Tumor adaptation and resistance to RAF inhibitors

Nature Medicine 19, 1401-1409

DOI: 10.1038/nm.3392

Citation Report

#	Article	IF	CITATIONS
1	Treating Metastatic Melanoma in 2014: What Just Happened and What Is Next?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2014, , 16-19.	1.8	1
2	Targeting BRAF in Pediatric Brain Tumors. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2014, , e436-e440.	1.8	34
3	BRAF inhibitor–associated ERK activation drives development of chronic lymphocytic leukemia. Journal of Clinical Investigation, 2014, 124, 5074-5084.	3.9	56
4	Biological and Therapeutic Implications of the BRAF Pathway in Histiocytic Disorders. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2014, , e441-e445.	1.8	14
5	Cancer <i>In Silico</i> Drug Discovery: A Systems Biology Tool for Identifying Candidate Drugs to Target Specific Molecular Tumor Subtypes. Molecular Cancer Therapeutics, 2014, 13, 3230-3240.	1.9	21
6	B-Raf Regulation of Integrin $\hat{1}\pm4\hat{1}^21$ -mediated Resistance to Shear Stress through Changes in Cell Spreading and Cytoskeletal Association in T Cells. Journal of Biological Chemistry, 2014, 289, 23141-23153.	1.6	11
7	Vemurafenib and panitumumab combination tailored therapy in BRAF-mutated metastatic colorectal cancer. Cancer Biology and Therapy, 2014, 15, 826-831.	1.5	24
8	The kinase inhibitors dabrafenib and trametinib affect isolated immune cell populations. Oncolmmunology, 2014, 3, e946367.	2.1	13
9	Synergistic anti-tumor activity and inhibition of angiogenesis by cotargeting of oncogenic and death receptor pathways in human melanoma. Cell Death and Disease, 2014, 5, e1434-e1434.	2.7	20
10	P-loop Conformation Governed Crizotinib Resistance in G2032R-Mutated ROS1 Tyrosine Kinase: Clues from Free Energy Landscape. PLoS Computational Biology, 2014, 10, e1003729.	1.5	86
11	Size Does Matter: Why Polyploid Tumor Cells are Critical Drug Targets in the War on Cancer. Frontiers in Oncology, 2014, 4, 123.	1.3	147
12	RAS diseases in children. Haematologica, 2014, 99, 1653-1662.	1.7	117
13	Immune consequences of kinase inhibitors in development, undergoing clinical trials and in current use in melanoma treatment. Expert Review of Clinical Immunology, 2014, 10, 1107-1123.	1.3	2
14	Individualizing kinase-targeted cancer therapy: the paradigm of chronic myeloid leukemia. Genome Biology, 2014, 15, 461.	3.8	23
15	The Immune Microenvironment Confers Resistance to MAPK Pathway Inhibitors through Macrophage-Derived TNFî±. Cancer Discovery, 2014, 4, 1214-1229.	7.7	174
16	New RAF kinase inhibitors in cancer therapy. Expert Opinion on Pharmacotherapy, 2014, 15, 1235-1245.	0.9	13
17	DNA repair inhibition by UVA photoactivated fluoroquinolones and vemurafenib. Nucleic Acids Research, 2014, 42, 13714-13722.	6.5	23
18	Phosphoproteomic Profiling Reveals IL6-Mediated Paracrine Signaling within the Ewing Sarcoma Family of Tumors. Molecular Cancer Research, 2014, 12, 1740-1754.	1.5	17

#	ARTICLE	IF	CITATIONS
19	Molecular Pathways: Adaptive Kinome Reprogramming in Response to Targeted Inhibition of the BRAF–MEK–ERK Pathway in Cancer. Clinical Cancer Research, 2014, 20, 2516-2522.	3.2	108
20	Update on the Biology and Treatment Options for Hairy Cell Leukemia. Current Treatment Options in Oncology, 2014, 15, 187-209.	1.3	27
21	Identification and Optimization of New Dual Inhibitors of B-Raf and Epidermal Growth Factor Receptor Kinases for Overcoming Resistance against Vemurafenib. Journal of Medicinal Chemistry, 2014, 57, 2692-2703.	2.9	33
22	Section IV: Non–small cell lung cancer and malignant melanoma. Current Problems in Cancer, 2014, 38, 180-198.	1.0	2
23	Role of P-Glycoprotein on the Brain Penetration and Brain Pharmacodynamic Activity of the MEK Inhibitor Cobimetinib. Molecular Pharmaceutics, 2014, 11, 4199-4207.	2.3	43
24	The OPEP protein model: from single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems. Chemical Society Reviews, 2014, 43, 4871-4893.	18.7	147
25	Drugging the undruggable RAS: Mission Possible?. Nature Reviews Drug Discovery, 2014, 13, 828-851.	21.5	1,484
26	Translating Genomics for Precision Cancer Medicine. Annual Review of Genomics and Human Genetics, 2014, 15, 395-415.	2.5	63
27	elF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature, 2014, 513, 105-109.	13.7	287
28	Drug Resistance via Feedback Activation of Stat3 in Oncogene-Addicted Cancer Cells. Cancer Cell, 2014, 26, 207-221.	7.7	452
29	Growth factor transduction pathways: paradigm of anti-neoplastic targeted therapy. Journal of Molecular Medicine, 2014, 92, 723-733.	1.7	4
30	Small-molecule modulation of Ras signaling. Nature Chemical Biology, 2014, 10, 613-622.	3.9	191
31	The novel PI3 kinase inhibitor, BAY 80â€6946, impairs melanoma growth <i>in vivo</i> and <i>in vitro</i> Experimental Dermatology, 2014, 23, 579-584.	1.4	13
33	<scp>BRAF</scp> inhibitor resistance: are holidays and cocktails the answer?. Pigment Cell and Melanoma Research, 2014, 27, 693-695.	1.5	2
34	Chemical Biology Tools for Regulating RAS Signaling Complexity in Space and Time. Chemistry and Biology, 2014, 21, 1185-1195.	6.2	25
35	Dragging Ras Back in the Ring. Cancer Cell, 2014, 25, 272-281.	7.7	707
36	Melanoma as a model for precision medicine in oncology. Lancet Oncology, The, 2014, 15, 251-253.	5.1	6
37	Targeting Mitochondrial Metabolism by Inhibiting Autophagy in <i>BRAF</i> -Driven Cancers. Cancer Discovery, 2014, 4, 766-772.	7.7	75

#	Article	IF	Citations
38	Early-Stage Ovarian Cancer., 2014, , 1461-1466.		0
39	Towards combinatorial targeted therapy in melanoma: From pre-clinical evidence to clinical application (Review). International Journal of Oncology, 2014, 45, 929-949.	1.4	34
40	BRAF Mutations: Signaling, Epidemiology, and Clinical Experience in Multiple Malignancies. Cancer Control, 2014, 21, 221-230.	0.7	80
41	Sirt1 induction confers resistance to etoposide-induced genotoxic apoptosis in thyroid cancers. International Journal of Oncology, 2014, 45, 2065-2075.	1.4	15
42	Treatment of Langerhans cell histiocytosis: role of BRAF/MAPK inhibition. Hematology American Society of Hematology Education Program, 2015, 2015, 565-570.	0.9	40
44	More than a Decade of Tyrosine Kinase Inhibitors in the Treatment of Solid Tumors: What We Have Learned and What the Future Holds. Biomarker Insights, 2015, 10s3, BMI.S22436.	1.0	7
46	Homologous Mutation to Human BRAF V600E Is Common in Naturally Occurring Canine Bladder Cancer—Evidence for a Relevant Model System and Urine-Based Diagnostic Test. Molecular Cancer Research, 2015, 13, 993-1002.	1.5	117
48	Direct Modulation of Small GTPase Activity and Function. Angewandte Chemie - International Edition, 2015, 54, 13516-13537.	7.2	63
49	Fragmentâ€Based Discovery of a Dual panâ€RET/VEGFR2 Kinase Inhibitor Optimized for Singleâ€Agent Polypharmacology. Angewandte Chemie - International Edition, 2015, 54, 8717-8721.	7.2	33
50	Current and emerging treatment options for hairy cell leukemia. OncoTargets and Therapy, 2015, 8, 2147.	1.0	6
51	Similar but different: distinct roles for KRAS and BRAF oncogenes in colorectal cancer development and therapy resistance. Oncotarget, 2015, 6, 20785-20800.	0.8	112
52	Treatment of Langerhans cell histiocytosis: role of BRAF/MAPK inhibition. Hematology American Society of Hematology Education Program, 2015, 2015, 565-570.	0.9	9
53	Combination Therapies to Inhibit the RAF/MEK/ERK Pathway in Melanoma: We are not Done Yet. Frontiers in Oncology, 2015, 5, 161.	1.3	25
54	Curcumin Analog DM-1 in Monotherapy or Combinatory Treatment with Dacarbazine as a Strategy to Inhibit In Vivo Melanoma Progression. PLoS ONE, 2015, 10, e0118702.	1.1	24
55	Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance. PLoS Computational Biology, 2015, 11, e1004493.	1.5	151
56	Combination of a Selective $HSP90\hat{l}\pm\hat{l}^2$ Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells. PLoS ONE, 2015, 10, e0143847.	1.1	20
58	Signal Transduction in Cancer. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a006098-a006098.	2.9	665
59	Alike but Different: RAF Paralogs and Their Signaling Outputs. Cell, 2015, 161, 967-970.	13.5	90

#	Article	IF	CITATIONS
60	BRAF and MEK inhibition for the treatment of advanced BRAF mutant melanoma. Expert Opinion on Pharmacotherapy, 2015, 16, 1285-1297.	0.9	24
61	Histone Variant H2A.Z.2 Mediates Proliferation and Drug Sensitivity of Malignant Melanoma. Molecular Cell, 2015, 59, 75-88.	4.5	166
62	Low inducible expression of p21Cip1 confers resistance to paclitaxel in BRAF mutant melanoma cells with acquired resistance to BRAF inhibitor. Molecular and Cellular Biochemistry, 2015, 406, 53-62.	1.4	3
63	Novel therapeutic options for relapsed hairy cell leukemia. Leukemia and Lymphoma, 2015, 56, 2264-2272.	0.6	13
64	Treating cancer when pRb and p53 cannot be reactivated. Molecular and Cellular Oncology, 2015, 2, e1004954.	0.3	0
65	BRAF Alterations as Therapeutic Targets in Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2015, 10, 1396-1403.	0.5	76
66	Quantitative fluorescence nanoscopy for cancer biomedicine., 2015,,.		2
67	Correlative Studies in Clinical Trials: A Position Statement From the International Thyroid Oncology Group. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 4387-4395.	1.8	12
68	Targeted Therapies in Melanoma. Surgical Oncology Clinics of North America, 2015, 24, 347-358.	0.6	6
69	Exploring a cascade Heck–Suzuki reaction based route to kinase inhibitors using design of experiments. Organic and Biomolecular Chemistry, 2015, 13, 3382-3392.	1.5	21
70	Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Reports, 2015, 16, 280-296.	2.0	200
71	The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nature Communications, 2015, 6, 6051.	5.8	281
72	Co-targeting BRAF and cyclin dependent kinases 4/6 for BRAF mutant cancers., 2015, 149, 139-149.		27
73	Pilot Trial of Combined BRAF and EGFR Inhibition in <i>BRAF</i> Patients. Clinical Cancer Research, 2015, 21, 1313-1320.	3.2	240
74	Limited genomic heterogeneity of circulating melanoma cells in advanced stage patients. Physical Biology, 2015, 12, 016008.	0.8	39
75	Evolution of targeted therapies in cancer: opportunities and challenges in the clinic. Future Oncology, 2015, 11, 279-293.	1.1	20
76	Anticipating designer drug-resistant cancer cells. Drug Discovery Today, 2015, 20, 790-793.	3.2	11
77	Textbook of Cell Signalling in Cancer. , 2015, , .		6

#	Article	IF	CITATIONS
78	MAP Kinase Pathway. , 2015, , 27-41.		1
79	Empirical inference of circuitry and plasticity in a kinase signaling network. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7719-7724.	3.3	69
80	BRAF-mutant melanoma: treatment approaches, resistance mechanisms, and diagnostic strategies. OncoTargets and Therapy, 2015, 8, 157.	1.0	134
81	Precision medicine for metastatic breast cancer—limitations and solutions. Nature Reviews Clinical Oncology, 2015, 12, 693-704.	12.5	272
82	Targeting EZH2 and PRC2 dependence as novel anticancer therapy. Experimental Hematology, 2015, 43, 698-712.	0.2	101
83	KSR1 is coordinately regulated with Notch signaling and oxidative phosphorylation in thyroid cancer. Journal of Molecular Endocrinology, 2015, 54, 115-124.	1.1	9
84	Targeting cancer with kinase inhibitors. Journal of Clinical Investigation, 2015, 125, 1780-1789.	3.9	364
85	The PI3K/AKT/mTOR interactive pathway. Molecular BioSystems, 2015, 11, 1946-1954.	2.9	379
86	$\langle i \rangle N \langle i \rangle$ -(3-Ethynyl-2,4-difluorophenyl)sulfonamide Derivatives as Selective Raf Inhibitors. ACS Medicinal Chemistry Letters, 2015, 6, 543-547.	1.3	32
87	Therapy-induced tumour secretomes promote resistance and tumour progression. Nature, 2015, 520, 368-372.	13.7	389
88	Combined BRAF and MEK inhibition for the treatment of BRAF-mutated metastatic melanoma. Cancer Treatment Reviews, 2015, 41, 519-526.	3. 4	63
89	Intravital Imaging Reveals How BRAF Inhibition Generates Drug-Tolerant Microenvironments with High Integrin I^21/FAK Signaling. Cancer Cell, 2015, 27, 574-588.	7.7	485
90	Melanoma. Nature Reviews Disease Primers, 2015, 1, 15003.	18.1	417
91	Primary Cutaneous Melanoma. , 2015, 20, 40-56.		0
92	Combination therapy of melanoma using kinase inhibitors. Current Opinion in Oncology, 2015, 27, 134-140.	1.1	18
93	The biology of <scp>IQGAP</scp> proteins: beyond the cytoskeleton. EMBO Reports, 2015, 16, 427-446.	2.0	194
94	Pilocytic astrocytoma: pathology, molecular mechanisms and markers. Acta Neuropathologica, 2015, 129, 775-788.	3.9	328
95	Old Habits Die Hard: Addiction of <i>BRAF</i> -Mutant Cancer Cells to MAP Kinase Signaling. Cancer Discovery, 2015, 5, 348-350.	7.7	10

#	ARTICLE	IF	CITATIONS
96	Aberrant Expression of COT Is Related to Recurrence of Papillary Thyroid Cancer. Medicine (United) Tj ETQq0 0) rgBT _{0.4} /Ov	erlock 10 Tf 50
97	In silico identification of novel kinase inhibitors by targeting B-Rafv660e from natural products database. Journal of Molecular Modeling, 2015, 21, 102.	0.8	6
98	Lin28B promotes melanoma growth by mediating a microRNA regulatory circuit. Carcinogenesis, 2015, 36, 937-945.	1.3	19
99	Drug Resistance Resulting from Kinase Dimerization Is Rationalized by Thermodynamic Factors Describing Allosteric Inhibitor Effects. Cell Reports, 2015, 12, 1939-1949.	2.9	37
100	Markers in Colorectal Cancer and Clinical Trials Based Upon Them. Current Colorectal Cancer Reports, 2015, 11, 317-325.	1.0	0
101	c-Myc Alterations Confer Therapeutic Response and Acquired Resistance to c-Met Inhibitors in MET-Addicted Cancers. Cancer Research, 2015, 75, 4548-4559.	0.4	47
102	Systematic analysis of <scp>BRAF^V</scp> ^{600E} melanomas reveals a role for <scp>JNK</scp> /câ€Jun pathway in adaptive resistance to drugâ€induced apoptosis. Molecular Systems Biology, 2015, 11, 797.	3.2	84
103	Differential involvement of glutathione Sâ€transferase mu 1 and multidrug resistance protein 1 in melanoma acquired resistance to vinca alkaloids. Fundamental and Clinical Pharmacology, 2015, 29, 62-71.	1.0	12
104	Detailed imaging and genetic analysis reveal a secondary <scp><i>BRAF</i>^L</scp> ^{505H} resistance mutation and extensive intrapatient heterogeneity in metastatic <i><scp>BRAF</scp></i> mutant melanoma patients treated with vemurafenib. Pigment Cell and Melanoma Research, 2015, 28, 318-323.	1.5	20
105	A Kinase Divided. Cancer Cell, 2015, 28, 145-147.	7.7	2
106	Variations of BRAF mutant allele percentage in melanomas. BMC Cancer, 2015, 15, 497.	1.1	36
107	Current position of TNF-α in melanomagenesis. Tumor Biology, 2015, 36, 6589-6602.	0.8	13
108	Combined Pan-RAF and MEK Inhibition Overcomes Multiple Resistance Mechanisms to Selective RAF Inhibitors. Molecular Cancer Therapeutics, 2015, 14, 2700-2711.	1.9	59
109	MicroRNA-3151 inactivates TP53 in <i>BRAF</i> -mutated human malignancies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6744-51.	3.3	17
110	SBI-0640756 Attenuates the Growth of Clinically Unresponsive Melanomas by Disrupting the eIF4F Translation Initiation Complex. Cancer Research, 2015, 75, 5211-5218.	0.4	28
111	A-Raf: A new star of the family of raf kinases. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 520-531.	2.3	31
112	PI3′-Kinase Inhibition Forestalls the Onset of MEK1/2 Inhibitor Resistance in <i>BRAF</i> Melanoma. Cancer Discovery, 2015, 5, 143-153.	7.7	51
113	Advances in Combination Therapies Based on Nanoparticles for Efficacious Cancer Treatment: An Analytical Report. Biomacromolecules, 2015, 16, 1-27.	2.6	117

#	Article	IF	CITATIONS
114	Sensitivity to antiâ€∢scp>BRAF therapy: lost in translation. Pigment Cell and Melanoma Research, 2015, 28, 4-5.	1.5	0
115	Tumor heterogeneity and plasticity as elusive drivers for resistance to MAPK pathway inhibition in melanoma. Oncogene, 2015, 34, 2951-2957.	2.6	99
116	Ras Dimer Formation as a New Signaling Mechanism and Potential Cancer Therapeutic Target. Mini-Reviews in Medicinal Chemistry, 2016, 16, 391-403.	1.1	45
117	Dabrafenib: a new opportunity for the treatment of BRAF V600-positive melanoma. OncoTargets and Therapy, 2016, 9, 2725.	1.0	18
118	BRAF inhibitors and radiotherapy for melanoma brain metastases: potential advantages and disadvantages of combination therapy. OncoTargets and Therapy, 2016, Volume 9, 7149-7159.	1.0	33
119	Systems Perturbation Analysis of a Large-Scale Signal Transduction Model Reveals Potentially Influential Candidates for Cancer Therapeutics. Frontiers in Bioengineering and Biotechnology, 2016, 4, 10.	2.0	29
120	The Complexity of the ERK/MAP-Kinase Pathway and the Treatment of Melanoma Skin Cancer. Frontiers in Cell and Developmental Biology, 2016, 4, 33.	1.8	84
121	Selfâ€Assembled Oleic Acid Nanoparticle Mediated Inhibition of Mitogenâ€Activated Protein Kinase Signaling in Combination with DNA Damage in Cancer Cells. ChemNanoMat, 2016, 2, 201-211.	1.5	5
122	Matricellular TSP-1 as a target of interest for impeding melanoma spreading: towards a therapeutic use for TAX2 peptide. Clinical and Experimental Metastasis, 2016, 33, 637-649.	1.7	16
123	Systems Pharmacology and Pharmacodynamics. AAPS Advances in the Pharmaceutical Sciences Series, 2016, , .	0.2	9
124	<scp>ZEB</scp> 1â€mediated melanoma cell plasticity enhances resistance to <scp>MAPK</scp> inhibitors. EMBO Molecular Medicine, 2016, 8, 1143-1161.	3.3	98
125	BRAFV600E inhibition stimulates AMP-activated protein kinase-mediated autophagy in colorectal cancer cells. Scientific Reports, 2016, 6, 18949.	1.6	33
126	Using Systems Pharmacology to Advance Oncology Drug Development. AAPS Advances in the Pharmaceutical Sciences Series, 2016, , 421-463.	0.2	1
127	ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nature Communications, 2016, 7, 11551 .	5.8	69
128	Association of Vemurafenib and Pipobroman Enhances BRAF-CRAF Dimerization in Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2016, 136, 1302-1305.	0.3	1
129	Design and synthesis of N -(4-aminopyridin-2-yl)amides as B-Raf V600E inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2760-2763.	1.0	7
130	Cutaneous melanoma: A current overview. Seminars in Diagnostic Pathology, 2016, 33, 225-241.	1.0	24
131	The Mitogen-Activated Protein Kinase Pathway Facilitates Resistance to the Src Inhibitor Dasatinib in Thyroid Cancer. Molecular Cancer Therapeutics, 2016, 15, 1952-1963.	1.9	19

#	Article	IF	CITATIONS
132	Attacking the supply wagons to starve cancer cells to death. FEBS Letters, 2016, 590, 885-907.	1.3	66
133	Selumetinib for the treatment of metastatic uveal melanoma: past and future perspectives. Future Oncology, 2016, 12, 1331-1344.	1.1	24
134	Network Architecture Predisposes an Enzyme to Either Pharmacologic or Genetic Targeting. Cell Systems, 2016, 2, 112-121.	2.9	21
135	Co-inhibition of colony stimulating factor-1 receptor and BRAF oncogene in mouse models of BRAF ^{V600E} melanoma. Oncolmmunology, 2016, 5, e1089381.	2.1	32
136	Deletion Mutations Keep Kinase Inhibitors in the Loop. Cancer Cell, 2016, 29, 423-425.	7.7	5
137	A framework for understanding and targeting residual disease in oncogene-driven solid cancers. Nature Medicine, 2016, 22, 472-478.	15.2	145
138	Parallel <i>In Vivo</i> Assessment of Drug Phenotypes at Various Time Points during Systemic BRAF Inhibition Reveals Tumor Adaptation and Altered Treatment Vulnerabilities. Clinical Cancer Research, 2016, 22, 6031-6038.	3.2	16
139	High-Order Drug Combinations Are Required to Effectively Kill Colorectal Cancer Cells. Cancer Research, 2016, 76, 6950-6963.	0.4	30
140	Discovery of N-(benzyloxy)-1,3-diphenyl-1H-pyrazole-4-carboxamide derivatives as potential antiproliferative agents by inhibiting MEK. Bioorganic and Medicinal Chemistry, 2016, 24, 4652-4659.	1.4	23
141	Loss of cohesin complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma. Nature Medicine, 2016, 22, 1056-1061.	15.2	62
142	Patient-derived tumor xenograft models for melanoma drug discovery. Expert Opinion on Drug Discovery, 2016, 11, 895-906.	2.5	20
143	Therapeutic implications of melanoma heterogeneity. Experimental Dermatology, 2016, 25, 497-500.	1.4	28
144	Translating cancer genomes and transcriptomes for precision oncology. Ca-A Cancer Journal for Clinicians, 2016, 66, 75-88.	157.7	133
145	MAPK kinase signalling dynamics regulate cell fate decisions and drug resistance. Current Opinion in Structural Biology, 2016, 41, 151-158.	2.6	72
146	Two is better than one; toward a rational design of combinatorial therapy. Current Opinion in Structural Biology, 2016, 41, 145-150.	2.6	47
147	Quantitative Super-Resolution Microscopy for Cancer Biology and Medicine. Series in Cellular and Clinical Imaging, 2016, , 321-350.	0.2	0
148	Inhibition of Ras/Raf/MEK/ERK Pathway Signaling by a Stress-Induced Phospho-Regulatory Circuit. Molecular Cell, 2016, 64, 875-887.	4.5	76
149	Knockdown of USP39 induces cell cycle arrest and apoptosis in melanoma. Tumor Biology, 2016, 37, 13167-13176.	0.8	21

#	ARTICLE	IF	CITATIONS
151	Paradoxical activation of MEK/ERK signaling induced by B-Raf inhibition enhances DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Scientific Reports, 2016, 6, 26803.	1.6	14
152	KSR1 and EPHB4 Regulate Myc and PGC1 \hat{i}^2 To Promote Survival of Human Colon Tumors. Molecular and Cellular Biology, 2016, 36, 2246-2261.	1.1	30
153	A combinatorial strategy for treating KRAS-mutant lung cancer. Nature, 2016, 534, 647-651.	13.7	337
154	Protein Kinase CK2α Maintains Extracellular Signal-regulated Kinase (ERK) Activity in a CK2α Kinase-independent Manner to Promote Resistance to Inhibitors of RAF and MEK but Not ERK in BRAF Mutant Melanoma. Journal of Biological Chemistry, 2016, 291, 17804-17815.	1.6	28
155	Can histone proteins promote the growth of melanoma?. Melanoma Management, 2016, 3, 1-4.	0.1	2
156	Integrating Genomics Into Clinical Pediatric Oncology Using the Molecular Tumor Board at the Memorial Sloan Kettering Cancer Center. Pediatric Blood and Cancer, 2016, 63, 1368-1374.	0.8	49
157	Negative feedback regulation of the ERK1/2 MAPK pathway. Cellular and Molecular Life Sciences, 2016, 73, 4397-4413.	2.4	400
158	Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science, 2016, 351, 604-608.	6.0	499
159	Targeting CDK4 and CDK6: From Discovery to Therapy. Cancer Discovery, 2016, 6, 353-367.	7.7	717
160	Schedule-dependent interaction between anticancer treatments. Science, 2016, 351, 1204-1208.	6.0	62
161	EBI-907, a novel BRAF ^{V600E} inhibitor, has potent oral anti-tumor activity and a broad kinase selectivity profile. Cancer Biology and Therapy, 2016, 17, 199-207.	1.5	10
162	The ERK cascade inhibitors: Towards overcoming resistance. Drug Resistance Updates, 2016, 25, 1-12.	6.5	67
163	Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation. Science, 2016, 351, 608-612.	6.0	94
164	Braf V600E mutation in melanoma: translational current scenario. Clinical and Translational Oncology, 2016, 18, 863-871.	1.2	13
165	Long-Term ERK Inhibition in KRAS-Mutant Pancreatic Cancer Is Associated with MYC Degradation and Senescence-like Growth Suppression. Cancer Cell, 2016, 29, 75-89.	7.7	191
166	Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target. Journal of the National Cancer Institute, 2016, 108, djv371.	3.0	37
167	Oncogenic <i>BRAF</i> Deletions That Function as Homodimers and Are Sensitive to Inhibition by RAF Dimer Inhibitor LY3009120. Cancer Discovery, 2016, 6, 300-315.	7.7	134

#	Article	IF	CITATIONS
169	Cooperation of BRAFF595L and mutant HRAS in histiocytic sarcoma provides new insights into oncogenic BRAF signaling. Leukemia, 2016, 30, 937-946.	3.3	52
170	Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells. Molecular Oncology, 2016, 10, 73-84.	2.1	129
171	Histone variant H2A.Z.2: A novel driver of melanoma progression. Molecular and Cellular Oncology, 2016, 3, e1073417.	0.3	19
172	Feedback regulation in cell signalling: Lessons for cancer therapeutics. Seminars in Cell and Developmental Biology, 2016, 50, 85-94.	2.3	53
173	Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nature Reviews Clinical Oncology, 2017, 14, 57-66.	12.5	239
174	The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting. Critical Reviews in Oncology/Hematology, 2017, 111, 7-19.	2.0	57
175	<i>SOX2</i> promotes lineage plasticity and antiandrogen resistance in <i>TP53</i> - and <i>RB1</i> -deficient prostate cancer. Science, 2017, 355, 84-88.	6.0	759
176	Nâ∈Ras mutation in vemurafenibâ∈associated expanding melanocytic nevus. Journal of Dermatology, 2017, 44, e101-e102.	0.6	2
177	Pharmacological strategies to target oncogenic KRAS signaling in pancreatic cancer. Pharmacological Research, 2017, 117, 370-376.	3.1	14
178	A brain-penetrant RAF dimer antagonist for the noncanonical BRAF oncoprotein of pediatric low-grade astrocytomas. Neuro-Oncology, 2017, 19, now261.	0.6	55
179	Design, synthesis and evaluation of derivatives based on pyrimidine scaffold as potent Pan-Raf inhibitors to overcome resistance. European Journal of Medicinal Chemistry, 2017, 130, 86-106.	2.6	20
180	Adaptive resistance of melanoma cells to <scp>RAF</scp> inhibition via reversible induction of a slowly dividing deâ€differentiated state. Molecular Systems Biology, 2017, 13, 905.	3.2	202
181	Integrating phosphoproteomics into the clinical management of prostate cancer. Clinical and Translational Medicine, 2017, 6, 9.	1.7	6
182	Tumor cell resistance against targeted therapeutics: the density of cultured glioma tumor cells enhances Stat3 activity and offers protection against the tyrosine kinase inhibitor canertinib. MedChemComm, 2017, 8, 96-102.	3.5	9
183	Mechanisms of Drug Resistance in Melanoma. Handbook of Experimental Pharmacology, 2017, 249, 91-108.	0.9	63
184	Doubling Down on Mutant RAS Can MEK or Break Leukemia. Cell, 2017, 168, 749-750.	13.5	3
185	ATXN1L, CIC, and ETS Transcription Factors Modulate Sensitivity to MAPK Pathway Inhibition. Cell Reports, 2017, 18, 1543-1557.	2.9	95
186	Akt Activation Mediates Acquired Resistance to Fibroblast Growth Factor Receptor Inhibitor BGJ398. Molecular Cancer Therapeutics, 2017, 16, 614-624.	1.9	72

#	Article	IF	CITATIONS
187	The WW domain of the scaffolding protein IQGAP1 is neither necessary nor sufficient for binding to the MAPKs ERK1 and ERK2. Journal of Biological Chemistry, 2017, 292, 8750-8761.	1.6	17
188	RAF proteins exert both specific and compensatory functions during tumour progression of NRAS-driven melanoma. Nature Communications, 2017, 8, 15262.	5.8	38
189	MYC and RAF: Key Effectors in Cellular Signaling and Major Drivers in Human Cancer. Current Topics in Microbiology and Immunology, 2017, 407, 117-151.	0.7	25
190	Biomarker Accessible and Chemically Addressable Mechanistic Subtypes of BRAF Melanoma. Cancer Discovery, 2017, 7, 832-851.	7.7	49
191	Shifting the Balance of Activating and Inhibitory Natural Killer Receptor Ligands on <i>BRAF</i> V600E Melanoma Lines with Vemurafenib. Cancer Immunology Research, 2017, 5, 582-593.	1.6	17
192	Abl kinase regulation by BRAF/ERK and cooperation with Akt in melanoma. Oncogene, 2017, 36, 4585-4596.	2.6	19
193	Dual inhibiting OCT4 and AKT potently suppresses the propagation of human cancer cells. Scientific Reports, 2017, 7, 46246.	1.6	19
194	Hyaluronic acid cloaked oleic acid nanoparticles inhibit MAPK signaling with sub-cellular DNA damage in colon cancer cells. Journal of Materials Chemistry B, 2017, 5, 3658-3666.	2.9	9
195	Mutation matters in precision medicine: A future to believe in. Cancer Treatment Reviews, 2017, 55, 136-149.	3.4	36
196	Oxidative stress downstream of mTORC1 but not AKT causes a proliferative defect in cancer cells resistant to PI3K inhibition. Oncogene, 2017, 36, 2762-2774.	2.6	24
197	Ras oncogene-independent activation of RALB signaling is a targetable mechanism of escape from NRAS(V12) oncogene addiction in acute myeloid leukemia. Oncogene, 2017, 36, 3263-3273.	2.6	7
198	Cytokines and metabolic factors regulate tumoricidal T-cell function during cancer immunotherapy. lmmunotherapy, 2017, 9, 71-82.	1.0	5
199	BRAF -mutated cells activate GCN2-mediated integrated stress response as a cytoprotective mechanism in response to vemurafenib. Biochemical and Biophysical Research Communications, 2017, 482, 1491-1497.	1.0	18
200	Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nature Reviews Cancer, 2017, 17, 557-569.	12.8	280
201	Everolimus selectively targets vemurafenib resistant BRAFV600E melanoma cells adapted to low pH. Cancer Letters, 2017, 408, 43-54.	3.2	36
202	Identification of NRAS isoform 2 overexpression as a mechanism facilitating BRAF inhibitor resistance in malignant melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9629-9634.	3.3	16
203	Targeting endothelin receptor signalling overcomes heterogeneity driven therapy failure. EMBO Molecular Medicine, 2017, 9, 1011-1029.	3.3	63
204	ATRX is a regulator of therapy induced senescence in human cells. Nature Communications, 2017, 8, 386.	5.8	59

#	Article	IF	CITATIONS
205	An approach to suppress the evolution of resistance in BRAFV600E-mutant cancer. Nature Medicine, 2017, 23, 929-937.	15.2	146
206	Critical role of gliomaâ€associated oncogene homolog 1 in maintaining invasive and mesenchymalâ€like properties of melanoma cells. Cancer Science, 2017, 108, 1602-1611.	1.7	16
207	From word models to executable models of signaling networks using automated assembly. Molecular Systems Biology, 2017, 13, 954.	3.2	137
208	Harnessing BET Inhibitor Sensitivity Reveals AMIGO2 as a Melanoma Survival Gene. Molecular Cell, 2017, 68, 731-744.e9.	4.5	90
209	Clinical responses to ERK inhibition in BRAF V600E-mutant colorectal cancer predicted using a computational model. Npj Systems Biology and Applications, 2017, 3, 14.	1.4	45
210	Combined BRAFV600E and MEK blockade for BRAFV600E-mutant gliomas. Journal of Neuro-Oncology, 2017, 131, 495-505.	1.4	29
211	Next-Generation Strategies to Target RAF. , 2017, , 175-191.		0
212	Blocking SIAH Proteolysis, an Important K-RAS Vulnerability, to Control and Eradicate K-RAS-Driven Metastatic Cancer., 2017,, 213-232.		4
213	Microenvironmental agonists generate de novo phenotypic resistance to combined ibrutinib plus venetoclax in CLL and MCL. Blood Advances, 2017, 1, 933-946.	2.5	75
214	Systemic Therapy Options for Patients With Unresectable Melanoma. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 661-672.	1.8	8
215	Targeted inhibition of the MAPK pathway: emerging salvage option for progressive life-threatening multisystem LCH. Blood Advances, 2017, 1, 352-356.	2.5	29
216	Obatoclax and LY3009120 Efficiently Overcome Vemurafenib Resistance in Differentiated Thyroid Cancer. Theranostics, 2017, 7, 987-1001.	4.6	28
217	Non-V600 BRAF mutations recurrently found in lung cancer predict sensitivity to the combination of Trametinib and Dabrafenib. Oncotarget, 2017, 8, 60094-60108.	0.8	85
218	Genomics of Hairy Cell Leukemia. Journal of Clinical Oncology, 2017, 35, 1002-1010.	0.8	64
219	<i>PTEN</i> Loss-of-Function Alterations Are Associated With Intrinsic Resistance to BRAF Inhibitors in Metastatic Melanoma. JCO Precision Oncology, 2017, 1, 1-15.	1.5	275
220	Translating childhood brain tumour research into clinical practice: the experience of molecular classification and diagnostics. Paediatrics and Child Health (United Kingdom), 2018, 28, 177-182.	0.2	2
221	RAF, MEK and ERK Inhibitors as Anti-Cancer Drugs: Intrinsic and Acquired Resistance as a Major Therapeutic Challenge. Resistance To Targeted Anti-cancer Therapeutics, 2018, , 89-116.	0.1	1
222	Brain Distribution of a Novel MEK Inhibitor E6201: Implications in the Treatment of Melanoma Brain Metastases. Drug Metabolism and Disposition, 2018, 46, 658-666.	1.7	24

#	Article	IF	CITATIONS
223	RSK Regulates PFK-2 Activity to Promote Metabolic Rewiring in Melanoma. Cancer Research, 2018, 78, 2191-2204.	0.4	47
224	Gene Fusions in Thyroid Cancer. Thyroid, 2018, 28, 158-167.	2.4	84
225	Palbociclib synergizes with BRAF and MEK inhibitors in treatment $na\tilde{A}^{-}ve$ melanoma but not after the development of BRAF inhibitor resistance. International Journal of Cancer, 2018, 142, 2139-2152.	2.3	56
226	Targeting the Raf kinases in human cancer: the Raf dimer dilemma. British Journal of Cancer, 2018, 118, 3-8.	2.9	98
227	Keeping Tumors Out of the MAPK Fitness Zone. Cancer Discovery, 2018, 8, 20-23.	7.7	18
228	Systems biology analysis of mitogen activated protein kinase inhibitor resistance in malignant melanoma. BMC Systems Biology, 2018, 12, 33.	3.0	25
229	Modification, Biological Evaluation and <scp>SAR</scp> Studies of Novel 1 <i>H</i> â€Pyrazol Derivatives Containing <i>N</i> , <i>N</i> ,ê2â€Disubstituted Urea Moiety as Potential Antiâ€melanoma Agents. Chemistry and Biodiversity, 2018, 15, e1700504.	1.0	5
231	Concomitant BCORL1 and BRAF Mutations in Vemurafenib-Resistant Melanoma Cells. Neoplasia, 2018, 20, 467-477.	2.3	13
232	Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations. Oncogene, 2018, 37, 3183-3199.	2.6	317
233	A Nonquiescent "ldling―Population State in Drug-Treated, BRAF-Mutated Melanoma. Biophysical Journal, 2018, 114, 1499-1511.	0.2	34
234	The therapeutic potential of targeting the BRAF mutation in patients with colorectal cancer. Journal of Cellular Physiology, 2018, 233, 2162-2169.	2.0	49
235	Wild-type KRAS is a novel therapeutic target for melanoma contributing to primary and acquired resistance to BRAF inhibition. Oncogene, 2018, 37, 897-911.	2.6	40
236	RAF inhibitor LY3009120 sensitizes RAS or BRAF mutant cancer to CDK4/6 inhibition by abemaciclib via superior inhibition of phospho-RB and suppression of cyclin D1. Oncogene, 2018, 37, 821-832.	2.6	55
237	miR-216b enhances the efficacy of vemurafenib by targeting Beclin-1, UVRAG and ATG5 in melanoma. Cellular Signalling, 2018, 42, 30-43.	1.7	25
238	ERK-dependent IL-6 autocrine signaling mediates adaptive resistance to pan-PI3K inhibitor BKM120 in head and neck squamous cell carcinoma. Oncogene, 2018, 37, 377-388.	2.6	29
239	A guanine derivative as a new MEK inhibitor produced by Streptomyces sp. MK63-43F2. Journal of Antibiotics, 2018, 71, 135-138.	1.0	5
240	miR-204-5p and miR-211-5p Contribute to BRAF Inhibitor Resistance in Melanoma. Cancer Research, 2018, 78, 1017-1030.	0.4	140
241	Nondiffuse Astrocytoma Variants. , 2018, , 125-143.		0

#	Article	IF	CITATIONS
242	Mechanisms shaping the role of ERK1/2 in cellular sene scence (Review). Molecular Medicine Reports, $2019, 19, 759-770$.	1.1	62
243	Mechanisms of Drug Resistance in Cancer Therapy. Handbook of Experimental Pharmacology, 2018, , .	0.9	1
244	Identification and Biological Evaluation of Novel Typeâ€ Bâ€RafV600EInhibitors. ChemMedChem, 2018, 13, 2558-2566.	1.6	8
245	Ubiquitination and adaptive responses to BRAF inhibitors in Melanoma. Molecular and Cellular Oncology, 2018, 5, e1497862.	0.3	9
246	Targeted profiling of RNA translation reveals mTOR-4EBP1/2-independent translation regulation of mRNAs encoding ribosomal proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9325-E9332.	3.3	28
247	Translational Research and Genomics Driven Trials in Thyroid Cancer. , 2018, , 319-338.		0
248	A Convergence-Based Framework for Cancer Drug Resistance. Cancer Cell, 2018, 33, 801-815.	7.7	181
249	Sustained SREBP-1-dependent lipogenesis as a key mediator of resistance to BRAF-targeted therapy. Nature Communications, 2018, 9, 2500.	5.8	92
250	Autophagic cell death associated to Sorafenib in renal cell carcinoma is mediated through Akt inhibition in an ERK1/2 independent fashion. PLoS ONE, 2018, 13, e0200878.	1.1	26
251	Concurrent HER or PI3K Inhibition Potentiates the Antitumor Effect of the ERK Inhibitor Ulixertinib in Preclinical Pancreatic Cancer Models. Molecular Cancer Therapeutics, 2018, 17, 2144-2155.	1.9	32
252	Nanocatalyst Complex Can Dephosphorylate Key Proteins in MAPK Pathway for Cancer Therapy. Advanced Healthcare Materials, 2018, 7, e1800533.	3.9	3
253	Dissecting RAF Inhibitor Resistance by Structure-based Modeling Reveals Ways to Overcome Oncogenic RAS Signaling. Cell Systems, 2018, 7, 161-179.e14.	2.9	53
254	Targeting few to help hundreds: JAK, MAPK and ROCK pathways as druggable targets in atypical chronic myeloid leukemia. Molecular Cancer, 2018, 17, 40.	7.9	30
255	Kinase-targeted cancer therapies: progress, challenges and future directions. Molecular Cancer, 2018, 17, 48.	7.9	796
256	Early changes in rpS6 phosphorylation and BH3 profiling predict response to chemotherapy in AML cells. PLoS ONE, 2018, 13, e0196805.	1.1	7
257	SIRT6 haploinsufficiency induces BRAFV600E melanoma cell resistance to MAPK inhibitors via IGF signalling. Nature Communications, 2018, 9, 3440.	5.8	80
258	Protein–Protein Interactions: Emerging Oncotargets in the RAS-ERK Pathway. Trends in Cancer, 2018, 4, 616-633.	3.8	44
259	Clinical significance of the BRAFV600E mutation in Asian patients with colorectal cancer. International Journal of Colorectal Disease, 2018, 33, 1173-1181.	1.0	11

#	Article	IF	CITATIONS
260	Loss of USP28-mediated BRAF degradation drives resistance to RAF cancer therapies. Journal of Experimental Medicine, 2018, 215, 1913-1928.	4.2	41
261	Overcoming Resistance to Targeted Anticancer Therapies through Small-Molecule-Mediated MEK Degradation. Cell Chemical Biology, 2018, 25, 996-1005.e4.	2.5	18
262	Composite regulation of ERK activity dynamics underlying tumour-specific traits in the intestine. Nature Communications, 2018, 9, 2174.	5.8	42
263	A CRISPR screen identifies MAPK7 as a target for combination with MEK inhibition in KRAS mutant NSCLC. PLoS ONE, 2018, 13, e0199264.	1.1	16
264	Reactive Oxygen Species in Plasma Medical Science (PAM and Cancer Therapy)., 2019,, 249-318.		1
265	BRAF inhibitors promote intermediate BRAF(V600E) conformations and binary interactions with activated RAS. Science Advances, 2019, 5, eaav8463.	4.7	25
266	TERT expression is susceptible to BRAF and ETS-factor inhibition in BRAFV600E/TERT promoter double-mutated glioma. Acta Neuropathologica Communications, 2019, 7, 128.	2.4	26
267	Adaptive Responses as Mechanisms of Resistance to BRAF Inhibitors in Melanoma. Cancers, 2019, 11, 1176.	1.7	20
268	Tumor heterogeneity and acquired drug resistance in FGFR2-fusion-positive cholangiocarcinoma through rapid research autopsy. Journal of Physical Education and Sports Management, 2019, 5, a004002.	0.5	60
269	Langerhans cell histiocytosis: progress and controversies. British Journal of Haematology, 2019, 187, 559-562.	1.2	18
270	Metabolic flexibility in melanoma: A potential therapeutic target. Seminars in Cancer Biology, 2019, 59, 187-207.	4.3	62
271	KSRP modulates melanoma growth and efficacy of vemurafenib. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 759-770.	0.9	8
272	An integrative pharmacogenomics analysis identifies therapeutic targets in KRAS-mutant lung cancer. EBioMedicine, 2019, 49, 106-117.	2.7	20
273	YAP1 Mediates Resistance to MEK1/2 Inhibition in Neuroblastomas with Hyperactivated RAS Signaling. Cancer Research, 2019, 79, 6204-6214.	0.4	46
274	Adaptive Resistance to Dual BRAF/MEK Inhibition in BRAF-Driven Tumors through Autocrine FGFR Pathway Activation. Clinical Cancer Research, 2019, 25, 7202-7217.	3.2	29
275	Mechanisms of acquired tumor drug resistance. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1872, 188310.	3.3	111
276	Drug resistance of BRAF-mutant melanoma: Review of up-to-date mechanisms of action and promising targeted agents. European Journal of Pharmacology, 2019, 862, 172621.	1.7	65
277	c-Met activation leads to the establishment of a TGF \hat{l}^2 -receptor regulatory network in bladder cancer progression. Nature Communications, 2019, 10, 4349.	5.8	44

#	Article	IF	CITATIONS
278	Epigenetic Mechanisms of Escape from BRAF Oncogene Dependency. Cancers, 2019, 11, 1480.	1.7	31
279	A systems mechanism for KRAS mutant allele–specific responses to targeted therapy. Science Signaling, 2019, 12, .	1.6	42
280	Receptor tyrosine kinase-dependent PI3K activation is an escape mechanism to vertical suppression of the EGFR/RAS/MAPK pathway in KRAS-mutated human colorectal cancer cell lines. Journal of Experimental and Clinical Cancer Research, 2019, 38, 41.	3.5	57
281	Cobimetinib in malignant melanoma: how to MEK an impact on long-term survival. Future Oncology, 2019, 15, 967-977.	1.1	10
282	Inhibiting BRAF Oncogene–Mediated Radioresistance Effectively Radiosensitizes BRAFV600E-Mutant Thyroid Cancer Cells by Constraining DNA Double-Strand Break Repair. Clinical Cancer Research, 2019, 25, 4749-4760.	3.2	39
283	SIRT2 Contributes to the Resistance of Melanoma Cells to the Multikinase Inhibitor Dasatinib. Cancers, 2019, 11, 673.	1.7	22
284	Resistance to MAPK Inhibitors in Melanoma Involves Activation of the IGF1R–MEK5–Erk5 Pathway. Cancer Research, 2019, 79, 2244-2256.	0.4	41
285	Drug library screen reveals benzimidazole derivatives as selective cytotoxic agents for KRAS-mutant lung cancer. Cancer Letters, 2019, 451, 11-22.	3.2	28
286	Mouse Models as a Tool for Understanding Progression in Braf ^{V600E} -Driven Thyroid Cancers. Endocrinology and Metabolism, 2019, 34, 11.	1.3	14
287	p38 MAPK activation through B7-H3-mediated DUSP10 repression promotes chemoresistance. Scientific Reports, 2019, 9, 5839.	1.6	28
288	Rare Pediatric Invasive Gliofibroma Has BRAFV600E Mutation and Transiently Responds to Targeted Therapy Before Progressive Clonal Evolution. JCO Precision Oncology, 2019, 3, 1-10.	1.5	2
289	Destabilization of NOXA mRNA as a common resistance mechanism to targeted therapies. Nature Communications, 2019, 10, 5157.	5.8	46
290	A view on drug resistance in cancer. Nature, 2019, 575, 299-309.	13.7	1,391
291	All-trans Retinoic Acid Overcomes Acquired Resistance to PLX4032 via Inhibition of PIN1 in Melanoma Cells. Anticancer Research, 2019, 39, 6537-6546.	0.5	5
292	Introductory Chapter: Tyrosine Kinases as Drug Targets in Cancer Treatment. , 2019, , .		0
293	Positioning High-Throughput CETSA in Early Drug Discovery through Screening against B-Raf and PARP1. SLAS Discovery, 2019, 24, 121-132.	1.4	34
294	Rational combination of cancer immunotherapy in melanoma. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2019, 474, 433-447.	1.4	7
295	Molecular Pathways in Melanomagenesis. , 2019, , 623-642.		0

#	Article	IF	CITATIONS
296	MicroRNA-211 Loss Promotes Metabolic Vulnerability and BRAF Inhibitor Sensitivity inÂMelanoma. Journal of Investigative Dermatology, 2019, 139, 167-176.	0.3	21
297	Intracellular Signaling. , 2020, , 24-46.e12.		0
298	The KRASG12C Inhibitor MRTX849 Provides Insight toward Therapeutic Susceptibility of KRAS-Mutant Cancers in Mouse Models and Patients. Cancer Discovery, 2020, 10, 54-71.	7.7	820
299	A Single-Step, High-Dose Selection Scheme Reveals Distinct Mechanisms of Acquired Resistance to Oncogenic Kinase Inhibition in Cancer Cells. Cancer Research, 2020, 80, 79-90.	0.4	4
300	Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature, 2020, 577, 421-425.	13.7	321
301	SOX2 upregulates side population cells and enhances their chemoresistant ability by transactivating ABCC1 expression contributing to intrinsic resistance to paclitaxel in melanoma. Molecular Carcinogenesis, 2020, 59, 257-264.	1.3	17
302	Targeting KRAS(G12C): From Inhibitory Mechanism to Modulation of Antitumor Effects in Patients. Cell, 2020, 183, 850-859.	13.5	128
303	Mutation-oriented profiling of autoinhibitory kinase conformations predicts RAF inhibitor efficacies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31105-31113.	3.3	9
304	Exploring the Eco-Evolutionary Dynamics of Tumor Subclones. Cancers, 2020, 12, 3436.	1.7	2
305	EMT-Inducing Transcription Factors, Drivers of Melanoma Phenotype Switching, and Resistance to Treatment. Cancers, 2020, 12, 2154.	1.7	56
306	DDX39 Overexpression Predicts a Poor Prognosis and Promotes Aggressiveness of Melanoma by Cooperating With SNAIL. Frontiers in Oncology, 2020, 10, 1261.	1.3	5
307	Targeting Mutant KRAS in Pancreatic Cancer: Futile or Promising?. Biomedicines, 2020, 8, 281.	1.4	26
308	Evaluation of the RAS signaling network in response to MEK inhibition using organoids derived from a familial adenomatous polyposis patient. Scientific Reports, 2020, 10, 17455.	1.6	1
309	Inhibitors of BRAF dimers using an allosteric site. Nature Communications, 2020, 11, 4370.	5.8	48
310	MEK1 Inhibitor Combined with Irradiation Reduces Migration of Breast Cancer Cells Including miR-221 and ZEB1 EMT Marker Expression. Cancers, 2020, 12, 3760.	1.7	8
311	NAMPT Over-Expression Recapitulates the BRAF Inhibitor Resistant Phenotype Plasticity in Melanoma. Cancers, 2020, 12, 3855.	1.7	17
312	Quest for Clinically Effective RAF Dimer Inhibitors. Journal of Clinical Oncology, 2020, 38, 2197-2200.	0.8	5
313	Antitumor Effects of Pan-RAF Inhibitor LY3009120 Against Lung Cancer Cells Harboring Oncogenic <i>BRAF</i> Mutation. Anticancer Research, 2020, 40, 2667-2673.	0.5	6

#	Article	IF	CITATIONS
314	BRAF mutation and its inhibitors in sarcoma treatment. Cancer Medicine, 2020, 9, 4881-4896.	1.3	26
315	Strategic Combinations to Prevent and Overcome Resistance to Targeted Therapies in Oncology. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, e292-e308.	1.8	3
316	Feedback analysis identifies a combination target for overcoming adaptive resistance to targeted cancer therapy. Oncogene, 2020, 39, 3803-3820.	2.6	14
317	RAS, wanted dead or alive: Advances in targeting RAS mutant cancers. Science Signaling, 2020, 13, .	1.6	62
318	RNAseq expression patterns of canine invasive urothelial carcinoma reveal two distinct tumor clusters and shared regions of dysregulation with human bladder tumors. BMC Cancer, 2020, 20, 251.	1.1	16
319	How to make an undruggable enzyme druggable: lessons from ras proteins. Advances in Protein Chemistry and Structural Biology, 2020, 122, 181-202.	1.0	3
320	The Current State of Molecular Testing in the BRAF-Mutated Melanoma Landscape. Frontiers in Molecular Biosciences, 2020, 7, 113 .	1.6	52
321	A Rare Complex BRAF Mutation Involving Codon V600 and K601 in Primary Cutaneous Melanoma: Case Report. Frontiers in Oncology, 2020, 10, 1056.	1.3	5
322	PD-1 IC Inhibition Synergistically Improves Influenza A Virus-Mediated Oncolysis of Metastatic Pulmonary Melanoma. Molecular Therapy - Oncolytics, 2020, 17, 190-204.	2.0	7
323	Acetylene Group, Friend or Foe in Medicinal Chemistry. Journal of Medicinal Chemistry, 2020, 63, 5625-5663.	2.9	76
324	KinCon: Cellâ€based recording of fullâ€length kinase conformations. IUBMB Life, 2020, 72, 1168-1174.	1.5	11
325	T-type calcium channel inhibition restores sensitivity to MAPK inhibitors in de-differentiated and adaptive melanoma cells. British Journal of Cancer, 2020, 122, 1023-1036.	2.9	20
327	The meiosis-specific cohesin component stromal antigen 3 promotes cell migration and chemotherapeutic resistance in colorectal cancer. Cancer Letters, 2021, 497, 112-122.	3.2	12
328	Current Management of Melanoma. Updates in Surgery Series, 2021, , .	0.0	0
329	pH-Sensitive Nanodrug Carriers for Codelivery of ERK Inhibitor and Gemcitabine Enhance the Inhibition of Tumor Growth in Pancreatic Cancer. Molecular Pharmaceutics, 2021, 18, 87-100.	2.3	31
330	Reemergence of neural crest stem cell-like states in melanoma during disease progression and treatment. Stem Cells Translational Medicine, 2021, 10, 522-533.	1.6	41
331	Infigratinib (BGJ398): an investigational agent for the treatment of FGFR-altered intrahepatic cholangiocarcinoma. Expert Opinion on Investigational Drugs, 2021, 30, 309-316.	1.9	32
332	New advances in the clinical management of RAS and BRAF mutant colorectal cancer patients. Expert Review of Gastroenterology and Hepatology, 2021, 15, 65-79.	1.4	4

#	Article	IF	Citations
333	A validated LC–MS/MS method for the determination of RAF inhibitor LXH254: Application to pharmacokinetic study in rat. Biomedical Chromatography, 2021, 35, e4968.	0.8	0
334	Resistance mechanisms to targeted therapy in BRAF-mutant melanoma - A mini review. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129736.	1.1	38
335	Models of Cancer Drug Discovery and Response to Therapy. , 2021, , 269-276.		0
336	Integrated molecular characterisation of the MAPK pathways in human cancers reveals pharmacologically vulnerable mutations and gene dependencies. Communications Biology, 2021, 4, 9.	2.0	32
337	Mechanisms of Resistance to KRASG12C Inhibitors. Cancers, 2021, 13, 151.	1.7	81
338	Suppressing Nucleotide Exchange to Inhibit KRAS-Mutant Tumors. Cancer Discovery, 2021, 11, 17-19.	7.7	9
339	Drug resistance in targeted cancer therapies with RAF inhibitors. , 2021, 4, 665-683.		9
340	PLEKHA4 Promotes Wnt∫î²-Catenin Signaling–Mediated G1–S Transition and Proliferation in Melanoma. Cancer Research, 2021, 81, 2029-2043.	0.4	13
341	Downregulation of SOX2 by inhibition of Usp9X induces apoptosis in melanoma. Oncotarget, 2021, 12, 160-172.	0.8	8
343	Malignant Giant Cell Tumor of Bone With a KRAS G12V Mutation. Journal of Pediatric Hematology/Oncology, 2021, Publish Ahead of Print, .	0.3	3
344	Differential Sensitivity of Wild-Type and BRAF-Mutated Cells to Combined BRAF and Autophagy Inhibition. Biomolecules and Therapeutics, 2021, 29, 434-444.	1.1	5
346	DRP1 Promotes BRAFV600E-Driven Tumor Progression and Metabolic Reprogramming in Colorectal Cancer. Frontiers in Oncology, 2020, 10, 592130.	1.3	12
347	Epigenetic modulation reveals differentiation state specificity of oncogene addiction. Nature Communications, 2021, 12, 1536.	5.8	12
348	Targeting KRAS: The Elephant in the Room of Epithelial Cancers. Frontiers in Oncology, 2021, 11, 638360.	1.3	42
349	Selective CRAF Inhibition Elicits Transactivation. Journal of the American Chemical Society, 2021, 143, 4600-4606.	6.6	15
350	Allosteric Kinase Inhibitors Reshape MEK1 Kinase Activity Conformations in Cells and In Silico. Biomolecules, 2021, 11, 518.	1.8	4
351	Cyclodextrin-Based Hybrid Polymeric Complex to Overcome Dual Drug Resistance Mechanisms for Cancer Therapy. Polymers, 2021, 13, 1254.	2.0	12
352	BRAF paradox breakers PLX8394, PLX7904 are more effective against BRAFV600Ε CRC cells compared with the BRAF inhibitor PLX4720 and shown by detailed pathway analysis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166061.	1.8	14

#	Article	IF	CITATIONS
353	Precision oncology in metastatic colorectal cancer $\hat{a}\in$ " from biology to medicine. Nature Reviews Clinical Oncology, 2021, 18, 506-525.	12.5	113
354	BRAF/EZH2 Signaling Represses miR-129-5p Inhibition of SOX4 Thereby Modulating BRAFi Resistance in Melanoma. Cancers, 2021, 13, 2393.	1.7	8
355	Resistance to Targeted Therapy and RASSF1A Loss in Melanoma: What Are We Missing?. International Journal of Molecular Sciences, 2021, 22, 5115.	1.8	8
356	Boolean dynamic modeling of cancer signaling networks: Prognosis, progression, and therapeutics. Computational and Systems Oncology, 2021, 1, e1017.	1.1	24
357	The genetic and epigenetic basis of distinct melanoma types. Journal of Dermatology, 2021, 48, 925-939.	0.6	6
358	FOXA1 and adaptive response determinants to HER2 targeted therapy in TBCRC 036. Npj Breast Cancer, 2021, 7, 51.	2.3	11
359	The stability of R-spine defines RAF inhibitor resistance: A comprehensive analysis of oncogenic BRAF mutants with in-frame insertion of $\hat{l}\pm C-\hat{l}^24$ loop. Science Advances, 2021, 7, .	4.7	13
360	MAPK/ERK Signaling Pathway in Hepatocellular Carcinoma. Cancers, 2021, 13, 3026.	1.7	104
363	Opportunities and Challenges of Small Molecule Induced Targeted Protein Degradation. Frontiers in Cell and Developmental Biology, 2021, 9, 685106.	1.8	31
364	Single-cell RNA sequencing in cancer: Applications, advances, and emerging challenges. Molecular Therapy - Oncolytics, 2021, 21, 183-206.	2.0	44
365	Tumor suppressor miRâ€193aâ€3p enhances efficacy of BRAF/MEK inhibitors in <i>BRAF</i> â€mutated colorectal cancer. Cancer Science, 2021, 112, 3856-3870.	1.7	9
366	Sequential Administration of XPO1 and ATR Inhibitors Enhances Therapeutic Response in TP53-mutated Colorectal Cancer. Gastroenterology, 2021, 161, 196-210.	0.6	23
367	Cell Line–Specific Network Models of ER+ Breast Cancer Identify Potential PI3Kα Inhibitor Resistance Mechanisms and Drug Combinations. Cancer Research, 2021, 81, 4603-4617.	0.4	13
369	Cytotoxic activity of KRAS inhibitors in combination with chemotherapeutics. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 1065-1074.	1.5	3
370	Cell-Intrinsic Mechanisms of Drug Tolerance to Systemic Therapies in Cancer. Molecular Cancer Research, 2022, 20, 11-29.	1.5	15
371	Dark Side of Cancer Therapy: Cancer Treatment-Induced Cardiopulmonary Inflammation, Fibrosis, and Immune Modulation. International Journal of Molecular Sciences, 2021, 22, 10126.	1.8	12
372	Identifying transcriptional programs underlying cancer drug response with TraCe-seq. Nature Biotechnology, 2022, 40, 86-93.	9.4	23
373	A New Player in Neuroblastoma: YAP and Its Role in the Neuroblastoma Microenvironment. Cancers, 2021, 13, 4650.	1.7	5

#	Article	IF	Citations
374	METTL3 induces PLX4032 resistance in melanoma by promoting m6A-dependent EGFR translation. Cancer Letters, 2021, 522, 44-56.	3.2	32
375	Cytotoxicity of combinations of the pan-KRAS inhibitor BAY-293 against primary non-small lung cancer cells. Translational Oncology, 2021, 14, 101230.	1.7	10
376	Targeting metastatic cancer. Nature Medicine, 2021, 27, 34-44.	15.2	447
377	Ras and Ras Signaling as a Therapeutic Target in Cancer. , 2021, , .		0
378	Melanoma and Non-Melanoma Skin Cancers. , 2014, , 435-452.		1
379	RAS Function in cancer cells: translating membrane biology and biochemistry into new therapeutics. Biochemical Journal, 2020, 477, 2893-2919.	1.7	12
385	Novel Drugs and Combination Therapies for the Treatment of Metastatic Melanoma. Journal of Clinical Medicine Research, 2016, 8, 63-75.	0.6	49
386	Novel three-dimensional cultures provide insights into thyroid cancer behavior. Endocrine-Related Cancer, 2020, 27, 111-121.	1.6	6
387	<i>BRAFV600E</i> -dependent Mcl-1 stabilization leads to everolimus resistance in colon cancer cells. Oncotarget, 2016, 7, 47699-47710.	0.8	51
388	Myotubularin-related protein 7 inhibits insulin signaling in colorectal cancer. Oncotarget, 2016, 7, 50490-50506.	0.8	21
389	Mutational activation of BRAF confers sensitivity to transforming growth factor beta inhibitors in human cancer cells. Oncotarget, 2016, 7, 81995-82012.	0.8	18
390	Co-targeting translation and proteasome rapidly kills colon cancer cells with mutant <i>RAS/RAF</i> via ER stress. Oncotarget, 2017, 8, 9280-9292.	0.8	11
391	Overcoming resistance to single-agent therapy for oncogenic <i>BRAF</i> gene fusions <i>via</i> combinatorial targeting of MAPK and PI3K/mTOR signaling pathways. Oncotarget, 2017, 8, 84697-84713.	0.8	38
392	4EGI-1 targets breast cancer stem cells by selective inhibition of translation that persists in CSC maintenance, proliferation and metastasis. Oncotarget, 2014, 5, 6028-6037.	0.8	29
393	Combined BRAFV600E- and SRC-inhibition induces apoptosis, evokes an immune response and reduces tumor growth in an immunocompetent orthotopic mouse model of anaplastic thyroid cancer. Oncotarget, 2014, 5, 3996-4010.	0.8	40
394	Usp5 links suppression of p53 and FAS levels in melanoma to the BRAF pathway. Oncotarget, 2014, 5, 5559-5569.	0.8	51
395	Thrombospondin 1 promotes an aggressive phenotype through epithelial-to-mesenchymal transition in human melanoma. Oncotarget, 2014, 5, 5782-5797.	0.8	109
396	Acquired resistance to BRAFi reverses senescence-like phenotype in mutant BRAF melanoma. Oncotarget, 2018, 9, 31888-31903.	0.8	18

#	Article	IF	CITATIONS
397	Overcoming resistance to BRAF inhibition in BRAF-mutated metastatic melanoma. Oncotarget, 2014, 5, 10206-10221.	0.8	104
398	PTPRS drives adaptive resistance to MEK/ERK inhibitors through SRC. Oncotarget, 2019, 10, 6768-6780.	0.8	9
399	A melanoma subtype with intrinsic resistance to BRAF inhibition identified by receptor tyrosine kinases gene-driven classification. Oncotarget, 2015, 6, 5118-5133.	0.8	37
400	miR-638 promotes melanoma metastasis and protects melanoma cells from apoptosis and autophagy. Oncotarget, 2015, 6, 2966-2980.	0.8	72
401	NPM/ALK mutants resistant to ASP3026 display variable sensitivity to alternative ALK inhibitors but succumb to the novel compound PF-06463922. Oncotarget, 2015, 6, 5720-5734.	0.8	29
402	Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas. Oncotarget, 2016, 7, 2734-2753.	0.8	19
403	Hyperactive ERK and persistent mTOR signaling characterize vemurafenib resistance in papillary thyroid cancer cells. Oncotarget, 2016, 7, 8676-8687.	0.8	8
404	Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget, 2016, 7, 18694-18704.	0.8	11
405	A recombinant chimeric protein specifically induces mutant KRAS degradation and potently inhibits pancreatic tumor growth. Oncotarget, 2016, 7, 44299-44309.	0.8	13
406	Identification of Sets of Cytoskeletal Related and Adhesion-related Coding Region Mutations in the TCGA Melanoma Dataset that Correlate with a Negative Outcome. Current Genomics, 2017, 18, 287-297.	0.7	4
407	Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. International Journal of Molecular Sciences, 2020, 21, 1102.	1.8	408
408	Synergistic effects of vemurafenib and fingolimod (FTY720) in vemurafenib‑resistant melanoma cell lines. Molecular Medicine Reports, 2018, 18, 5151-5158.	1.1	3
409	Dual effects of active ERK in cancer: A potential target for enhancing radiosensitivity (Review). Oncology Letters, 2020, 20, 993-1000.	0.8	31
410	Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling. ELife, 2016, 5, .	2.8	49
411	eIF4E S209 phosphorylation licenses myc- and stress-driven oncogenesis. ELife, 2020, 9, .	2.8	19
412	Loss of FBXO31-mediated degradation of DUSP6 dysregulates ERK and PI3K-AKT signaling and promotes prostate tumorigenesis. Cell Reports, 2021, 37, 109870.	2.9	15
413	Extracellular Signal-Regulated Kinases 1 and 2. , 2014, , 1-6.		2
414	Extracellular Signal-Regulated Kinases 1 and 2., 2014, , 1679-1683.		0

#	Article	IF	CITATIONS
416	Targeted Therapies For Intestinal Tumorigenesis. , 2015, , 391-440.		0
417	New Treatments for Advanced Melanoma. Nishinihon Journal of Dermatology, 2016, 78, 5-12.	0.0	0
418	Indications for Tyrosine Kinase Inhibitors in the Treatment of Solid Tumors. Resistance To Targeted Anti-cancer Therapeutics, 2016, , 179-188.	0.1	0
421	A Case of Pilocytic Astrocytoma with BRAF V600E Mutation and Anaplastic Features occurred in Adult Temporal Lobe. Japanese Journal of Neurosurgery, 2017, 26, 452-458.	0.0	0
423	The Dynamics of ERK Signaling in Melanoma, and the Response to BRAF or MEK Inhibition, Are Cell Cycle Dependent. SSRN Electronic Journal, 0, , .	0.4	1
424	Charting a Course for Genomic Medicine from Base Pair to Bedside. , 2018, , 215-225.		0
425	Cancer Genomics. , 2019, , 1-52.		0
430	Exploiting Kinase Inhibitors for Cancer Treatment: An Overview of Clinical Results and Outlook. Topics in Medicinal Chemistry, 2020, , 125-153.	0.4	0
431	Mechanisms of Toxicities Associated With Targeted Therapy. , 2020, , 113-118.		0
432	Pharmacogenomics of Antitumor Targeted Agent and Immunotherapy. , 2020, , 55-82.		0
435	Decreased expression levels of cell cycle regulators and matrix metalloproteinases in melanoma from RET-transgenic mice by single irradiation of non-equilibrium atmospheric pressure plasmas. International Journal of Clinical and Experimental Pathology, 2015, 8, 9326-31.	0.5	1
436	Promising new treatments for pancreatic cancer in the era of targeted and immune therapies. American Journal of Cancer Research, 2019, 9, 1871-1888.	1.4	12
437	Molecular determinants of response to PI3K/akt/mTOR and KRAS pathways inhibitors in NSCLC cell lines. American Journal of Cancer Research, 2020, 10, 4488-4497.	1.4	0
438	A scRNA-seq Based Prediction Model of EGFR-TKIs Resistance in Patients With Non-Small Cell Lung Adenocarcinoma. SSRN Electronic Journal, 0, , .	0.4	0
439	A brief history of RAS and the RAS Initiative. Advances in Cancer Research, 2022, 153, 1-27.	1.9	6
440	Fasting improves therapeutic response in hepatocellular carcinoma through p53-dependent metabolic synergism. Science Advances, 2022, 8, eabh2635.	4.7	35
441	Tracking mutation and drug-driven alterations of oncokinase conformations. Memo - Magazine of European Medical Oncology, 2022, 15, 137-142.	0.3	2
442	Single-cell sequencing and its applications in bladder cancer. Expert Reviews in Molecular Medicine, 2022, 24, e6.	1.6	8

#	ARTICLE	IF	CITATIONS
443	Neurofibromin and suppression of tumorigenesis: beyond the GAP. Oncogene, 2022, 41, 1235-1251.	2.6	13
444	Phase Ib Trial of the Combination of Imatinib and Binimetinib in Patients with Advanced Gastrointestinal Stromal Tumors. Clinical Cancer Research, 2022, 28, 1507-1517.	3.2	3
446	Reduced ER–mitochondria connectivity promotes neuroblastoma multidrug resistance. EMBO Journal, 2022, 41, e108272.	3.5	16
447	Comparison of Two Rapid Assays for the Detection of BRAF V600 Mutations in Metastatic Melanoma including Positive Sentinel Lymph Nodes. Diagnostics, 2022, 12, 751.	1.3	3
448	High-Content Screening Pipeline for Natural Products Targeting Oncogenic Signaling in Melanoma. Journal of Natural Products, 2022, , .	1.5	10
449	Past and Future Strategies to Inhibit Membrane Localization of the KRAS Oncogene. International Journal of Molecular Sciences, 2021, 22, 13193.	1.8	8
450	Can Systems Biology Advance Clinical Precision Oncology?. Cancers, 2021, 13, 6312.	1.7	10
457	The changing world of cancer drug development: the regulatory bodies' perspective. Chinese Clinical Oncology, 2014, 3, 22.	0.4	5
458	More to the RAS Story: KRAS ^{G12C} Inhibition, Resistance Mechanisms, and Moving Beyond KRAS ^{G12C} . American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2022, 42, 205-217.	1.8	13
459	Activity and Resistance of a Brain-Permeable Paradox Breaker BRAF Inhibitor in Melanoma Brain Metastasis. Cancer Research, 2022, 82, 2552-2564.	0.4	6
460	Drug discovery for cancer therapy with special reference to inhibitors of protein kinase pathway. , 2022, , 71-96.		2
461	Synthetic Vulnerabilities in the KRAS Pathway. Cancers, 2022, 14, 2837.	1.7	3
462	Coordinated Transcriptional and Catabolic Programs Support Iron-Dependent Adaptation to RAS–MAPK Pathway Inhibition in Pancreatic Cancer. Cancer Discovery, 2022, 12, 2198-2219.	7.7	32
463	Co-expression of TNF receptors 1 and 2 on melanomas facilitates soluble TNF-induced resistance to MAPK pathway inhibitors. Journal of Translational Medicine, 2022, 20, .	1.8	2
465	The expanding role for small molecules in immuno-oncology. Nature Reviews Drug Discovery, 2022, 21, 821-840.	21.5	50
466	Bromodomain inhibition overcomes treatment resistance in distinct molecular subtypes of melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
467	Targeting KRAS mutant cancers: from druggable therapy to drug resistance. Molecular Cancer, 2022, 21, .	7.9	55
468	KRAS as a Key Oncogene in the Clinical Precision Diagnosis and Treatment of Pancreatic Cancer. Journal of Cancer, 2022, 13, 3209-3220.	1.2	10

#	Article	IF	CITATIONS
470	Transient targeting of BIM-dependent adaptive MCL1 preservation enhances tumor response to molecular therapeutics in non-small cell lung cancer. Cell Death and Differentiation, 2023, 30, 195-207.	5.0	4
471	Head-to-Head Comparison of BRAF/MEK Inhibitor Combinations Proposes Superiority of Encorafenib Plus Trametinib in Melanoma. Cancers, 2022, 14, 4930.	1.7	7
472	Some things old, new and borrowed: Delivery of dabrafenib and vemurafenib to melanoma cells via self-assembled nanomicelles based on an amphiphilic dendrimer. European Journal of Pharmaceutical Sciences, 2023, 180, 106311.	1.9	2
473	Role of RAS signaling in ovarian cancer. F1000Research, 0, 11, 1253.	0.8	8
474	Phase Ib Study of Ulixertinib Plus Gemcitabine and Nab-Paclitaxel in Patients with Metastatic Pancreatic Adenocarcinoma. Oncologist, 2023, 28, e115-e123.	1.9	8
475	Response and resistance to BRAFV600E inhibition in gliomas: Roadblocks ahead?. Frontiers in Oncology, 0, 12 , .	1.3	3
476	Panâ€Cancer landscape of protein activities identifies drivers of signalling dysregulation and patient survival. Molecular Systems Biology, 2023, 19, .	3.2	10
477	Mechanistic model of <scp>MAPK</scp> signaling reveals how allostery and rewiring contribute to drug resistance. Molecular Systems Biology, 2023, 19, .	3.2	14
478	Establishment of a <scp>BRAF V595E</scp> â€mutant canine prostate cancer cell line and the antitumor effects of <scp>MEK</scp> inhibitors against canine prostate cancer. Veterinary and Comparative Oncology, 2023, 21, 221-230.	0.8	1
479	Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics, 2023, 15, 664.	2.0	2
480	Regulation of MAPK Signaling Pathways by the Large HERC Ubiquitin Ligases. International Journal of Molecular Sciences, 2023, 24, 4906.	1.8	2
481	Ubiquitin-specific protease 28: the decipherment of its dual roles in cancer development. Experimental Hematology and Oncology, 2023, 12, .	2.0	5
482	Epidemiology of Melanoma. , 0, , .		0
483	Stratification of non-small cell lung adenocarcinoma patients with EGFR actionable mutations based on drug-resistant stem cell genes. IScience, 2023, 26, 106584.	1.9	0
484	Pharmacological induction of membrane lipid poly-unsaturation sensitizes melanoma to ROS inducers and overcomes acquired resistance to targeted therapy. Journal of Experimental and Clinical Cancer Research, 2023, 42, .	3.5	1
502	Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	7
505	Fighting melanoma and resistant phenotypes African medicinal plants and their phytoconstituents. Advances in Botanical Research, 2024, , .	0.5	0
506	BRAF — a tumour-agnostic drug target with lineage-specific dependencies. Nature Reviews Clinical Oncology, 2024, 21, 224-247.	12.5	1

ARTICLE ΙF CITATIONS

 $Current\ Trends\ in\ Treatment\ and\ New\ Generation\ of\ Trials\ in\ Thyroid\ Cancer.\ ,\ 2023,\ ,\ 307-324.$ o 509