Evidence for High-Energy Extraterrestrial Neutrinos at

Science 342, 1242856 DOI: 10.1126/science.1242856

Citation Report

#	Article	IF	CITATIONS
1	Are IceCube neutrinos unveiling PeV-scale decaying dark matter?. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 054-054.	1.9	158
2	Testing the hadronuclear origin of PeV neutrinos observed with IceCube. Physical Review D, 2013, 88, .	1.6	269
3	Probing the origin of cosmic rays with extremely high energy neutrinos using the IceCube Observatory. Physical Review D, 2013, 88, .	1.6	47
4	TANAMI monitoring of Centaurus A: The complex dynamics in the inner parsec of an extragalactic jet. Astronomy and Astrophysics, 2014, 569, A115.	2.1	57
5	TANAMI blazars in the IceCube PeV-neutrino fields. Astronomy and Astrophysics, 2014, 566, L7.	2.1	46
6	Sensitivity of HAWC to high-mass dark matter annihilations. Physical Review D, 2014, 90, .	1.6	38
7	Estimating the contribution of Galactic sources to the diffuse neutrino flux. Physical Review D, 2014, 90, .	1.6	28
8	Cosmic PeV neutrinos and the sources of ultrahigh energy protons. Physical Review D, 2014, 90, .	1.6	33
9	Bounds on the origin of extragalactic ultrahigh energy cosmic rays from the IceCube neutrino observations. Physical Review D, 2014, 90, .	1.6	11
10	PINPOINTING THE KNEE OF COSMIC RAYS WITH DIFFUSE PEV Î ³ -RAYS AND NEUTRINOS. Astrophysical Journal, 2014, 795, 100.	1.6	10
11	CONSTRAINTS ON THE HADRONIC CONTENT OF GAMMA RAY BURSTS. Astrophysical Journal, 2014, 793, 48.	1.6	15
12	VERY-HIGH ENERGY OBSERVATIONS OF THE GALACTIC CENTER REGION BY VERITAS IN 2010-2012. Astrophysical Journal, 2014, 790, 149.	1.6	18
13	Deep sea tests of a prototype of the KM3NeT digital optical module. European Physical Journal C, 2014, 74, 1.	1.4	46
14	How many of the observed neutrino events can be described by cosmic ray interactions in the Milky Way?. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3414-3419.	1.6	54
15	Neutrinos as Probes of Lorentz Invariance. Advances in High Energy Physics, 2014, 2014, 1-11.	0.5	20
16	Implications of a PeV neutrino spectral cut-off in gamma-ray burst models. Monthly Notices of the Royal Astronomical Society, 2014, 445, 570-580.	1.6	38
17	End of the cosmic neutrino energy spectrum. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2014, 739, 99-101.	1.5	28
18	Searches for Dark Matter with Superheated Liquid Techniques. Advances in High Energy Physics, 2014, 2014, 1-9.	0.5	6

#	Article	IF	CITATIONS
19	Are both BL Lacs and pulsar wind nebulae the astrophysical counterparts of IceCube neutrino events?. Monthly Notices of the Royal Astronomical Society, 2014, 443, 474-484.	1.6	103
20	Hadronic supercriticality as a trigger for \hat{I}^3 -ray burst emission. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2186-2199.	1.6	11
21	Star-forming galaxies as the origin of diffuse high-energy backgrounds: gamma-ray and neutrino connections, and implications for starburst history. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 043-043.	1.9	183
22	Implications of <i>Fermi</i> -LAT observations on the origin of IceCube neutrinos. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 028-028.	1.9	16
23	Indirect detection analysis: wino dark matter case study. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 031-031.	1.9	74
24	Probing the Galactic origin of the IceCube excess with gamma rays. Physical Review D, 2014, 90, .	1.6	151
25	Diffuse neutrino intensity from the inner jets of active galactic nuclei: Impacts of external photon fields and the blazar sequence. Physical Review D, 2014, 90, .	1.6	202
26	Neutrino events at IceCube and the Fermi bubbles. Physical Review D, 2014, 90, .	1.6	57
27	Propagation of superluminal PeV IceCube neutrinos: A high energy spectral cutoff or new constraints on Lorentz invariance violation. Physical Review D, 2014, 90, .	1.6	41
28	Describing the observed cosmic neutrinos by interactions of nuclei with matter. Physical Review D, 2014, 90, .	1.6	15
29	Glashow resonance as a window into cosmic neutrino sources. Physical Review D, 2014, 90, .	1.6	45
30	Neutrino yield from Galactic cosmic rays. Physical Review D, 2014, 90, .	1.6	42
31	Dark matter production in late time reheating. Physical Review D, 2014, 89, .	1.6	84
32	Cosmic neutrino cascades from secret neutrino interactions. Physical Review D, 2014, 90, .	1.6	110
33	Testing the newborn pulsar origin of ultrahigh energy cosmic rays with EeV neutrinos. Physical Review D, 2014, 90, .	1.6	72
34	Pinpointing extragalactic neutrino sources in light of recent IceCube observations. Physical Review D, 2014, 90, .	1.6	85
35	What IceCube data tell us about neutrino emission from star-forming galaxies (so far). Physical Review D, 2014, 89, .	1.6	58
36	Flavor Composition of the High-Energy Neutrino Events in IceCube. Physical Review Letters, 2014, 113, 091103.	2.9	72

#	Article	IF	CITATIONS
37	Diffuse PeV neutrinos from EeV cosmic ray sources: Semirelativistic hypernova remnants in star-forming galaxies. Physical Review D, 2014, 89, .	1.6	62
38	Generalized self-veto probability for atmospheric neutrinos. Physical Review D, 2014, 90, .	1.6	62
39	Galactic PeV neutrinos from dark matter annihilation. Physical Review D, 2014, 89, .	1.6	47
40	Estimating nonlinear QCD effects in ultrahigh energy neutrino events at IceCube. Physical Review D, 2014, 90, .	1.6	8
41	Standard model explanation of the ultrahigh energy neutrino events at IceCube. Physical Review D, 2014, 89, .	1.6	48
42	Galactic halo origin of the neutrinos detected by IceCube. Physical Review D, 2014, 89, .	1.6	91
43	High-energy neutrinos from radio galaxies. Physical Review D, 2014, 89, .	1.6	60
44	Gamma rays and neutrinos from a cosmic ray source in the Galactic Center region. Physical Review D, 2014, 89, .	1.6	9
45	Neutrino signatures of the origins of cosmic rays. Nuclear Physics, Section B, Proceedings Supplements, 2014, 256-257, 264-266.	0.5	5
46	Ultra-high Energy Cosmic Rays and Neutrinos from Gamma-Ray Bursts, Hypernovae and Galactic Shocks. Nuclear Physics, Section B, Proceedings Supplements, 2014, 256-257, 241-251.	0.5	19
47	PeV neutrinos from interactions of cosmic rays with the interstellar medium in the Galaxy. Physical Review D, 2014, 89, .	1.6	69
48	Constraints to a Galactic component of the Ice Cube cosmic neutrino flux from ANTARES. Physical Review D, 2014, 90, .	1.6	19
49	ProbingCPviolation with the first three years of ultrahigh energy neutrinos from IceCube. Physical Review D, 2014, 90, .	1.6	11
50	Pinning down the cosmic ray source mechanism with new IceCube data. Physical Review D, 2014, 89, .	1.6	55
51	Limits on Lorentz and <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>C</mml:mi><mml:mi></mml:mi><mml:mi>T</mml:mi></mml:math> violation from double beta decay. Physical Review D, 2014, 89, .	1.6	31
52	Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration. Physical Review D, 2014, 89, .	1.6	74
53	Testing relativity with high-energy astrophysical neutrinos. Physical Review D, 2014, 89, .	1.6	71
54	Search for neutrino-induced particle showers with IceCube-40. Physical Review D, 2014, 89, .	1.6	23

#	Article	IF	CITATIONS
55	Energy reconstruction methods in the IceCube neutrino telescope. Journal of Instrumentation, 2014, 9, P03009-P03009.	0.5	171
56	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	1.6	29
57	CORRELATION OF Î ³ -RAY AND HIGH-ENERGY COSMIC RAY FLUXES FROM THE GIANT LOBES OF CENTAURUS A. Astrophysical Journal, 2014, 783, 44.	1.6	22
58	The energetics of relativistic magnetic reconnection: ion-electron repartition and particle distribution hardness. Astronomy and Astrophysics, 2014, 570, A112.	2.1	46
59	IS THE ULTRA-HIGH ENERGY COSMIC-RAY EXCESS OBSERVED BY THE TELESCOPE ARRAY CORRELATED WITH ICECUBE NEUTRINOS?. Astrophysical Journal, 2014, 794, 126.	1.6	27
60	SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE. Astrophysical Journal Letters, 2014, 786, L5.	3.0	88
61	Nonthermal particles and photons in starburst regions and superbubbles. Astronomy and Astrophysics Review, 2014, 22, 1.	9.1	84
62	Cosmological implications of high-energy neutrino emission from the decay of long-lived particle. Journal of High Energy Physics, 2014, 2014, 1.	1.6	42
63	News Feature: Seeing the ghostly universe. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8699-8701.	3.3	1
64	High-energy neutrino astronomy: a glimpse of the promised land. Physics-Uspekhi, 2014, 57, 470-481.	0.8	8
65	STRUCTURED JETS IN BL LAC OBJECTS: EFFICIENT PeV NEUTRINO FACTORIES?. Astrophysical Journal Letters, 2014, 793, L18.	3.0	59
66	IceCube PeV-EeV neutrinos and secret interactions of neutrinos. Progress of Theoretical and Experimental Physics, 2014, 2014, 61E01-0.	1.8	98
67	GALAXY MERGERS AS A SOURCE OF COSMIC RAYS, NEUTRINOS, AND GAMMA RAYS. Astrophysical Journal Letters, 2014, 790, L14.	3.0	34
68	Ultra-high-energy cosmic neutrinos: at <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><mml:mn>15width="0.25em" /><mml:mtext>eV</mml:mtext></mml:mn></mml:mrow></mml:msup></mml:math> energies and above. Comptes Rendus Physicule_2014_15_309.317	nm¦:mn><	/mml:mrow:
69	Recent results from operation of the ANTARES deep-sea neutrino telescope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 766, 48-51.	0.7	0
70	Quasithermal neutrinos from rotating protoneutron stars born during core collapse of massive stars. Physical Review D, 2014, 89, .	1.6	12
71	Use of energy loss mechanisms to constrain Lorentz invariance violations. Physical Review D, 2014, 89, .	1.6	4
72	Origin of the High Energy Cosmic Neutrino Background. Physical Review Letters, 2014, 113, 191102.	2.9	14

#	Article	IF	CITATIONS
73	Adventures in Antarctic Computing, or How I Learned to Stop Worrying and Love the Neutrino. Computer, 2014, 47, 56-61.	1.2	0
74	SEARCHES FOR EXTENDED AND POINT-LIKE NEUTRINO SOURCES WITH FOUR YEARS OF ICECUBE DATA. Astrophysical Journal, 2014, 796, 109.	1.6	149
75	Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data. Physical Review Letters, 2014, 113, 101101.	2.9	873
76	Photopion production in black-hole jets and flat-spectrum radio quasars as PeV neutrino sources. Journal of High Energy Astrophysics, 2014, 3-4, 29-40.	2.4	88
77	Controlling Cherenkov Radiation with Transformation-Optical Metamaterials. Physical Review Letters, 2014, 113, 167402.	2.9	64
78	Neutrino lighthouse at Sagittarius A*. Physical Review D, 2014, 90, .	1.6	32
79	Reconciling neutrino flux from heavy dark matter decay and recent events at IceCube. Journal of High Energy Physics, 2014, 2014, 1.	1.6	63
80	Neutrinoful universe. Journal of High Energy Physics, 2014, 2014, 1.	1.6	58
81	Cosmic backgrounds due to the formation of the first generation of supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1147-1156.	1.6	25
82	The latest IceCube results. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 766, 43-47.	0.7	1
83	Cosmogenic neutrinos and gamma rays. Comptes Rendus Physique, 2014, 15, 349-356.	0.3	7
84	Ultra-high energy cosmic rays and the extragalactic gamma ray flux. Journal of Physics G: Nuclear and Particle Physics, 2014, 41, 075202.	1.4	0
85	Cosmic-ray neutrinos from the decay of long-lived particle and the recent IceCube result. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2014, 733, 120-125.	1.5	66
86	IceCube. Annual Review of Nuclear and Particle Science, 2014, 64, 101-123.	3.5	28
87	Cosmic neutrino pevatrons: A brand new pathway to astronomy, astrophysics, and particle physics. Journal of High Energy Astrophysics, 2014, 1-2, 1-30.	2.4	136
88	Reevaluation of the prospect of observing neutrinos from Galactic sources in the light of recent results in gamma ray and neutrino astronomy. Astroparticle Physics, 2014, 57-58, 39-48.	1.9	44
89	Status and first results of the NEMO Phase-2 tower. Journal of Instrumentation, 2014, 9, C03045-C03045.	0.5	7
90	Constraining astrophysical neutrino flavor composition from leptonic unitarity. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 039-039.	1.9	23

#	Article	IF	CITATIONS
91	IceCube events and decaying dark matter: hints and constraints. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 054-054.	1.9	92
92	The Beginning of Extra-Galactic Neutrino Astronomy. Physics Magazine, 0, 7, .	0.1	4
93	Large Scale Anisotropy of Cosmic Rays and Directional Neutrino Signals from Galactic Sources. Journal of Physics: Conference Series, 2014, 531, 012009.	0.3	3
94	Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 017-017.	1.9	8
95	Search for the Galactic Disk and Halo Components in the Arrival Directions of High-Energy Astrophysical Neutrinos. JETP Letters, 2015, 102, 785-788.	0.4	20
96	Hunting Gravitational Waves with Multi-Messenger Counterparts: Australia's Role. Publications of the Astronomical Society of Australia, 2015, 32, .	1.3	9
97	Propagation of Ultra High Energy Cosmic Rays and the Production of Cosmogenic Neutrinos. Nuclear and Particle Physics Proceedings, 2015, 265-266, 251-254.	0.2	0
98	Search for a Diffuse Flux of Cosmic Neutrinos with ANTARES. Physics Procedia, 2015, 61, 627-632.	1.2	2
99	IceCube events from heavy DM decays through the right-handed neutrino portal. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 751, 81-88.	1.5	43
100	High-energy Cosmogenic Neutrinos. Physics Procedia, 2015, 61, 392-398.	1.2	2
101	TANAMI: Multiwavelength and multimessenger observations of active galaxies. Astronomische Nachrichten, 2015, 336, 499-504.	0.6	9
102	Spectral analysis of the high-energy IceCube neutrinos. Physical Review D, 2015, 91, .	1.6	72
103	Measurement of the Atmospheric <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>ν</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:math> Spectrum with IceCube. Physical Review D, 2015, 91, .	1.6	48
104	Multimessenger study of the Fermi bubbles: Very high energy gamma rays and neutrinos. Physical Review D, 2015, 92, .	1.6	16
105	Superheavy dark matter and IceCube neutrino signals: Bounds on decaying dark matter. Physical Review D, 2015, 92, .	1.6	95
106	IceCube neutrinos, decaying dark matter, and the Hubble constant. Physical Review D, 2015, 92, .	1.6	50
107	Two-component flux explanation for the high energy neutrino events at IceCube. Physical Review D, 2015, 92, .	1.6	54
108	Searching for MeV-scale gauge bosons with IceCube. Physical Review D, 2015, 92, .	1.6	58

#	Article	IF	CITATIONS
109	Coherent propagation of PeV neutrinos and the dip in the neutrino spectrum at IceCube. Physical Review D, 2015, 92, .	1.6	110
110	Testing nonradiative neutrino decay scenarios with IceCube data. Physical Review D, 2015, 92, .	1.6	40
111	Testing the Dark Matter Scenario for PeV Neutrinos Observed in IceCube. Physical Review Letters, 2015, 115, 071301.	2.9	123
112	Theoretically Palatable Flavor Combinations of Astrophysical Neutrinos. Physical Review Letters, 2015, 115, 161302.	2.9	116
113	Effect of New Physics in Astrophysical Neutrino Flavor. Physical Review Letters, 2015, 115, 161303.	2.9	90
114	Tomographic Constraints on High-Energy Neutrinos of Hadronuclear Origin. Physical Review Letters, 2015, 115, 221101.	2.9	41
115	Cosmogenic neutrinos and ultra-high energy cosmic ray models. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 006-006.	1.9	53
116	Do high energy astrophysical neutrinos trace star formation?. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 029-029.	1.9	25
117	Investigating the effects of the QCD dynamics in the neutrino absorption by the Earth's interior at ultrahigh energies. Physical Review D, 2015, 92, .	1.6	6
118	Spectrometry of the Earth using Neutrino Oscillations. Scientific Reports, 2015, 5, 15225.	1.6	29
119	Decaying leptophilic dark matter at IceCube. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 2015, 055-055.	1.9	56
120	KM3NeT. AIP Conference Proceedings, 2015, , .	0.3	2
121	AGM2015: Antineutrino Global Map 2015. Scientific Reports, 2015, 5, 13945.	1.6	16
122	THE GAMMA-RAY AND NEUTRINO SKY: A CONSISTENT PICTURE OF <i>FERMI</i> -LAT, MILAGRO, AND ICECUBE RESULTS. Astrophysical Journal Letters, 2015, 815, L25.	3.0	116
123	Recent results of the ANTARES neutrino telescope. AIP Conference Proceedings, 2015, , .	0.3	1
124	Hadronization processes in neutrino interactions. AlP Conference Proceedings, 2015, , .	0.3	0
125	Lorentz invariance violation and IceCube neutrino events. Journal of High Energy Physics, 2015, 2015, 1.	1.6	23
126	The Search for TeV-scale Dark Matter with the HAWC Observatory. Physics Procedia, 2015, 61, 91-96.	1.2	Ο

#	ARTICLE	IF	CITATIONS
127	Probing Extraterrestrial Neutrino Fluxes and Atmospheric Charm with Contained Neutrino Events above 1 TeV in IceCube. Physics Procedia, 2015, 61, 633-640.	1.2	0
128	Perturbative charm production and the prompt atmospheric neutrino flux in light of RHIC and LHC. Journal of High Energy Physics, 2015, 2015, 1.	1.6	85
129	Constraint on neutrino decay with medium-baseline reactor neutrino oscillation experiments. Journal of High Energy Physics, 2015, 2015, 1.	1.6	39
130	Charm production in the forward region: constraints on the small-x gluon and backgrounds for neutrino astronomy. Journal of High Energy Physics, 2015, 2015, 1.	1.6	77
131	Lepton fluxes from atmospheric charm revisited. Journal of High Energy Physics, 2015, 2015, 1.	1.6	57
132	Atmospheric neutrino oscillations with PINGU. Journal of Physics: Conference Series, 2015, 598, 012026.	0.3	0
133	Some possible sources of IceCube TeV–PeV neutrino events. European Physical Journal C, 2015, 75, 1.	1.4	22
134	The natural parameterization of cosmic neutrino oscillations. European Physical Journal C, 2015, 75, 1.	1.4	32
135	Flavor ratios of extragalactic neutrinos and neutrino shortcuts in extra dimensions. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 005-005.	1.9	17
136	Short Baseline Neutrino Oscillation Experiments. Journal of Physics: Conference Series, 2015, 598, 012006.	0.3	5
137	Tests of Lorentz and CPT invariance with neutrinos and photons. Journal of Physics: Conference Series, 2015, 631, 012021.	0.3	0
138	On the angular distribution of IceCube highâ€energy events. Astronomische Nachrichten, 2015, 336, 657-664.	0.6	0
139	On the origin of high-energy cosmic neutrinos. AIP Conference Proceedings, 2015, , .	0.3	41
140	Radar absorption, basal reflection, thickness and polarization measurements from the Ross Ice Shelf, Antarctica. Journal of Glaciology, 2015, 61, 438-446.	1.1	19
141	PYTHIA hadronization process tuning in the GENIE neutrino interaction generator. Journal of Physics G: Nuclear and Particle Physics, 2015, 42, 115004.	1.4	13
142	New IceCube data and color octet neutrino interpretation of the PeV energy events. International Journal of Modern Physics A, 2015, 30, 1550163.	0.5	4
143	Lorentz symmetry breaking: phenomenology and constraints. Journal of Physics: Conference Series, 2015, 631, 012011.	0.3	9
144	Diffuse flux results from the ANTARES neutrino telescope. Journal of Physics: Conference Series, 2015, 632, 012043.	0.3	2

#	Article	IF	CITATIONS
145	Derivation of relativistic SEP properties through neutron monitor data modeling. Journal of Physics: Conference Series, 2015, 632, 012076.	0.3	2
146	Gamma-ray bounds from EAS detectors and heavy decaying dark matter constraints. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 014-014.	1.9	58
147	Interpretations of the IceCube neutrino escess. Journal of Physics: Conference Series, 2015, 632, 012037.	0.3	1
148	Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 014-014.	1.9	16
149	Status of High-Energy Neutrino Astronomy. Journal of Physics: Conference Series, 2015, 632, 012039.	0.3	25
150	The direct detection of boosted dark matter at high energies and PeV events at IceCube. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 027-027.	1.9	63
151	The KM3NeT neutrino telescope. Journal of Physics: Conference Series, 2015, 632, 012002.	0.3	4
152	Searches for point-like sources using 2007-2012 data from the ANTARES neutrino telescope. Journal of Physics: Conference Series, 2015, 632, 012033.	0.3	0
153	The spectrum and flavor composition of the astrophysical neutrinos in IceCube. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 030-030.	1.9	8
154	Diffuse emission of high-energy neutrinos from gamma-ray burst fireballs. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 036-036.	1.9	17
155	IceCube searches for neutrino emission from galactic and extragalactic sources. EPJ Web of Conferences, 2015, 90, 03003.	0.1	1
156	Searches for ultra-high energy neutrinos at the Pierre Auger observatory. AIP Conference Proceedings, 2015, , .	0.3	0
157	Theoretical aspects of heavy-flavour production at ultra-high cosmic ray energies. EPJ Web of Conferences, 2015, 99, 07001.	0.1	1
158	Recent results from ANTARES. EPJ Web of Conferences, 2015, 99, 06003.	0.1	0
159	Astrophysical origin of high-energy cosmic neutrinos. EPJ Web of Conferences, 2015, 99, 05001.	0.1	0
160	Search for Galactic cosmic ray sources: The multimessenger approach. EPJ Web of Conferences, 2015, 105, 00003.	0.1	1
161	Atmospheric lepton fluxes. EPJ Web of Conferences, 2015, 99, 05002.	0.1	2
162	Gamma-Ray Bursts as Multienergy Neutrino Sources. Advances in Astronomy, 2015, 2015, 1-10.	0.5	6

#	Article	IF	CITATIONS
163	First detection of high-energy astrophysical neutrinos with IceCube. AIP Conference Proceedings, 2015, , .	0.3	0
164	What is the Flavor of the Cosmic Neutrinos Seen by IceCube?. Physical Review Letters, 2015, 114, 171101.	2.9	67
165	Boosted dark matter in IceCube and at the galactic center. Journal of High Energy Physics, 2015, 2015, 1.	1.6	66
166	TeV γ-ray fluxes from the long campaigns on Mrk 421 as constraints on the emission of TeV–PeV neutrinos and UHECRs. Astroparticle Physics, 2015, 70, 54-61.	1.9	15
167	Spade: Decentralized orchestration of data movement and warehousing for physics experiments. , 2015, , .		4
168	High-energy cosmic neutrino puzzle: a review. Reports on Progress in Physics, 2015, 78, 126901.	8.1	51
169	Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube. European Physical Journal C, 2015, 75, 116.	1.4	38
170	Study of gamma-ray counterparts of IceCube high energy astrophysical neutrinos. Nuclear and Particle Physics Proceedings, 2015, 265-266, 261-263.	0.2	0
171	A new physics interpretation of the IceCube data. Astroparticle Physics, 2015, 65, 64-68.	1.9	13
172	A hadronic origin for ultra-high-frequency-peaked BL Lac objects. Monthly Notices of the Royal Astronomical Society, 2015, 448, 910-927.	1.6	163
173	Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data. Astroparticle Physics, 2015, 66, 39-52.	1.9	34
174	Probing the coupling of heavy dark matter to nucleons by detecting neutrino signature from the Earth's core. Physical Review D, 2015, 91, .	1.6	5
175	Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower. Astroparticle Physics, 2015, 66, 1-7.	1.9	21
176	IceCube astrophysical neutrinos without a spectral cutoff and 1015–1017 eV cosmic gamma radiation. JETP Letters, 2015, 100, 761-765.	0.4	36
177	THE SPECTRUM OF ISOTROPIC DIFFUSE GAMMA-RAY EMISSION BETWEEN 100ÂMeV AND 820ÂGeV. Astrophysical Journal, 2015, 799, 86.	1.6	556
178	Transformation optics beyond the manipulation of light trajectories. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140361.	1.6	6
179	The Status of the KM3NeT Project. Physics Procedia, 2015, 61, 591-597.	1.2	0
180	High Energy Neutrino Astronomy and Neutrino Mass Hierarchy with KM3NeT: Status and perspectives. Nuclear and Particle Physics Proceedings, 2015, 265-266, 221-226.	0.2	1

#	Article	IF	CITATIONS
181	Diffuse neutrinos from extragalactic supernova remnants: Dominating the 100 TeV IceCube flux. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 745, 35-39.	1.5	37
182	Heavy quark production in ultra high energy cosmic ray interactions. Astroparticle Physics, 2015, 61, 41-46.	1.9	4
183	The Glashow resonance in neutrino–photon scattering. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 741, 295-300.	1.5	15
184	Sterile neutrinos, dark matter, and resonant effects in ultra high energy regimes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 744, 55-58.	1.5	16
185	Aspects of the flavor triangle for cosmic neutrino propagation. Physical Review D, 2015, 91, .	1.6	24
186	Cosmic neutrino spectrum and the muon anomalous magnetic moment in the gauged <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:< td=""><td>mi≯î⁰⁄4<td>m<mark>61</mark> mi:mi></td></td></mml:<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	mi≯î⁰⁄4 <td>m<mark>61</mark> mi:mi></td>	m <mark>61</mark> mi:mi>
187	High-energy neutrino fluxes and flavor ratio in the Earth's atmosphere. Physical Review D, 2015, 91, .	1.6	29
188	Flavor Ratio of Astrophysical Neutrinos above 35ÂTeV in IceCube. Physical Review Letters, 2015, 114, 171102.	2.9	156
189	First constraints on the ultra-high energy neutrino flux from a prototype station of the Askaryan Radio Array. Astroparticle Physics, 2015, 70, 62-80.	1.9	44
190	A simplified view of blazars: the neutrino background. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1877-1887.	1.6	82
191	Atmospheric and astrophysical neutrinos above 1ÂTeV interacting in IceCube. Physical Review D, 2015, 91,	1.6	209
192	Neutrino electromagnetic interactions: A window to new physics. Reviews of Modern Physics, 2015, 87, 531-591.	16.4	266
193	Neutron <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>î²</mml:mi></mml:math> -decay as the origin of IceCube's PeV (anti)neutrinos. Physical Review D, 2015, 91, .	1.6	18
194	PeV-EeV neutrinos from GRB blast waves in IceCube and future neutrino telescopes. Physical Review D, 2015, 91, .	1.6	13
195	Searching for traces of Planck-scale physics with high energy neutrinos. Physical Review D, 2015, 91, .	1.6	61
196	Sensitivity of the Baikal-GVD neutrino telescope to neutrino emission toward the center of the galactic dark matter halo. JETP Letters, 2015, 101, 289-294.	0.4	14
197	A first search for cosmogenic neutrinos with the ARIANNA Hexagonal Radio Array. Astroparticle Physics, 2015, 70, 12-26.	1.9	88
198	Neutrino and cosmic-ray emission from multiple internal shocks in gamma-ray bursts. Nature	5.8	63

#	Article	IF	CITATIONS
199	Liverpool telescope 2: a new robotic facility for rapid transient follow-up. Experimental Astronomy, 2015, 39, 119-165.	1.6	10
200	Estimates of the cosmic gamma-ray flux at PeV to EeV energies from the EAS-MSU experiment data. JETP Letters, 2015, 100, 699-702.	0.4	10
201	Status and recent results of the BAIKAL-GVD project. Physics of Particles and Nuclei, 2015, 46, 211-221.	0.2	17
202	Possible interpretations of IceCube high-energy neutrino events. Journal of High Energy Physics, 2015, 2015, 1.	1.6	51
203	Bethe–Heitler emission in BL Lacs: filling the gap between X-rays and γ-rays. Monthly Notices of the Royal Astronomical Society, 2015, 447, 36-48.	1.6	66
204	STUDY OF THE DIFFUSE GAMMA-RAY EMISSION FROM THE GALACTIC PLANE WITH ARGO-YBJ. Astrophysical Journal, 2015, 806, 20.	1.6	69
205	New physics with ultra-high-energy neutrinos. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 748, 113-116.	1.5	17
206	The nature of the Diffuse Gamma-Ray Background. Physics Reports, 2015, 598, 1-58.	10.3	93
207	Charm decay in slow-jet supernovae as the origin of the IceCube ultra-high energy neutrino events. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 034-034.	1.9	15
208	A COMBINED MAXIMUM-LIKELIHOOD ANALYSIS OF THE HIGH-ENERGY ASTROPHYSICAL NEUTRINO FLUX MEASURED WITH ICECUBE. Astrophysical Journal, 2015, 809, 98.	1.6	337
209	NEUTRINO AND COSMIC-RAY EMISSION AND CUMULATIVE BACKGROUND FROM RADIATIVELY INEFFICIENT ACCRETION FLOWS IN LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2015, 806, 159.	1.6	100
210	High-energy neutrino signatures of newborn pulsars in the local universe. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 004-004.	1.9	15
211	Transforming Cherenkov radiation in metamaterials. Proceedings of SPIE, 2015, , .	0.8	0
212	High-energy cosmic neutrinos from spine-sheath BL Lac jets. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1502-1510.	1.6	64
213	Risk Calculation as Experience and Action—Assessing and Managing the Risks and Opportunities of Nanomaterials. NanoEthics, 2015, 9, 277-295.	0.5	1
214	A new contribution to the conventional atmospheric neutrino flux. Astroparticle Physics, 2015, 64, 13-17.	1.9	11
215	On the feasibility of RADAR detection of high-energy neutrino-induced showers in ice. Astroparticle Physics, 2015, 60, 25-31.	1.9	16
216	Searching for tau neutrinos with Cherenkov telescopes. Astroparticle Physics, 2015, 61, 12-16.	1.9	8

#	Article	IF	Citations
217	Detecting extra-galactic supernova neutrinos in the Antarctic ice. Astroparticle Physics, 2015, 62, 54-65.	1.9	21
218	Testing Lorentz and CPT Invariance with Neutrinos. Symmetry, 2016, 8, 105.	1.1	11
219	Phenomenology of atmospheric neutrinos. EPJ Web of Conferences, 2016, 116, 11010.	0.1	3
220	Potential of KM3NeT to observe galactic neutrino point-like sources. EPJ Web of Conferences, 2016, 121, 05011.	0.1	0
221	KM3NeT-ARCA project status and plan. EPJ Web of Conferences, 2016, 116, 11003.	0.1	10
222	Status of KM3NeT. EPJ Web of Conferences, 2016, 121, 05004.	0.1	0
223	Measurement of the atmospheric muon flux at 3500 m depth with the NEMO Phase-2 detector. EPJ Web of Conferences, 2016, 121, 05015.	0.1	0
224	High energy neutrinos from gamma-ray burst fireballs. Journal of Physics: Conference Series, 2016, 718, 052041.	0.3	1
225	DECIPHERING CONTRIBUTIONS TO THE EXTRAGALACTIC GAMMA-RAY BACKGROUND FROM 2 GeV TO 2 TeV. Astrophysical Journal, 2016, 832, 117.	1.6	53
226	ANTARES constraints on a Galactic component of the IceCube cosmic neutrino flux. EPJ Web of Conferences, 2016, 121, 05007.	0.1	0
227	Multi-messenger aspects of cosmic neutrinos*. EPJ Web of Conferences, 2016, 116, 11001.	0.1	0
228	Results from IceCube. EPJ Web of Conferences, 2016, 116, 11004.	0.1	1
229	Imaging the Earth's Interior with Neutrinos. Journal of Geography (Chigaku Zasshi), 2016, 125, 647-659.	0.1	2
230	Present theoretical uncertainties on charm hadroproduction in QCD and prompt neutrino fluxes. EPJ Web of Conferences, 2016, 116, 08002.	0.1	0
231	Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration. Sensors, 2016, 16, 1210.	2.1	9
232	Implications of a electroweak triplet scalar leptoquark on the ultra-high energy neutrino events at IceCube. Journal of High Energy Physics, 2016, 2016, 1.	1.6	13
233	A model for pseudo-Dirac neutrinos: leptogenesis and ultra-high energy neutrinos. Journal of High Energy Physics, 2016, 2016, 1.	1.6	13
234	Status and perspectives of the BAIKAL-GVD project. EPJ Web of Conferences, 2016, 121, 05003.	0.1	10

#	Article	IF	CITATIONS
235	IceCube PeV neutrinos and leptophilic dark matter. Journal of Physics: Conference Series, 2016, 718, 042014.	0.3	3
236	Recent results with ANTARES, the first undersea neutrino telescope in the Mediterranean Sea. Journal of Physics: Conference Series, 2016, 718, 062041.	0.3	1
237	Characterization of the Astrophysical Neutrino Flux at the IceCube Neutrino Observatory. Journal of Physics: Conference Series, 2016, 718, 062045.	0.3	0
238	Highlights of recent results from the VERITAS gamma-ray observatory. Journal of Physics: Conference Series, 2016, 718, 052013.	0.3	0
239	Latest results on atmospheric neutrino oscillations from IceCube/DeepCore. Journal of Physics: Conference Series, 2016, 718, 062001.	0.3	1
240	Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. Journal of Physics: Conference Series, 2016, 718, 022004.	0.3	26
241	Searching for PeV neutrinos from photomeson interactions in magnetars. Europhysics Letters, 2016, 115, 69002.	0.7	7
242	Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube. Journal of Instrumentation, 2016, 11, P11009-P11009.	0.5	24
243	Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 017-017.	1.9	20
244	HIGH-ENERGY NEUTRINOS FROM RECENT BLAZAR FLARES. Astrophysical Journal, 2016, 831, 12.	1.6	17
245	Neutrino propagation in the Galactic dark matter halo. Physical Review D, 2016, 94, .	1.6	39
246	OBSERVATION AND CHARACTERIZATION OF A COSMIC MUON NEUTRINO FLUX FROM THE NORTHERN HEMISPHERE USING SIX YEARS OF ICECUBE DATA. Astrophysical Journal, 2016, 833, 3.	1.6	336
247	Thermal relic dark matter beyond the unitarity limit. Journal of High Energy Physics, 2016, 2016, 1.	1.6	31
248	Baikal-GVD: Results, status and plans. EPJ Web of Conferences, 2016, 116, 11005.	0.1	3
249	Cosmic-ray composition measurements and cosmic ray background-freeÎ ³ -ray observations with Cherenkov telescopes. Physical Review D, 2016, 94, .	1.6	13
250	Radio galaxies dominate the high-energy diffuse gamma-ray background. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 019-019.	1.9	31
251	Heavy right-handed neutrino dark matter and PeV neutrinos at IceCube. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 034-034.	1.9	68
252	Perspectives of the KM3NeT project. Nuclear and Particle Physics Proceedings, 2016, 279-281, 182-189.	0.2	3

ARTICLE IF CITATIONS # Angular power spectrum of the diffuse gamma-ray emission as measured by the Fermi Large Area 253 43 1.6 Telescope and constraints on its dark matter interpretation. Physical Review D, 2016, 94, . Constraining high-energy cosmic neutrino sources: Implications and prospects. Physical Review D, 254 1.6 138 2016,94,. SEARCH FOR BLAZAR FLUX-CORRELATED TEV NEUTRINOS IN ICECUBE 40-STRING DATA. Astrophysical 255 1.6 16 Journal, 2016, 833, 117. Primary spectrum and composition with IceCube/IceTop. Nuclear and Particle Physics Proceedings, 0.2 <u>2016, 279-281, 47-55.</u> Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10ÂPeV with 257 2.9 111 IceCube. Physical Review Letters, 2016, 117, 241101. Neutrinos at extreme energies. Journal of Physics: Conference Series, 2016, 718, 052001. 0.3 259 Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle Physics, 2016, 43, 084001. 1.4 512 How unequal fluxes of high energy astrophysical neutrinos and antineutrinos can fake new physics. 260 1.9 Journal of Cosmology and Astroparticle Physics, 2016, 2016, 036-036. Unifying leptogenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via 261 1.9 39 Higgs portal. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 044-044. Analysis of the cumulative neutrino flux from<i>Fermi</i>LAT blazar populations using 3 years of 0.1 IceCube data. EPJ Web of Conferences, 2016, 121, 05006. Neutrino physics and JINR. Physics-Uspekhi, 2016, 59, 225-253. 263 0.8 8 Detector optimization figures-of-merit for IceCube's high-energy extension. Astroparticle Physics, 264 2016, 75, 55-59. Hidden Glashow resonance in neutrino–nucleus collisions. Physics Letters, Section B: Nuclear, 265 1.5 19 Elementary Particle and High-Energy Physics, 2016, 756, 247-253. Low energy IceCube data and a possible Dark Matter related excess. Physics Letters, Section B: Nuclear, 1.5 Elementary Particle and High-Energy Physics, 2016, 757, 251-256. THE FIRST COMBINED SEARCH FOR NEUTRINO POINT-SOURCES IN THE SOUTHERN HEMISPHERE WITH THE 267 49 1.6 ANTARES AND ICECUBE NEUTRINO TELESCOPES. Astrophysical Journal, 2016, 823, 65. Type IIn supernovae as sources of high energy astrophysical neutrinos. Astroparticle Physics, 2016, 78, 28-34. A large light-mass component of cosmic rays at 1017–1017.5 electronvolts from radio observations. 269 13.7 116 Nature, 2016, 531, 70-73. Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event. Nature Physics, 2016, 270 6.5 170 12,807-814.

#	Article	IF	CITATIONS
271	Measurements of the atmospheric neutrino flux by Super-Kamiokande: Energy spectra, geomagnetic effects, and solar modulation. Physical Review D, 2016, 94, .	1.6	73
272	On the flavor composition of the high-energy neutrinos in IceCube. Nuclear and Particle Physics Proceedings, 2016, 273-275, 433-439.	0.2	3
273	lceCube and GRB neutrinos propagating in quantum spacetime. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 761, 318-325.	1.5	40
274	R-parity violating supersymmetry at IceCube. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 762, 116-123.	1.5	30
275	Lepton flavor violating Z′ explanation of the muon anomalous magnetic moment. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 762, 389-398.	1.5	121
276	Analysis of the 4-year IceCube high-energy starting events. Physical Review D, 2016, 94, .	1.6	47
277	Exploring the Universe with Very High Energy Neutrinos. Nuclear and Particle Physics Proceedings, 2016, 273-275, 125-134.	0.2	1
278	Recent Results of the ANTARES Neutrino Telescope. Nuclear and Particle Physics Proceedings, 2016, 273-275, 419-424.	0.2	2
279	Constraining heavy decaying dark matter with the high energy gamma-ray limits. Physical Review D, 2016, 94, .	1.6	45
280	Status of the early construction phase of Baikal-GVD. Nuclear and Particle Physics Proceedings, 2016, 273-275, 314-320.	0.2	8
281	Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 760, 143-148.	1.5	35
282	Early decay of Peccei–Quinn fermion and the IceCube neutrino events. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 762, 353-361.	1.5	6
283	Fluxes of diffuse gamma rays and neutrinos from cosmic-ray interactions with the circumgalactic gas. Physical Review D, 2016, 94, .	1.6	12
284	Absorption of very high energy gamma rays in the MilkyÂWay. Physical Review D, 2016, 94, .	1.6	61
285	COSMOGENIC NEUTRINOS CHALLENGE THE COSMIC-RAY PROTON DIP MODEL. Astrophysical Journal, 2016, 825, 122.	1.6	57
286	REVISITING THE CONTRIBUTIONS OF SUPERNOVA AND HYPERNOVA REMNANTS TO THE DIFFUSE HIGH-ENERGY BACKGROUNDS: CONSTRAINTS ON VERY HIGH REDSHIFT INJECTION. Astrophysical Journal, 2016, 826, 133.	1.6	29
287	What next in fundamental physics in space. Annalen Der Physik, 2016, 528, 55-61.	0.9	0
288	Fundamental physics with cosmic particles. Annalen Der Physik, 2016, 528, 161-166.	0.9	0

ARTICLE IF CITATIONS # A case for radio galaxies as the sources of IceCube's astrophysical neutrino flux. Journal of 289 1.9 39 Cosmology and Astroparticle Physics, 2016, 2016, 002-002. HIGH-ENERGY NEUTRINOS FROM SOURCES IN CLUSTERS OF GALAXIES. Astrophysical Journal, 2016, 828, 37. 1.6 28 Expectations for high energy diffuse galactic neutrinos for different cosmic ray distributions. 291 1.9 22 Journal of Cosmology and Astroparticle Physics, 2016, 2016, 004-004. Astrophysical interpretation of small-scale neutrino angular correlation searches with IceCube. 1.9 Astroparticle Physics, 2016, 83, 21-29. Non-standard neutrino interactions in the earth and the flavor of astrophysical neutrinos. 293 1.9 25 Astroparticle Physics, 2016, 84, 15-22. A NEW METHOD FOR FINDING POINT SOURCES IN HIGH-ENERGY NEUTRINO DATA. Astrophysical Journal, 294 1.6 2016, 826, 102. 295 Galactic neutrinos in the TeV to PeV range. Physical Review D, 2016, 93, . 1.6 70 MeV scale leptonic force for cosmic neutrino spectrum and muon anomalous magnetic moment. 296 1.6 Physical Review D, 2016, 93, . 297 Search for astrophysical tau neutrinos in three years of IceCube data. Physical Review D, 2016, 93, . 1.6 44 Detailed parametrization of neutrino and gamma-ray energy spectra from high energy proton-proton 1.6 interactions. Physical Review D, 2016, 93, Transition radiation at radio frequencies from ultrahigh-energy neutrino-induced showers. Physical 299 1.6 11 Review D, 2016, 93, . Inspecting the supernova–gamma-ray-burst connection with high-energy neutrinos. Physical Review D, 300 1.6 2016, 93, . Direct probe of the intrinsic charm content of the proton. Physical Review D, 2016, 93, . 301 1.6 22 Choked jets and low-luminosity gamma-ray bursts as hidden neutrino sources. Physical Review D, 2016, 1.6 Probing BSM neutrino physics with flavor and spectral distortions: Prospects for future high-energy 303 79 1.6 neutrino telescopes. Physical Review D, 2016, 93, . Galactic and extragalactic contributions to the astrophysical muon neutrino signal. Physical Review 304 D, 2016, 93, . High-energy neutrinos from the gravitational wave event GW150914 possibly associated with a short 305 1.6 16 gamma-ray burst. Physical Review D, 2016, 93, . Hidden Cosmic-Ray Accelerators as an Origin of TeV-PeV Cosmic Neutrinos. Physical Review Letters, 221 2016, 116, 071101.

#	Article	IF	CITATIONS
307	Measurement of muon annual modulation and muon-induced phosphorescence in Nal(Tl) crystals with DM-Ice17. Physical Review D, 2016, 93, .	1.6	10
308	Neutrino self-interactions. Physical Review D, 2016, 93, .	1.6	4
309	Quantum ÄŒerenkov Radiation: Spectral Cutoffs and the Role of Spin and Orbital Angular Momentum. Physical Review X, 2016, 6, .	2.8	51
310	LOWERING ICECUBE'S ENERGY THRESHOLD FOR POINT SOURCE SEARCHES IN THE SOUTHERN SKY. Astrophysical Journal Letters, 2016, 824, L28.	3.0	27
311	MURCHISON WIDEFIELD ARRAY LIMITS ON RADIO EMISSION FROM ANTARES NEUTRINO EVENTS. Astrophysical Journal Letters, 2016, 820, L24.	3.0	9
312	Neutrino Physics and Astrophysics with IceCube. Nuclear and Particle Physics Proceedings, 2016, 279-281, 23-30.	0.2	0
313	Ultra High Energy Cosmic Rays and Neutrinos. Nuclear and Particle Physics Proceedings, 2016, 279-281, 95-102.	0.2	1
314	A consistent model for leptogenesis, dark matter and the IceCube signal. Journal of High Energy Physics, 2016, 2016, 1.	1.6	32
315	A Wavelength-shifting Optical Module (WOM) for in-ice neutrino detectors. EPJ Web of Conferences, 2016, 116, 01006.	0.1	4
316	Obscured flat spectrum radio active galactic nuclei as sources of high-energy neutrinos. Physical Review D, 2016, 94, .	1.6	5
317	On the IceCube spectral anomaly. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 045-045.	1.9	37
318	Neutrino lighthouse powered by Sagittarius <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mi mathvariant="normal">A</mml:mi </mml:mrow><mml:mrow><mml:mo>*</mml:mo>></mml:mrow></mml:mrow></mml:math 	1.6 > <td>9 row></td>	9 row>
319	On the high-energy cosmic neutrinos seen by IceCube. Journal of Physics: Conference Series, 2016, 718, 062046.	0.3	0
320	Cosmological constraints on the radiation released during structure formation. European Physical Journal C, 2016, 76, 1.	1.4	4
321	Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV. Journal of Physics: Conference Series, 2016, 718, 052018.	0.3	0
322	IceCube Events from Decaying Dark Matter with Neutrino Portal. International Journal of Modern Physics Conference Series, 2016, 43, 1660191.	0.7	0
323	Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects. Journal of High Energy Physics, 2016, 2016, 1.	1.6	70
324	Blazar origin of some IceCube events. European Physical Journal C, 2016, 76, 1.	1.4	4

ARTICLE IF CITATIONS # Can FSRQs produce the IceCube detected diffuse neutrino emission?. Science China: Physics, Mechanics 325 2.0 10 and Astronomy, 2016, 59, 1. A review of $i \hat{J}_{4}$ (i)-(i), (i)flavor symmetry in neutrino physics. Reports on Progress in Physics, 2016, 79, 8.1 076201. Geometric compatibility of IceCube TeV-PeV neutrino excess and its galactic dark matter origin. 327 1.6 51 Journal of High Energy Physics, 2016, 2016, 1. The prompt atmospheric neutrino flux in the light of LHCb. Journal of High Energy Physics, 2016, 2016, The cosmic-ray air-shower signal in Askaryan radio detectors. Astroparticle Physics, 2016, 74, 96-104. 329 1.9 20 Characterization of the atmospheric muon flux in IceCube. Astroparticle Physics, 2016, 78, 1-27. Time-dependent neutrino emission from MrkÂ421 during flares and predictions for IceCube. 331 1.9 34 Astroparticle Physics, 2016, 80, 115-130. Searches for relativistic magnetic monopoles in IceCube. European Physical Journal C, 2016, 76, 1. 1.4 29 Double pulses and cascades above 2ÂPeV in IceCube. European Physical Journal C, 2016, 76, 1. 333 1.4 17 Search for correlations between the arrival directions of IceCube neutrino events and 334 ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array. 1.9 Journal of Cosmology and Astroparticle Physics, 2016, 2016, 037-037 Long term monitoring of the optical background in the Capo Passero deep-sea site with the NEMO 335 1.4 11 tower prototype. European Physical Journal C, 2016, 76, 1. Geometric phase for neutrino propagation in magnetic field. Physics Letters, Section B: Nuclear, 1.5 Elementary Particle and High-Energy Physics, 2016, 754, 135-138. A technique for detection of PeV neutrinos using a phased radio array. Journal of Cosmology and 337 1.9 17 Astroparticle Physics, 2016, 2016, 005-005. Common origin of the high energy astronomical gamma rays, neutrinos and cosmic ray positrons?. Journal of High Energy Astrophysics, 2016, 9-10, 9-15. 2.4 Evidence the Galactic contribution to the IceCube astrophysical neutrino flux. Astroparticle Physics, 339 1.9 68 2016, 75, 60-63. Optical and X-ray early follow-up of ANTARES neutrino alerts. Journal of Cosmology and 340 1.9 Astroparticle Physics, 2016, 2016, 062-062. Extreme blazars as counterparts of IceCube astrophysical neutrinos. Monthly Notices of the Royal 341 1.6 112 Astronomical Society, 2016, 457, 3582-3592. Very high energy antineutrinos from photo-disintegration of cosmic ray nuclei. Astroparticle Physics, 342 2016, 74, 1-5.

#	Article	IF	CITATIONS
343	Distributions for tau neutrino interactions observed through the decayτ→î¼Î½Ï"νÂ ⁻ μ. Physics Letters, Sectio Nuclear, Elementary Particle and High-Energy Physics, 2017, 765, 272-275.	on B: 1.5	2
344	Constraints on the ultra-high-energy neutrino flux from Gamma-Ray bursts from a prototype station of the Askaryan radio array. Astroparticle Physics, 2017, 88, 7-16.	1.9	6
345	Cosmic rays in a galactic breeze. Physical Review D, 2017, 95, .	1.6	11
346	Characterization of Multi-Antenna GNSS, Multi-Sensor Attitude Determination for Stratospheric Balloon Platforms. , 2017, , .		0
347	All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data. Astrophysical Journal, 2017, 835, 151.	1.6	198
348	Astrophysical neutrino production diagnostics with the Glashow resonance. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 033-033.	1.9	26
349	Intra-acting with the IceCube Neutrino Observatory; or, how the technosphere may come to matter. Infrastructure Asset Management, 2017, 4, 81-91.	1.2	13
350	Neutrino astronomy at the South Pole: Latest results from the IceCube neutrino observatory and its future development. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 876, 72-75.	0.7	1
351	Detection prospects for high energy neutrino sources from the anisotropic matter distribution in the local Universe. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 011-011.	1.9	16
352	Multi-messenger Light Curves from Gamma-Ray Bursts in the Internal Shock Model. Astrophysical Journal, 2017, 837, 33.	1.6	32
353	THE CONTRIBUTION OF FERMI-2LAC BLAZARS TO DIFFUSE TEV–PEV NEUTRINO FLUX. Astrophysical Journal, 2017, 835, 45.	1.6	186
354	The Galactic Center: A Petaelectronvolt Cosmic-ray Acceleration Factory. Astrophysical Journal, 2017, 836, 233.	1.6	10
355	A consistent theory of decaying Dark Matter connecting IceCube to the Sesame Street. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 017-017.	1.9	30
356	PINGU: a vision for neutrino and particle physics at the South Pole. Journal of Physics G: Nuclear and Particle Physics, 2017, 44, 054006.	1.4	45
357	Neutrinos and \$\$gamma \$\$ γ -rays from the Galactic Center Region after H.E.S.S. multi-TeV measurements. European Physical Journal C, 2017, 77, 1.	1.4	18
358	Sagittarius A* as an origin of the Galactic PeV cosmic rays?. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 037-037.	1.9	25
359	Sterile neutrinos and flavor ratios in IceCube. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 026-026.	1.9	30
360	Hadronically decaying heavy dark matter and high-energy neutrino limits. JETP Letters, 2017, 105, 561-567.	0.4	16

#	Article	lF	CITATIONS
361	Modeling the radar scatter off of high-energy neutrino-induced particle cascades in ice. EPJ Web of Conferences, 2017, 135, 05006.	0.1	0
362	Boosted dark matter and its implications for the features in IceCube HESE data. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 002-002.	1.9	27
363	Neutrino Mixing in Matter at Extreme High Energy. International Journal of Theoretical Physics, 2017, 56, 2445-2449.	0.5	0
364	Fundamental physics with cosmic high-energy gamma rays. AIP Conference Proceedings, 2017, , .	0.3	2
365	Can tidal disruption events produce the IceCube neutrinos?. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1354-1359.	1.6	58
366	NPTFit: A Code Package for Non-Poissonian Template Fitting. Astronomical Journal, 2017, 153, 253.	1.9	27
367	The e-ASTROGAM mission. Experimental Astronomy, 2017, 44, 25-82.	1.6	167
368	The IceCube realtime alert system. Astroparticle Physics, 2017, 92, 30-41.	1.9	116
369	Calculation of atmospheric high-energy neutrino spectra and the measurement data of IceCube and ANTARES experiments. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 516-519.	0.1	3
370	Expected signatures from hadronic emission processes in the TeV spectra of BL Lacertae objects. Astronomy and Astrophysics, 2017, 602, A25.	2.1	29
371	One-point fluctuation analysis of the high-energy neutrino sky. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 057-057.	1.9	20
372	Results of the first detection units of KM3NeT. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 876, 181-184.	0.7	3
373	Constraints on cosmic ray and PeV neutrino production in blazars. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 024-024.	1.9	7
374	The IceCube Neutrino Observatory: instrumentation and online systems. Journal of Instrumentation, 2017, 12, P03012-P03012.	0.5	390
375	High-energy Neutrino Flares from X-Ray Bright and Dark Tidal Disruption Events. Astrophysical Journal, 2017, 838, 3.	1.6	68
376	Dark Matter interpretation of low energy IceCube MESE excess. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 007-007.	1.9	34
377	Radio detection of cosmic-ray air showers and high-energy neutrinos. Progress in Particle and Nuclear Physics, 2017, 93, 1-68.	5.6	104
378	Radiatively Generating the Higgs Potential and Electroweak Scale via the Seesaw Mechanism. Physical Review Letters, 2017, 119, 141801.	2.9	31

#	Article	IF	CITATIONS
379	Constraints and prospects on gravitational-wave and neutrino emissions using GW150914. Physical Review D, 2017, 96, .	1.6	2
380	IceCube Constraints on the Fermi Bubbles. Astrophysical Journal, 2017, 847, 95.	1.6	5
381	The Theory of Gamma-Ray Bursts. Space Science Reviews, 2017, 212, 409-427.	3.7	16
382	AGILE Detection of a Candidate Gamma-Ray Precursor to the ICECUBE-160731 Neutrino Event. Astrophysical Journal, 2017, 846, 121.	1.6	31
383	Search for Astrophysical Sources of Neutrinos Using Cascade Events in IceCube. Astrophysical Journal, 2017, 846, 136.	1.6	21
384	Active Galactic Nuclei as High-Energy Neutrino Sources. , 2017, , 15-31.		23
385	Axion and neutrino physics in a U(1) -enhanced supersymmetric model. Physical Review D, 2017, 96, .	1.6	5
386	Probing decaying heavy dark matter with the 4-year IceCube HESE data. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 027-027.	1.9	29
387	Connecting blazars with ultrahigh-energy cosmic rays and astrophysical neutrinos. Monthly Notices of the Royal Astronomical Society, 2017, 468, 597-606.	1.6	48
388	Prospects of establishing the origin of cosmic neutrinos using source catalogs. Physical Review D, 2017, 96, .	1.6	11
389	Search for sterile neutrino mixing using three years of IceCube DeepCore data. Physical Review D, 2017, 95, .	1.6	75
390	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>^{ĵ3}</mml:mi></mml:math> -ray Constraints on Decaying Dark Matter and Implications for IceCube. Physical Review Letters, 2017, 119, 021102.	2.9	109
391	Exploring the Universe with Neutrinos: Recent Results from IceCube. Nuclear and Particle Physics Proceedings, 2017, 287-288, 139-142.	0.2	3
392	Point-source and diffuse high-energy neutrino emission from Type IIn supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1881-1893.	1.6	33
393	Astrophysical Sources of High-Energy Neutrinos in the IceCube Era. Annual Review of Nuclear and Particle Science, 2017, 67, 45-67.	3.5	58
394	Search for the footprints of new physics with laboratory and cosmic neutrinos. Modern Physics Letters A, 2017, 32, 1730014.	0.5	1
395	A Search for Neutrinos from Fast Radio Bursts with IceCube. Astrophysical Journal, 2017, 845, 14.	1.6	11
396	IceCube and HAWC constraints on very-high-energy emission from the Fermi bubbles. Physical Review D, 2017, 96, .	1.6	10

#	Article	IF	Citations
397	How bright can the brightest neutrino source be?. Physical Review D, 2017, 95, .	1.6	10
398	Prompt neutrino fluxes in the atmosphere with PROSA parton distribution functions. Journal of High Energy Physics, 2017, 2017, 1.	1.6	38
399	IceCube can constrain the intrinsic charm of the proton. Physical Review D, 2017, 96, .	1.6	22
400	Search for GeV and X-Ray Flares Associated with the IceCube Track-like Neutrinos. Astrophysical Journal, 2017, 835, 269.	1.6	4
401	Search for an Excess of Events in the Super-Kamiokande Detector in the Directions of the Astrophysical Neutrinos Reported by the IceCube Collaboration. Astrophysical Journal, 2017, 850, 166.	1.6	6
402	Measurement of the \$\$u _{mu }\$\$ μ μ energy spectrum with IceCube-79. European Physical Journal C, 2017, 77, 692.	1.4	24
403	Evidence for a break in the spectrum of astrophysical neutrinos. Physical Review D, 2017, 95, .	1.6	24
404	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	3.0	135
405	Neutrino Connection with Cosmic Ray Origin. , 2017, , .		0
406	High-energy neutrino attenuation in the Earth and its associated uncertainties. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 012-012.	1.9	29
407	Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos. Physical Review Letters, 2017, 119, 201801.	2.9	54
408	Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data. Astrophysical Journal, 2017, 849, 67.	1.6	95
409	Astrophysical neutrinos flavored with beyond the Standard Model physics. Physical Review D, 2017, 96, .	1.6	43
410	Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data. Astrophysical Journal, 2017, 843, 112.	1.6	116
411	On the Direct Correlation between Gamma-Rays and PeV Neutrinos from Blazars. Astrophysical Journal, 2017, 843, 109.	1.6	60
412	Testing decay of astrophysical neutrinos with incomplete information. Physical Review D, 2017, 95, .	1.6	68
413	Origin of Cosmic Rays: Modern status. EPJ Web of Conferences, 2017, 145, 03001.	0.1	1
414	Limits on the cosmogenic neutrino flux from observational cosmology. European Physical Journal Plus, 2017, 132, 1.	1.2	0

		REPORT	
#	Article	IF	CITATIONS
415	An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope. European Physical Journal C, 2017, 77, 419.	1.4	11
416	InÂvacuo dispersion features for gamma-ray-burst neutrinos and photons. Nature Astronomy, 2017, 1, .	4.2	66
417	The comparison of the calculated atmospheric neutrino spectra with the measurements of IceCube and ANTARES experiments. Journal of Physics: Conference Series, 2017, 798, 012101.	0.3	4
418	Influence of hadronic interaction models on characteristics of the high-energy atmospheric neutrino flux. Journal of Physics: Conference Series, 2017, 934, 012008.	0.3	4
419	High energy neutrinos from the tidal disruption of stars. Physical Review D, 2017, 95, .	1.6	61
420	Constraining the mass scale of a Lorentz-violating Hamiltonian with the measurement of astrophysical neutrino-flavor composition. Physical Review D, 2017, 96, .	1.6	7
421	Mapping the dominant regions of the phase space associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>c</mml:mi><mml:mover accent="true"><mml:mi>c</mml:mi><mml:mo stretchy="false">Â⁻</mml:mo> production relevant for the prompt atmospheric neutrino flux. Physical Review D, 2017, 96, .</mml:mover </mml:math 	1.6	13
422	Gamma-ray and Neutrino Diffuse Emissions of the Galaxy at very High Energy. Nuclear and Particle Physics Proceedings, 2017, 291-293, 9-14.	0.2	Ο
423	What have we learned about the sources of ultrahigh-energy cosmic rays via neutrino astronomy?. Nuclear and Particle Physics Proceedings, 2017, 291-293, 159-166.	0.2	3
424	Astrophysical neutrinos: IceCube highlights. Nuclear and Particle Physics Proceedings, 2017, 291-293, 167-174.	0.2	3
425	Results from the ANTARES Neutrino Telescope. Nuclear and Particle Physics Proceedings, 2017, 291-293, 175-182.	0.2	3
426	UHECR narrow clustering correlating IceCube through-going muons. Nuclear and Particle Physics Proceedings, 2017, 291-293, 195-200.	0.2	2
427	Diffuse neutrino emissions from the Southern sky and Mediterranean neutrino telescopes. European Physical Journal Plus, 2017, 132, 1.	1.2	0
428	On the compatibility of the IceCube results with a universal neutrino spectrum. European Physical Journal C, 2017, 77, 1.	1.4	13
429	Acceleration and propagation of ultra-high energy cosmic rays. Progress of Theoretical and Experimental Physics, 2017, 2017, .	1.8	13
430	Cosmology and CPT violating neutrinos. European Physical Journal C, 2017, 77, 1.	1.4	6
431	Multi-component fermionic dark matter and IceCube PeV scale neutrinos in left-right model with gauge unification. Journal of High Energy Physics, 2017, 2017, 1.	1.6	32
432	All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the AntaresÂneutrino telescope. European Physical Journal C, 2017, 77, 1.	1.4	13

		CITATION REPORT		
#	Article		IF	CITATIONS
433	High-energy emitting BL Lacs and high-energy neutrinos. Astronomy and Astrophysics,	2017, 598, A36.	2.1	22
434	Neutrino astronomy with IceCube and beyond. Journal of Physics: Conference Series, 2	2017, 888, 012007.	0.3	1
435	Strong constraints on hadronic models of blazar activity from <i>Fermi</i> and IceCube analysis. Astronomy and Astrophysics, 2017, 603, A135.	2 stacking	2.1	27
436	Capability of the HAWC Gamma-Ray Observatory for the Indirect Detection of Ultrahig Neutrinos. Advances in Astronomy, 2017, 2017, 1-13.	sh-Energy	0.5	2
437	Planck-Scale Dual-Curvature Lensing and Spacetime Noncommutativity. Advances in H Physics, 2017, 2017, 1-8.	ligh Energy	0.5	11
438	IceCube: Neutrinos and multimessenger astronomy. Progress of Theoretical and Exper 2017, 2017, .	imental Physics,	1.8	14
439	The Latest IceCube Results and the Implications. , 2017, , .			0
440	Ultra-High Energy Neutrinos at the Pierre Auger Observatory. , 2017, , .			0
441	Testing Lorentz Symmetry Using High Energy Astrophysics Observations. Symmetry, 2	:017, 9, 201.	1.1	17
442	Neutrino statistics in a single pixel. Journal of Physics: Conference Series, 2017, 888, 0	12204.	0.3	0
443	Mind the Gap on IceCube: Cosmic neutrino spectrum and muon anomalous magnetic of Physics: Conference Series, 2017, 888, 012126.	moment. Journal	0.3	2
444	MAGIC gamma-ray telescopes hunting for neutrinos and their sources. Journal of Physi Series, 2017, 888, 012147.	cs: Conference	0.3	0
445	Event identification for KM3NeT/ARCA. Journal of Physics: Conference Series, 2017, 88	38,012046.	0.3	0
446	Multimessenger Prospects with Gravitational Waves and Neutrinos after LIGO's Fin Journal of Physics: Conference Series, 2017, 888, 012001.	rst Discovery.	0.3	0
447	Prompt atmospheric neutrino flux in perturbative QCD and its theoretical uncertaintie Physics: Conference Series, 2017, 888, 012117.	s. Journal of	0.3	0
448	Origin of Cosmic Rays: Modern status. EPJ Web of Conferences, 2017, 145, 03001.		0.1	1
449	Atmospheric neutrino results from IceCube-DeepCore and plans for PINGU. Journal of I Conference Series, 2017, 888, 012023.	^p hysics:	0.3	1
450	Multimessenger Astronomy with Neutrinos. Journal of Physics: Conference Series, 201	7, 888, 012009.	0.3	3

#	Article	IF	CITATIONS
451	Heavy flavour in high-energy nuclear collisions: a theoretical overview. Journal of Physics: Conference Series, 2018, 981, 012016.	0.3	0
452	A search for dark matter in the Galactic halo with HAWC. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 049-049.	1.9	36
453	On the potential of Cherenkov Telescope Arrays and KM3 Neutrino Telescopes for the detection of extended sources. Astroparticle Physics, 2018, 100, 69-79.	1.9	20
454	Constraining high-energy neutrino emission from choked jets in stripped-envelope supernovae. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 025-025.	1.9	21
455	New prospects for detecting high-energy neutrinos from nearby supernovae. Physical Review D, 2018, 97, .	1.6	50
456	On the non-detection of Glashow resonance in IceCube. Journal of High Energy Astrophysics, 2018, 18, 1-4.	2.4	6
457	Exploring the supersymmetric U(1)Bâ^'L×U(1)R model with dark matter, muon gâ^'2 , and Z′ mass limits. Physical Review D, 2018, 97, .	1.6	7
458	Dark Matter Limits from Dwarf Spheroidal Galaxies with the HAWC Gamma-Ray Observatory. Astrophysical Journal, 2018, 853, 154.	1.6	69
459	High-energy neutrinos from multibody decaying dark matter. Physical Review D, 2018, 97, .	1.6	25
460	High energy neutrinos from the sun. Astroparticle Physics, 2018, 97, 63-68.	1.9	15
461	Origin of the High-energy Neutrino Flux at IceCube. Astrophysical Journal, 2018, 852, 59.	1.6	3
462	Low-luminosity gamma-ray bursts as the sources of ultrahigh-energy cosmic ray nuclei. Physical Review D, 2018, 97, .	1.6	61
463	Infused ice can multiply IceCube's sensitivity. Nature Communications, 2018, 9, 1236.	5.8	0
464	Propagation of GeV neutrinos through Earth. Journal of High Energy Astrophysics, 2018, 18, 35-42.	2.4	0
465	High-energy neutrinos from FRO radio galaxies?. Monthly Notices of the Royal Astronomical Society, 2018, 475, 5529-5534.	1.6	18
466	Pulsar TeV Halos Explain the Diffuse TeV Excess Observed by Milagro. Physical Review Letters, 2018, 120, 121101.	2.9	43
467	WIMP dark matter candidates and searches—current status and future prospects. Reports on Progress in Physics, 2018, 81, 066201.	8.1	339
468	Exploring the Properties of Choked Gamma-ray Bursts with IceCube's High-energy Neutrinos. Astrophysical Journal, 2018, 855, 37.	1.6	33

#	Article	IF	CITATIONS
469	Astrophysical neutrinos and cosmic rays observed by IceCube. Advances in Space Research, 2018, 62, 2902-2930.	1.2	20
470	A combined astrophysical and dark matter interpretation of the IceCube HESE and throughgoing muon events. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 020-020.	1.9	40
471	Cumulative Neutrino and Gamma-Ray Backgrounds from Halo and Galaxy Mergers. Astrophysical Journal, 2018, 857, 50.	1.6	11
472	Search for High-Energy Neutrinos from GW170817 with the Baikal-GVD Neutrino Telescope. JETP Letters, 2018, 108, 787-790.	0.4	21
473	<i>Fermi</i> /LAT counterparts of IceCube neutrinos above 100 TeV. Astronomy and Astrophysics, 2018, 620, A174.	2.1	19
474	Study of the PeV neutrino, Î ³ -rays, and UHECRs around the lobes of Centaurus A. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4461-4471.	1.6	11
475	On the origin and nature of dark matter. International Journal of Modern Physics A, 2018, 33, 1830030.	0.5	4
476	Cosmic Ray Cradles in the Galaxy. , 0, , .		2
477	Galactic Cosmic-Rays in a Breeze. Nuclear and Particle Physics Proceedings, 2018, 297-299, 63-71.	0.2	1
478	Multi-Messenger Signatures of PeV-ZeV Cosmic Ray Sources. Nuclear and Particle Physics Proceedings, 2018, 297-299, 217-225.	0.2	0
479	A Multimessenger View of Galaxies and Quasars From Now to Mid-century. Frontiers in Astronomy and Space Sciences, 2018, 5, .	1.1	6
480	Prospects of type-II seesaw models at future colliders in light of the DAMPE <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>e</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:msup><mml:mi> Physical Review D_2018_97</mml:mi></mml:msup></mml:math 	e< 1.6 ml:mi	:> ¹⁷ mml:ma>
481	Compact model for quarks and leptons via flavored axions. Physical Review D, 2018, 98, .	1.6	11
482	Searching for leptoquarks at IceCube and the LHC. Physical Review D, 2018, 98, .	1.6	39
483	Origin of the light cosmic ray component below the ankle. Physical Review D, 2018, 98, .	1.6	11
484	A multiwavelength view of BL Lacs neutrino candidates. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	20
485	Probing particle physics with IceCube. European Physical Journal C, 2018, 78, 1.	1.4	47
486	VERITAS Observations of the BL Lac Object TXS 0506+056. Astrophysical Journal Letters, 2018, 861, L20.	3.0	27

#	Article	IF	CITATIONS
487	Multimessenger astronomy and new neutrino physics. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 048-048.	1.9	37
488	A Few Selected Topics in Extreme Astrophysical Phenomena: Gamma-ray Burst as a Source of Multi-messenger Astrophysics and Cosmic Particles as a Would-be Messenger. Journal of the Korean Physical Society, 2018, 73, 736-746.	0.3	0
489	Unitarity bounds of astrophysical neutrinos. Physical Review D, 2018, 98, .	1.6	23
490	Constraining high-energy neutrinos from choked-jet supernovae with IceCube high-energy starting events. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 008-008.	1.9	21
491	Probes of Multimessenger Astrophysics. Astronomy and Astrophysics Library, 2018, , .	0.2	10
492	The cosmic ray shadow of the Moon observed with the ANTARES neutrino telescope. European Physical Journal C, 2018, 78, 1006.	1.4	14
493	Neutrinophilic Dark Matter in the epoch of IceCube and Fermi-LAT. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 016-016.	1.9	14
494	A multi-messenger study of the total galactic high-energy neutrino emission. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 035-035.	1.9	6
495	Transejecta high-energy neutrino emission from binary neutron star mergers. Physical Review D, 2018, 98, .	1.6	46
496	Diffuse Galactic gamma-ray flux at very high energy. Physical Review D, 2018, 98, .	1.6	49
497	A Multimessenger Picture of the Flaring Blazar TXS 0506+056: Implications for High-energy Neutrino Emission and Cosmic-Ray Acceleration. Astrophysical Journal, 2018, 864, 84.	1.6	184
498	Blazar Flares as an Origin of High-energy Cosmic Neutrinos?. Astrophysical Journal, 2018, 865, 124.	1.6	139
499	The bright and choked gamma-ray burst contribution to the IceCube and ANTARES low-energy excess. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 058-058.	1.9	14
500	Intrinsic charm contribution to the prompt atmospheric neutrino flux. Physical Review D, 2018, 98, .	1.6	13
501	Invisible Neutrino Decay Could Resolve IceCube's Track and Cascade Tension. Physical Review Letters, 2018, 121, 121802.	2.9	59
502	High-energy gamma-ray and neutrino production in star-forming galaxies across cosmic time: Difficulties in explaining the IceCube data. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	28
503	Lorentz violation from gamma-ray burst neutrinos. Communications Physics, 2018, 1, .	2.0	27
504	Phenomenology of colored radiative neutrino mass model and its implications on cosmic-ray observations. Chinese Physics C, 2018, 42, 103101.	1.5	6

	C	itation Report	
#	Article	IF	CITATIONS
505	Heavy decaying dark matter and IceCube high energy neutrinos. Physical Review D, 2018, 98, .	1.6	53
506	Nonperturbative Quantum Electrodynamics in the Cherenkov Effect. Physical Review X, 2018, 8, .	2.8	9
507	Lepto-hadronic γ-Ray and Neutrino Emission from the Jet of TXS 0506+056. Astrophysical Journal, 20 866, 109.)18, 1.6	55
508	Search for PeVatrons in VHE gamma rays and neutrinos. AIP Conference Proceedings, 2018, , .	0.3	0
509	High Energy Neutrino Astronomy: Where Do We Stand, Where Do We Go?. Physics of Particles and Nuclei, 2018, 49, 497-507.	0.2	3
510	PeV scale supersymmetry breaking and the IceCube neutrino flux. Journal of High Energy Physics, 201 2018, 1.	.8, 1.6	12
511	The importance of observing astrophysical tau neutrinos. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 004-004.	1.9	11
512	Neutrino Mass, Coupling Unification, Verifiable Proton Decay, Vacuum Stability, and WIMP Dark Matter in SU(5). Advances in High Energy Physics, 2018, 2018, 1-21.	0.5	4
513	A multi-component model for observed astrophysical neutrinos. Astronomy and Astrophysics, 2018, 615, A168.	2.1	24
514	Neutrinos and Ultra-high-energy Cosmic-ray Nuclei from Blazars. Astrophysical Journal, 2018, 854, 54	·. 1.6	52
515	Seeking leptoquarks in IceCube. Journal of High Energy Physics, 2018, 2018, 1.	1.6	27
516	IceCube's astrophysical neutrino energy spectrum from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" > <mml:mi> C </mml:mi> C P <mml:mi> T </mml:mi> viol Physical Review D. 2018, 97</mml:math 	ation. 1.6	14
517	Observing the energetic universe at very high energies with the VERITAS gamma ray observatory. Advances in Space Research, 2018, 62, 2828-2844.	1.2	6
518	Characterization of 750 Large Area Photomultipliers for the KM3NeT-Italia Towers. IEEE Transactions on Nuclear Science, 2018, 65, 1161-1168.	1.2	0
519	Opening a new window onto the universe with IceCube. Progress in Particle and Nuclear Physics, 201 102, 73-88.	.8, 5.6	93
520	Hadronic Models of the Fermi Bubbles: Future Perspectives. Galaxies, 2018, 6, 47.	1.1	9
521	Multimessenger gamma-ray counterpart of the IceCube neutrino signal. Physical Review D, 2018, 98,	. 1.6	30
522	Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube. Nature Physics, 2018, 14, 961-966.	6.5	66

#	Article	IF	Citations
523	A Novel Study Connecting Ultra-High Energy Cosmic Rays, Neutrinos, and Gamma-Rays. , 2018, , .		0
524	Dissecting the region around IceCube-170922A: the blazar TXS 0506+056 as the first cosmic neutrino source. Monthly Notices of the Royal Astronomical Society, 2018, 480, 192-203.	1.6	112
525	Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science, 2018, 361, .	6.0	654
526	Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science, 2018, 361, 147-151.	6.0	601
527	The Joint Institute for Nuclear Research in Experimental Physics of Elementary Particles. Physics of Particles and Nuclei, 2018, 49, 331-373.	0.2	0
528	AGN outflows as neutrino sources: an observational test. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3469-3479.	1.6	7
529	Tidally disrupted stars as a possible origin of both cosmic rays and neutrinos at the highest energies. Scientific Reports, 2018, 8, 10828.	1.6	55
530	High-energy Neutrinos from Galactic Superbubbles. Astrophysical Journal Letters, 2018, 861, L19.	3.0	13
531	A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data. Astrophysical Journal, 2018, 857, 117.	1.6	22
532	A Coincidence Search for Cosmic Neutrino and Gamma-Ray Emitting Sources Using IceCube and Fermi-LAT Public Data. Astrophysical Journal, 2018, 863, 64.	1.6	15
533	Strategies for the follow-up of gravitational wave transients with the Cherenkov Telescope Array. Monthly Notices of the Royal Astronomical Society, 2018, 477, 639-647.	1.6	9
534	Particle acceleration at forward and reverse shocks in SNRs. International Journal of Modern Physics D, 2018, 27, 1844023.	0.9	2
535	Unified atmospheric neutrino passing fractions for large-scale neutrino telescopes. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 047-047.	1.9	22
536	Multi-PeV Signals from a New Astrophysical Neutrino Flux beyond the Glashow Resonance. Physical Review Letters, 2018, 120, 241105.	2.9	18
537	Studies of an air-shower imaging system for the detection of ultrahigh-energy neutrinos. Physical Review D, 2019, 99, .	1.6	25
538	Investigation of Two Fermi-LAT Gamma-Ray Blazars Coincident with High-energy Neutrinos Detected by IceCube. Astrophysical Journal, 2019, 880, 103.	1.6	60
539	Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1. Astronomy and Astrophysics, 2019, 626, A117.	2.1	13
540	CRPropa - A Toolbox for Cosmic Ray Simulations. Journal of Physics: Conference Series, 2019, 1181, 012034.	0.3	1

#	Article	IF	Citations
541	Gamma-ray counterpart of the IceCube neutrinos. Journal of Physics: Conference Series, 2019, 1181, 012052.	0.3	0
542	The Zwicky Transient Facility: Science Objectives. Publications of the Astronomical Society of the Pacific, 2019, 131, 078001.	1.0	453
543	Introduction to multi-messenger astronomy. Journal of Physics: Conference Series, 2019, 1263, 012001.	0.3	7
544	The flavor composition of astrophysical neutrinos after 8 years of IceCube: an indication of neutron decay scenario?. European Physical Journal C, 2019, 79, 1.	1.4	13
545	Secondary Radio and X-Ray Emissions from Galaxy Mergers. Astrophysical Journal, 2019, 878, 76.	1.6	5
546	IceCube High Energy Starting Events at 7.5 Years - New Measurements of Flux and Flavor. EPJ Web of Conferences, 2019, 207, 02005.	0.1	10
547	Inferring the Flavor of High-Energy Astrophysical Neutrinos at Their Sources. Physical Review Letters, 2019, 122, 241101.	2.9	38
548	IceCube neutrinos from hadronically powered gamma-ray galaxies. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 004-004.	1.9	19
549	Dark matter component decaying after recombination: constraints from diffuse gamma-ray and neutrino flux measurements. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 039-039.	1.9	2
550	IceCube's Long Term Archive Software. , 2019, , .		0
551	Secondary neutrino and gamma-ray fluxes from SimProp and CRPropa. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 006-006.	1.9	16
552	Matter effects and coherent effect of neutrinos produced from -ray bursts *. Chinese Physics C, 2019, 43, 105102.	1.5	Ο
553	Multimessenger tests of cosmic-ray acceleration in radiatively inefficient accretion flows. Physical Review D, 2019, 100, .	1.6	16
554	Probing strong dynamics with cosmic neutrinos. Physical Review D, 2019, 100, .	1.6	7
555	Search for Sources of Astrophysical Neutrinos Using Seven Years of IceCube Cascade Events. Astrophysical Journal, 2019, 886, 12.	1.6	53
556	Observation of AGILE transient \$\$gamma \$\$-ray sources in coincidence with cosmic neutrino events. Rendiconti Lincei, 2019, 30, 149-154.	1.0	Ο
557	High-energy neutrino flux from individual blazar flares. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4347-4366.	1.6	39
558	High-Energy Multimessenger Transient Astrophysics. Annual Review of Nuclear and Particle Science, 2019, 69, 477-506.	3.5	40

#	Article	IF	CITATIONS
559	The Antares And Km3Net Neutrino Telescopes: Status And Outlook For Acoustic Studies. EPJ Web of Conferences, 2019, 216, 01004.	0.1	1
560	Cascading Constraints from Neutrino-emitting Blazars: The Case of TXS 0506+056. Astrophysical Journal, 2019, 881, 46.	1.6	73
561	Measurement of the Crab Nebula Spectrum Past 100 TeV with HAWC. Astrophysical Journal, 2019, 881, 134.	1.6	98
562	Update on decaying and annihilating heavy dark matter with the 6-year IceCube HESE data. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 051-051.	1.9	41
563	Neutrino-dark matter scattering and coincident detections of UHE neutrinos with EM sources. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 013-013.	1.9	13
564	Baikal-GVD - the Next Generation Neutrino Telescope in Lake Baikal. Journal of Physics: Conference Series, 2019, 1263, 012005.	0.3	2
565	National Aures Observatory: A new multimessenger facility. Journal of Physics: Conference Series, 2019, 1269, 012001.	0.3	1
566	Astrophysical neutrinos: theory. Journal of Physics: Conference Series, 2019, 1263, 012004.	0.3	2
567	Search for steady point-like sources in the astrophysical muon neutrino flux with 8 years of IceCube data. European Physical Journal C, 2019, 79, 1.	1.4	75
568	New vistas in charm production. EPJ Web of Conferences, 2019, 206, 02004.	0.1	0
569	Next generation neutrino detectors at the South Pole. EPJ Web of Conferences, 2019, 207, 01005.	0.1	0
570	Detection of a flaring blazar coincident with an IceCube high-energy neutrino. EPJ Web of Conferences, 2019, 207, 02001.	0.1	0
571	Analysis of High Energy Starting Events with the KM3NeT/ARCA detector. EPJ Web of Conferences, 2019, 207, 02006.	0.1	0
572	Searching for Optical Counterparts to High-Energy Neutrino Sources with the Zwicky Transient Facility. EPJ Web of Conferences, 2019, 207, 03001.	0.1	1
573	Improving the muon track reconstruction of IceCube and IceCube-Gen2. EPJ Web of Conferences, 2019, 207, 05002.	0.1	1
574	Deconvolution in Measurements of Muon Neutrino Energy Spectra with IceCube. EPJ Web of Conferences, 2019, 207, 05006.	0.1	0
575	Neutrino Sources from a Multi-Messenger Perspective. EPJ Web of Conferences, 2019, 209, 01013.	0.1	2
576	Status of the KM3NeT project. EPJ Web of Conferences, 2019, 209, 01017.	0.1	0

		CITATION REPORT		
#	Article		IF	CITATIONS
577	Latest results of the ANTARES neutrino telescope. EPJ Web of Conferences, 2019, 209,	01022.	0.1	0
578	AGILEÎ ³ -ray sources coincident with cosmic neutrino events. EPJ Web of Conferences, 2	019, 209, 01026.	0.1	2
579	Multi-messenger astrophysics. Nature Reviews Physics, 2019, 1, 585-599.		11.9	79
580	Cosmic tau neutrino detection via Cherenkov signals from air showers from Earth-emer Physical Review D, 2019, 100, .	ging taus.	1.6	21
581	Extracting the Energy-Dependent Neutrino-Nucleon Cross Section above 10ÂTeV Using Physical Review Letters, 2019, 122, 041101.	IceCube Showers.	2.9	65
582	Escape of Cosmic Rays from the Galaxy and Effects on the Circumgalactic Medium. Phy Letters, 2019, 122, 051101.	sical Review	2.9	24
583	The Extended Flare in CTA 102 in 2016 and 2017 within a Hadronic Model through Clou Relativistic Jet. Astrophysical Journal, 2019, 871, 19.	ud Ablation by the	1.6	18
584	PeV neutrinos from wind breakouts of type II supernovae. Science China: Physics, Mech Astronomy, 2019, 62, 1.	anics and	2.0	3
585	Flux States of Active Galactic Nuclei. Galaxies, 2019, 7, 57.		1.1	0
586	Interpretation of the Diffuse Astrophysical Neutrino Flux in Terms of the Blazar Sequence Astrophysical Journal, 2019, 871, 41.	ce.	1.6	49
587	Consistent Lorentz violation features from near-TeV IceCube neutrinos. Physical Review	D, 2019, 99, .	1.6	17
588	Prospects for detecting ultra-high-energy particles with FAST. Research in Astronomy ar Astrophysics, 2019, 19, 019.	ıd	0.7	6
589	Decays of long-lived relics and their signatures at IceCube. Journal of High Energy Physic 1.	xs, 2019, 2019,	1.6	5
590	The Self-Control of Cosmic Rays. Galaxies, 2019, 7, 64.		1.1	12
591	Constraining dark matter-neutrino interactions with IceCube-170922A. Physical Review	D, 2019, 99, .	1.6	36
592	Baikal-GVD: cascades. EPJ Web of Conferences, 2019, 207, 05001.		0.1	2
593	Carpet-2 Search for PeV Gamma Rays Associated with IceCube High-Energy Neutrino Ev 2019, 109, 226-231.	ents. JETP Letters,	0.4	10
594	Dark matter, neutrino mass, cutoff for cosmic-ray neutrino, and the Higgs boson invisib a neutrino portal interaction. Chinese Physics C, 2019, 43, 045101.	le decay from	1.5	2

#	Article	IF	CITATIONS
595	Hadronic and Hadron-Like Physics of Dark Matter. Symmetry, 2019, 11, 587.	1.1	27
596	A study on a minimally broken residual TBM-Klein symmetry with its implications on flavoured leptogenesis and ultra high energy neutrino flux ratios. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 003-003.	1.9	8
597	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	1.6	32
598	Monitoring and Multi-Messenger Astronomy with IceCube. Galaxies, 2019, 7, 40.	1.1	1
599	ANTARES and KM3NeT: The Latest Results of the Neutrino Telescopes in the Mediterranean. Universe, 2019, 5, 65.	0.9	3
600	Echo Technique to Distinguish Flavors of Astrophysical Neutrinos. Physical Review Letters, 2019, 122, 151101.	2.9	22
601	Impact of the inelastic proton–nucleus cross section on the prompt neutrino flux. European Physical Journal C, 2019, 79, 1.	1.4	2
602	On the Neutrino Flares from the Direction of TXS 0506+056. Astrophysical Journal Letters, 2019, 874, L9.	3.0	33
603	Hadronuclear interpretation of a high-energy neutrino event coincident with a blazar flare. Physical Review D, 2019, 99, .	1.6	56
604	Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources. Astroparticle Physics, 2019, 111, 100-110.	1.9	71
605	Phenomenological implications of the Friedberg-Lee transformation in a neutrino mass model with μτ-flavored CP symmetry. Journal of High Energy Physics, 2019, 2019, 1.	1.6	6
606	Angular power spectrum analysis on current and future high-energy neutrino data. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 002-002.	1.9	11
607	AGILE Detection of Gamma-Ray Sources Coincident with Cosmic Neutrino Events. Astrophysical Journal, 2019, 870, 136.	1.6	16
608	STRAW (STRings for Absorption length in Water): pathfinder for a neutrino telescope in the deep Pacific Ocean. Journal of Instrumentation, 2019, 14, P02013-P02013.	0.5	14
609	Active galactic nuclei and the origin of IceCube's diffuse neutrino flux. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 012-012.	1.9	32
610	Scattering of high-energy cosmic ray electrons off the Dark Matter. International Journal of Modern Physics A, 2019, 34, 1950040.	0.5	5
611	Origin of the multiwavelength emission of PKS 0502+049. Astronomy and Astrophysics, 2019, 622, A144.	2.1	17
612	Constraints on Minute-Scale Transient Astrophysical Neutrino Sources. Physical Review Letters, 2019, 122, 051102.	2.9	23

#	Article	IF	CITATIONS
613	Universe's Worth of Electrons to Probe Long-Range Interactions of High-Energy Astrophysical Neutrinos. Physical Review Letters, 2019, 122, 061103.	2.9	37
614	Particle-level model for radar based detection of high-energy neutrino cascades. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 922, 161-170.	0.7	7
615	Measurements using the inelasticity distribution of multi-TeV neutrino interactions in IceCube. Physical Review D, 2019, 99, .	1.6	55
616	IceCube: Opening a new window on the universe from the South Pole. International Journal of Modern Physics D, 2019, 28, 1930007.	0.9	1
617	Relativistic Jets of Blazars. New Astronomy Reviews, 2019, 87, 101541.	5.2	37
618	Lorentz Violation Footprints in the Spectrum of High-Energy Cosmic Neutrinos—Deformation of the Spectrum of Superluminal Neutrinos from Electron-Positron Pair Production in Vacuum. Symmetry, 2019, 11, 1419.	1.1	7
619	Multimessenger Search for the Sources of Cosmic Rays Using Cosmic Neutrinos. Frontiers in Astronomy and Space Sciences, 2019, 6, .	1.1	7
620	Signals of Dark Matter in hypercolor vectorlike extension of the SM. EPJ Web of Conferences, 2019, 222, 04002.	0.1	1
621	Transient processing and analysis using AMPEL: alert management, photometry, and evaluation of light curves. Astronomy and Astrophysics, 2019, 631, A147.	2.1	62
622	Eddington bias for cosmic neutrino sources. Astronomy and Astrophysics, 2019, 622, L9.	2.1	31
623	Highlights from the HAWC Observatory. Nuclear and Particle Physics Proceedings, 2019, 306-308, 12-19.	0.2	0
624	Influence of Cosmic-Ray Spectrum and Hadron—Nucleus Interaction Model on the Properties of High-Energy Atmospheric-Neutrino Fluxes. Physics of Atomic Nuclei, 2019, 82, 491-497. Low scale seesaw models for low scale < mm!math	0.1	1
625	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi>U</mml:mi><mml:mo <br="" mathvariant="bold">stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:msub><mml:mrow><mml:mo) 0="" etqq0="" ov<="" rgbt="" td="" tj=""><td>erlock 10</td><td>Tf¹¹50 252 Td</td></mml:mo)></mml:mrow></mml:msub></mml:mrow>	erlock 10	Tf ¹¹ 50 252 Td
626	Multi-messenger astronomy with the \hat{i}^3 -ray satellite AGILE: gravitational wave events and ultra-high energy astrophysical neutrinos. Nuclear and Particle Physics Proceedings, 2019, 306-308, 53-60.	0.2	1
627	Strong constraints on non-standard neutrino interactions: LHC vs. IceCube. Journal of High Energy Physics, 2019, 2019, 1.	1.6	11
628	Cherenkov radiation of light bullets. Physical Review A, 2019, 100, .	1.0	4
629	Neutrino Echoes from Multimessenger Transient Sources. Physical Review Letters, 2019, 123, 241102.	2.9	34
630	Decaying dark matter at IceCube and its signature on High Energy gamma experiments. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 046-046.	1.9	23

,,		15	C
#	ARTICLE	IF	CITATIONS
631	Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190084.	1.6	1
632	Constraints on the emission region of 3C 279 during strong flares in 2014 and 2015 through VHE <i>γ</i> -ray observations with H.E.S.S Astronomy and Astrophysics, 2019, 627, A159.	2.1	32
633	Neutrino astronomy and oscillation research in the Mediterranean: ANTARES and KM3NeT. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 952, 161653.	0.7	3
634	The Giant Radio Array for Neutrino Detection (GRAND): Science and design. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	130
635	The Astrophysical Multimessenger Observatory Network (AMON): Performance and science program. Astroparticle Physics, 2020, 114, 68-76.	1.9	30
636	Model-independent search for neutrino sources with the ANTARES neutrino telescope. Astroparticle Physics, 2020, 114, 35-47.	1.9	2
637	Observing EeV neutrinos through Earth: GZK and the anomalous ANITA events. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 012-012.	1.9	25
638	Spin-polarization effects in Cherenkov radiation from electrons. Canadian Journal of Physics, 2020, 98, 660-663.	0.4	3
639	Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data. Astroparticle Physics, 2020, 116, 102392.	1.9	3
640	Atmospheric Cherenkov Telescopes as a potential veto array for neutrino astronomy. Astroparticle Physics, 2020, 117, 102417.	1.9	2
641	Particle acceleration in astrophysical jets. New Astronomy Reviews, 2020, 89, 101543.	5.2	51
642	Constraining photohadronic scenarios for the unified origin of IceCube neutrinos and ultrahigh-energy cosmic rays. Physical Review D, 2020, 102, .	1.6	11
643	Supergravity Model of Inflation and Explaining IceCube HESE Data via PeV Dark Matter Decay. Advances in High Energy Physics, 2020, 2020, 1-14.	0.5	3
644	Signatures of dark matter in cosmic-ray observations. Journal of Physics: Conference Series, 2020, 1468, 012095.	0.3	3
645	Visible decay of astrophysical neutrinos at IceCube. Physical Review D, 2020, 102, .	1.6	28
646	Data-driven Detection of Multimessenger Transients. Astrophysical Journal Letters, 2020, 894, L25.	3.0	5
647	In-situ calibration of the single-photoelectron charge response of the IceCube photomultiplier tubes. Journal of Instrumentation, 2020, 15, P06032-P06032.	0.5	14
648	High-energy neutrino emission subsequent to gravitational wave radiation from supermassive black hole mergers. Physical Review D, 2020, 102, .	1.6	10

ARTICLE

649 Cosmic-Ray Database Update: Ultra-High Energy, Ultra-Heavy, and Antinuclei Cosmic-Ray Data (CRDB) Tj ETQq0 0 0 rgBT /Overlock 10 T

650	Probing the Glashow resonance at electron–positron colliders. Modern Physics Letters A, 2020, 35, 2050101.	0.5	0
651	Blazar-IceCube neutrino association revisited. Physical Review D, 2020, 101, .	1.6	10
652	Can astrophysical neutrinos trace the origin of the detected ultra-high energy cosmic rays?. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4255-4265.	1.6	10
653	Cosmogenic neutrino fluxes under the effect of active-sterile secret interactions. Physical Review D, 2020, 101, .	1.6	7
654	Bayesian constraints on the astrophysical neutrino source population from IceCube data. Physical Review D, 2020, 101, .	1.6	15
655	Loop dominated signals from neutrino portal dark matter. Physical Review D, 2020, 101, .	1.6	11
656	Status, Challenges and Directions in Indirect Dark Matter Searches. Symmetry, 2020, 12, 1648.	1.1	37
657	Multimessenger observations of counterparts to IceCube-190331A. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2553-2561.	1.6	2
658	Electron–positron pair plasma in TXS 0506+056 and the â€~neutrino flare' in 2014–2015. Monthly Notice of the Royal Astronomical Society, 2020, 497, 5318-5325.	2S 1.6	6
659	The Astrophysical Multi-messenger Observatory Network. Nature Reviews Physics, 2020, 2, 446-448.	11.9	2
660	The Pacific Ocean Neutrino Experiment. Nature Astronomy, 2020, 4, 913-915.	4.2	85
661	A self-monitoring precision calibration light source for large-volume neutrino telescopes. Journal of Instrumentation, 2020, 15, P07031-P07031.	0.5	8
662	New constraints on the origin of medium-energy neutrinos observed by IceCube. Physical Review D, 2020, 101, .	1.6	28
663	Using high-energy neutrinos as cosmic magnetometers. Physical Review D, 2020, 102, .	1.6	15
664	Elastic and inelastic scattering of cosmic rays on sub-GeV dark matter. Physical Review D, 2020, 102,	1.6	28
665	Uncovering the Role of p38 Family Members in Adipose Tissue Physiology. Frontiers in Endocrinology, 2020, 11, 572089.	1.5	25
666	Neutrino decoherence from quantum gravitational stochastic perturbations. Physical Review D, 2020, 102	1.6	19

#	Article	IF	CITATIONS
667	Grand unified neutrino spectrum at Earth: Sources and spectral components. Reviews of Modern Physics, 2020, 92, .	16.4	69
668	LHAASO telescope sensitivity to diffuse gamma-ray signals from the Galaxy. Physical Review D, 2020, 102, .	1.6	13
669	Characteristics of the Diffuse Astrophysical Electron and Tau Neutrino Flux with Six Years of IceCube High Energy Cascade Data. Physical Review Letters, 2020, 125, 121104.	2.9	137
670	Pushing the Energy and Cosmic Frontiers with High-Energy Astrophysical Neutrinos ¹ . Journal of Physics: Conference Series, 2020, 1586, 012041.	0.3	0
671	Dissecting the regions around IceCube high-energy neutrinos: growing evidence for the blazar connection. Monthly Notices of the Royal Astronomical Society, 2020, 497, 865-878.	1.6	63
672	Glueball scattering cross section in lattice <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mi>S <mml:mi>U</mml:mi><mml:mo stretchy="false"> (</mml:mo </mml:math 	1.6	25
673	Hadronic interaction model sibyll 2.3d and extensive air showers. Physical Review D, 2020, 102, .	1.6	102
674	Observable features in ultrahigh energy neutrinos due to active-sterile secret interactions. Physical Review D, 2020, 102, .	1.6	6
675	Contribution of starburst nuclei to the diffuse gamma-ray and neutrino flux. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5880-5891.	1.6	37
676	A Search for IceCube Events in the Direction of ANITA Neutrino Candidates. Astrophysical Journal, 2020, 892, 53.	1.6	20
677	Observational Evidence for the Origin of High-energy Neutrinos in Parsec-scale Nuclei of Radio-bright Active Galaxies. Astrophysical Journal, 2020, 894, 101.	1.6	85
678	Patterns in the Multiwavelength Behavior of Candidate Neutrino Blazars. Astrophysical Journal, 2020, 893, 162.	1.6	40
679	CORSIKA Based Simulations of Background in Baikal Experiment. EPJ Web of Conferences, 2020, 226, 03015.	0.1	0
680	2SXPS: An Improved and Expanded Swift X-Ray Telescope Point-source Catalog. Astrophysical Journal, Supplement Series, 2020, 247, 54.	3.0	116
681	Bounds on secret neutrino interactions from high-energy astrophysical neutrinos. Physical Review D, 2020, 101, .	1.6	36
682	On the relative importance of hadronic emission processes along the jet axis of active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2885-2901.	1.6	15
683	Hunting the Glashow resonance with PeV neutrino telescopes. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 005-005.	1.9	12
684	A roadmap to hadronic supercriticalities: a comprehensive study of the parameter space for high-energy astrophysical sources. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2458-2474.	1.6	8

#	Article	IF	CITATIONS
685	Quasielastic Lepton Scattering off Two-Component Dark Matter in Hypercolor Model. Symmetry, 2020, 12, 708.	1.1	3
686	HAWC J2227+610 and Its Association with G106.3+2.7, a New Potential Galactic PeVatron. Astrophysical Journal Letters, 2020, 896, L29.	3.0	48
687	A comparative study of the \$\$S_1\$\$ and \$\$U_1\$\$ leptoquark effects in the light quark regime. European Physical Journal C, 2020, 80, 1.	1.4	14
688	Observation of Radar Echoes from High-Energy Particle Cascades. Physical Review Letters, 2020, 124, 091101.	2.9	19
689	Neutrino Production Associated with Late Bumps in Gamma-Ray Bursts and Potential Contribution to Diffuse Flux at IceCube. Astrophysical Journal, 2020, 890, 83.	1.6	3
690	Search for PeV Gamma-Ray Emission from the Southern Hemisphere with 5 Yr of Data from the IceCube Observatory. Astrophysical Journal, 2020, 891, 9.	1.6	12
691	Hidden Cores of Active Galactic Nuclei as the Origin of Medium-Energy Neutrinos: Critical Tests with the MeV Gamma-Ray Connection. Physical Review Letters, 2020, 125, 011101.	2.9	68
692	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>W</mml:mi></mml:mrow></mml:math> -boson and trident production in TeV–PeV neutrino observatories. Physical Review D, 2020, 101, .	1.6	23
693	Identifying Galactic sources of high-energy neutrinos. Astrophysics and Space Science, 2020, 365, 1.	0.5	7
694	Time-Integrated Neutrino Source Searches with 10ÂYears of IceCube Data. Physical Review Letters, 2020, 124, 051103.	2.9	221
695	Sterile neutrinos in astrophysical neutrino flavor. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 015-015.	1.9	19
696	Study of PeV neutrinos around dwarf galaxies near giant lobes of Centaurus A. Journal of Physics: Conference Series, 2020, 1342, 012104.	0.3	0
697	Flavor structures of charged fermions and massive neutrinos. Physics Reports, 2020, 854, 1-147.	10.3	148
698	Neutrino Telescopes and High-Energy Cosmic Neutrinos. Universe, 2020, 6, 30.	0.9	14
699	Multiple Galactic Sources with Emission Above 56ÂTeV Detected by HAWC. Physical Review Letters, 2020, 124, 021102.	2.9	143
700	Zee-Burst: A New Probe of Neutrino Nonstandard Interactions at IceCube. Physical Review Letters, 2020, 124, 041805.	2.9	15
701	The impact of COMT, BDNF and 5-HTT brain-genes on the development of anorexia nervosa: a systematic review. Eating and Weight Disorders, 2021, 26, 1323-1344.	1.2	8
702	Search for low-energy neutrinos from astrophysical sources with Borexino. Astroparticle Physics, 2021, 125, 102509.	1.9	26

#	Article	IF	CITATIONS
703	Hadronic X-Ray Flares from Blazars. Astrophysical Journal, 2021, 906, 131.	1.6	10
704	Simulation study on cosmic ray background at large zenith angle based on GRANDProto35 coincidence array experiment. Nuclear Science and Techniques/Hewuli, 2021, 32, 1.	1.3	1
705	Study of a Large Array to Detect Ultra-high Energy Tau Neutrino. Acta Physica Polonica B, 2021, 52, 377.	0.3	0
706	Radio-to-Gamma-Ray Synchrotron and Neutrino Emission from Proton–Proton Interactions in Active Galactic Nuclei. JETP Letters, 2021, 113, 69-74.	0.4	10
707	A Two-zone Blazar Radiation Model for "Orphan―Neutrino Flares. Astrophysical Journal, 2021, 906, 51.	1.6	26
708	Medium-band Observation of the Neutrino Emitting Blazar, TXS 0506+056. Astrophysical Journal, 2021, 908, 113.	1.6	6
709	High-Energy Neutrino Astronomy—Baikal-GVD Neutrino Telescope in Lake Baikal. Symmetry, 2021, 13, 377.	1.1	6
710	Modeling of the tau and muon neutrino-induced optical Cherenkov signals from upward-moving extensive air showers. Physical Review D, 2021, 103, .	1.6	17
711	Where do IceCube neutrinos come from? Hints from the diffuse gamma-ray flux. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 037-037.	1.9	18
712	High-Energy Neutrino Follow-up at the Baikal-GVD Neutrino Telescope. Astronomy Letters, 2021, 47, 94-104.	0.1	4
713	Sensitivity of top-of-the-mountain fluorescence telescope system for astrophysical neutrino flux above 10 PeV. Astroparticle Physics, 2021, 128, 102549.	1.9	2
714	Starburst galaxies strike back: a multi-messenger analysis with Fermi-LAT and IceCube data. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4032-4049.	1.6	32
715	Search for Low-energy Electron Antineutrinos in KamLAND Associated with Gravitational Wave Events. Astrophysical Journal, 2021, 909, 116.	1.6	12
717	Detection of a particle shower at the Glashow resonance with IceCube. Nature, 2021, 591, 220-224.	13.7	86
718	Progress in neutrino astronomy. Journal of the Korean Physical Society, 2021, 78, 864-872.	0.3	2
719	Follow-up of Astrophysical Transients in Real Time with the IceCube Neutrino Observatory. Astrophysical Journal, 2021, 910, 4.	1.6	18
720	Challenge to anomalous phenomena in solar neutrino. Journal of High Energy Physics, 2021, 2021, 1.	1.6	0
721	Six Decades of Seismology at South Pole, Antarctica: Current Limitations and Future Opportunities to Facilitate New Geophysical Observations. Seismological Research Letters, 2021, 92, 2718-2735.	0.8	6

ARTICLE IF CITATIONS # Design and sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G). Journal of 722 0.5 52 Instrumentation, 2021, 16, P03025. Implications of SU(2)L gauge invariance for constraints on Lorentz violation. Journal of High Energy 724 1.6 Physics, 2021, 2021, 1. The future of high-energy astrophysical neutrino flavor measurements. Journal of Cosmology and 725 1.9 39 Astroparticle Physics, 2021, 2021, 054. PeV–EeV Neutrinos from Gamma-Ray Blazars due to Ultrahigh-energy Cosmic-Ray Propagation. Astrophysical Journal, 2021, 910, 100. IceCube-Gen2: the window to the extreme Universe. Journal of Physics G: Nuclear and Particle Physics, 727 1.4 204 2021, 48, 060501. A search for ultrahigh-energy neutrinos associated with astrophysical sources using the third flight of ANITA. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 017. 728 Carpet-3 Experiment: Searching for Extrahigh-Energy Gamma Rays from Astrophysical Objects. Bulletin 729 0.1 0 of the Russian Academy of Sciences: Physics, 2021, 85, 412-414. A Search for Time-dependent Astrophysical Neutrino Emission with IceCube Data from 2012 to 2017. 9 1.6 Astrophysical Journal, 2021, 911, 67. Cosmic Neutrinos from Temporarily Gamma-suppressed Blazars. Astrophysical Journal Letters, 2021, 731 3.0 24 911, L18. Oscillations of sterile neutrinos from dark matter decay eliminates the IceCube-Fermi tension. 1.6 Physical Review D, 2021, 103, . Heavy decaying dark matter at future neutrino radio telescopes. Journal of Cosmology and 733 1.9 14 Astroparticle Physics, 2021, 2021, 074. Neutrino beam-dump experiment with FASER at the LHC. Journal of High Energy Physics, 2021, 2021, 1. 734 1.6 39 Multiwavelength and Neutrino Emission from Blazar PKS 1502 + 106. Astrophysical Journal, 2021, 912, 735 1.6 37 54. Active Galactic Nuclei Jets as the Origin of Ultrahigh-Energy Cosmic Rays and Perspectives for the Detection of Astrophysical Source Neutrinos at EeV Energies. Physical Review Letters, 2021, 126, 191101. Gamma Rays as Probes of Cosmic-Ray Propagation and Interactions in Galaxies. Universe, 2021, 7, 141. 737 0.9 29 Search for high-energy neutrino emission from radio-bright AGN. Physical Review D, 2021, 103, . 30 Giant Cosmic-Ray Halos around M31 and the Milky Way. Astrophysical Journal, 2021, 914, 135. 739 1.6 16 Estimating the impact of the QCD dynamics on the determination of the high energy astrophysical 740 1.4 neutrino flux. European Physical Journal C, 2021, 81, 1.

		CITATION REPORT	
#	Article	IF	CITATIONS
741	Multi-messenger astronomy with INTEGRAL. New Astronomy Reviews, 2021, 92, 101595.	5.2	6
742	Contribution of Secondary Neutrinos from Line-of-sight Cosmic-Ray Interactions to the IceCube Diffuse Astrophysical Flux. Astrophysical Journal, 2021, 914, 91.	1.6	4
743	Association of IceCube neutrinos with radio sources observed at Owens Valley and Metsäovi Radic Observatories. Astronomy and Astrophysics, 2021, 650, A83.	2.1	44
744	First implications of Tibet <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>AS</mml:mi></mml:mrow><mml data for heavy dark matter. Physical Review D, 2021, 104, .</mml </mml:msub></mml:mrow></mml:math>	:mrow> <mml:miøl<sup>3</mml:miøl<sup>	
745	Astrophysical Neutrinos in Testing Lorentz Symmetry. Galaxies, 2021, 9, 47.	1.1	5
746	IceCube high-energy starting event sample: Description and flux characterization with 7.5Âyears of data. Physical Review D, 2021, 104, .	1.6	142
747	Flavors of astrophysical neutrinos with active-sterile mixing. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 029.	1.9	5
748	Measurement of the high-energy all-flavor neutrino-nucleon cross section with IceCube. Physical Review D, 2021, 104, .	1.6	15
749	High-Energy Neutrino Astronomy and the Baikal-GVD Neutrino Telescope. Physics of Atomic Nuclei, 2021, 84, 513-518.	0.1	9
750	Synergies of THESEUS with the large facilities of the 2030s and guest observer opportunities. Experimental Astronomy, 2021, 52, 407-437.	1.6	8
751	Unified thermal model for photohadronic neutrino production in astrophysical sources. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 028.	1.9	14
752	Violation of equivalence principle in neutrino sector: probing the extended parameter space. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 018.	1.9	1
753	A convolutional neural network based cascade reconstruction for the IceCube Neutrino Observatory. Journal of Instrumentation, 2021, 16, P07041.	0.5	29
754	Newly Born Extragalactic Millisecond Pulsars as Efficient Emitters of PeV Neutrinos. Brazilian Journal of Physics, 2021, 51, 1406-1415.	0.7	2
755	Pion decay model of the Tibet- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:mrow> <mml:mi>AS </mml:mi> <mml:mi>γ </mml:mi> </mml:mrow> gamma-ray signal. Physical Review D, 2021, 104, .</mml:math>	ith> PeV 1.6	15
756	Trinity's Sensitivity to Isotropic and Point-Source Neutrinos. , 2021, , .		6
757	The Payload for Ultrahigh Energy Observations (PUEO): a white paper. Journal of Instrumentation, 2021, 16, P08035.	0.5	35
758	Observation of Photons above 300 TeV Associated with a High-energy Neutrino from the Cygnus Region. Astrophysical Journal Letters, 2021, 916, L22.	3.0	25

#	Article	IF	CITATIONS
759	Astrophysical neutrino source searches with IceCube starting track events. Journal of Instrumentation, 2021, 16, C09024.	0.5	0
760	30 Years of Multifrequency Quasar Variability: A Personal Journey. Galaxies, 2021, 9, 69.	1.1	0
761	New limit on high Galactic latitude PeV <i>γ</i> -ray flux from Tibet AS <i>γ</i> data. Astronomy and Astrophysics, 2021, 653, L4.	2.1	8
762	Dark matter annihilation to neutrinos. Reviews of Modern Physics, 2021, 93, .	16.4	52
763	Multimessenger Implications of Sub-PeV Diffuse Galactic Gamma-Ray Emission. Astrophysical Journal, 2021, 919, 93.	1.6	28
764	Estimating the neutrino flux from choked gamma-ray bursts. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 044.	1.9	19
765	Highâ€Energy Neutrinos from the Cosmos. Annalen Der Physik, 2021, 533, 2100309.	0.9	2
766	Sensitivity estimates for diffuse, point-like, and extended neutrino sources with KM3NeT/ARCA. Journal of Instrumentation, 2021, 16, C09030.	0.5	4
767	Soft gamma rays from low accreting supermassive black holes and connection to energetic neutrinos. Nature Communications, 2021, 12, 5615.	5.8	12
768	A Brewster route to Cherenkov detectors. Nature Communications, 2021, 12, 5554.	5.8	24
769	Time-dependent lepto-hadronic modelling of the emission from blazar jets with <i>SOPRANO</i> : the case of TXS 0506Â+Â056, 3HSP J095507.9Â+Â355101, and 3C 279. Monthly Notices of the Royal Astronomical Society, 2021, 509, 2102-2121.	1.6	24
770	New Insights into Classical Novae. Annual Review of Astronomy and Astrophysics, 2021, 59, 391-444.	8.1	65
771	Constraining the contribution of Gamma-Ray Bursts to the high-energy diffuse neutrino flux with 10 years of ANTARES data. Journal of Instrumentation, 2021, 16, C09007.	0.5	0
772	Search for high-energy neutrino emission from hard X-ray AGN with IceCube. Journal of Instrumentation, 2021, 16, C09013.	0.5	1
773	Neutrino signals of lightcone fluctuations resulting from fluctuating spacetime. Physical Review D, 2021, 104, .	1.6	6
775	Resonant neutrino self-interactions. Physical Review D, 2021, 103, .	1.6	19
776	Multimessenger Gamma-Ray and Neutrino Coincidence Alerts Using HAWC and IceCube Subthreshold Data. Astrophysical Journal, 2021, 906, 63.	1.6	9
777	Analytical Solution of Magnetically Dominated Astrophysical Jets and Winds: Jet Launching, Acceleration, and Collimation. Astrophysical Journal, 2021, 906, 105.	1.6	32

#	Article	IF	CITATIONS
778	Selected Topics in Cosmic Ray Physics. , 2018, , 1-95.		11
779	Selected Topics in Gamma-Ray Astronomy: Very High Energy Gamma-Rays as Tracers of Galactic Cosmic-Rays. , 2018, , 97-143.		1
780	Neutrino Astronomy. , 2018, , 195-355.		1
781	Leptonic scalars at the LHC. Journal of High Energy Physics, 2020, 2020, 1.	1.6	18
782	A model for neutrino anomalies and IceCube data. Journal of High Energy Physics, 2019, 2019, 1.	1.6	4
783	ANTARES constrains a blazar origin of two IceCube PeV neutrino events. Astronomy and Astrophysics, 2015, 576, L8.	2.1	15
784	Multiwavelength follow-up of a rare IceCube neutrino multiplet. Astronomy and Astrophysics, 2017, 607, A115.	2.1	33
785	Mapping large-scale diffuse γ-ray emission in the 10â^'100 TeV band with Cherenkov telescopes. Astronomy and Astrophysics, 2020, 637, A44.	2.1	3
786	AMON: Transition to real-time operations. EPJ Web of Conferences, 2016, 116, 10001.	0.1	7
788	Probing dark matter signals in neutrino telescopes through angular power spectrum. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 007-007.	1.9	15
789	Density matrix calculation of the dark matter abundance in the Higgs induced right-handed neutrino mixing model. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 029-029.	1.9	8
790	Probing cosmic-ray accelerated light dark matter with IceCube. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 049-049.	1.9	23
791	Constraining the contribution of Gamma-Ray Bursts to the high-energy diffuse neutrino flux with 10Âyr of ANTARES data. Monthly Notices of the Royal Astronomical Society, 2020, 500, 5614-5628.	1.6	19
792	eV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory. Physical Review Letters, 2020, 125, 141801.	2.9	57
793	Search for Ultra-High-Energy Neutrinos with the Telescope Array Surface Detector. Journal of Experimental and Theoretical Physics, 2020, 131, 255-264.	0.2	5
794	Baikal-GVD Experiment. Physics of Atomic Nuclei, 2020, 83, 916-921.	0.1	5
795	Prompt atmospheric neutrinos in the quark–gluon string model. European Physical Journal C, 2020, 80, 1.	1.4	5
796	Growth of Accreting Supermassive Black Hole Seeds and Neutrino Radiation. Journal of Astrophysics, 2015, 2015, 1-30.	0.4	5

#	Article	IF	CITATIONS
797	Behaviour of the high-energy neutrino flux in the Earth's atmosphere. SolneÄno-zemnaâ Fizika, 2015, 1, 3-10.	0.2	3
798	Continuously-tunable Cherenkov-radiation-based detectors via plasmon index control. Nanophotonics, 2020, 9, 1479-1489.	2.9	8
799	Dark Matter Annihilation and Decay Searches with the High Altitude Water Cherenkov (HAWC) Observatory. , 2016, , .		6
800	Towards Interferometric Triggering on Air Showers Induced by Tau Neutrino Interactions. , 2019, , .		1
801	NEUTRINO, Î ³ -RAY, AND COSMIC-RAY FLUXES FROM THE CORE OF THE CLOSEST RADIO GALAXIES. Astrophysical Journal, 2016, 830, 81.	1.6	24
802	HIGH ENERGY NEUTRINOS PRODUCED IN THE ACCRETION DISKS BY NEUTRONS FROM NUCLEI DISINTEGRATED IN THE AGN JETS. Astrophysical Journal, 2016, 833, 279.	1.6	2
803	Use of ANTARES and IceCube Data to Constrain a Single Power-law Neutrino Flux. Astrophysical Journal, 2017, 851, 36.	1.6	15
804	A DECam Search for Explosive Optical Transients Associated with IceCube Neutrino Alerts. Astrophysical Journal, 2019, 883, 125.	1.6	8
805	Complementarity of Stacking and Multiplet Constraints on the Blazar Contribution to the Cumulative High-energy Neutrino Intensity. Astrophysical Journal, 2020, 890, 25.	1.6	27
806	A Search for Neutrino Point-source Populations in 7 yr of IceCube Data with Neutrino-count Statistics. Astrophysical Journal, 2020, 893, 102.	1.6	11
807	A Cross-correlation Study of High-energy Neutrinos and Tracers of Large-scale Structure. Astrophysical Journal, 2020, 894, 112.	1.6	14
808	IceCube Search for High-energy Neutrino Emission from TeV Pulsar Wind Nebulae. Astrophysical Journal, 2020, 898, 117.	1.6	21
809	Comprehensive Multimessenger Modeling of the Extreme Blazar 3HSP J095507.9+355101 and Predictions for IceCube. Astrophysical Journal, 2020, 899, 113.	1.6	27
810	On the Detection Potential of Blazar Flares for Current Neutrino Telescopes. Astrophysical Journal, 2020, 902, 133.	1.6	5
811	High-energy Neutrinos and Gamma Rays from Nonrelativistic Shock-powered Transients. Astrophysical Journal, 2020, 904, 4.	1.6	29
812	Recurrent Neutrino Emission from Supermassive Black Hole Mergers. Astrophysical Journal Letters, 2020, 905, L13.	3.0	11
813	Neutrinos from colliding wind binaries: future prospects for PINGU and ORCA. ASTRA Proceedings, 0, 1, 7-11.	0.0	3
814	Report from the Multi-Messenger Working Group at UHECR-2014 Conference. , 2016, , .		2

#	Article	IF	CITATIONS
815	Cosmic rays, neutrinos, and GeV-TeV gamma rays from starburst galaxy NGC 4945. Physical Review D, 2021, 104, .	1.6	2
816	Astronomy with energy dependent flavour ratios of extragalactic neutrinos. Journal of High Energy Physics, 2021, 2021, 1.	1.6	5
817	Search for Multi-flare Neutrino Emissions in 10 yr of IceCube Data from a Catalog of Sources. Astrophysical Journal Letters, 2021, 920, L45.	3.0	12
818	Multi-messenger astrophysics with THESEUS in the 2030s. Experimental Astronomy, 2021, 52, 245-275.	1.6	12
819	High-Energy Alerts in the Multi-Messenger Era. Universe, 2021, 7, 393.	0.9	5
820	The IceCube-Gen2 Neutrino Observatory. Journal of Instrumentation, 2021, 16, C10007.	0.5	10
822	High-Energy Neutrino Astrophysics. Astronomy and Astrophysics Library, 2015, , 321-357.	0.2	0
824	Prospects for Measuring the Isotropic Diffuse Gamma-Ray Emission in HAWC above 1 TeV. , 2016, , .		0
825	Search for high-energy neutrinos from dust obscured Blazars. , 2016, , .		0
826	A Hadronic Scenario for the Galactic Ridge. , 2016, , .		0
827	The first construction phase of the Baikal-GVD neutrino telescope. , 2016, , .		1
828	Neutrinos and the origin of the cosmic rays. , 2016, , .		0
830	Diffuse Neutrino Fluxes and GZK Neutrinos with IceCube. , 2017, , .		0
831	Roadmap for searching cosmic rays correlated with the extraterrestrial neutrinos seen at IceCube. Physical Review D, 2017, 95, .	1.6	3
832	Future Prospects of UHE Neutrino Detection with Electromagnetic Fields. , 2017, , .		0
833	Search for muon neutrinos from GRBs with the ANTARES neutrino telescope. , 2017, , .		1
834	High-Energy Neutrino Astrophysics. Astronomy and Astrophysics Library, 2018, , 355-399.	0.2	0
835	GRAND: A Giant Radio Array for Neutrino Detection. , 2019, , .		0

#	Article	IF	CITATIONS
836	Tau neutrinos in IceCube, KM3NeT and the Pierre Auger Observatory. , 2019, , .		1
837	Relationship Among a Supernova, a Transition of Polarity of the Geomagnetic Field and the Pliocene-Pleistocene Boundary. Springer Earth System Sciences, 2020, , 1-39.	0.1	2
838	Multi-messenger emission from the parsec-scale jet of the flat-spectrum radio quasar PKS 1502+106 coincident with high-energy neutrino IceCube-190730A. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 082.	1.9	16
839	The IceCube Pie Chart: Relative Source Contributions to the Cosmic Neutrino Flux. Astrophysical Journal, 2021, 921, 45.	1.6	15
840	PeV Photon and Neutrino Flares from Galactic Gamma-Ray Binaries. Astrophysical Journal Letters, 2021, 921, L10.	3.0	15
841	Using circular polarization to test the composition and dynamics of astrophysical particle accelerators. Physical Review D, 2020, 102, .	1.6	2
842	Ultrahigh-energy tau neutrino cross sections with GRAND and POEMMA. Physical Review D, 2020, 102, .	1.6	20
843	Status and Future of Neutrino Astronomy and the Global Neutrino Network. Journal of Physics: Conference Series, 2020, 1690, 012178.	0.3	0
845	Signatures of Supersymmetry in Neutrino Telescopes. , 2020, , 317-352.		1
846	The use of Convolutional Neural Networks for signal-background classification in Particle Physics experiments. EPJ Web of Conferences, 2020, 245, 06003.	0.1	4
847	Neutrino Telescopes. , 2020, , 11-32.		2
848	Neutrino Detectors Under Water and Ice. , 2020, , 785-822.		1
849	Neutrinos from the Galactic Center Hosting a Hypernova Remnant. Astrophysical Journal, 2020, 891, 179.	1.6	2
850	Weak signal extraction using matrix decomposition, with application to ultra high energy neutrino detection. Journal of Physics: Conference Series, 2020, 1525, 012119.	0.3	0
851	Exploring the Universe from Antarctica - An Informal STEM Polar Research Exhibit. Journal of STEM Outreach, 2020, 3, .	0.3	2
852	The TeV Gamma-Ray Luminosity of the Milky Way and the Contribution of H.E.S.S. Unresolved Sources to Very High Energy Diffuse Emission. Astrophysical Journal, 2020, 904, 85.	1.6	13
853	High-energy neutrinos from X-rays flares of blazars frequently observed by the <i>Swift</i> X-ray Telescope. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4063-4079.	1.6	7
854	Constraints on heavy decaying dark matter with current gamma-ray measurements. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 035.	1.9	16

#	ARTICLE High-energy Neutrinos from Magnetized Coronae of Active Galactic Nuclei and Prospects for	IF	CITATIONS
855	Identification of Seyfert Galaxies and Quasars in Neutrino Telescopes. Astrophysical Journal, 2021, 922, 45.	1.6	29
856	Particle Reacceleration by Turbulence and Radio Constraints on Multimessenger High-energy Emission from the Coma Cluster. Astrophysical Journal, 2021, 922, 190.	1.6	6
857	Gamma Rays from Fast Black-hole Winds. Astrophysical Journal, 2021, 921, 144.	1.6	14
858	A new and improved IceCube point source analysis. Journal of Instrumentation, 2021, 16, C11002.	0.5	1
859	Particle acceleration and multimessenger emission from starburst-driven galactic winds. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1336-1348.	1.6	19
861	Cosmogenic gamma-ray and neutrino fluxes from blazars associated with IceCube events. Astronomy and Astrophysics, 2022, 658, L6.	2.1	5
862	Science with Neutrino Telescopes in Spain. Universe, 2022, 8, 89.	0.9	0
863	Statistical bounds on how induced seismicity stops. Scientific Reports, 2022, 12, 1184.	1.6	17
864	First all-flavor search for transient neutrino emission using 3-years of IceCube DeepCore data. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 027.	1.9	6
865	Searches for Violation of CPT Symmetry and Lorentz Invariance with Astrophysical Neutrinos. Universe, 2022, 8, 42.	0.9	2
866	Accelerating IceCube's Photon Propagation Code with CUDA. Computing and Software for Big Science, 2022, 6, 1.	1.3	3
867	Search for High-energy Neutrinos from Ultraluminous Infrared Galaxies with IceCube. Astrophysical Journal, 2022, 926, 59.	1.6	7
868	Neutrino interaction physics in neutrino telescopes. European Physical Journal: Special Topics, 2021, 230, 4293-4308.	1.2	2
869	Recent highlights from GENIE v3. European Physical Journal: Special Topics, 2021, 230, 4449-4467.	1.2	34
870	Probing new physics at future tau neutrino telescopes. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 038.	1.9	15
871	Reconstructing the neutrino energy for in-ice radio detectors. European Physical Journal C, 2022, 82, 1.	1.4	13
872	Study of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Z</mml:mi></mml:math> Bosons Produced in Association with Charm in the Forward Region. Physical Review Letters, 2022, 128, 082001.	2.9	11
873	Compact Scintillator Array Detector (ComSAD) for Sounding Rocket and CubeSat Missions. Journal of Astronomical Instrumentation, 0, , .	0.8	0

#	Article	IF	CITATIONS
874	Searching new particles at neutrino telescopes with quantum-gravitational decoherence. Physical Review D, 2022, 105, .	1.6	4
875	Chapter 5 Dark Matter and New Physics Beyond the Standard Model with LHAASO. Chinese Physics C, 2022, 46, 030005.	1.5	2
876	KM3NeT: status and perspectives for neutrino astronomy from the MeV to the PeV. Journal of Physics: Conference Series, 2021, 2156, 012105.	0.3	0
877	The SVOM mission. International Journal of Modern Physics D, 2022, 31, .	0.9	19
878	The spectra of IceCube neutrino (SIN) candidate sources – II. Source characterization. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2671-2688.	1.6	13
879	Astrophysical Neutrinos and Blazars. Universe, 2021, 7, 492.	0.9	18
880	The observation of high-energy neutrinos from the cosmos: Lessons learned for multimessenger astronomy. International Journal of Modern Physics D, 2022, 31, .	0.9	0
881	Galactic cosmic ray propagation: sub-PeV diffuse gamma-ray and neutrino emission. Frontiers of Physics, 2022, 17, 1.	2.4	5
883	Propagation of Cosmic Rays in Plasmoids of AGN Jets-Implications for Multimessenger Predictions. Physics, 2022, 4, 473-490.	0.5	7
884	Tau Appearance from High-Energy Neutrino Interactions. Physical Review Letters, 2022, 128, 171101.	2.9	6
885	Testing Lorentz Violation with IceCube Neutrinos. Universe, 2022, 8, 260.	0.9	3
886	Using secondary tau neutrinos to probe heavy dark matter decays in Earth. Physical Review D, 2022, 105, .	1.6	1
887	Observing the inner parsec-scale region of candidate neutrino-emitting blazars. Astronomy and Astrophysics, 2022, 663, A129.	2.1	2
888	Probing new physics scale from TXS 0506+056 blazar neutrinos. European Physical Journal Plus, 2022, 137, .	1.2	0
890	Dimuons in neutrino telescopes: New predictions and first search in IceCube. Physical Review D, 2022, 105, .	1.6	6
891	Neutrino oscillations: status and prospects for determination of neutrino mass ordering and leptonic CP-violation phase. Physics-Uspekhi, 0, , .	0.8	4
892	Deep-Underwater Cherenkov Detector in Lake Baikal. Journal of Experimental and Theoretical Physics, 2022, 134, 399-416.	0.2	12
893	Ultra-High Energy Gamma Ray Astronomy with the Carpet Air Shower Array at the Baksan Neutrino Observatory. Journal of Experimental and Theoretical Physics, 2022, 134, 440-448.	0.2	0

#	Article	IF	CITATIONS
894	Progress in the Simulation and Modelling of Coherent Radio Pulses from Ultra High-Energy Cosmic Particles. Universe, 2022, 8, 297.	0.9	1
895	Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino. Physical Review Letters, 2022, 128, .	2.9	41
896	Ultrahigh-energy gamma rays and gravitational waves from primordial exotic stellar bubbles. European Physical Journal C, 2022, 82, .	1.4	5
897	Energy-dependent neutrino mixing parameters at oscillation experiments. Physical Review D, 2022, 105, .	1.6	5
898	Impact of biaxial birefringence in polar ice at radio frequencies on signal polarizations in ultrahigh energy neutrino detection. Physical Review D, 2022, 105, .	1.6	4
899	Complex analysis of Askaryan radiation: A fully analytic model in the time domain. Physical Review D, 2022, 105, .	1.6	Ο
900	GB6 J2113+1121: A Multiwavelength Flaring γ-Ray Blazar Temporally and Spatially Coincident with the Neutrino Event IceCube-191001A. Astrophysical Journal Letters, 2022, 932, L25.	3.0	4
901	Ultra-high energy cosmic neutrinos from gamma-ray bursts. Fundamental Research, 2024, 4, 51-56.	1.6	4
902	Probing neutrino mass models through resonances at neutrino telescopes. International Journal of Modern Physics A, 2022, 37, .	0.5	4
903	Cosmic Neutrinos as a Window to Departures from Special Relativity. Symmetry, 2022, 14, 1326.	1.1	1
904	Strong Constraints on Neutrino Nonstandard Interactions from TeV-Scale <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>ν2</mml:mi><mml:mi>μ</mml:mi></mml:msub> Disappearance at IceCube. Physical Review Letters, 2022, 129, .</mml:math 	2.9	7
905	Beginning a Journey Across the Universe: The Discovery of Extragalactic Neutrino Factories. Astrophysical Journal Letters, 2022, 933, L43.	3.0	21
906	Contribution from TeV halos to the isotropic gamma-ray background. Physical Review D, 2022, 106, .	1.6	1
907	High-Energy Extragalactic Neutrino Astrophysics. Annual Review of Nuclear and Particle Science, 2022, 72, 365-387.	3.5	11
908	Search for neutrino emission from cores of active galactic nuclei. Physical Review D, 2022, 106, .	1.6	11
909	Galactic cosmic ray propagation: sub-PeV diffuse gamma-ray and neutrino emission. Frontiers of Physics, 2022, 17, .	2.4	3
910	toise: a framework to describe the performance of high-energy neutrino detectors. Journal of Instrumentation, 2022, 17, T08009.	0.5	4
911	The hunt for extraterrestrial high-energy neutrino counterparts. Astronomy and Astrophysics, 2022, 666, A36.	2.1	5

	Сітатіо	n Report	
#	Article	IF	CITATIONS
912	Tau depolarization at very high energies for neutrino telescopes. Physical Review D, 2022, 106, .	1.6	1
913	Simulation of in-ice cosmic ray air shower induced particle cascades. Physical Review D, 2022, 106, .	1.6	3
914	Search for Spatial Correlations of Neutrinos with Ultra-high-energy Cosmic Rays. Astrophysical Journal, 2022, 934, 164.	1.6	5
915	High-energy and ultra-high-energy neutrinos: A Snowmass white paper. Journal of High Energy Astrophysics, 2022, 36, 55-110.	2.4	24
916	Effects of non-standard interaction on microscopic black holes from ultra-high energy neutrinos. European Physical Journal C, 2022, 82, .	1.4	1
917	Search for Gamma-ray Emission from Accretion Flares of Tidal Disruption Events Possibly Associated with the IceCube Neutrinos. Universe, 2022, 8, 433.	0.9	0
918	Multiwavelength Search for the Origin of IceCube's Neutrinos. Astrophysical Journal, 2022, 934, 180.	1.6	10
919	The ultra-high-energy neutrino-nucleon cross section: measurement forecasts for an era of cosmic EeV-neutrino discovery. Journal of High Energy Physics, 2022, 2022, .	1.6	19
920	CRPropa 3.2 — an advanced framework for high-energy particle propagation in extragalactic and galactic spaces. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 035.	1.9	18
921	Athena synergies in the multi-messenger and transient universe. Experimental Astronomy, 2022, 54, 23-117.	1.6	15
922	Bounds from multimessenger astronomy on the superheavy dark matter. Physical Review D, 2022, 106, .	1.6	0
923	Search for Unstable Sterile Neutrinos with the IceCube Neutrino Observatory. Physical Review Letters, 2022, 129, .	2.9	1
924	Identifying High-energy Neutrino Transients by Neutrino Multiplet-triggered Follow-ups. Astrophysical Journal, 2022, 937, 108.	1.6	2
925	A Machine Learning Approach for Predicting Black Hole Mass in Blazars Using Broadband Emission Model Parameters. Universe, 2022, 8, 539.	0.9	2
926	Investigating the correlations between IceCube high-energy neutrinos and Fermi-LAT <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>γ</mml:mi> -ray observations. Physical Review D, 2022, 106, .</mml:math 	1.6	3
927	Implications of multiwavelength spectrum on cosmic-ray acceleration in blazar TXS 0506+056. Astronomy and Astrophysics, 2022, 668, A146.	2.1	3
928	Observe Gamma-Rays and Neutrinos Associated with Ultra-High Energy Cosmic Rays. Universe, 2022, 8, 560.	0.9	0
929	Assessing coincident neutrino detections using population models. Astronomy and Astrophysics, 2022, 668, A190.	2.1	1

#	Article	IF	Citations
930	Search for Astrophysical Neutrinos from 1FLE Blazars with IceCube. Astrophysical Journal, 2022, 938, 38.	1.6	6
931	Tau neutrinos in the next decade: from GeV to EeV. Journal of Physics G: Nuclear and Particle Physics, 2022, 49, 110501.	1.4	16
932	Evidence for neutrino emission from the nearby active galaxy NGC 1068. Science, 2022, 378, 538-543.	6.0	86
933	Neutrinos unveil hidden galactic activities. Science, 2022, 378, 474-475.	6.0	0
934	Constraining axion-like particles with the diffuse gamma-ray flux measured by the Large High Altitude Air Shower Observatory. European Physical Journal C, 2022, 82, .	1.4	8
935	Searches for Neutrinos from Gamma-Ray Bursts Using the IceCube Neutrino Observatory. Astrophysical Journal, 2022, 939, 116.	1.6	18
936	A test of spatial coincidence between CHIME FRBs and IceCube TeV energy neutrinos. Journal of Physics G: Nuclear and Particle Physics, 0, , .	1.4	0
937	Hunting for Neutrino Emission from Multifrequency Variable Sources. Astrophysical Journal, 2022, 939, 123.	1.6	1
938	X- and Gamma-Ray Astrophysics in the Era of Multi-messenger Astronomy. , 2022, , 1-31.		2
939	Galactic Contribution to the High-energy Neutrino Flux Found in Track-like IceCube Events. Astrophysical Journal Letters, 2022, 940, L41.	3.0	16
940	Extragalactic neutrino-emission induced by supermassive and stellar mass black hole mergers. Monthly Notices of the Royal Astronomical Society, 2022, 518, 6158-6182.	1.6	5
941	Gravity as a portal to reheating, leptogenesis and dark matter. Journal of High Energy Physics, 2022, 2022, .	1.6	11
942	Constraints on Heavy Decaying Dark Matter from 570ÂDays of LHAASO Observations. Physical Review Letters, 2022, 129, .	2.9	15
943	Hidden Hearts of Neutrino Active Galaxies. Astrophysical Journal Letters, 2022, 941, L17.	3.0	19
944	A numerical study on the role of instabilities on multi-wavelength emission signatures of blazar jets. Astronomy and Astrophysics, 0, , .	2.1	0
945	Search for High-energy Neutrino Emission from Galactic X-Ray Binaries with IceCube. Astrophysical Journal Letters, 2022, 930, L24.	3.0	5
946	Strong lensing of high-energy neutrinos. Physical Review D, 2023, 107, .	1.6	0
947	State-of-the-art collapsar jet simulations imply undetectable subphotospheric neutrinos. Physical Review D, 2023, 107, .	1.6	5

#	Article	IF	Citations
948	Snowmass white paper: beyond the standard model effects on neutrino flavor. European Physical Journal C, 2023, 83, .	1.4	16
949	Upper Limits on the Isotropic Diffuse Flux of Cosmic PeV Photons from Carpet-2 Observations. JETP Letters, 0, , .	0.4	0
950	On the prompt contribution to the atmospheric neutrino flux. Physical Review D, 2023, 107, .	1.6	3
951	The Forward Physics Facility at the High-Luminosity LHC. Journal of Physics G: Nuclear and Particle Physics, 2023, 50, 030501.	1.4	53
952	Analysis and design of transition radiation in layered uniaxial crystals using Tandem neural networks. Journal of the Optical Society of America B: Optical Physics, 0, , .	0.9	0
953	The INTEGRAL Mission. , 2023, , 1-46.		0
954	Near-future discovery of point sources of ultra-high-energy neutrinos. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 026.	1.9	3
955	Decay of superluminal neutrinos in the collinear approximation. Physical Review D, 2023, 107, .	1.6	0
956	IceCube Search for Neutrinos Coincident with Gravitational Wave Events from LIGO/Virgo Run O3. Astrophysical Journal, 2023, 944, 80.	1.6	8
957	How broad is a neutrino?. Journal of High Energy Physics, 2023, 2023, .	1.6	4
958	Near-future discovery of the diffuse flux of ultrahigh-energy cosmic neutrinos. Physical Review D, 2023, 107, .	1.6	4
959	Diffuse neutrino flux measurements with the Baikal-GVD neutrino telescope. Physical Review D, 2023, 107, .	1.6	12
960	KM3NeT upper bounds of detection rates of solar neutrinos from annihilations of dark matter at the solar core. Modern Physics Letters A, 2022, 37, .	0.5	1
961	Neutrino follow-up with the Zwicky transient facility: results from the first 24 campaigns. Monthly Notices of the Royal Astronomical Society, 2023, 521, 5046-5063.	1.6	5
962	Neutrino predictions from choked Gamma-Ray Bursts and comparison with the observed cosmic diffuse neutrino flux. EPJ Web of Conferences, 2023, 280, 09005.	0.1	0
963	On the contribution of cosmic-ray interactions in the circumgalactic gas to the observed high-energy neutrino flux. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 053.	1.9	1
964	Lorentz and CPT breaking in gamma-ray burst neutrinos from string theory. Journal of High Energy Physics, 2023, 2023, .	1.6	1
965	A Search for Coincident Neutrino Emission from Fast Radio Bursts with Seven Years of IceCube Cascade Events. Astrophysical Journal, 2023, 946, 80.	1.6	3

		CITATION RE	CITATION REPORT		
#	Article		IF	CITATIONS	
966	Bump hunting in the diffuse flux of high-energy cosmic neutrinos. Physical Review D, 2	023, 107, .	1.6	3	
967	D-Egg: a dual PMT optical module for IceCube. Journal of Instrumentation, 2023, 18, P	04014.	0.5	0	
968	Time-delayed neutrino emission from supernovae as a probe of dark matter-neutrino ir Journal of Cosmology and Astroparticle Physics, 2023, 2023, 019.	iteractions.	1.9	3	
997	Multi-messenger Signals from Supermassive Black Holes. , 2023, , .			0	
998	Neutrino Telescope Array Letter of Intent: 2016 Update A Large Array of High-Resol Atmospheric Cherenkov and Fluorescence Detector System for Survey of Air-showers f Neutrinos in the PeV–EeV Energy Range and Gamma-rays in the TeV–EeV Energy R	ution Imaging rom Tau lange. , 2023, , .		0	
1000	The Camera System for the IceCube Upgrade. , 0, , .			0	
1016	Event Reconstruction for Neutrino Telescopes. Thirty Years of Astronomical Discovery 2023, , 49-55.	With UKIRT,	0.3	0	
1023	Space-Based Multi-band Astronomical Variable Objects Monitor (SVOM). , 2023, , 1-13			0	
1032	The Milky Way shines in high-energy neutrinos. Nature Reviews Physics, 0, , .		11.9	0	
1038	Neutrino Reconstruction inÂTRIDENT Based onÂGraph Neural Network. Communicatic and Information Science, 2024, , 264-271.	ns in Computer	0.4	0	
1044	The INTEGRAL Mission. , 2024, , 2307-2352.			0	
1045	X- and Gamma-Ray Astrophysics in the Era of Multi-messenger Astronomy. , 2024, , 53	35-5365.		0	
1046	Space-Based Multi-band Astronomical Variable Objects Monitor (SVOM). , 2024, , 140	9-1421.		0	