Detection of diurnal variation in orchard canopy water airborne simulator (MASTER) data

Remote Sensing of Environment 132, 1-12 DOI: 10.1016/j.rse.2012.12.024

Citation Report

#	Article	IF	CITATIONS
1	Empirical and Physical Estimation of Canopy Water Content from CHRIS/PROBA Data. Remote Sensing, 2013, 5, 5265-5284.	4.0	20
2	A Method of Correcting Brightness Gradient in Thermal Infrared Image. Applied Mechanics and Materials, 2014, 599-601, 699-702.	0.2	Ο
3	Estimation of water-related biochemical and biophysical vegetation properties using multitemporal airborne hyperspectral data and its comparison to MODIS spectral response. Remote Sensing of Environment, 2014, 148, 28-41.	11.0	95
4	Detecting diurnal and seasonal variation in canopy water content of nut tree orchards from airborne imaging spectroscopy data using continuous wavelet analysis. Remote Sensing of Environment, 2014, 143, 39-53.	11.0	63
5	Monitoring surface water content using visible and short-wave infrared SPOT-5 data of wheat plots in irrigated semi-arid regions. International Journal of Remote Sensing, 2015, 36, 4018-4036.	2.9	33
6	Improved surface temperature estimates with MASTER/AVIRIS sensor fusion. Remote Sensing of Environment, 2015, 167, 53-63.	11.0	19
7	Assessment of vegetation water content in wheat using near and shortwave infrared SPOT-5 Data in an irrigated area. Revue Des Sciences De L'Eau, 0, 29, 97-107.	0.2	2
8	Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water. Science of the Total Environment, 2016, 565, 1020-1027.	8.0	14
9	Feasibility of estimating leaf water content using spectral indices from WorldView-3's near-infrared and shortwave infrared bands. International Journal of Remote Sensing, 2016, 37, 388-402.	2.9	34
10	Effect of observation scale on remote sensing based estimates of evapotranspiration in a semi-arid row cropped orchard environment. Precision Agriculture, 2017, 18, 762-778.	6.0	12
11	Retrieval of forest fuel moisture content using a coupled radiative transfer model. Environmental Modelling and Software, 2017, 95, 290-302.	4.5	59
12	Noise-Resistant Spectral Features for Retrieving Foliar Chemical Parameters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 5369-5380.	4.9	2
13	Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models. Remote Sensing, 2017, 9, 309.	4.0	192
14	Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation. Science of the Total Environment, 2018, 631-632, 677-687.	8.0	50
15	Retrieval of Fuel Moisture Content from Himawari-8 Product: Towards Real-Time Wildfire Risk Assessment. , 2018, , .		1
16	Crop Water Content of Winter Wheat Revealed with Sentinel-1 and Sentinel-2 Imagery. Sensors, 2019, 19, 4013.	3.8	30
17	Globe-LFMC, a global plant water status database for vegetation ecophysiology and wildfire applications. Scientific Data, 2019, 6, 155.	5.3	41
18	Exploring the Influence Mechanism of Meteorological Conditions on the Concentration of Suspended Solids and Chlorophyll-a in Large Estuaries Based on MODIS Imagery. Water (Switzerland),	2.7	4

CITATION REPORT

#	Article	IF	CITATIONS
19	Spatiotemporal monitoring of surface soil moisture using optical remote sensing data: a case study in a semi-arid area. Journal of Spatial Science, 2020, 65, 481-499.	1.5	25
20	A Live Fuel Moisture Content Product from Landsat TM Satellite Time Series for Implementation in Fire Behavior Models. Remote Sensing, 2020, 12, 1714.	4.0	18
21	Estimating Corn Canopy Water Content From Normalized Difference Water Index (NDWI): An Optimized NDWI-Based Scheme and Its Feasibility for Retrieving Corn VWC. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 8168-8181.	6.3	12
22	Using Vegetation Indices as Input into Random Forest for Soybean and Weed Classification. American Journal of Plant Sciences, 2016, 07, 2186-2198.	0.8	19
23	Optimized spectral index models for accurately retrieving soil moisture (SM) of winter wheat under water stress. Agricultural Water Management, 2022, 261, 107333.	5.6	9
24	Dynamic Characteristics of Canopy and Vegetation Water Content during an Entire Maize Growing Season in Relation to Spectral-Based Indices. Remote Sensing, 2022, 14, 584.	4.0	13
25	Determining the plant critical saturated water accumulation curve in maize. Field Crops Research, 2022, 284, 108556.	5.1	2
26	Estimation of plant water content in cut chrysanthemum using leaf-based hyperspectral reflectance. Scientia Horticulturae, 2024, 323, 112517.	3.6	1
27	Remote Sensing Applications in Almond Orchards: A Comprehensive Systematic Review of Current Insights, Research Gaps, and Future Prospects. Applied Sciences (Switzerland), 2024, 14, 1749.	2.5	0