Journal of Visualized Experiments, 2018, , .	0.2	16
420	Zebrafish expression reporters and mutants reveal that the IgSF cell adhesion molecule Dscamb is required for feeding and survival. Journal of Neurogenetics, 2018, 32, 336-352.	0.6	4
421	Robust activation of microhomology-mediated end joining for precision gene editing applications. PLoS Genetics, 2018, 14, e1007652.	1.5	57
422	A tRNA-based multiplex sgRNA expression system in zebrafish and its application to generation of transgenic albino fish. Scientific Reports, 2018, 8, 13366.	1.6	26
423	Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 2018, 21, 425-532.	3.7	429
424	nox2/cybb Deficiency Affects Zebrafish Retinotectal Connectivity. Journal of Neuroscience, 2018, 38, 5854-5871.	1.7	20
425	Distinct roles for the cell adhesion molecule Contactin2 in the development and function of neural circuits in zebrafish. Mechanisms of Development, 2018, 152, 1-12.	1.7	11
426	Chemokine C-C motif ligand 33 is a key regulator of teleost fish barbel development. Proceedings of the United States of America, 2018, 115, E5018-E5027.	3.3	29
427	Myosin1D is an evolutionarily conserved regulator of animal left–right asymmetry. Nature Communications, 2018, 9, 1942.	5.8	49
428	RES complex is associated with intron definition and required for zebrafish early embryogenesis. PLoS Genetics, 2018, 14, e1007473.	1.5	23
429	Wilms Tumor 1b defines a wound-specific sheath cell subpopulation associated with notochord repair. ELife, 2018, 7, .	2.8	21
430	A Rapid Method for Directed Gene Knockout for Screening in G0 Zebrafish. Developmental Cell, 2018, 46, 112-125.e4.	3.1	275
431	A PAGE screening approach for identifying CRISPR-Cas9-induced mutations in zebrafish. BioTechniques, 2018, 64, 275-278.	0.8	14
432	Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish. PLoS Genetics, 2018, 14, e1007260.	1.5	51
433	The Reissner Fiber in the Cerebrospinal Fluid Controls Morphogenesis of the Body Axis. Current Biology, 2018, 28, 2479-2486.e4.	1.8	98
434	The genetic program of oocytes can be modified <i>in vivo</i> in the zebrafish ovary. Journal of Molecular Cell Biology, 2018, 10, 479-493.	1.5	15
435	Failed Progenitor Specification Underlies the Cardiopharyngeal Phenotypes in a Zebrafish Model of 22q11.2 Deletion Syndrome. Cell Reports, 2018, 24, 1342-1354.e5.	2.9	18

		CITATION REPORT		
#	Article		IF	CITATIONS
436	Fishing for understanding: Unlocking the zebrafish gene editorâ \in $^{\mathrm{Ms}}$ s toolbox. Methods,	, 2018, 150, 3-10.	1.9	22
437	The Transition of Zebrafish Functional Genetics From Random Mutagenesis to Targetec 2018, , 401-416.	Integration. ,		3
438	New breeding technique "genome editing―for crop improvement: applications, pc challenges. 3 Biotech, 2018, 8, 336.	otentials and	1.1	45
439	CRISPR/Cas9 disease models in zebrafish and Xenopus: The genetic renaissance of fish Discovery Today: Technologies, 2018, 28, 41-52.	and frogs. Drug	4.0	39
440	Efficient genome editing using CRISPR/Cas9 ribonucleoprotein approach in cultured me Biology Open, 2018, 7, .	edaka fish cells.	0.6	17
441	Efficient Gene Transfer and Gene Editing in Sterlet (Acipenser ruthenus). Frontiers in Ge $117.$	enetics, 2018, 9,	1.1	29
442	Zebrafish Models of Rare Hereditary Pediatric Diseases. Diseases (Basel, Switzerland), 2	.018, 6, 43.	1.0	17
443	Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9. Nucleic Acids R e102-e102.	esearch, 2018, 46,	6.5	50
444	Knockout of myomaker results in defective myoblast fusion, reduced muscle growth an adipocyte infiltration in zebrafish skeletal muscle. Human Molecular Genetics, 2018, 27	id increased 7, 3542-3554.	1.4	25
445	A molecular mechanism for Wnt ligand-specific signaling. Science, 2018, 361, .		6.0	169
446	Cystathionine β-Synthase Is Necessary for Axis Development in Vivo. Frontiers in Cell a Developmental Biology, 2018, 6, 14.	nd	1.8	14
447	Single-Cell Transcriptomics Meets Lineage Tracing. Cell Stem Cell, 2018, 23, 166-179.		5.2	306
448	Atypical Cadherin Dachsous1b Interacts with Ttc28 and Aurora B to Control Microtubu Embryonic Cleavages. Developmental Cell, 2018, 45, 376-391.e5.	le Dynamics in	3.1	15
449	Fishing forward and reverse: Advances in zebrafish phenomics. Mechanisms of Develop 296-308.	ment, 2018, 154,	1.7	26
450	The nucleoside-diphosphate kinase NME3 associates with nephronophthisis proteins ar for ciliary function during renal development. Journal of Biological Chemistry, 2018, 293	nd is required 3, 15243-15255.	1.6	13
451	Multiplexed CRISPR/Cas9 Targeting of Genes Implicated in Retinal Regeneration and De Frontiers in Cell and Developmental Biology, 2018, 6, 88.	generation.	1.8	19
452	High doses of CRISPR/Cas9 ribonucleoprotein efficiently induce gene knockout with low the hydrozoan Clytia hemisphaerica through microhomology-mediated deletion. Scient 2018, 8, 11734.	<pre>w mosaicism in ific Reports,</pre>	1.6	33
453	Zebrafish as a Tool to Study Congenital Heart Diseases. , 2018, , 771-778.			0

#	Article	IF	CITATIONS
454	Suppression of metastasis through inhibition of chitinase 3-like 1 expression by miR-125a-3p-mediated up-regulation of USF1. Theranostics, 2018, 8, 4409-4428.	4.6	32
455	Functional analysis of a hypomorphic allele shows that MMP14 catalytic activity is the prime determinant of the Winchester syndrome phenotype. Human Molecular Genetics, 2018, 27, 2775-2788.	1.4	25
456	Generation of albino medaka (<i>Oryzias latipes</i>) by CRISPR/Cas9. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2018, 330, 242-246.	0.6	27
457	Scarless genome editing: progress towards understanding genotype–phenotype relationships. Current Genetics, 2018, 64, 1229-1238.	0.8	6
458	Zebrafish: Development of a Vertebrate Model Organism. Current Protocols in Essential Laboratory Techniques, 2018, 16, e19.	2.6	101
459	Guide RNA selection for CRISPR-Cas9 transfections in Plasmodium falciparum. International Journal for Parasitology, 2018, 48, 825-832.	1.3	22
460	Acute multi-sgRNA knockdown of KEOPS complex genes reproduces the microcephaly phenotype of the stable knockout zebrafish model. PLoS ONE, 2018, 13, e0191503.	1.1	18
461	Fish mutant, where is thy phenotype?. PLoS Genetics, 2018, 14, e1007197.	1.5	14
462	Knockout of tnni1b in zebrafish causes defects in atrioventricular valve development via the inhibition of the myocardial wnt signaling pathway. FASEB Journal, 2019, 33, 696-710.	0.2	12
463	Programmable activation of <i>Bombyx</i> gene expression using CRISPR/dCas9 fusion systems. Insect Science, 2019, 26, 983-990.	1.5	9
464	The CXCL12/CXCR4 Signaling Axis Retains Neutrophils at Inflammatory Sites in Zebrafish. Frontiers in Immunology, 2019, 10, 1784.	2.2	97
465	Precise Short Sequence Insertion in Zebrafish Using a CRISPR/Cas9 Approach to Generate a Constitutively Soluble Lrp2 Protein. Frontiers in Cell and Developmental Biology, 2019, 7, 167.	1.8	3
466	Modulation of Agrin and RhoA Pathways Ameliorates Movement Defects and Synapse Morphology in MYO9A-Depleted Zebrafish. Cells, 2019, 8, 848.	1.8	10
467	Shootins mediate collective cell migration and organogenesis of the zebrafish posterior lateral line system. Scientific Reports, 2019, 9, 12156.	1.6	6
468	Delay in development and behavioural abnormalities in the absence of p53 in zebrafish. PLoS ONE, 2019, 14, e0220069.	1.1	12
469	Subfertility and reduced progestin synthesis in Pgrmc2 knockout zebrafish. General and Comparative Endocrinology, 2019, 282, 113218.	0.8	17
470	The Progress of CRISPR/Cas9-Mediated Gene Editing in Generating Mouse/Zebrafish Models of Human Skeletal Diseases. Computational and Structural Biotechnology Journal, 2019, 17, 954-962.	1.9	23
471	Role of Reelin in cell positioning in the cerebellum and the cerebellum-like structure in zebrafish. Developmental Biology, 2019, 455, 393-408.	0.9	16

#	Article	IF	CITATIONS
472	Potential of Genome Editing to Improve Aquaculture Breeding and Production. Trends in Genetics, 2019, 35, 672-684.	2.9	125
473	The Novel Small Molecule TRVA242 Stabilizes Neuromuscular Junction Defects in Multiple Animal Models of Amyotrophic Lateral Sclerosis. Neurotherapeutics, 2019, 16, 1149-1166.	2.1	26
474	Production of non-mosaic genome edited porcine embryos by injection of CRISPR/Cas9 into germinal vesicle oocytes. Journal of Genetics and Genomics, 2019, 46, 335-342.	1.7	12
475	Avian Genomics in Ecology and Evolution. , 2019, , .		4
476	The Contribution of Genomics to Bird Conservation. , 2019, , 295-330.		5
477	Brd4 and P300 Confer Transcriptional Competency during Zygotic Genome Activation. Developmental Cell, 2019, 49, 867-881.e8.	3.1	108
478	Use of gene knockout to examine serotonergic control of ion uptake in zebrafish reveals the importance of controlling for genetic background: A cautionary tale. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 238, 110558.	0.8	4
479	A genome-wide assessment of the ancestral neural crest gene regulatory network. Nature Communications, 2019, 10, 4689.	5.8	46
480	Disruption of the pancreatic vasculature in zebrafish affects islet architecture and function. Development (Cambridge), 2019, 146, .	1.2	11
481	Model systems for regeneration: zebrafish. Development (Cambridge), 2019, 146, .	1.2	139
482	Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science, 2019, 366, 606-612.	6.0	621
483	CRISPR/Cas9-mediated editing of Δ5 and Δ6 desaturases impairs Δ8-desaturation and docosahexaenoic acid synthesis in Atlantic salmon (Salmo salar L.). Scientific Reports, 2019, 9, 16888.	1.6	25
484	In vivo analysis of renal epithelial cells in zebrafish. Methods in Cell Biology, 2019, 154, 163-181.	0.5	5
485	MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science, 2019, 366, .	6.0	342
486	How Methods of Molecular Biology Shape Our Understanding of the Hematopoietic System. Molecular Biology, 2019, 53, 626-637.	0.4	1
487	Zebrafish and Medaka: Two Teleost Models of T-Cell and Thymic Development. International Journal of Molecular Sciences, 2019, 20, 4179.	1.8	29
488	Generation of CRISPR-cas9 construct for knockout of genes encoding chromatin-associated proteins. Bulletin of the National Research Centre, 2019, 43, .	0.7	0
489	Nucleoporin 62-Like Protein is Required for the Development of Pharyngeal Arches through Regulation of Wnt/Ĵ²-Catenin Signaling and Apoptotic Homeostasis in Zebrafish. Cells, 2019, 8, 1038.	1.8	5

#	Article	IF	Citations
490	ECM alterations in Fndc3a (Fibronectin Domain Containing Protein 3A) deficient zebrafish cause temporal fin development and regeneration defects. Scientific Reports, 2019, 9, 13383.	1.6	8
491	Investigation of F-BAR domain PACSIN proteins uncovers membrane tubulation function in cilia assembly and transport. Nature Communications, 2019, 10, 428.	5.8	43
492	Knockout of Nr2e3 prevents rod photoreceptor differentiation and leads to selective L-/M-cone photoreceptor degeneration in zebrafish. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1273-1283.	1.8	26
493	AIBP-mediated cholesterol efflux instructs hematopoietic stem and progenitor cell fate. Science, 2019, 363, 1085-1088.	6.0	90
494	Degradation of endogenous proteins and generation of a null-like phenotype in zebrafish using Trim-Away technology. Genome Biology, 2019, 20, 19.	3.8	39
495	Dissecting metabolism using zebrafish models of disease. Biochemical Society Transactions, 2019, 47, 305-315.	1.6	17
496	A role for G protein-coupled receptor 137b in bone remodeling in mouse and zebrafish. Bone, 2019, 127, 104-113.	1.4	8
497	Fibroblast Growth Factor Receptors Function Redundantly During Zebrafish Embryonic Development. Genetics, 2019, 212, 1301-1319.	1.2	28
498	Construction of a sensitive pyrogenâ€ŧesting cell model by siteâ€specific knockâ€in of multiple genes. Biotechnology and Bioengineering, 2019, 116, 2652-2661.	1.7	1
499	Production of a mutant of large-scale loach Paramisgurnus dabryanus with skin pigmentation loss by genome editing with CRISPR/Cas9 system. Transgenic Research, 2019, 28, 341-356.	1.3	20
500	Agouti-Related Protein 2 Is a New Player in the Teleost Stress Response System. Current Biology, 2019, 29, 2009-2019.e7.	1.8	35
501	Viral Resistance and IFN Signaling in STAT2 Knockout Fish Cells. Journal of Immunology, 2019, 203, 465-475.	0.4	52
502	Positive Feedback Defines the Timing, Magnitude, and Robustness of Angiogenesis. Cell Reports, 2019, 27, 3139-3151.e5.	2.9	27
503	Involvement of BIG1 and BIG2 in regulating VEGF expression and angiogenesis. FASEB Journal, 2019, 33, 9959-9973.	0.2	7
504	The gene regulatory basis of genetic compensation during neural crest induction. PLoS Genetics, 2019, 15, e1008213.	1.5	34
506	Genome Editing in Zebrafish Using CRISPR-Cas9: Applications for Developmental Toxicology. Methods in Molecular Biology, 2019, 1965, 235-250.	0.4	2
507	CNDP1 knockout in zebrafish alters the amino acid metabolism, restrains weight gain, but does not protect from diabetic complications. Cellular and Molecular Life Sciences, 2019, 76, 4551-4568.	2.4	14
508	CRISPR/Cas9-mediated ablation of elovl2 in Atlantic salmon (Salmo salar L.) inhibits elongation of polyunsaturated fatty acids and induces Srebp-1 and target genes. Scientific Reports, 2019, 9, 7533.	1.6	60

#	Article	IF	CITATIONS
509	EGFR is required for Wnt9a–Fzd9b signalling specificity in haematopoietic stem cells. Nature Cell Biology, 2019, 21, 721-730.	4.6	42
510	The development of CRISPR for a mollusc establishes the formin <i>Lsdia1</i> as the long-sought gene for snail dextral/sinistral coiling. Development (Cambridge), 2019, 146, .	1.2	70
511	Removal of alleles by genome editing (RAGE) against deleterious load. Genetics Selection Evolution, 2019, 51, 14.	1.2	44
512	Rapid clearance of cellular debris by microglia limits secondary neuronal cell death after brain injury <i>in vivo</i> . Development (Cambridge), 2019, 146, .	1.2	82
513	Manipulation of Gene Function in Mexican Cavefish. Journal of Visualized Experiments, 2019, , .	0.2	41
514	Dnd1 Knockout in Sturgeons By CRISPR/Cas9 Generates Germ Cell Free Host for Surrogate Production. Animals, 2019, 9, 174.	1.0	34
515	Human IFT52 mutations uncover a novel role for the protein in microtubule dynamics and centrosome cohesion. Human Molecular Genetics, 2019, 28, 2720-2737.	1.4	23
516	Branch-restricted localization of phosphatase Prl-1 specifies axonal synaptogenesis domains. Science, 2019, 364, .	6.0	34
517	Anteroposterior patterning of the zebrafish ear through Fgf- and Hh-dependent regulation of hmx3a expression. PLoS Genetics, 2019, 15, e1008051.	1.5	17
518	Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease. Frontiers in Cell and Developmental Biology, 2019, 7, 13.	1.8	102
519	Intestinal Serum amyloid A suppresses systemic neutrophil activation and bactericidal activity in response to microbiota colonization. PLoS Pathogens, 2019, 15, e1007381.	2.1	54
520	Defective sarcomere assembly in <i>smyd1a</i> and <i>smyd1b</i> zebrafish mutants. FASEB Journal, 2019, 33, 6209-6225.	0.2	16
521	CRISPR-Cas: Converting A Bacterial Defence Mechanism into A State-of-the-Art Genetic Manipulation Tool. Antibiotics, 2019, 8, 18.	1.5	48
522	Knockout of von Willebrand factor in Zebrafish by <scp>CRISPR</scp> /Cas9 mutagenesis. British Journal of Haematology, 2019, 186, e76-e80.	1.2	8
523	Loss of atrx cooperates with p53-deficiency to promote the development of sarcomas and other malignancies. PLoS Genetics, 2019, 15, e1008039.	1.5	37
524	NIPSNAP1 and NIPSNAP2 Act as "Eat Me―Signals for Mitophagy. Developmental Cell, 2019, 49, 509-525.e1	2.3.1	104
525	Zebrafish Klf4 maintains the ionocyte progenitor population by regulating epidermal stem cell proliferation and lateral inhibition. PLoS Genetics, 2019, 15, e1008058.	1.5	16
526	Adamts9 is necessary for ovarian development in zebrafish. General and Comparative Endocrinology, 2019, 277, 130-140.	0.8	16

#	Article	IF	CITATIONS
527	GPCR-independent activation of G proteins promotes apical cell constriction in vivo. Journal of Cell Biology, 2019, 218, 1743-1763.	2.3	21
528	Loss-of-function approaches in comparative physiology: is there a future for knockdown experiments in the era of genome editing?. Journal of Experimental Biology, 2019, 222, .	0.8	47
529	Neutrophil plays critical role during Edwardsiella piscicida immersion infection in zebrafish larvae. Fish and Shellfish Immunology, 2019, 87, 565-572.	1.6	26
530	GRIK5 Genetically Regulated Expression Associated with Eye and Vascular Phenomes: Discovery through Iteration among Biobanks, Electronic Health Records, and Zebrafish. American Journal of Human Genetics, 2019, 104, 503-519.	2.6	21
531	Rab33a and Rab33ba mediate the outgrowth of forebrain commissural axons in the zebrafish brain. Scientific Reports, 2019, 9, 1799.	1.6	10
532	Creating cell and animal models of human disease by genome editing using CRISPR/Cas9. Journal of Gene Medicine, 2019, 21, e3082.	1.4	36
533	The HMG box transcription factors Sox1a and b specify a new class of glycinergic interneurons in the spinal cord of zebrafish embryos. Development (Cambridge), 2019, 146, .	1.2	20
534	Combinatorial genetic replenishments in myocardial and outflow tract tissues restore heart function in <i>tnnt2</i> mutant zebrafish. Biology Open, 2019, 8, .	0.6	7
535	Maintenance of Melanocyte Stem Cell Quiescence by GABA-A Signaling in Larval Zebrafish. Genetics, 2019, 213, 555-566.	1.2	7
536	<i>De novo</i> genesis of retinal ganglion cells by targeted expression of <i>Klf4 in vivo</i> . Development (Cambridge), 2019, 146, .	1.2	18
537	Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish. Journal of Lipid Research, 2019, 60, 1851-1867.	2.0	29
538	Highly Efficient CRISPR-Cas9-Based Methods for Generating Deletion Mutations and F0 Embryos that Lack Gene Function in Zebrafish. Developmental Cell, 2019, 51, 645-657.e4.	3.1	188
539	Reassessing the contribution of the Na+/H+ exchanger Nhe3b to Na+ uptake in zebrafish (<i>Danio) Tj ETQq0 0 (</i>) rgBT /Ov	erlock 10 Tf !
540	Expanding the CRISPR Toolbox with ErCas12a in Zebrafish and Human Cells. CRISPR Journal, 2019, 2, 417-433.	1.4	35
541	Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation. Science Translational Medicine, 2019, 11, .	5.8	51
542	Interaction of Axonal Chondrolectin with Collagen XIXa1 Is Necessary for Precise Neuromuscular Junction Formation. Cell Reports, 2019, 29, 1082-1098.e10.	2.9	13
543	The Zebrafish (Danio rerio) Is a Relevant Model for Studying Sex-Specific Effects of 17β-Estradiol in the Adult Heart. International Journal of Molecular Sciences, 2019, 20, 6287.	1.8	13
544	A New Zebrafish Model for CACNA2D4-Dysfunction. , 2019, 60, 5124.		11

#	Article	IF	CITATIONS
545	Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25214-25221.	3.3	54
546	ASIP disruption via CRISPR/Cas9 system induces black patches dispersion in Oujiang color common carp. Aquaculture, 2019, 498, 230-235.	1.7	24
547	Zebrafish as a model system to delineate the role of heme and iron metabolism during erythropoiesis. Molecular Genetics and Metabolism, 2019, 128, 204-212.	0.5	18
548	An <i>LDHa</i> single allele CHO cell mutant exhibits altered metabolic state and enhanced culture performance. Journal of Chemical Technology and Biotechnology, 2019, 94, 1488-1498.	1.6	5
549	Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny. Science China Life Sciences, 2019, 62, 1194-1202.	2.3	38
550	ROBO4 variants predispose individuals to bicuspid aortic valve and thoracic aortic aneurysm. Nature Genetics, 2019, 51, 42-50.	9.4	101
551	Models to investigate intussusceptive angiogenesis: A special note on CRISPR/Cas9 based system in zebrafish. International Journal of Biological Macromolecules, 2019, 123, 1229-1240.	3.6	12
552	Loss of zebrafish Ataxin-7, a SAGA subunit responsible for SCA7 retinopathy, causes ocular coloboma and malformation of photoreceptors. Human Molecular Genetics, 2019, 28, 912-927.	1.4	12
553	Neuromuscular junction abnormalities in a zebrafish loss-of-function model of TDP-43. Journal of Neurophysiology, 2019, 121, 285-297.	0.9	23
554	The Zebrafish as an Emerging Model to Study DNA Damage in Aging, Cancer and Other Diseases. Frontiers in Cell and Developmental Biology, 2018, 6, 178.	1.8	28
555	Programmable Molecular Scissors: Applications of a New Tool for Genome Editing in Biotech. Molecular Therapy - Nucleic Acids, 2019, 14, 212-238.	2.3	41
556	Mosaicism in CRISPR/Cas9-mediated genome editing. Developmental Biology, 2019, 445, 156-162.	0.9	169
557	Hematopoietic and neural crest defects in zebrafish <i>shoc2</i> mutants: a novel vertebrate model for Noonan-like syndrome. Human Molecular Genetics, 2019, 28, 501-514.	1.4	12
558	Zebrafish as a model for kidney function and disease. Pediatric Nephrology, 2019, 34, 751-762.	0.9	61
559	Pathogenic variants in E3 ubiquitin ligase RLIM/RNF12 lead to a syndromic X-linked intellectual disability and behavior disorder. Molecular Psychiatry, 2019, 24, 1748-1768.	4.1	26
560	Tailored chromatin modulation to promote tissue regeneration. Seminars in Cell and Developmental Biology, 2020, 97, 3-15.	2.3	10
561	ARHGEF12 regulates erythropoiesis and is involved in erythroid regeneration after chemotherapy in acute lymphoblastic leukemia patients. Haematologica, 2020, 105, 925-936.	1.7	19
562	Applications of genome editing in farm animals. , 2020, , 131-149.		5

# 563	ARTICLE Concepts and potential applications of gene editing in aquaculture. , 2020, , 249-270.	IF	Citations 0
564	Highly Combinatorial Genetic Interaction Analysis Reveals a Multi-Drug Transporter Influence Network. Cell Systems, 2020, 10, 25-38.e10.	2.9	18
565	Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production: A review. Renewable Energy, 2020, 149, 1107-1119.	4.3	59
566	Zebrafish <i>etv2</i> knockâ€in line labels vascular endothelial and blood progenitor cells. Developmental Dynamics, 2020, 249, 245-261.	0.8	10
567	Brain transcriptome profile after CRISPR-induced ghrelin mutations in zebrafish. Fish Physiology and Biochemistry, 2020, 46, 1-21.	0.9	5
568	The Impact of CRISPR-Cas9 on Age-related Disorders: From Pathology to Therapy. , 2020, 11, 895.		8
569	Potential adverse effect of tyrosinase inhibitors on teleosts:A review. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 228, 108655.	1.3	11
570	Creation of zebrafish knockâ€in reporter lines in the nefma gene by Cas9â€mediated homologous recombination. Genesis, 2020, 58, e23340.	0.8	9
571	RNAâ€binding protein PUM2 regulates mesenchymal stem cell fate via repression of JAK2 and RUNX2 mRNAs. Journal of Cellular Physiology, 2020, 235, 3874-3885.	2.0	17
572	Noonan syndromeâ€associated biallelic <i>LZTR1</i> mutations cause cardiac hypertrophy and vascular malformations in zebrafish. Molecular Genetics & Genomic Medicine, 2020, 8, e1107.	0.6	8
573	The Zebrafish Cardiovascular System. , 2020, , 131-143.		2
574	Endocrine Systems. , 2020, , 165-179.		0
575	Zebrafish as a Model to Understand Human Genetic Diseases. , 2020, , 619-626.		4
576	Targeted Editing of Zebrafish Genes to Understand Gene Function and Human Disease Pathology. , 2020, , 637-647.		3
577	CRISPR-Generated Nrf2a Loss- and Gain-of-Function Mutants Facilitate Mechanistic Analysis of Chemical Oxidative Stress-Mediated Toxicity in Zebrafish. Chemical Research in Toxicology, 2020, 33, 426-435.	1.7	8
578	Transcriptomic Analyses of Inner Ear Sensory Epithelia in Zebrafish. Anatomical Record, 2020, 303, 527-543.	0.8	8
579	Midkine-a Is Required for Cell Cycle Progression of Müller Glia during Neuronal Regeneration in the Vertebrate Retina. Journal of Neuroscience, 2020, 40, 1232-1247.	1.7	30
580	CRISPR/Cas9-mediated deletion of one carotenoid isomerooxygenase gene (EcNinaB-X1) from Exopalaemon carinicauda. Fish and Shellfish Immunology, 2020, 97, 421-431.	1.6	8

#	Article	IF	CITATIONS
581	TGF-Î ² Signaling Promotes Tissue Formation during Cardiac Valve Regeneration in Adult Zebrafish. Developmental Cell, 2020, 52, 9-20.e7.	3.1	31
582	Gnrh3 Regulates PGC Proliferation and Sex Differentiation in Developing Zebrafish. Endocrinology, 2020, 161, .	1.4	25
583	Elevated 4-hydroxynonenal induces hyperglycaemia via Aldh3a1 loss in zebrafish and associates with diabetes progression in humans. Redox Biology, 2020, 37, 101723.	3.9	36
584	Deletion of morpholino binding sites (DeMOBS) to assess specificity of morphant phenotypes. Scientific Reports, 2020, 10, 15366.	1.6	3
585	Disruption of mstna and mstnb gene through CRISPR/Cas9 leads to elevated muscle mass in blunt snout bream (Megalobrama amblycephala). Aquaculture, 2020, 528, 735597.	1.7	27
586	BE4max and AncBE4max Are Efficient in Germline Conversion of C:G to T:A Base Pairs in Zebrafish. Cells, 2020, 9, 1690.	1.8	16
587	Translating GWAS-identified loci for cardiac rhythm and rate using an in vivo image- and CRISPR/Cas9-based approach. Scientific Reports, 2020, 10, 11831.	1.6	12
588	Application of CRISPR/Cas9 Nuclease in Amphioxus Genome Editing. Genes, 2020, 11, 1311.	1.0	10
589	Zebrafish Photoreceptor Degeneration and Regeneration Research to Understand Hereditary Human Blindness. , 2020, , .		3
590	Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts. Frontiers in Molecular Neuroscience, 2020, 13, 575575.	1.4	32
591	Improving CRISPR/Cas9 mutagenesis efficiency by delaying the early development of zebrafish embryos. Scientific Reports, 2020, 10, 21023.	1.6	3
592	CRISPR-Cas13d Induces Efficient mRNA Knockdown in Animal Embryos. Developmental Cell, 2020, 54, 805-817.e7.	3.1	134
593	Genetic Engineering of Zebrafish in Cancer Research. Cancers, 2020, 12, 2168.	1.7	30
594	The role of TASK-2 channels in CO ₂ sensing in zebrafish (<i>Danio rerio</i>). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 319, R329-R342.	0.9	6
595	Ccny knockout mice display an enhanced susceptibility to kainic acid-induced epilepsy. Pharmacological Research, 2020, 160, 105100.	3.1	5
596	In vivo cell biological screening identifies an endocytic capture mechanism for T-tubule formation. Nature Communications, 2020, 11, 3711.	5.8	30
597	Functional genetic analysis in a jawless vertebrate, the sea lamprey: insights into the developmental evolution of early vertebrates. Journal of Experimental Biology, 2020, 223, .	0.8	13
598	Modular genetic control of social status in a cichlid fish. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28167-28174.	3.3	48

#	Article	IF	CITATIONS
599	Dual Oxidase Mutant Retards Mauthner-Cell Axon Regeneration at an Early Stage via Modulating Mitochondrial Dynamics in Zebrafish. Neuroscience Bulletin, 2020, 36, 1500-1512.	1.5	10
600	Rescue of germ cells in dnd crispant embryos opens the possibility to produce inherited sterility in Atlantic salmon. Scientific Reports, 2020, 10, 18042.	1.6	40
601	A cell cycle-dependent CRISPR-Cas9 activation system based on an anti-CRISPR protein shows improved genome editing accuracy. Communications Biology, 2020, 3, 601.	2.0	23
602	The NEMP family supports metazoan fertility and nuclear envelope stiffness. Science Advances, 2020, 6, eabb4591.	4.7	11
603	Gene Editing: A Tool for Tackling Cephalopod Biology. Current Biology, 2020, 30, R986-R988.	1.8	1
604	Molecular Motors: Kif14's Disordered Dongle. Current Biology, 2020, 30, R988-R991.	1.8	1
605	Elovl2 But Not Elovl5 Is Essential for the Biosynthesis of Docosahexaenoic Acid (DHA) in Zebrafish: Insight from a Comparative Gene Knockout Study. Marine Biotechnology, 2020, 22, 613-619.	1.1	24
606	Localised Collagen2a1 secretion supports lymphatic endothelial cell migration in the zebrafish embryo. Development (Cambridge), 2020, 147, .	1.2	7
607	Physiological impact and comparison of mutant screening methods in piwil2 KO founder Nile tilapia produced by CRISPR/Cas9 system. Scientific Reports, 2020, 10, 12600.	1.6	18
608	Teleological Role of L-2-Hydroxyglutarate Dehydrogenase in the Kidney. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	8
609	Breast Cancer Stem Cells: Biomarkers, Identification and Isolation Methods, Regulating Mechanisms, Cellular Origin, and Beyond. Cancers, 2020, 12, 3765.	1.7	55
610	Assessment of Autism Zebrafish Mutant Models Using a High-Throughput Larval Phenotyping Platform. Frontiers in Cell and Developmental Biology, 2020, 8, 586296.	1.8	10
611	Zebrafish models of acute leukemias: Current models and future directions. Wiley Interdisciplinary Reviews: Developmental Biology, 2021, 10, e400.	5.9	7
612	Autophagy Is Required for Maturation of Surfactant-Containing Lamellar Bodies in the Lung and Swim Bladder. Cell Reports, 2020, 33, 108477.	2.9	25
613	RNA-seq analysis and compound screening highlight multiple signalling pathways regulating secondary cell death after acute CNS injury in vivo. Biology Open, 2020, 9, .	0.6	4
614	The Genetic Basis of Morphological Diversity in Domesticated Goldfish. Current Biology, 2020, 30, 2260-2274.e6.	1.8	52
615	Heat-shock-induced tyrosinase gene ablation with CRISPR in zebrafish. Molecular Genetics and Genomics, 2020, 295, 911-922.	1.0	11
616	Zebrafish models of skeletal dysplasia induced by cholesterol biosynthesis deficiency. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	6

# 617	ARTICLE Acute and chronic alcohol effects in zebrafish. , 2020, , 325-341.	IF	CITATIONS
618	Complexity of Detecting CRISPR/Cas9-Mediated Homologous Recombination in Zebrafish. Molecular Biology, 2020, 54, 382-390.	0.4	0
619	Thyroid hormone receptor beta mutations alter photoreceptor development and function in Danio rerioÂ(zebrafish). PLoS Genetics, 2020, 16, e1008869.	1.5	28
620	Pseudouridylation defect due to <i>DKC1</i> and <i>NOP10</i> mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15137-15147.	3.3	32
621	Selective breeding of edible bivalves and its implication of global climate change. Reviews in Aquaculture, 2020, 12, 2559-2572.	4.6	49
622	Zebrafish rbm8a and magoh mutants reveal EJC developmental functions and new 3′UTR intron-containing NMD targets. PLoS Genetics, 2020, 16, e1008830.	1.5	20
623	Impaired oocyte maturation and ovulation in membrane progestin receptor (mPR) knockouts in zebrafish. Molecular and Cellular Endocrinology, 2020, 511, 110856.	1.6	15
624	Genome engineering in insects: focus on the CRISPR/Cas9 system. , 2020, , 219-249.		11
625	Activation of Retinal Angiogenesis in Hyperglycemic <i>pdx1 â^'/â^'</i> Zebrafish Mutants. Diabetes, 2020, 69, 1020-1031.	0.3	30
626	Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Lightâ€Activated Guide RNA. Angewandte Chemie - International Edition, 2020, 59, 8998-9003.	7.2	90
627	Beneficial effects of LRP6-CRISPR on prevention of alcohol-related liver injury surpassed fecal microbiota transplant in a rat model. Gut Microbes, 2020, 11, 1015-1029.	4.3	29
628	Generating Stable Knockout Zebrafish Lines by Deleting Large Chromosomal Fragments Using Multiple gRNAs. G3: Genes, Genomes, Genetics, 2020, 10, 1029-1037.	0.8	14
629	Crtap and p3h1 knock out zebrafish support defective collagen chaperoning as the cause of their osteogenesis imperfecta phenotype. Matrix Biology, 2020, 90, 40-60.	1.5	28
630	Gonadotropin-releasing hormone neuron development in vertebrates. General and Comparative Endocrinology, 2020, 292, 113465.	0.8	17
631	Genetic compensation in a stable slc25a46 mutant zebrafish: A case for using F0 CRISPR mutagenesis to study phenotypes caused by inherited disease. PLoS ONE, 2020, 15, e0230566.	1.1	39
632	BMP Signaling Gradient Scaling in the Zebrafish Pectoral Fin. Cell Reports, 2020, 30, 4292-4302.e7.	2.9	35
633	Assessing intracellular pH regulation in H+-ATPase-rich ionocytes in zebrafish larvae using <i>in vivo</i> ratiometric imaging. Journal of Experimental Biology, 2020, 223, .	0.8	5
634	Chitinase 3 like 1 suppresses the stability and activity of p53 to promote lung tumorigenesis. Cell Communication and Signaling, 2020, 18, 5.	2.7	12

#	Article	IF	CITATIONS
635	A method for CRISPR/Cas9 mutation of genes in fathead minnow (Pimephales promelas). Aquatic Toxicology, 2020, 222, 105464.	1.9	7
636	CRISPR/Cas9â€Based Genome Editing Using Rice Zygotes. Current Protocols in Plant Biology, 2020, 5, e20111.	2.8	11
637	Defining endogenous barcoding sites for CRISPR/Cas9-based cell lineage tracing in zebrafish. Journal of Genetics and Genomics, 2020, 47, 85-91.	1.7	8
638	Generation and Characterization of a CRISPR/Cas9—Induced 3-mst Deficient Zebrafish. Biomolecules, 2020, 10, 317.	1.8	5
639	Zebrafish Pax1a and Pax1b are required for pharyngeal pouch morphogenesis and ceratobranchial cartilage development. Mechanisms of Development, 2020, 161, 103598.	1.7	8
640	The nuclear gene rpl18 regulates erythroid maturation via JAK2-STAT3 signaling in zebrafish model of Diamond–Blackfan anemia. Cell Death and Disease, 2020, 11, 135.	2.7	10
641	Synthetic CRISPR/Cas9 reagents facilitate genome editing and homology directed repair. Nucleic Acids Research, 2020, 48, e38-e38.	6.5	34
642	Feed, Microbiota, and Gut Immunity: Using the Zebrafish Model to Understand Fish Health. Frontiers in Immunology, 2020, 11, 114.	2.2	142
643	Vertebrate diapause preserves organisms long term through Polycomb complex members. Science, 2020, 367, 870-874.	6.0	79
644	Nfatc1 Promotes Interstitial Cell Formation During Cardiac Valve Development in Zebrafish. Circulation Research, 2020, 126, 968-984.	2.0	27
645	MultiFRAGing: Rapid and Simultaneous Genotyping of Multiple Alleles in a Single Reaction. Scientific Reports, 2020, 10, 3172.	1.6	3
646	Small fish, big prospects: using zebrafish to unravel the mechanisms of hereditary hearing loss. Hearing Research, 2020, 397, 107906.	0.9	20
647	Unique and non-redundant function of <i>csf1r</i> paralogues in regulation and evolution of post-embryonic development of the zebrafish. Development (Cambridge), 2020, 147, .	1.2	23
648	Chromatin accessibility established by Pou5f3, Sox19b and Nanog primes genes for activity during zebrafish genome activation. PLoS Genetics, 2020, 16, e1008546.	1.5	59
649	CRISPR/Cas9-mediated precise genome modification by a long ssDNA template in zebrafish. BMC Genomics, 2020, 21, 67.	1.2	45
650	Considerations in adapting CRISPR/Cas9 in nongenetic model plant systems. Applications in Plant Sciences, 2020, 8, e11314.	0.8	56
651	Generation of albino via SLC45a2 gene targeting by CRISPR/Cas9 in the marine medaka Oryzias melastigma. Marine Pollution Bulletin, 2020, 154, 111038.	2.3	11
652	Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Lightâ€Activated Guide RNA. Angewandte Chemie, 2020, 132, 9083-9088.	1.6	23

#	Article	IF	CITATIONS
653	The genetic bases of physiological processes in fish. , 2020, , 49-74.		1
654	Gene disruption of medaka (Oryzias latipes) orthologue for mammalian tissue-type transglutaminase (TG2) causes movement retardation. Journal of Biochemistry, 2020, 168, 213-222.	0.9	4
655	Livestock Gene Editing by One-step Embryo Manipulation. Journal of Equine Veterinary Science, 2020, 89, 103025.	0.4	22
656	Wnt-PLC-IP3-Connexin-Ca2+ axis maintains ependymal motile cilia in zebrafish spinal cord. Nature Communications, 2020, 11, 1860.	5.8	30
657	Deficiency in the endocytic adaptor proteins PHETA1/2 impair renal and craniofacial development. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	7
658	The CRISPR/Cas system in zebrafish. , 2020, , 293-307.		2
659	Seizures and epilepsy. , 2020, , 413-432.		1
660	Sox9a, not sox9b is required for normal cartilage development in zebrafish. Aquaculture and Fisheries, 2021, 6, 254-259.	1.2	1
661	<i>gdnf</i> affects early diencephalic dopaminergic neuron development through regulation of differentiationâ€associated transcription factors in zebrafish. Journal of Neurochemistry, 2021, 156, 481-498.	2.1	7
663	Deletion of interleukin enhancer binding factor 2 (ILF2) resulted in defective biliary development and bile flow blockage. Journal of Pediatric Surgery, 2021, 56, 352-359.	0.8	5
664	Bi-FoRe: an efficient bidirectional knockin strategy to generate pairwise conditional alleles with fluorescent indicators. Protein and Cell, 2021, 12, 39-56.	4.8	9
665	Disruption of tph1 genes demonstrates the importance of serotonin in regulating ventilation in larval zebrafish (Danio rerio). Respiratory Physiology and Neurobiology, 2021, 285, 103594.	0.7	11
666	Stepwise crosstalk between aberrant Nf1, Tp53 and Rb signalling pathways induces gliomagenesis in zebrafish. Brain, 2021, 144, 615-635.	3.7	6
667	A Neurexin2aa deficiency results in axon pathfinding defects and increased anxiety in zebrafish. Human Molecular Genetics, 2021, 29, 3765-3780.	1.4	15
668	Expansion of the CRISPR/Cas Genome-Sculpting Toolbox: Innovations, Applications and Challenges. Molecular Diagnosis and Therapy, 2021, 25, 41-57.	1.6	9
669	Deploying MMEJ using MENdel in precision gene editing applications for gene therapy and functional genomics. Nucleic Acids Research, 2021, 49, 67-78.	6.5	8
670	Zebrafish Cdx1b modulates epithalamic asymmetry by regulating ndr2 and lft1 expression. Developmental Biology, 2021, 470, 21-36.	0.9	4
671	Pairing of segmentation clock genes drives robust pattern formation. Nature, 2021, 589, 431-436.	13.7	28

	Citation Rei	PORT	
Article		IF	Citations
Deletion of <i>SREBF1,</i> a Functional Bone-Muscle Pleiotropic Gene, Alters Bone Densi Signaling in Zebrafish. Endocrinology, 2021, 162, .	ity and Lipid	1.4	13
Use of a carbonic anhydrase Ca17a knockout to investigate mechanisms of ion uptake in (<i>Danio rerio</i>). American Journal of Physiology - Regulatory Integrative and Compara Physiology, 2021, 320, R55-R68.	zebrafish ative	0.9	6
Developmental delay during eye morphogenesis underlies optic cup and neurogenesis de <i>mab21l2^{u517}</i> zebrafish mutants. International Journal of Developme 2021, 65, 289-299.	fects in Intal Biology,	0.3	7
Mechanisms and significance of microglia–axon interactions in physiological and pathc conditions. Cellular and Molecular Life Sciences, 2021, 78, 3907-3919.	pphysiological	2.4	7
Identification and Characterization of Zebrafish Tlr4 Coreceptor Md-2. Journal of Immuno 206, 1046-1057.	logy, 2021,	0.4	19
Goldfish as an Experimental Model. , 2021, , 17-44.			0
The X-linked acrogigantism-associated gene gpr101 is a regulator of early embryonic deve growth in zebrafish. Molecular and Cellular Endocrinology, 2021, 520, 111091.	elopment and	1.6	7
Zebrafish as a model system to evaluate the safety and toxicity of nutraceuticals. , 2021,	, 395-409.		0
Zebrafish: A Model Organism for Studying Enteric Nervous System Development and Dise in Cell and Developmental Biology, 2020, 8, 629073.	ease. Frontiers	1.8	27
An introduction and use of the CRISPR-Cas systems. Progress in Molecular Biology and Tr Science, 2021, 179, 1-10.	ranslational	0.9	1
Approach for in vivo delivery of CRISPR/Cas system: a recent update and future prospect. Molecular Life Sciences, 2021, 78, 2683-2708.	Cellular and	2.4	29
GeneWeld: Efficient Targeted Integration Directed by Short Homology in Zebrafish. Bio-pi 11, e4100.	rotocol, 2021,	0.2	11
The MITF paralog tfec is required in neural crest development for fate specification of the lineage from a multipotent pigment cell progenitor. PLoS ONE, 2021, 16, e0244794.	iridophore	1.1	30
A simple and effective F0 knockout method for rapid screening of behaviour and other cc phenotypes. ELife, 2021, 10, .	omplex	2.8	131
Multigene editing: current approaches and beyond. Briefings in Bioinformatics, 2021, 22,	···	3.2	3
Problems, Challenges, and Perspectives. , 2021, , 225-248.			0

690	Cre-Controlled CRISPR mutagenesis provides fast and easy conditional gene inactivation in zebrafish. Nature Communications, 2021, 12, 1125.	5.8	29
691	From Stripes to a Beating Heart: Early Cardiac Development in Zebrafish. Journal of Cardiovascular Development and Disease, 2021, 8, 17.	0.8	20

#

#	Article	IF	CITATIONS
692	SATB2 induction of a neural crest mesenchyme-like program drives melanoma invasion and drug resistance. ELife, 2021, 10, .	2.8	9
694	Insulin-like 3 affects zebrafish spermatogenic cells directly and via Sertoli cells. Communications Biology, 2021, 4, 204.	2.0	11
695	Benefits of Zebrafish Xenograft Models in Cancer Research. Frontiers in Cell and Developmental Biology, 2021, 9, 616551.	1.8	34
696	A switch in pdgfrb cell-derived ECM composition prevents inhibitory scarring and promotes axon regeneration in the zebrafish spinal cord. Developmental Cell, 2021, 56, 509-524.e9.	3.1	40
697	Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies. Nature Communications, 2021, 12, 771.	5.8	56
698	The recycling endosome protein Rab25 coordinates collective cell movements in the zebrafish surface epithelium. ELife, 2021, 10, .	2.8	9
699	New pathogenic variants in COQ4 cause ataxia and neurodevelopmental disorder without detectable CoQ10 deficiency in muscle or skin fibroblasts. Journal of Neurology, 2021, 268, 3381-3389.	1.8	17
701	Efficient CRISPR/Cas9 mutagenesis for neurobehavioral screening in adult zebrafish. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	17
702	Zebrafish as a Neuroblastoma Model: Progress Made, Promise for the Future. Cells, 2021, 10, 580.	1.8	7
703	A chromosome-level genome of Astyanax mexicanus surface fish for comparing population-specific genetic differences contributing to trait evolution. Nature Communications, 2021, 12, 1447.	5.8	60
704	How Zebrafish Can Drive the Future of Genetic-based Hearing and Balance Research. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 215-235.	0.9	17
706	Metabolic rerouting via SCD1 induction impacts X-linked adrenoleukodystrophy. Journal of Clinical Investigation, 2021, 131, .	3.9	17
707	Development and characterization of in vitro self-assembled recombinant human follicle stimulating hormone originated from goat mammary epithelial cells. Molecular and Cellular Endocrinology, 2021, 526, 111211.	1.6	0
708	An efficient vector-based CRISPR/Cas9 system in an Oreochromis mossambicus cell line using endogenous promoters. Scientific Reports, 2021, 11, 7854.	1.6	12
709	ZebraShare: a new venue for rapid dissemination of zebrafish mutant data. PeerJ, 2021, 9, e11007.	0.9	0
710	CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells. Nature Biotechnology, 2022, 40, 189-193.	9.4	118
711	CRISPR gRNA phenotypic screening in zebrafish reveals pro-regenerative genes in spinal cord injury. PLoS Genetics, 2021, 17, e1009515.	1.5	36
712	The <i>alx3</i> gene shapes the zebrafish neurocranium by regulating frontonasal neural crest cell differentiation timing. Development (Cambridge), 2021, 148, .	1.2	19

#	Article	IF	CITATIONS
713	CRISPR/Cas9 mutagenesis reveals a role for ABCB1 in gut immune responses to <i>Vibrio diazotrophicus</i> in sea urchin larvae. Journal of Experimental Biology, 2021, 224, .	0.8	15
714	Generation of cd63-deficient zebrafish to analyze the role of cd63 in viral infection. Fish and Shellfish Immunology, 2021, 111, 152-159.	1.6	4
715	Simultaneous knockout of multiple <i>LHCF</i> genes using single sgRNAs and engineering of a highâ€fidelity Cas9 for precise genome editing in marine algae. Plant Biotechnology Journal, 2021, 19, 1658-1669.	4.1	19
716	A non-canonical type 2 immune response coordinates tuberculous granuloma formation and epithelialization. Cell, 2021, 184, 1757-1774.e14.	13.5	63
718	The Great Capacity on Promoting Melanogenesis of Three Compatible Components in Vernonia anthelmintica (L.) Willd International Journal of Molecular Sciences, 2021, 22, 4073.	1.8	11
719	Sfxn1 is essential for erythrocyte maturation via facilitating hemoglobin production in zebrafish. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166096.	1.8	4
720	CRISPR Screens in Toxicology Research: An Overview. Current Protocols, 2021, 1, e136.	1.3	5
721	New gene discoveries in skeletal diseases with short stature. Endocrine Connections, 2021, 10, R160-R174.	0.8	7
723	Molecular Paraphernalia. , 2021, , 111-140.		0
724	Abortive intussusceptive angiogenesis causes multi-cavernous vascular malformations. ELife, 2021, 10,	2.8	8
726	Variation in phenotypes from a Bmp-Gata3 genetic pathway is modulated by Shh signaling. PLoS Genetics, 2021, 17, e1009579.	1.5	5
727	foxm1 Modulates Cell Non-Autonomous Response in Zebrafish Skeletal Muscle Homeostasis. Cells, 2021, 10, 1241.	1.8	8
728	Fish pigmentation and coloration: Molecular mechanisms and aquaculture perspectives. Reviews in Aquaculture, 2021, 13, 2395-2412.	4.6	48
729	Slit2 is necessary for optic axon organization in the zebrafish ventral midline. Cells and Development, 2021, 166, 203677.	0.7	7
730	CRISPR-Mediated Endogenous Activation of Fibroin Heavy Chain Gene Triggers Cellular Stress Responses in Bombyx mori Embryonic Cells. Insects, 2021, 12, 552.	1.0	5
731	Zebrafish <i>mbnl</i> mutants model physical and molecular phenotypes of myotonic dystrophy. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	7
733	Single-cell ATAC-seq reveals GATA2-dependent priming defect in myeloid and a maturation bottleneck in lymphoid lineages. Blood Advances, 2021, 5, 2673-2686.	2.5	17
735	FAM19A5l Affects Mustard Oil-Induced Peripheral Nociception in Zebrafish. Molecular Neurobiology, 2021, 58, 4770-4785.	1.9	7

#	Article	IF	CITATIONS
738	Manipulation of the Tyrosinase gene permits improved CRISPR/Cas editing and neural imaging in cichlid fish. Scientific Reports, 2021, 11, 15138.	1.6	17
739	Transient, flexible gene editing in zebrafish neutrophils and macrophages for determination of cell-autonomous functions. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	11
740	Zebrafish mutants provide insights into Apolipoprotein B functions during embryonic development and pathological conditions. JCI Insight, 2021, 6, .	2.3	9
743	Spiny and soft-rayed fin domains in acanthomorph fish are established through a BMP- <i>gremlin</i> - <i>shh</i> signaling network. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
744	Fli1 ⁺ cells transcriptional analysis reveals an Lmo2–Prdm16 axis in angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
745	Repeated evolution of circadian clock dysregulation in cavefish populations. PLoS Genetics, 2021, 17, e1009642.	1.5	29
746	An insight on established retinal injury mechanisms and prevalent retinal stem cell activation pathways in vertebrate models. Animal Models and Experimental Medicine, 2021, 4, 189-203.	1.3	7
747	Pioneer neutrophils release chromatin within in vivo swarms. ELife, 2021, 10, .	2.8	36
748	Identification of maternal-effect genes in zebrafish using maternal crispants. Development (Cambridge), 2021, 148, .	1.2	7
749	Vesicular monoamine transporter 2 (SLC18A2) regulates monoamine turnover and brain development in zebrafish. Acta Physiologica, 2022, 234, e13725.	1.8	14
750	δ-Protocadherins regulate neural progenitor cell division by antagonizing Ryk and Wnt/β-catenin signaling. IScience, 2021, 24, 102932.	1.9	6
751	Foxm1 regulates neural progenitor fate during spinal cord regeneration. EMBO Reports, 2021, 22, e50932.	2.0	9
752	Gene co-expression network analysis reveals mechanisms underlying ozone-induced carbamazepine toxicity in zebrafish (Danio rerio) embryos. Chemosphere, 2021, 276, 130282.	4.2	7
753	Genome Editing in Zebrafish by ScCas9 Recognizing NNG PAM. Cells, 2021, 10, 2099.	1.8	1
755	Expansion of targetable sites for the ribonucleoprotein-based CRISPR/Cas9 system in the silkworm Bombyx mori. BMC Biotechnology, 2021, 21, 54.	1.7	3
756	Ttc30a affects tubulin modifications in a model for ciliary chondrodysplasia with polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
757	CNS Hypomyelination Disrupts Axonal Conduction and Behavior in Larval Zebrafish. Journal of Neuroscience, 2021, 41, 9099-9111.	1.7	10
759	Deletion of lrrk2 causes early developmental abnormalities and age-dependent increase of monoamine catabolism in the zebrafish brain. PLoS Genetics, 2021, 17, e1009794.	1.5	5

#	Article	IF	CITATIONS
760	Zonular defects in <i>loxl1</i> â€deficient zebrafish. Clinical and Experimental Ophthalmology, 2022, 50, 62-73.	1.3	2
762	Pipeline for generating stable large genomic deletions in zebrafish, from small domains to whole gene excisions. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	3
763	Differential Requirement of Gata2a and Gata2b for Primitive and Definitive Myeloid Development in Zebrafish. Frontiers in Cell and Developmental Biology, 2021, 9, 708113.	1.8	5
764	Progress in Gene-Editing Technology of Zebrafish. Biomolecules, 2021, 11, 1300.	1.8	12
765	Leptin system loss of function in the absence of obesity in zebrafish. Journal of Endocrinology, 2021, 251, 41-52.	1.2	3
766	Zebrafish as a tool for the discovery of anticonvulsant compounds from botanical constituents. European Journal of Pharmacology, 2021, 908, 174342.	1.7	10
767	CRISPR/Cas9 system-based myostatin-targeted disruption promotes somatic growth and adipogenesis in loach, Misgurnus anguillicaudatus. Aquaculture, 2021, 544, 737097.	1.7	12
768	Zebrafish Cdx4 regulates neural crest cell specification and migratory behaviors in the posterior body. Developmental Biology, 2021, 480, 25-38.	0.9	5
769	The African turquoise killifish (Nothobranchius furzeri): biology and research applications. , 2022, , 245-287.		15
770	Muscle growth in targeted knockout common carp (Cyprinus carpio) mstn gene with low off-target effects. Aquaculture, 2022, 547, 737423.	1.7	22
771	CRISPR-based genome editing of zebrafish. Progress in Molecular Biology and Translational Science, 2021, 180, 69-84.	0.9	12
772	An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique. Molecular Biology Reports, 2021, 48, 1951-1957.	1.0	3
773	Genome Editing in Zebrafish Using High-Fidelity Cas9 Nucleases: Choosing the Right Nuclease for the Task. Methods in Molecular Biology, 2020, 2115, 385-405.	0.4	4
774	Assessment of Vascular Patterning in the Zebrafish. Methods in Molecular Biology, 2021, 2206, 205-222.	0.4	2
775	Method for Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas9. Methods in Molecular Biology, 2019, 2049, 39-72.	0.4	3
776	Development of Hematopoietic Stem Cells in Zebrafish. , 2018, , 37-57.		2
777	Understanding and Editing the Zebrafish Genome. Advances in Genetics, 2015, 92, 1-52.	0.8	79
778	Activation of HIF-1 signaling ameliorates liver steatosis in zebrafish atp7b deficiency (Wilson's disease) models. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 1 <u>65842.</u>	1.8	14

		CITATION REPORT		
#	Article		IF	CITATIONS
779	Ythdf m6A Readers Function Redundantly during Zebrafish Development. Cell Reports,	2020, 33, 108598.	2.9	67
780	CRISPR-Cas9 system: A genome-editing tool with endless possibilities. Journal of Biotec 319, 36-53.	chnology, 2020,	1.9	37
809	The combination of loss of glyoxalase1 and obesity results in hyperglycemia. JCI Insight	., 2019, 4, .	2.3	37
810	RAP1-mediated MEK/ERK pathway defects in Kabuki syndrome. Journal of Clinical Invest 3585-3599.	tigation, 2015, 125,	3.9	69
811	Disruption of <i>dmrt1</i> rescues the all-male phenotype of <i>cyp19a1a</i> mutant <i>–</i> A Novel insight into the roles of aromatase/estrogens in gonadal differentia folliculogenesis. Development (Cambridge), 2020, 147, .	in zebrafish tion and early	1.2	43
812	Knockdown of Laminin gamma-3 (Lamc3) impairs motoneuron guidance in the zebrafis Wellcome Open Research, 2017, 2, 111.	sh embryo.	0.9	6
813	A CRISPR method for genome engineering. F1000prime Reports, 2014, 6, 3.		5.9	35
814	A Biophysical Model of CRISPR/Cas9 Activity for Rational Design of Genome Editing and Regulation. PLoS Computational Biology, 2016, 12, e1004724.	d Gene	1.5	96
815	Defect patterns on the curved surface of fish retinae suggest a mechanism of cone mo PLoS Computational Biology, 2020, 16, e1008437.	saic formation.	1.5	4
816	Four and a Half LIM Domains 1b (Fhl1b) Is Essential for Regulating the Liver versus Pan Decision and for β-Cell Regeneration. PLoS Genetics, 2016, 12, e1005831.	creas Fate	1.5	11
817	Competition between Jagged-Notch and Endothelin1 Signaling Selectively Restricts Ca Formation in the Zebrafish Upper Face. PLoS Genetics, 2016, 12, e1005967.	rtilage	1.5	56
818	Ubr3, a Novel Modulator of Hh Signaling Affects the Degradation of Costal-2 and Kif7 t Poly-ubiquitination. PLoS Genetics, 2016, 12, e1006054.	through	1.5	17
819	Efficient Mutagenesis by Cas9 Protein-Mediated Oligonucleotide Insertion and Large-So of Single-Guide RNAs. PLoS ONE, 2014, 9, e98186.	cale Assessment	1.1	794
820	CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single Guided RNA Re Resistant to HIV-1 Infection. PLoS ONE, 2014, 9, e115987.	enders Cells	1.1	165
821	CRISPR/Cas9 as Tool for Functional Study of Genes Involved in Preimplantation Embryc PLoS ONE, 2015, 10, e0120501.) Development.	1.1	14
822	Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nuc Non-Albino Pigmentation Phenotypes. PLoS ONE, 2016, 11, e0155812.	leases Cause	1.1	28
823	Deep Brain Photoreceptor (val-opsin) Gene Knockout Using CRISPR/Cas Affects Chorio Embryonic Hatching in the Zebrafish. PLoS ONE, 2016, 11, e0165535.	n Formation and	1.1	7
824	Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality 2017, 12, e0182047.	. PLoS ONE,	1.1	8

# 825	ARTICLE Using local chromatin structure to improve CRISPR/Cas9 efficiency in zebrafish. PLoS ONE, 2017, 12, e0182528.	IF 1.1	Citations 29
826	Targeted deletion of the zebrafish actin-bundling protein L-plastin (lcp1). PLoS ONE, 2018, 13, e0190353.	1.1	32
827	Genetic analysis of zebrafish homologs of human FOXQ1, foxq1a and foxq1b, in innate immune cell development and bacterial host response. PLoS ONE, 2018, 13, e0194207.	1.1	9
828	Applications of CRISPR/Cas9 for Gene Editing in Hereditary Movement Disorders. Journal of Movement Disorders, 2016, 9, 136-143.	0.7	16
829	Loss of the Habenula Intrinsic Neuromodulator Kisspeptin1 Affects Learning in Larval Zebrafish. ENeuro, 2017, 4, ENEURO.0326-16.2017.	0.9	20
830	Dynamic properties of noise and Her6 levels are optimized by miRâ€9, allowing the decoding of the Her6 oscillator. EMBO Journal, 2020, 39, e103558.	3.5	26
831	Regulatory Assessment of Off-Target Changes and Spurious DNA Insertions in Gene-Edited Organisms for Agri-Food Use. , 2021, 9, 1-15.		8
832	BACH family members regulate angiogenesis and lymphangiogenesis by modulating VEGFC expression. Life Science Alliance, 2020, 3, e202000666.	1.3	20
833	Drug Screening with Genetically Encoded Fluorescent Sensors: Today and Tomorrow. International Journal of Molecular Sciences, 2021, 22, 148.	1.8	13
834	Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases. Asian-Australasian Journal of Animal Sciences, 2016, 29, 413-418.	2.4	13
835	Myostatin gene knockout mediated by Cas9-D10A nickase in chicken DF1 cells without off-target effect. Asian-Australasian Journal of Animal Sciences, 2017, 30, 743-748.	2.4	14
837	The hormonal peptide Elabela guides angioblasts to the midline during vasculogenesis. ELife, 2015, 4, .	2.8	86
838	Gdf3 is required for robust Nodal signaling during germ layer formation and left-right patterning. ELife, 2017, 6, .	2.8	53
839	Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation in vertebrates. ELife, 2018, 7, .	2.8	83
840	Potentiation of P2RX7 as a host-directed strategy for control of mycobacterial infection. ELife, 2019, 8, .	2.8	39
841	Pericentromeric hypomethylation elicits an interferon response in an animal model of ICF syndrome. ELife, 2018, 7, .	2.8	38
842	Screening for insulin-independent pathways that modulate glucose homeostasis identifies androgen receptor antagonists. ELife, 2018, 7, .	2.8	16
843	Detailed analysis of chick optic fissure closure reveals Netrin-1 as an essential mediator of epithelial fusion. ELife, 2019, 8, .	2.8	27

	CITATION RE	EPORT	
#	Article	IF	CITATIONS
844	MicroRNA-mediated control of developmental lymphangiogenesis. ELife, 2019, 8, .	2.8	15
845	Sox1a mediates the ability of the parapineal to impart habenular left-right asymmetry. ELife, 2019, 8, .	2.8	14
846	One-step efficient generation of dual-function conditional knockout and geno-tagging alleles in zebrafish. ELife, 2019, 8, .	2.8	37
847	A critical role of VMP1 in lipoprotein secretion. ELife, 2019, 8, .	2.8	46
848	Emx2 regulates hair cell rearrangement but not positional identity within neuromasts. ELife, 2020, 9, .	2.8	10
849	Genetically engineered birds; pre-CRISPR and CRISPR era. Biology of Reproduction, 2021, , .	1.2	4
850	Highly Efficient Synthetic CRISPR RNA/Cas9-Based Mutagenesis for Rapid Cardiovascular Phenotypic Screening in F0 Zebrafish. Frontiers in Cell and Developmental Biology, 2021, 9, 735598.	1.8	11
851	Foxq2 determines blue cone identity in zebrafish. Science Advances, 2021, 7, eabi9784.	4.7	14
852	GAK and PRKCD are positive regulators of PRKN-independent mitophagy. Nature Communications, 2021, 12, 6101.	5.8	36
853	Molecular and Cellular Mechanisms of Vascular Development in Zebrafish. Life, 2021, 11, 1088.	1.1	7
855	The CRISPR-Cas9 System: A New Dawn in Gene Editing. OMICS Journal of Radiology, 2014, 06, .	0.0	0
857	Genome Editing Using Site-Specific Nucleases in Amphibians. , 2015, , 133-149.		1
865	SuppressionnoffNFFFB ActivationninnBasallKeratinocytessViaaCelllAutonomous anddNonnAutonomoussFunctionss offMicroRNAA22333. SSRN Electronic Journal, 0, , .	0.4	0
866	The Fish Embryo as a Model for AOP Development. , 2018, , 43-73.		0
892	A Maternal Transcription Factor, Junction Mediating and Regulatory Protein is Required for Preimplantation Development in the Mouse. Development & Reproduction, 2019, 23, 285-295.	0.1	0
898	Modeling Neuronal Diseases in Zebrafish in the Era of CRISPR. Current Neuropharmacology, 2020, 18, 136-152.	1.4	9
906	Long nonâ€ʿcoding RNA NONHSAT143692.2 is involved in oxidative DNA damage repair in the lens by regulating the miRâ€ʿ4728â€ʿ5p/OGC1 axis. International Journal of Molecular Medicine, 2020, 46, 1838-1848.	1.8	3
908	Autophagy coordinates chondrocyte development and early joint formation in zebrafish. FASEB Journal, 2021, 35, e22002.	0.2	9

# 910	ARTICLE Isthmin1, a secreted signaling protein, acts downstream of diverse embryonic patterning centers in development. Cell and Tissue Research, 2021, 383, 987-1002.	IF 1.5	CITATIONS
911	CRISPR-Cas9-Mediated Genomic Deletions Protocol in Zebrafish. STAR Protocols, 2020, 1, 100208.	0.5	1
912	Dpysl2 (CRMP2) is required for the migration of facial branchiomotor neurons in the developing zebrafish embryo. International Journal of Developmental Biology, 2020, 64, 479-484.	0.3	1
916	Applied Molecular Cloning: Present and Future for Aquaculture. , 0, , .		0
921	Smad4 controls signaling robustness and morphogenesis by differentially contributing to the Nodal and BMP pathways. Nature Communications, 2021, 12, 6374.	5.8	18
922	Orthogonal CRISPR-Cas tools for genome editing, inhibition, and CRISPR recording in zebrafish embryos. Genetics, 2022, 220, .	1.2	11
927	TALEN and CRISPR/Cas Genome Editing Systems: Tools of Discovery. Acta Naturae, 2014, 6, 19-40.	1.7	78
928	Genome Editing in the Olive Flounder (Paralichthys olivaceus) Using CRISPR/Cas9 and a Simple Microinjection System. Journal of Ocean University of China, 2021, 20, 1528-1536.	0.6	1
930	Rrn3 gene knockout affects ethanol-induced locomotion in adult heterozygous zebrafish. Psychopharmacology, 2022, 239, 621.	1.5	4
932	Genome editing in cultured fishes. CABI Agriculture and Bioscience, 2021, 2, .	1.1	7
933	Macrophages and Neutrophils Are Necessary for ER Stress-Induced Î' Cell Loss. SSRN Electronic Journal, O, , .	0.4	0
934	Latent TGFβ-binding proteins 1 and 3 protect the larval zebrafish outflow tract from aneurysmal dilatation. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	10
935	Evaluation of CRISPR gene-editing tools in zebrafish. BMC Genomics, 2022, 23, 12.	1.2	12
937	Circumventing Zygotic Lethality to Generate Maternal Mutants in Zebrafish. Biology, 2022, 11, 102.	1.3	2
940	Ribosome slowdown triggers codonâ€mediated mRNA decay independently of ribosome quality control. EMBO Journal, 2022, 41, e109256.	3.5	25
941	Efficient gene editing in a medaka (Oryzias latipes) cell line and embryos by SpCas9/tRNA-gRNA. Journal of Zhejiang University: Science B, 2022, 23, 74-83.	1.3	2
942	Ruvbl2 Suppresses Cardiomyocyte Proliferation During Zebrafish Heart Development and Regeneration. Frontiers in Cell and Developmental Biology, 2022, 10, 800594.	1.8	0
943	Study on the function of Helicoverpa armigera Wnt1 gene using CRISPR/Cas9 system. Journal of Asia-Pacific Entomology, 2022, 25, 101869.	0.4	3

#	Article	IF	CITATIONS
944	Light stress affected body color by tyrosinase-mediated melanin synthesis pathway in hybrid grouper. Aquaculture Reports, 2022, 23, 101027.	0.7	0
945	Accumulation of acetaldehyde in aldh2.1 zebrafish causes increased retinal angiogenesis and impaired glucose metabolism. Redox Biology, 2022, 50, 102249.	3.9	9
946	The E3 ubiquitin ligase mindbomb1 controls planar cell polarity-dependent convergent extension movements during zebrafish gastrulation. ELife, 2022, 11, .	2.8	3
947	Efficient CRISPR Mutagenesis in Sturgeon Demonstrates Its Utility in Large, Slow-Maturing Vertebrates. Frontiers in Cell and Developmental Biology, 2022, 10, 750833.	1.8	7
949	Specialized neurons in the right habenula mediate response to aversive olfactory cues. ELife, 2021, 10, .	2.8	17
950	Analysis of novel domain-specific mutations in the zebrafish / gene generated using CRISPR-Cas9 RNPs. Journal of Genetics, 2018, 97, 1315-1325.	0.4	8
952	Manipulation of Gene Activity in the Regenerative Model Sea Anemone, Nematostella vectensis. Methods in Molecular Biology, 2022, 2450, 437-465.	0.4	3
953	Multiplexed Genome Editing for Efficient Phenotypic Screening in Zebrafish. Veterinary Sciences, 2022, 9, 92.	0.6	3
954	Engineered Wnt ligands enable blood-brain barrier repair in neurological disorders. Science, 2022, 375, eabm4459.	6.0	67
955	Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair <i>In Vitro</i> and <i>In Vivo</i> . CRISPR Journal, 2022, 5, 40-52.	1.4	1
956	Boosting targeted genome editing using the hei-tag. ELife, 2022, 11, .	2.8	10
959	ErCas12a and T5exo-ErCas12a Mediate Simple and Efficient Genome Editing in Zebrafish. Biology, 2022, 11, 411.	1.3	7
961	Integration of vascular progenitors into functional blood vessels represents a distinct mechanism of vascular growth. Developmental Cell, 2022, 57, 767-782.e6.	3.1	5
962	Vascular Injury in the Zebrafish Tail Modulates Blood Flow and Peak Wall Shear Stress to Restore Embryonic Circular Network. Frontiers in Cardiovascular Medicine, 2022, 9, 841101.	1.1	3
963	Validation of Candidate Sleep Disorder Risk Genes Using Zebrafish. Frontiers in Molecular Neuroscience, 2022, 15, 873520.	1.4	5
964	Loss of circadian rhythmicity in bdnf knockout zebrafish larvae. IScience, 2022, 25, 104054.	1.9	11
965	Sema6D Regulates Zebrafish Vascular Patterning and Motor Neuronal Axon Growth in Spinal Cord. Frontiers in Molecular Neuroscience, 2022, 15, 854556.	1.4	3
966	miR-731 modulates the zebrafish heart morphogenesis via targeting Calcineurin/Nfatc3a pathway. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130133.	1.1	0

#	Article	IF	CITATIONS
967	Generation of a zebrafish knock-in line expressing MYC-tagged Sox11a using CRISPR/Cas9 genome editing. Biochemical and Biophysical Research Communications, 2022, 608, 8-13.	1.0	2
968	Determining the Role of Maternally-Expressed Genes in Early Development with Maternal Crispants. Journal of Visualized Experiments, 2021, , .	0.2	Ο
969	Discovery of a genetic module essential for assigning left–right asymmetry in humans and ancestral vertebrates. Nature Genetics, 2022, 54, 62-72.	9.4	16
970	TALEN-Mediated Gene Editing of slc24a5 (Solute Carrier Family 24, Member 5) in Kawakawa, Euthynnus affinis. Journal of Marine Science and Engineering, 2021, 9, 1378.	1.2	8
971	<i>Ankfn1</i> -mutant vestibular defects require loss of both ancestral and derived paralogs for penetrance in zebrafish. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	0
972	CRISPR/Cas9-mediated generation of biallelic F0 anemonefish (Amphiprion ocellaris) mutants. PLoS ONE, 2021, 16, e0261331.	1.1	10
974	Partial fads2 Gene Knockout Diverts LC-PUFA Biosynthesis via an Alternative Δ8 Pathway with an Impact on the Reproduction of Female Zebrafish (Danio rerio). Genes, 2022, 13, 700.	1.0	2
992	Efficient CRISPR-Cas9 editing of major evolutionary loci in sticklebacks Evolutionary Ecology Research, 2019, 20, 107-132.	2.0	6
995	Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes. Nature Communications, 2022, 13, 2601.	5.8	24
996	A Comprehensive Review of Indel Detection Methods for Identification of Zebrafish Knockout Mutants Generated by Genome-Editing Nucleases. Genes, 2022, 13, 857.	1.0	4
998	Tollipâ€deficient zebrafish display no abnormalities in development, organ morphology or gene expression in response to lipopolysaccharide. FEBS Open Bio, 2022, , .	1.0	1
999	CRISPR/Cas-9 induced knockout of myostatin gene improves growth and disease resistance in channel catfish (Ictalurus punctatus). Aquaculture, 2022, 557, 738290.	1.7	17
1000	Development of an endogenously myc-tagged TARDBP (TDP-43) zebrafish model using the CRISPR/Cas9 system and homology directed repair. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2022, 261, 110756.	0.7	3
1001	Zn-regulated GTPase metalloprotein activator 1 modulates vertebrate zinc homeostasis. Cell, 2022, 185, 2148-2163.e27.	13.5	39
1002	An integrated model for Gpr124 function in Wnt7a/b signaling among vertebrates. Cell Reports, 2022, 39, 110902.	2.9	7
1003	A Structural Atlas of the Developing Zebrafish Telencephalon Based on Spatially-Restricted Transgene Expression. Frontiers in Neuroanatomy, 2022, 16, .	0.9	4
1004	Conditional mutagenesis strategies in zebrafish. Trends in Genetics, 2022, 38, 856-868.	2.9	5
1005	Cre/lox regulated conditional rescue and inactivation with zebrafish UFlip alleles generated by CRISPR-Cas9 targeted integration. ELife, 0, 11, .	2.8	8

#	Article	IF	CITATIONS
1006	Daw1 regulates the timely onset of cilia motility during development. Development (Cambridge), 2022, 149, .	1.2	6
1008	SpG and SpRY variants expand the CRISPR toolbox for genome editing in zebrafish. Nature Communications, 2022, 13, .	5.8	15
1010	Fibronectin and Integrin $\hat{l}\pm 5$ play overlapping and independent roles in regulating the development of pharyngeal endoderm and cartilage. Developmental Biology, 2022, 489, 122-133.	0.9	1
1013	Comparative Morphological, Metabolic and Transcriptome Analyses in elmo1â^'/â^', elmo2â^'/â^', and elmo3â''/â^' Zebrafish Mutants Identified a Functional Non-Redundancy of the Elmo Proteins. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
1014	X-linked myotubular myopathy is associated with epigenetic alterations and is ameliorated by HDAC inhibition. Acta Neuropathologica, 2022, 144, 537-563.	3.9	8
1016	Loss of FOCAD, operating via the SKI messenger RNA surveillance pathway, causes a pediatric syndrome with liver cirrhosis. Nature Genetics, 2022, 54, 1214-1226.	9.4	6
1017	Reproductive sterility in aquaculture: A review of induction methods and an emerging approach with application to Pacific Northwest finfish species. Reviews in Aquaculture, 2023, 15, 220-241.	4.6	11
1018	Fishing for answers to hemostatic and thrombotic disease: Genome editing in zebrafish. Research and Practice in Thrombosis and Haemostasis, 2022, 6, e12759.	1.0	4
1019	Macrophages and neutrophils are necessary for ER stress-induced \hat{I}^2 cell loss. Cell Reports, 2022, 40, 111255.	2.9	8
1020	Altered Expression of TMEM43 Causes Abnormal Cardiac Structure and Function in Zebrafish. International Journal of Molecular Sciences, 2022, 23, 9530.	1.8	4
1022	Methods to Study Sleep in Zebrafish. Neuromethods, 2022, , 259-286.	0.2	1
1024	Zebrafish Models of Paediatric Brain Tumours. International Journal of Molecular Sciences, 2022, 23, 9920.	1.8	1
1025	A zebrafish model of congenital nephrotic syndrome of the Finnish type. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
1027	The Polycomb group gene rnf2 is essential for central and enteric neural system development in zebrafish. Frontiers in Neuroscience, 0, 16, .	1.4	4
1030	Zebrafish Slit2 and Slit3 Act Together to Regulate Retinal Axon Crossing at the Midline. Journal of Developmental Biology, 2022, 10, 41.	0.9	0
1031	Intrinsic myocardial defects underlie an Rbfox-deficient zebrafish model of hypoplastic left heart syndrome. Nature Communications, 2022, 13, .	5.8	12
1033	CRISPR–Cas9 Genome Editing in <i>Nothobranchius furzeri</i> for Gene Knockout and Knock-In. Cold Spring Harbor Protocols, 2023, 2023, pdb.prot107742.	0.2	6
1034	Expanded precision genome-editing toolbox for human disease modeling in zebrafish. Lab Animal, 2022, 51, 287-289.	0.2	0

#	Article	IF	Citations
1035	<i>In toto</i> imaging of early enteric nervous system development reveals that gut colonization is tied to proliferation downstream of Ret. Development (Cambridge), 2022, 149, .	1.2	4
1036	NIMA-related kinase 9 regulates the phosphorylation of the essential myosin light chain in the heart. Nature Communications, 2022, 13, .	5.8	2
1038	Tamalin Function Is Required for the Survival of Neurons and Oligodendrocytes in the CNS. International Journal of Molecular Sciences, 2022, 23, 13395.	1.8	1
1039	Structure, evolution and expression of zebrafish cartilage oligomeric matrix protein (COMP, TSP5). CRISPR-Cas mutants show a dominant phenotype in myosepta. Frontiers in Endocrinology, 0, 13, .	1.5	0
1041	Genetically engineered zebrafish as models of skeletal development and regeneration. Bone, 2023, 167, 116611.	1.4	6
1042	Multi-locus gene editing effectively knocked out cyp19a1a and foxl2 in Monopterus albus, a hermaphroditic fish. Aquaculture, 2023, 565, 739130.	1.7	3
1043	Neuronal expression of ndst3 in early zebrafish development is responsive to Wnt signaling manipulation. Gene Expression Patterns, 2023, 47, 119300.	0.3	0
1044	Parental mutations influence wild-type offspring via transcriptional adaptation. Science Advances, 2022, 8, .	4.7	3
1045	A Dual-Plasmid-Based CRISPR/Cas9-Mediated Strategy Enables Targeted Editing of pH Regulatory Gene pacC in a Clinical Isolate of Trichophyton rubrum. Journal of Fungi (Basel, Switzerland), 2022, 8, 1241.	1.5	0
1048	A robust pipeline for efficient knock-in of point mutations and epitope tags in zebrafish using fluorescent PCR based screening. BMC Genomics, 2022, 23, .	1.2	3
1049	CRISPR/Cas9-Induced Inactivation of the Autism-Risk Gene setd5 Leads to Social Impairments in Zebrafish. International Journal of Molecular Sciences, 2023, 24, 167.	1.8	2
1050	Distinct and redundant roles for zebrafish her genes during mineralization and craniofacial patterning. Frontiers in Endocrinology, 0, 13, .	1.5	2
1051	PEX13 prevents pexophagy by regulating ubiquitinated PEX5 and peroxisomal ROS. Autophagy, 2023, 19, 1781-1802.	4.3	14
1053	Macrophage NFATC2 mediates angiogenic signaling during mycobacterial infection. Cell Reports, 2022, 41, 111817.	2.9	5
1054	CRISPR-Cas9 F0 knockout approach using predesigned in vitro transcribed guide RNAs partially recapitulates Rx3 function in eye morphogenesis. Journal of Genetics, 2023, 102, .	0.4	0
1056	Analysis of Vascular Morphogenesis in Zebrafish. Methods in Molecular Biology, 2023, , 425-450.	0.4	0
1057	Application of CRISPR-Cas9 for Functional Analysis in A. mexicanus. Neuromethods, 2023, , 193-220.	0.2	0
1058	Multiple pkd and piezo gene family members are required for atrioventricular valve formation. Nature Communications, 2023, 14, .	5.8	4

#	Article	IF	CITATIONS
1059	Myelination generates aberrant ultrastructure that is resolved by microglia. Journal of Cell Biology, 2023, 222, .	2.3	20
1060	Infertility control of transgenic fluorescent zebrafish with targeted mutagenesis of the dnd1 gene by CRISPR/Cas9 genome editing. Frontiers in Genetics, 0, 14, .	1.1	1
1063	Unraveling Presenilin 2 Functions in a Knockout Zebrafish Line to Shed Light into Alzheimer's Disease Pathogenesis. Cells, 2023, 12, 376.	1.8	1
1064	Principles of genome editing and its applications in fisheries. , 2023, , 147-154.		2
1066	Loss of calpain3b in Zebrafish, a Model of Limb-Girdle Muscular Dystrophy, Increases Susceptibility to Muscle Defects Due to Elevated Muscle Activity. Genes, 2023, 14, 492.	1.0	1
1067	Loss of mitochondrial Chchd10 or Chchd2 in zebrafish leads to an ALSâ€ike phenotype and Complex I deficiency independent of the mitochondrial integrated stress response. Developmental Neurobiology, 2023, 83, 54-69.	1.5	2
1068	Editing the Melanocortin-4 Receptor Gene in Channel Catfish Using the CRISPR-Cas9 System. Fishes, 2023, 8, 116.	0.7	3
1069	Generation of a transparent killifish line through multiplex CRISPR/Cas9mediated gene inactivation. ELife, 0, 12, .	2.8	10
1070	Actomyosin contractility in olfactory placode neurons opens the skin epithelium to form the zebrafish nostril. Developmental Cell, 2023, 58, 361-375.e5.	3.1	2
1071	Production of chickens with GFP-knockin in the Z chromosome and detection of GFP-positive chicks in the embryonic stage. Animal Bioscience, 0, , .	0.8	1
1072	Disruption of T-box transcription factor eomesa results in abnormal development of median fins in Oujiang color common carp Cyprinus carpio. PLoS ONE, 2023, 18, e0281297.	1.1	0
1073	From multiallele fish to nonstandard environments, how ZFIN assigns phenotypes, human disease models, and gene expression annotations to genes. Genetics, 0, , .	1.2	2
1074	Generation of Albino Phenotype in Ornamental Fish by CRISPR/Cas9-Mediated Genome Editing of slc45a2 Gene. Marine Biotechnology, 0, , .	1.1	1
1075	Susceptibility and Permissivity of Zebrafish (Danio rerio) Larvae to Cypriniviruses. Viruses, 2023, 15, 768.	1.5	2
1076	Principles of Zebrafish Nephron Segment Development. Journal of Developmental Biology, 2023, 11, 14.	0.9	7
1077	<i>In vivo</i> DNA methylation editing in zebrafish. Epigenetics, 2023, 18, .	1.3	1
1079	CRISPR/Cas9 establishment-mediated targeted mutagenesis in Macrobrachium nipponense. Frontiers in Physiology, 0, 14, .	1.3	1
1080	The sinusoidal hematopoietic niche is formed by Jam1a via Notch signaling in the zebrafish kidney. IScience, 2023, 26, 106508.	1.9	0

		CITATION R	tion Report	
#	Article		IF	CITATIONS
1081	Review: Recent Applications of Gene Editing in Fish Species and Aquatic Medicine. Ani	nals, 2023, 13, 1250.	1.0	3
1082	Hemato-vascular specification requires <i>arnt1</i> and <i>arnt2</i> genes in zebrafis Development (Cambridge), 0, , .	h embryos.	1.2	0
1083	The non-canonical Wnt receptor Ror2 is required for cartilage cell polarity and morpho the craniofacial skeleton in zebrafish. Development (Cambridge), 2023, 150, .	genesis of	1.2	2
1084	Large-scale FO CRISPR screens in vivo using MIC-Drop. Nature Protocols, 2023, 18, 184	+1-1865.	5.5	1
1085	Rapidly generating homozygous mutate zebrafish in FO generation by technical integra CRISPR/Cas9 and gynogenesis. Reproduction and Breeding, 2023, 3, 45-49.	ation of	0.8	3
1111	Mutation Knock-in Methods Using Single-Stranded DNA and Gene Editing Tools in Zeb in Molecular Biology, 2024, , 279-303.	rafish. Methods	0.4	0

1124 Application of CRISPR-Cas9 Technology in Fish. , 2023, , 15-38.