Potassium-induced surface modification of Cu(In,Ga)Se solar cells

Nature Materials 12, 1107-1111 DOI: 10.1038/nmat3789

Citation Report

#	Article	IF	CITATIONS
1	Defect formation in Cu(In,Ga)Se2 thin films due to the presence of potassium during growth by low temperature co-evaporation process. Journal of Applied Physics, 2013, 114, .	1.1	80
2	Microwave Synthesis of Thin Film Absorber Layer Nanopowders of Copper-Indium-Gallium-(di) Selenide and Copper-Zinc-Tin-Sulfide. Current Microwave Chemistry, 2014, 1, 6-15.	0.2	2
3	Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ca)Se <inline-formula> <tex-math>\$_{f 2}\$</tex-math></inline-formula> Solar Cells. IEEE Journal of Photovoltaics, 2014, 4, 1644-1649.	1.5	74
4	Sputtered (Zn,Mg)O buffer layer for band offset control in Cu ₂ ZnSn(S,Se) ₄ solar cells. Japanese Journal of Applied Physics, 2014, 53, 106502.	0.8	24
5	Direct Evaluation of Defect Distributions From Admittance Spectroscopy. IEEE Journal of Photovoltaics, 2014, 4, 1665-1670.	1.5	29
6	Effects of potassium doping on solution processed kesterite Cu2ZnSnS4 thin film solar cells. Applied Physics Letters, 2014, 105, .	1.5	101
7	Defect properties of Sb- and Bi-doped CuInSe2: The effect of the deep lone-pair <i>s</i> states. Applied Physics Letters, 2014, 105, .	1.5	21
8	Cu(In,Ga)Se ₂ AND RELATED SOLAR CELLS. Series on Photoconversion of Solar Energy, 2014, , 245-305.	0.2	3
9	Real time spectroscopic ellipsometry analysis of the three-stages of Culn <inf>1−x</inf> Ga <inf>x</inf> Se <inf>2</inf> co-evaporation. , 2014, , .		16
10	Advanced Solar Energy Conversion Technologies Enabled by Novel (Nano)Materials and Processing for Space Power with Potential for Terrestrial Applications. , 2014, , .		1
11	Effect of milling time on mechanically alloyed Cu(In, Ga)Se <inf>2</inf> nanoparticles. , 2014, , .		0
12	Microstructural and Chemical Investigation of PVD-CdS/PVD- <inline-formula><tex-math> \$hbox{CuIn}_{hbox{1-x}} {hbox{Ga}}_{hbox{x}} {hbox{Se}}_{hbox{2}}\$</tex-math></inline-formula> Heterojunctions: A Transmission Electron Microscopy Study. IEEE lournal of Photovoltaics. 2014. 4. 1625-1629.	1.5	17
13	Photophysical investigation of charge recombination in CdS/ZnO layers of CuIn(S,Se) ₂ solar cell. RSC Advances, 2014, 4, 58372-58376.	1.7	5
14	Investigation of the diffusion behavior of sodium in Cu(In,Ga)Se2 layers. Journal of Applied Physics, 2014, 115, .	1.1	90
15	The impact of oxygen incorporation during intrinsic ZnO sputtering on the performance of Cu(In,Ga)Se2 thin film solar cells. Applied Physics Letters, 2014, 105, .	1.5	11
16	Understanding the role of oxygen in the segregation of sodium at the surface of molybdenum coated sodaâ€lime glass. AICHE Journal, 2014, 60, 2365-2372.	1.8	29
17	Local versus global electronic properties of chalcopyrite alloys: X-ray absorption spectroscopy and ab initio calculations. Journal of Applied Physics, 2014, 116, 093703.	1.1	12
18	Recent R&D progress in solar frontier's small-sized Cu(InGa)(SeS) <inf>2</inf> solar cells. , 2014, ,		34

#	Article	IF	CITATIONS
19	Substrate and temperature dependence of the formation of the Earth abundant solar absorber Cu2ZnSnS4 by ex situ sulfidation of cosputtered Cu-Zn-Sn films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 061203.	0.9	5
20	Local Band Gap Measurements by VEELS of Thin Film Solar Cells. Microscopy and Microanalysis, 2014, 20, 1246-1253.	0.2	20
21	Heat Induced Passivation of CuInSe ₂ Surfaces: A Strategy to Optimize the Efficiency of Chalcopyrite Thin Film Solar Cells?. Advanced Materials Interfaces, 2014, 1, 1300040.	1.9	18
22	Quantitative imaging of thin films solar cells properties using CulnGaSe <inf>2</inf> microcells. , 2014, , .		1
23	High lateral resolution energy dispersive X-ray spectroscopy and cathodoluminescence on lamellae of CIGSe solar cells. , 2014, , .		1
24	An innovative concentrator system based on Cu(In,Ga)Se <inf>2</inf> microcells. , 2014, , .		0
25	Effects of sputtering technique on quaternary sputtered Cu(In,Ga)Se ₂ films. Proceedings of SPIE, 2014, , .	0.8	3
26	Accelerated performance degradation of CIGS solar cell determined by in-situ monitoring. Proceedings of SPIE, 2014, , .	0.8	10
27	Optimized laser patterning for high performance Cu(In,Ga)Se ₂ thin-film solar modules. Proceedings of SPIE, 2014, , .	0.8	3
28	The effects of sodium on the growth of Cu(In,Ga)Se ₂ thin films using low-temperature three-stage process on polyimide substrate. Journal Physics D: Applied Physics, 2014, 47, 045105.	1.3	6
29	Compositional investigation of potassium doped Cu(In,Ga)Se ₂ solar cells with efficiencies up to 20.8%. Physica Status Solidi - Rapid Research Letters, 2014, 8, 219-222.	1.2	483
30	Towards low-cost, environmentally friendly printed chalcopyrite and kesterite solar cells. Energy and Environmental Science, 2014, 7, 1829-1849.	15.6	187
31	Structural tuning of wide-gap chalcopyrite CuGaSe ₂ thin films and highly efficient solar cells: differences from narrow-gap Cu(In,Ga)Se ₂ . Progress in Photovoltaics: Research and Applications, 2014, 22, 821-829.	4.4	61
32	Metastable defect in CuInSe2 probed by modulated photo current experiments above 390 K. Applied Physics Letters, 2014, 104, .	1.5	6
33	A recombination analysis of Cu(In,Ga)Se2 solar cells with low and high Ga compositions. Solar Energy Materials and Solar Cells, 2014, 124, 143-149.	3.0	130
34	Sodium-doped molybdenum back contact designs for Cu(In,Ga)Se2 solar cells. Solar Energy Materials and Solar Cells, 2014, 124, 10-16.	3.0	28
35	GaSe Formation at the Cu(In,Ga)Se ₂ /Mo Interface–A Novel Approach for Flexible Solar Cells by Easy Mechanical Liftâ€Off. Advanced Materials Interfaces, 2014, 1, 1400044.	1.9	19
36	Zn(O,S) buffer prepared by atomic layer deposition for sequentially grown Cu(In,Ga)(Se,S)2 solar cells and modules. Solar Energy Materials and Solar Cells, 2014, 126, 120-124.	3.0	17

#	Article	IF	CITATIONS
37	Electron-beam-induced current at absorber back surfaces of Cu(In,Ga)Se2 thin-film solar cells. Journal of Applied Physics, 2014, 115, .	1.1	24
38	Symmetry dependent optoelectronic properties of grain boundaries in polycrystalline Cu(In,Ga)Se2 thin films. Journal of Applied Physics, 2014, 115, 023514.	1.1	12
39	Cu ₂ ZnSnS _{4<i>x</i>} Se _{4(1–<i>x</i>)} Solar Cells from Polar Nanocrystal Inks. Journal of the American Chemical Society, 2014, 136, 5237-5240.	6.6	102
40	Colloidal Solution-Processed CuInSe ₂ Solar Cells with Significantly Improved Efficiency up to 9% by Morphological Improvement. ACS Applied Materials & Interfaces, 2014, 6, 259-267.	4.0	22
41	Revisiting the interpretation of biased luminescence: Effects on Cu(In,Ga)Se2 photovoltaic heterostructures. Journal of Applied Physics, 2014, 116, 064504.	1.1	11
42	Co-evaporated CuInSe <inf>2</inf> : Influence of growth temperature and Na on solar cell performance. , 2014, , .		Ο
43	Growth of Sn(O,S)2 buffer layers and its application to Cu(In,Ga)Se2 solar cells. Current Applied Physics, 2014, 14, 1803-1808.	1.1	12
44	Intermixing at the absorber-buffer layer interface in thin-film solar cells: The electronic effects of point defects in Cu(In,Ga)(Se,S)2 and Cu2ZnSn(Se,S)4 devices. Journal of Applied Physics, 2014, 116, .	1.1	25
45	Enhanced Performance in Cu(In,Ga)Se <inline-formula><tex-math>\$_{f 2}\$</tex-math></inline-formula> Solar Cells Fabricated by the Two-Step Selenization Process With a Potassium Fluoride Postdeposition Treatment. IEEE Journal of Photovoltaics, 2014, 4, 1650-1654	1.5	55
46	Native point defects in Culn _{1â^'x} Ga _x Se ₂ : hybrid density functional calculations predict the origin of p- and n-type conductivity. Physical Chemistry Chemical Physics, 2014, 16, 22299-22308.	1.3	44
47	Multiple phases of Cu2ZnSnSe4 detected by room temperature photoluminescence. Journal of Applied Physics, 2014, 116, .	1.1	12
48	Predicted roles of defects on band offsets and energetics at CIGS (Cu(In,Ga)Se2/CdS) solar cell interfaces and implications for improving performance. Journal of Chemical Physics, 2014, 141, 094701.	1.2	20
49	Influence of grain boundary modification on limited performance of wide bandgap Cu(In,Ga)Se2 solar cells. Applied Physics Letters, 2014, 105, 013902.	1.5	36
50	Investigation of Cu(In,Ga)Se 2 absorber by time-resolved photoluminescence for improvement of its photovoltaic performance. Solar Energy Materials and Solar Cells, 2014, 130, 567-572.	3.0	32
51	Self-assembled synthesis of 3D Cu(In _{1 â^' x} Ga _x)Se ₂ nanoarrays by one-step electroless deposition into ordered AAO template. Nanotechnology, 2014, 25, 295601.	1.3	5
52	Influence of iron on the performance of CIGS thin-film solar cells. Solar Energy Materials and Solar Cells, 2014, 130, 107-117.	3.0	32
53	Employing Si solar cell technology to increase efficiency of ultraâ€ŧhin Cu(In,Ga)Se ₂ solar cells. Progress in Photovoltaics: Research and Applications, 2014, 22, 1023-1029.	4.4	136
54	Earth-abundant absorber based solar cells onto low weight stainless steel substrate. Solar Energy Materials and Solar Cells, 2014, 130, 347-353.	3.0	33

#	Article	IF	CITATIONS
55	Conventional and rapid thermal annealing of spray pyrolyzed copper indium gallium sulfide thin films. Journal of Alloys and Compounds, 2014, 615, 461-468.	2.8	24
56	Experimental indication for band gap widening of chalcopyrite solar cell absorbers after potassium fluoride treatment. Applied Physics Letters, 2014, 105, .	1.5	105
57	Flexible Cu ₂ ZnSnS ₄ solar cells based on successive ionic layer adsorption and reaction method. RSC Advances, 2014, 4, 17703-17708.	1.7	39
58	The effect of high growth temperature on Cu(In,Ga)Se2 thin film solar cells. Solar Energy Materials and Solar Cells, 2014, 123, 166-170.	3.0	19
59	Culn(S,Se)2 thin films prepared from a novel thioacetic acid-based solution and their photovoltaic application. Physical Chemistry Chemical Physics, 2014, 16, 7548.	1.3	10
60	Optimization of DC-sputtered molybdenum back contact layers. , 2014, , .		0
61	A facile molecular precursor-based Cu(In,Ga)(S,Se) ₂ solar cell with 8.6% efficiency. Journal of Materials Chemistry A, 2014, 2, 13237.	5.2	21
62	Effect of crystal orientation in Cu(In,Ga)Se 2 fabricated by multi-layer precursor method on its cell performance. Applied Surface Science, 2014, 314, 845-849.	3.1	5
63	Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nature Communications, 2014, 5, 3803.	5.8	214
64	Interfacial Alkali Diffusion Control in Chalcopyrite Thin-Film Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 14123-14130.	4.0	23
65	Differential in-depth characterization of co-evaporated Cu(In,Ga)Se2 thin films for solar cell applications. Thin Solid Films, 2014, 558, 47-53.	0.8	19
66	Efficient Cu ₂ ZnSnS ₄ solar cells spray coated from a hydro-alcoholic colloid synthesized by instantaneous reaction. RSC Advances, 2014, 4, 14655-14662.	1.7	40
67	Crystallographic and optical properties of narrow band gap Cu ₂ GeSe ₃ and Cu ₂ (Sn _{1â^'} <i>_x</i> Ge <i>_x</i> Se ₃ solid solution. Japanese Journal of Applied Physics, 2014, 53, 05FW06.	0.8	6
68	Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells. Physical Chemistry Chemical Physics, 2014, 16, 8843.	1.3	278
69	CdS and Cd-Free Buffer Layers on Solution Phase Grown Cu2ZnSn(SxSe1- x)4 :Band Alignments and Electronic Structure Determined with Femtosecond Ultraviolet Photoelectron Spectroscopy. Materials Research Society Symposia Proceedings, 2014, 1638, 1.	0.1	3
70	Potentialâ€induced optimization of ultraâ€thin rear surface passivated CIGS solar cells. Physica Status Solidi - Rapid Research Letters, 2014, 8, 908-911.	1.2	17
71	Space Environments and Effects on CIGS Solar Cells and Modules. Materials Research Society Symposia Proceedings, 2015, 1792, 1. p://www.w3.org/1998/Math/MathML" display="inline"> <mmbr></mmbr> mi	0.1	2
73	matrivariant="normal">123Grain Boundaries in <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>CulnSe</mml:mi></mml:mrow><mml:mrow xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:mrow </mml:msub></mml:mrow></mmi:math 	> < mm::mn	>2

#	Article	IF	CITATIONS
74	Sudden stress relaxation in compound semiconductor thin films triggered by secondary phase segregation. Physical Review B, 2015, 92, .	1.1	22
75	Incorporation of Li dopant into Cu2ZnSnSe4 photovoltaic absorber: hybrid-functional calculations. Journal Physics D: Applied Physics, 2015, 48, 482001.	1.3	5
77	Effect of Na presence during CuInSe2 growth on stacking fault annihilation and electronic properties. Applied Physics Letters, 2015, 107, .	1.5	23
78	Enhancement of the photo conversion efficiencies in Cu(In,Ca)(Se,S)2 solar cells fabricated by two-step sulfurization process. Applied Physics Letters, 2015, 107, .	1.5	8
79	Photoluminescence studies of polycrystalline Cu(In,Ga)Se2: Lateral inhomogeneities beyond Abbe's diffraction limit. Journal of Applied Physics, 2015, 118, .	1.1	3
80	Control of valence band offset at CdS/Cu(In,Ga)Se ₂ interface by inserting wide-bandgap materials for suppression of interfacial recombination in Cu(In,Ga)Se ₂ solar cells. Japanese Journal of Applied Physics, 2015, 54, 08KC08.	0.8	27
81	Investigating the electronic properties of Al2O3/Cu(In,Ga)Se2 interface. AIP Advances, 2015, 5, .	0.6	69
82	Fabrication of Cu(In,Ga)(S,Se) ₂ thin film solar cells via spray pyrolysis of thiourea and 1-methylthiourea-based aqueous precursor solution. Japanese Journal of Applied Physics, 2015, 54, 091203.	0.8	12
83	Surface sulfurization on MBE-grown Cu(In _{1â^'} <i>_x</i> ,Ga <i>_x</i>)Se ₂ thin films and devices. Japanese Journal of Applied Physics, 2015, 54, 08KC10.	0.8	16
84	Optimizing the growth path for Cu(In,Ga)Se2 thin films co-evaporated at low temperatures on flexible polyimide foil. , 2015, , .		0
85	Preparation of a CuInS2Nanoparticle Ink and Application in a Selenization-Free, Solution-Processed Superstrate Solar Cell. European Journal of Inorganic Chemistry, 2015, 2015, 5793-5800.	1.0	14
86	Effect of Intrinsic ZnO Sputtering Parameters on the Cell Efficiency of Cu(In,Ga)Se ₂ Solar Cells. Israel Journal of Chemistry, 2015, 55, 1109-1114.	1.0	1
87	Toward efficient Cu(In,Ga)Se ₂ solar cells prepared by reactive magnetron coâ€sputtering from metallic targets in an Ar:H ₂ Se atmosphere. Progress in Photovoltaics: Research and Applications, 2015, 23, 1793-1805.	4.4	5
88	Real time observation of phase formations by XRD during Ga-rich or In-rich Cu(In, Ga)Se ₂ growth by co-evaporation. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1897-1904.	0.8	13
89	Improving the performance of Sb ₂ Se ₃ thin film solar cells over 4% by controlled addition of oxygen during film deposition. Progress in Photovoltaics: Research and Applications, 2015, 23, 1828-1836.	4.4	120
90	Quantitative luminescence mapping of Cu(In, Ga)Se ₂ thinâ€film solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 1305-1312.	4.4	35
91	Shunt mitigation in ZnO:Al/i-ZnO/CdS/Cu(In,Ga)Se ₂ solar modules by the i-ZnO/CdS buffer combination. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 541-546.	0.8	13
93	Preparation of Cu(In,Al)(Se,S)2Thin Films by Low-Cost Non-vacuum Hybrid Process. Chinese Journal of Chemical Physics, 2015, 28, 746-750.	0.6	0

#	Article	IF	CITATIONS
95	KCN Chemical Etch for Interface Engineering in Cu ₂ ZnSnSe ₄ Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 14690-14698.	4.0	62
96	Highly efficient flexible Culn0.7Ga0.3Se2 solar cells with a thick Na/Mo layer deposited directly on stainless steel. Applied Surface Science, 2015, 346, 562-566.	3.1	14
97	Enhanced Carrier Collection from CdS Passivated Grains in Solution-Processed Cu2ZnSn(S,Se)4 Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 12141-12146.	4.0	33
98	Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics, 2015, 9, 409-415.	15.6	781
99	Solution-Processed Ag Nanowires + PEDOT:PSS Hybrid Electrode for Cu(In,Ga)Se ₂ Thin-Film Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 13557-13563.	4.0	34
100	Deposition and characterization of graded Cu(In1-xGax)Se2 thin filmsÂby spray pyrolysis. Materials Chemistry and Physics, 2015, 162, 59-68.	2.0	22
101	Organometallics and Related Molecules for Energy Conversion. Green Chemistry and Sustainable Technology, 2015, , .	0.4	4
102	Photocarrier dynamics in undoped and Na-doped Cu ₂ ZnSnS ₄ single crystals revealed by ultrafast time-resolved terahertz spectroscopy. Applied Physics Express, 2015, 8, 062303.	1.1	14
103	Highly crystalline Fe ₂ GeS ₄ nanocrystals: green synthesis and their structural and optical characterization. Journal of Materials Chemistry A, 2015, 3, 2265-2270.	5.2	26
104	Recent Development in Water Oxidation Catalysts Based on Manganese and Cobalt Complexes. Green Chemistry and Sustainable Technology, 2015, , 365-394.	0.4	2
105	Theoretical and experimental investigation of the recombination reduction at surface and grain boundaries in Cu(In,Ga)Se2 solar cells by valence band control. Materials Research Society Symposia Proceedings, 2015, 1771, 125-131.	0.1	6
106	Enhanced Performance of Perovskite CH ₃ NH ₃ PbI ₃ Solar Cell by Using CH ₃ NH ₃ I as Additive in Sequential Deposition. ACS Applied Materials & amp; Interfaces, 2015, 7, 12937-12942.	4.0	80
107	Effect of different properties of Cu(In _{1-x} Ga _x)Se ₂ thin films synthesized by femtosecond and nanosecond pulsed laser deposition. Proceedings of SPIE, 2015, , .	0.8	0
108	Alkali segregation and matrix concentrations in thin film Cu(In,Ga)Se2 at targeted interfaces characterized in 3-D at the nanoscale. , 2015, , .		5
109	A stochastic model for Cu(InGa)(SeS)2 absorber growth during selenization/sulfization. , 2015, , .		0
110	Potassium Postdeposition Treatment-Induced Band Gap Widening at Cu(In,Ga)Se ₂ Surfaces – Reason for Performance Leap?. ACS Applied Materials & Interfaces, 2015, 7, 27414-27420.	4.0	147
111	High Efficient and Stable Solid Solar Cell: Based on FeS2 Nanocrystals and P3HT: PCBM. Energy Procedia, 2015, 75, 2181-2186.	1.8	26
112	Temperature-dependent photoluminescence of cadmium-free Cu–Zn–In–S quantum dot thin films as temperature probes. Dalton Transactions, 2015, 44, 20763-20768.	1.6	8

#	Article	IF	CITATIONS
113	Degradation of CIGS solar cells due to the migration of alkali-elements. , 2015, , .		12
114	Enhanced photoresponse of Cu(In,Ca)Se2/CdS heterojunction fabricated using economical non-vacuum methods. Electronic Materials Letters, 2015, 11, 618-624.	1.0	19
115	Mechanism of effect of intrinsic defects on electrical and optical properties of Cu ₂ CdSnS ₄ : an experimental and first-principles study. Journal Physics D: Applied Physics, 2015, 48, 445105.	1.3	16
116	Screening of alkali elements in Cu2ZnSn(S,Se)4. , 2015, , .		2
117	Designing CICS solar cells with front-side point contacts. , 2015, , .		13
118	Improved photocurrent in Cu(In,Ga)Se2 solar cells: From 20.8% to 21.7% efficiency. , 2015, , .		10
119	Imaging EQE in CICS solar cells with high spatial resolution. , 2015, , .		1
120	Cu(In,Ca)Se\$_{f 2}\$ Thin-Film Solar Cells and Modules—A Boost in Efficiency Due to Potassium. IEEE Journal of Photovoltaics, 2015, 5, 656-663.	1.5	77
121	Mesoporous silica nanocomposite antireflective coating for Cu(In,Ga)Se2 thin film solar cells. Solar Energy Materials and Solar Cells, 2015, 134, 359-363.	3.0	10
122	Composition-dependent nanostructure of Cu(In,Ga)Se 2 powders and thin films. Thin Solid Films, 2015, 582, 356-360.	0.8	8
123	Characterization of efficiency-limiting resistance losses in monolithically integrated Cu(In,Ga)Se2 solar modules. Scientific Reports, 2015, 5, 7690.	1.6	28
124	A monolithically integrated highâ€efficiency Cu(In,Ga)Se ₂ miniâ€module structured solely by laser. Progress in Photovoltaics: Research and Applications, 2015, 23, 1908-1915.	4.4	29
125	First-principles study of carbon impurities in CuInSe2 and CuGaSe2, present in non-vacuum synthesis methods. Journal of Applied Physics, 2015, 117, 015104.	1.1	5
126	Influence of conduction band minimum difference between transparent conductive oxide and absorber on photovoltaic performance of thin-film solar cell. Japanese Journal of Applied Physics, 2015, 54, 032301.	0.8	23
127	Optimization of CdS buffer layer for highâ€performance Cu ₂ ZnSnSe ₄ solar cells and the effects of light soaking: elimination of crossover and red kink. Progress in Photovoltaics: Research and Applications, 2015, 23, 1660-1667.	4.4	110
128	Homogeneous Cu2ZnSnSe4 nanocrystals/graphene oxide nanocomposites as hole transport layer for polymer solar cells. Chemical Physics Letters, 2015, 622, 1-8.	1.2	8
129	Solution Transformation of Cu ₂ 0 into CuInS ₂ for Solar Water Splitting. Nano Letters, 2015, 15, 1395-1402.	4.5	108
130	Combinatorial Exploration of the Effects of Intrinsic and Extrinsic Defects in Cu <inline-formula> <tex-math>\$_{f 2}\$</tex-math></inline-formula> ZnSn(S,Se) <inline-formula><tex-math>\$_{f 4}\$<:/tex-math>: <:/inline-formula>:. IEEE Iournal of Photovoltaics. 2015. 5. 288-298.</tex-math></inline-formula>	1.5	73

#	Article	IF	CITATIONS
131	First-principles study of electronic structure of CuSbS2 and CuSbSe2 photovoltaic semiconductors. Thin Solid Films, 2015, 582, 401-407.	0.8	44
132	Influence of post-deposition selenium supply on Cu(In,Ga)Se 2 -based solar cell properties. Thin Solid Films, 2015, 582, 43-46.	0.8	11
133	Application of multi-buffer layer of (Zn,Mg)O/CdS in Cu2ZnSn(S,Se)4 solar cells. Current Applied Physics, 2015, 15, 383-388.	1.1	18
134	Cu(In,Ga)Se 2 mesa diodes for the study of edge recombination. Thin Solid Films, 2015, 582, 258-262.	0.8	15
135	Influence of electrode position in the electrolytic cell configuration for the electrodeposition of Cu(In,Ga)Se2 thin films. Journal of Materials Science: Materials in Electronics, 2015, 26, 5593-5602.	1.1	4
136	Influence of Ga/(Ga + In) grading on deepâ€defect states of Cu(In,Ga)Se ₂ solar cells. Physica Status Solidi - Rapid Research Letters, 2015, 9, 157-160.	1.2	14
137	Joule heating-assisted growth of Cu(In,Ga)Se2 solar cells. Journal of Renewable and Sustainable Energy, 2015, 7, 013112.	0.8	5
138	Optical and structural properties of sputtered CdS films for thin film solar cell applications. Materials Research Bulletin, 2015, 69, 78-83.	2.7	42
139	Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy. Journal of Physics Condensed Matter, 2015, 27, 134201.	0.7	92
140	Reliability Issues of CIGS-Based Thin Film Solar Cells. Semiconductors and Semimetals, 2015, , 111-150.	0.4	10
141	Features of KF and NaF Postdeposition Treatments of Cu(In,Ga)Se ₂ Absorbers for High Efficiency Thin Film Solar Cells. Chemistry of Materials, 2015, 27, 5755-5764.	3.2	178
142	Incorporation of alkali metals in chalcogenide solar cells. Solar Energy Materials and Solar Cells, 2015, 143, 9-20.	3.0	117
143	Enhanced solar performance of chemical bath deposited-Zn(O,S)/Cu(In,Ga)Se ₂ solar cells via interface engineering by a wet soaking process. Journal of Materials Chemistry A, 2015, 3, 14985-14990.	5.2	11
144	Improved open-circuit voltage in Cu(In,Ga)Se2 solar cells with high work function transparent electrodes. Journal of Applied Physics, 2015, 117, .	1.1	26
145	High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2676-2681.	2.1	166
146	Complex Surface Chemistry of Kesterites: Cu/Zn Reordering after Low Temperature Postdeposition Annealing and Its Role in High Performance Devices. Chemistry of Materials, 2015, 27, 5279-5287.	3.2	99
147	Correlating the Local Defect-Level Density with the Macroscopic Composition and Energetics of Chalcopyrite Thin-Film Surfaces. ACS Applied Materials & amp; Interfaces, 2015, 7, 13062-13072.	4.0	22
148	Front grid optimization of Cu(In,Ga)Se2 solar cells using hybrid modeling approach. Journal of Renewable and Sustainable Energy, 2015, 7, .	0.8	7

#	Article	IF	CITATIONS
149	Influence of surface properties on the performance of Cu(In,Ga)(Se,S) ₂ thin-film solar cells using Kelvin probe force microscopy. RSC Advances, 2015, 5, 40719-40725.	1.7	12
150	Electronic defect study on low temperature processed Cu(In,Ca)Se ₂ thin-film solar cells and the influence of an Sb layer. Journal Physics D: Applied Physics, 2015, 48, 175104.	1.3	6
151	Investigation of the effect of potassium on Cu(In,Ga)Se2 layers and solar cells. Thin Solid Films, 2015, 582, 27-30.	0.8	69
152	Effects of NaF evaporation during low temperature Cu(In,Ga)Se 2 growth. Thin Solid Films, 2015, 582, 56-59.	0.8	13
153	Understanding the modes of use and availability of critical metals–ÂAn expert-based scenario analysis for the case of indium. Journal of Cleaner Production, 2015, 94, 376-393.	4.6	29
154	Cu(In,Ga)Se ₂ solar cell with 16.7% active-area efficiency achieved by sputtering from a quaternary target. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1774-1778.	0.8	38
155	Self-Regulation of Cu/Sn Ratio in the Synthesis of Cu ₂ ZnSnS ₄ Films. Chemistry of Materials, 2015, 27, 2507-2514.	3.2	49
156	Naâ€induced efficiency boost for Seâ€deficient Cu(In,Ga)Se ₂ solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 1621-1629.	4.4	28
157	Locally resolved investigation of wedged Cu(In,Ga)Se 2 films prepared by physical vapor deposition using hard X-ray photoelectron and X-ray fluorescence spectroscopy. Thin Solid Films, 2015, 582, 361-365.	0.8	1
158	The impact of alkali elements on the degradation of CIGS solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 537-545.	4.4	49
159	Totally solution-processed CuInS ₂ solar cells based on chloride inks: reduced metastable phases and improved current density. Journal Physics D: Applied Physics, 2015, 48, 115304.	1.3	16
160	Degradation of Cu(In, Ga)Se 2 thin-film solar cells due to the ionization effect of low-energy electrons. Thin Solid Films, 2015, 582, 91-94.	0.8	3
161	Cu(In,Ga)(S,Se) ₂ Thin Film Solar Cell with 10.7% Conversion Efficiency Obtained by Selenization of the Na-Doped Spray-Pyrolyzed Sulfide Precursor Film. ACS Applied Materials & Interfaces, 2015, 7, 6472-6479.	4.0	56
162	Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques. Materials Research Bulletin, 2015, 70, 373-378.	2.7	30
163	Transformation of Ag Nanowires into Semiconducting AgFeS ₂ Nanowires. Journal of the American Chemical Society, 2015, 137, 4340-4343.	6.6	23
164	Editorial for the ACS Select Virtual Issue on Inorganic Chemistry Driving the Energy Sciences. Inorganic Chemistry, 2015, 54, 3079-3083.	1.9	5
165	Sodium doping effects on the crystalline and electrical properties of Cu2ZnSnSe4 thin films. Solar Energy, 2015, 115, 413-418.	2.9	16
166	Alkali-Templated Surface Nanopatterning of Chalcogenide Thin Films: A Novel Approach Toward Solar Cells with Enhanced Efficiency. Nano Letters, 2015, 15, 3334-3340.	4.5	108

#	Article	IF	CITATIONS
167	Cu ₂ SnS ₃ thin-film solar cells fabricated by sulfurization from NaF/Cu/Sn stacked precursor. Applied Physics Express, 2015, 8, 042303.	1.1	143
168	Cu ₂ SnS ₃ thin film solar cells prepared by thermal crystallization of evaporated Cu/Sn precursors in sulfur and tin atmosphere. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 761-764.	0.8	36
169	Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se) ₂ Thin Film Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 22497-22503.	4.0	25
170	Chlorine-conducted defect repairment and seed crystal-mediated vapor growth process for controllable preparation of efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 22949-22959.	5.2	51
171	Compound semiconductor alloys: From atomic-scale structure to bandgap bowing. Applied Physics Reviews, 2015, 2, .	5.5	50
172	Properties of Ga ₂ O ₃ /Ga ₂ O ₃ :Sn/CIGS for visible light sensors. Journal of Physics: Conference Series, 2015, 619, 012009.	0.3	3
173	Physical properties of Cu(In,Ga)Se2 film on flexible stainless steel substrate for solar cell application: A multi-layer precursor method. Solar Energy Materials and Solar Cells, 2015, 143, 510-516.	3.0	13
174	Hybrid-Functional Calculations on the Incorporation of Na and K Impurities into the CuInSe ₂ and CuIn ₅ Se ₈ Solar-Cell Materials. Journal of Physical Chemistry C, 2015, 119, 25197-25203.	1.5	45
175	Direct evidence of void passivation in Cu(InGa)(SSe)2 absorber layers. Applied Physics Letters, 2015, 106,	1.5	11
176	Hydrogenated indium oxide window layers for high-efficiency Cu(In,Ga)Se2 solar cells. Journal of Applied Physics, 2015, 117, .	1.1	38
177	Improved Ga grading of sequentially produced Cu(In,Ga)Se2 solar cells studied by high resolution X-ray fluorescence. Applied Physics Letters, 2015, 106, .	1.5	20
178	Probing diffusion of In and Ga in CuInSe2/CuGaSe2 bilayer thin films by x-ray diffraction. Journal of Crystal Growth, 2015, 432, 24-32.	0.7	10
179	Investigation of microstructural and optical properties of Cu(In, Al)Se 2 thin films with various copper content. Journal of Alloys and Compounds, 2015, 651, 208-213.	2.8	12
180	High-density Cu–In intermetallic nanocrystal layers: towards high-efficiency printable CuInSe ₂ solar cells. Journal of Materials Chemistry A, 2015, 3, 15889-15896.	5.2	9
181	Study on the performance of Tungsten–Titanium alloy film as a diffusion barrier for iron in a flexible CIGS solar cell. Solar Energy, 2015, 120, 357-362.	2.9	7
182	Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu ₂ ZnSn(S,Se) ₄ and increases photovoltaic efficiency. Physical Chemistry Chemical Physics, 2015, 17, 23859-23866.	1.3	185
183	Solution-deposited pure selenide CIGSe solar cells from elemental Cu, In, Ga, and Se. Journal of Materials Chemistry A, 2015, 3, 19263-19267.	5.2	51
184	Improved Photocurrent in Cu(In,Ga)Se ₂ Solar Cells: From 20.8% to 21.7% Efficiency with CdS Buffer and 21.0% Cd-Free. IEEE Journal of Photovoltaics, 2015, 5, 1487-1491.	1.5	178

		OILT	
#	Article	IF	Citations
185	Ion beam analysis of Cu(In,Ga)Se 2 thin film solar cells. Applied Surface Science, 2015, 356, 631-638.	3.1	15
186	Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se ₂ Solar Cells Using Dielectric Scattering Patterns. ACS Nano, 2015, 9, 9603-9613.	7.3	102
187	First-principles study on alkali-metal effect of Li, Na, and K in CuInSe ₂ and CuGaSe ₂ . Japanese Journal of Applied Physics, 2015, 54, 08KC20.	0.8	38
188	Reaction path for formation of Cu2SnSe3 film by selenization of Cu–Sn precursor. Solar Energy Materials and Solar Cells, 2015, 143, 311-318.	3.0	19
189	EFFECT OF pH ON THE ELECTRODEPOSITION OF Cu (In ,) Tj ETQq0 0 0 rgBT /Overlock AS COMPLEXING AGENT. Surface Review and Letters, 2015, 22, 1550057.	10 Tf 50 0.5	587 Td (<fc 5</fc
190	Properties of Cu(In,Ga)Se ₂ solar cells with new record efficiencies up to 21.7%. Physica Status Solidi - Rapid Research Letters, 2015, 9, 28-31.	1.2	813
191	Bandgap optimization of submicronâ€ŧhick Cu(In,Ga)Se ₂ solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 1157-1163.	4.4	26
192	Performance Limits and Status of Single-Junction Solar Cells With Emphasis on CIGS. IEEE Journal of Photovoltaics, 2015, 5, 360-365.	1.5	31
193	Impact of DC-power during Mo back contact sputtering on the alkali distribution in Cu(In,Ga)Se 2 -based thin film solar cells. Thin Solid Films, 2015, 582, 304-307.	0.8	11
194	CIGS based devices for solar hydrogen production spanning from PEC-cells to PV-electrolyzers: A comparison of efficiency, stability and device topology. Solar Energy Materials and Solar Cells, 2015, 134, 185-193.	3.0	44
195	Estimation of open-circuit voltage of Cu(In,Ga)Se2 solar cells before cell fabrication. Renewable Energy, 2015, 76, 575-581.	4.3	8
196	Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique. Solar Energy Materials and Solar Cells, 2015, 133, 82-86.	3.0	23
197	Controlled back slope of Ga/(In+Ga) profile in Cu(In,Ga)Se2 absorber fabricated by multi layer precursor method for improvement of its photovoltaic performance. Solar Energy Materials and Solar Cells, 2015, 133, 223-228.	3.0	21
198	Influence of Ni and Cr impurities on the electronic properties of Cu(In,Ga)Se ₂ thin film solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 892-900.	4.4	35
199	Printable solar cells. Wiley Interdisciplinary Reviews: Energy and Environment, 2015, 4, 51-73.	1.9	10
200	Gallium gradients in Cu(In,Ga)Se ₂ thin-film solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 717-733.	4.4	122
201	Raman scattering peak position of Cu(In,Ca)Se2 film to predict its near-surface [Ga] / ([Ga] + [In]) and open-circuit voltage. Thin Solid Films, 2015, 582, 7-10.	0.8	5
202	Crystallographic and optical properties of CuSbS 2 and CuSb(S 1-x Se x) 2 solid solution. Thin Solid Films, 2015, 582, 263-268.	0.8	30

#	Article	IF	CITATIONS
203	Behavior of deep level defects on voltage-induced stress of Cu(In,Ga)Se 2 solar cells. Thin Solid Films, 2015, 582, 375-378.	0.8	1
204	Liquidâ€seleniumâ€enhanced grain growth of nanoparticle precursor layers for CuInSe ₂ solar cell absorbers. Progress in Photovoltaics: Research and Applications, 2015, 23, 1110-1119.	4.4	34
205	A novel non-vacuum process for the preparation of CuIn(Se,S)2 thin-film solar cells from air-stable, eco-friendly, metal salts based solution ink. Journal of Power Sources, 2015, 274, 22-28.	4.0	13
206	Photoelectrochemistry of Cu(In,Ga)Se2 thin-films fabricated by sequential pulsed electrodeposition. Journal of Power Sources, 2015, 273, 149-157.	4.0	31
207	All Solutionâ€Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device. Advanced Functional Materials, 2015, 25, 12-27.	7.8	84
208	Investigation of Cu-poor and Cu-rich Cu(In,Ga)Se2/CdS interfaces using hard X-ray photoelectron spectroscopy. Thin Solid Films, 2015, 582, 366-370.	0.8	11
209	Progress on Low-Temperature Pulsed Electron Deposition of CuInGaSe2 Solar Cells. Energies, 2016, 9, 207.	1.6	21
210	New sulphide precursors for Zn(O,S) buffer layers in Cu(In,Ga)Se ₂ solar cells for faster reaction kinetics. Journal of Optics (United Kingdom), 2016, 18, 084002.	1.0	7
211	Achievement of 17.9% efficiency in 30 × 30 cm2 Cu(In,Ga)(Se,S)2 solar cell sub-module by sulfuriz after selenization with Cd-free buffer. Progress in Photovoltaics: Research and Applications, 2016, 24, 175-182.	ation 4.4	23
212	Source and effects of sodium in solution-processed kesterite solar cells. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1039-1049.	0.8	29
213	Efficiency Enhancement of Cu ₂ ZnSn(S,Se) ₄ Solar Cells via Alkali Metals Doping. Advanced Energy Materials, 2016, 6, 1502386.	10.2	109
214	Flexible Cu(In,Ga)Se ₂ solar cell on stainless steel substrate deposited by multiâ€layer precursor method: its photovoltaic performance and deepâ€level defects. Progress in Photovoltaics: Research and Applications, 2016, 24, 990-1000.	4.4	35
215	Potential gain in photocurrent generation for Cu(In,Ga)Se ₂ solar cells by using In ₂ O ₃ as a transparent conductive oxide layer. Progress in Photovoltaics: Research and Applications, 2016, 24, 102-107.	4.4	18
216	Parameterized complex dielectric functions of Culn 1â^'x Ga x Se 2 : applications in optical characterization of compositional nonâ€uniformities and depth profiles in materials and solar cells. Progress in Photovoltaics: Research and Applications, 2016, 24, 1200-1213.	4.4	34
217	A comparative study of Cd―and Znâ€compound buffer layers on Cu(In 1â^' x ,Ga x)(S y ,Se 1â^' y) 2 thin film solar cells. Progress in Photovoltaics: Research and Applications, 2016, 24, 389-396.	4.4	42
218	Atomic layer deposition of In ₂ O ₃ transparent conductive oxide layers for application in Cu(In,Ga)Se ₂ solar cells with different buffer layers. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1541-1552.	0.8	17
219	Implication of copper indium gallium selenide on device for efficient thin film solar cell technology. , 2016, , .		0
220	Atomic step-and-terrace surface of polyimide sheet for advanced polymer substrate engineering. Nanotechnology, 2016, 27, 295603.	1.3	6

#	Article	IF	CITATIONS
221	Degradation mechanism of Cu(In,Ga)Se ₂ solar cells induced by exposure to air. Japanese Journal of Applied Physics, 2016, 55, 072301.	0.8	10
222	Evaluation of band offset at amorphous-Si/BaSi2 interfaces by hard x-ray photoelectron spectroscopy. Journal of Applied Physics, 2016, 119, .	1.1	32
223	Multi Band Gap Cu(In,Ga)(S,Se) ₂ Thin Films Deposited by Spray Pyrolysis for High Performance Solar Cell Devices. Materials Science Forum, 2016, 864, 143-148.	0.3	2
224	A flatter gallium profile for high-efficiency Cu(In,Ga)(Se,S)2 solar cell and improved robustness against sulfur-gradient variation. Journal of Applied Physics, 2016, 120, .	1.1	12
225	A flexible setup for angle-resolved X-ray fluorescence spectrometry with laboratory sources. Review of Scientific Instruments, 2016, 87, 035108.	0.6	13
226	Crystallographic and optical properties and band structures of CuInSe ₂ , CuIn ₃ Se ₅ , and CuIn ₅ Se ₈ phases in Cu-poor Cu ₂ Se–In ₂ Se ₃ pseudo-binary system. Japanese Journal of Applied Physics, 2016, 55, 04ES15.	0.8	59
227	Buffer layer optimization for high efficiency CIGS solar cells. Journal of Physics: Conference Series, 2016, 758, 012016.	0.3	1
228	A closer look at initial CdS growth on high-efficiency Cu(In, Ga)Se <inf>2</inf> absorbers using surface-sensitive methods. , 2016, , .		14
229	Challenges and Opportunities for Improving Thin-Film Photovoltaics. MRS Advances, 2016, 1, 2827-2832.	0.5	1
230	Wild band edges: The role of bandgap grading and band-edge fluctuations in high-efficiency chalcogenide devices. , 2016, , .		11
231	Influence of CdS and Zn <inf>x</inf> Sn <inf>1â^'x</inf> O <inf>y</inf> buffer layers on the photoluminescence of Cu(In, Ga)Se <inf>2</inf> thin films. , 2016, , .		0
232	Laser synthesis of 2D heterostructures of transitional metal oxides for photo sensors with high sensitivity. Journal of Laser Applications, 2016, 28, .	0.8	5
233	Effect of Se flux on CuGaSe2 absorbers deposited on ITO-coated SLG substrates by using a three-stage co-evaporation process. Journal of the Korean Physical Society, 2016, 69, 1553-1557.	0.3	0
234	Structural and compositional analyses of Cu(In,Ga)Se2 thin film solar cells with different cell performances. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	0.6	4
235	A stochastic model of solid state thin film deposition: Application to chalcopyrite growth. AIP Advances, 2016, 6, 045015.	0.6	1
236	Trap-assisted recombination for ohmic-like contact at p-type Cu(In,Ga)Se2/back n-type TCO interface in superstrate-type solar cell. Journal of Applied Physics, 2016, 120, .	1.1	20
237	Band gap widening at random CIGS grain boundary detected by valence electron energy loss spectroscopy. Applied Physics Letters, 2016, 109, .	1.5	19
238	Characterization of vacancy defects in Cu(In,Ga)Se2 by positron annihilation spectroscopy. AIP Advances, 2016, 6, 125031.	0.6	5

~		_	
	TION	Red	OPT

#	Article	IF	CITATIONS
239	First-principles calculations of Na and K impurities in CuInSe <inf>2</inf> and their effect on Cd incorporation. , 2016, , .		2
240	Impact of alkali doping on carrier transport in Cu <inf>2</inf> ZnSn(S,) Tj ETQq1 1 0.784314 rgBT /Ove	erlock 10 T	f 50 702 Te

NaF/KF post-deposition treatments and their influence on the structure of Cu(In,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 662 Td (Ga)Se&

242	Point contacts at the copper-indium-gallium-selenide interface—A theoretical outlook. Journal of Applied Physics, 2016, 119, .	1.1	12
243	Beneficial effect of post-deposition treatment in high-efficiency Cu(In,Ga)Se2 solar cells through reduced potential fluctuations. Journal of Applied Physics, 2016, 120, .	1.1	75
244	First principles calculations of point defect diffusion in CdS buffer layers: Implications for Cu(In,Ga)(Se,S)2 and Cu2ZnSn(Se,S)4-based thin-film photovoltaics. Journal of Applied Physics, 2016, 119,	1.1	19
245	Research priorities in CdTe and CICS photovoltaics. , 2016, , .		2
246	Improvement of Cu(In, Ga)Se <inf>2</inf> photovoltaic performance by adding Cu-poor compounds Cu(In, Ga) <inf>3</inf> Se <inf>5</inf> at Cu(In, Ga)Se <inf>2</inf> /CdS interface. , 2016, , .		1
247	Improved CIGS modules by KF post deposition treatment and reduced cell-to-module losses. , 2016, , .		10
248	Recent progress in nanoelectrical characterizations of CdTe and Cu(In, Ga)Se <inf>2</inf> . , 2016, , .		7
249	Investigation of Mg dopant in Cu2SnSe3 thin films for photovoltaic applications. Journal of Alloys and Compounds, 2016, 683, 542-546.	2.8	6
250	Toward low-cost large-area CIGS thin film III: Effect of Se concentration on crystal growth and defect formation of sequentially electrodeposited CIGS thin films. Solar Energy, 2016, 132, 547-557.	2.9	16
251	Variation of P2 series interconnects electrical conductivity in the CIGS solar cells by picosecond laser-induced modification. Solar Energy, 2016, 132, 493-502.	2.9	12
252	Assessment of off-axis and in-line electron holography for measurement of potential variations in Cu(In,Ga)Se2 thin-film solar cells. Advanced Structural and Chemical Imaging, 2016, 2, .	4.0	6
253	CIGS thin film growing by electrodeposition technique using mechanical perturbation at the working electrode. Journal of Materials Science: Materials in Electronics, 2016, 27, 5099-5106.	1.1	6
254	Reducing the Schottky barrier height at the MoSe2/Mo(110) interface in thin-film solar cells: Insights from first-principles calculations. Thin Solid Films, 2016, 606, 143-147.	0.8	13
255	Annihilation of structural defects in chalcogenide absorber films for high-efficiency solar cells. Energy and Environmental Science, 2016, 9, 1818-1827.	15.6	42
256	Polytypic Nanocrystals of Cu-Based Ternary Chalcogenides: Colloidal Synthesis and Photoelectrochemical Properties. Journal of the American Chemical Society, 2016, 138, 5576-5584.	6.6	54

#	Article	IF	CITATIONS
257	Diffusion-induced grain boundary migration as mechanism for grain growth and defect annihilation in chalcopyrite thin films. Acta Materialia, 2016, 111, 377-384.	3.8	17
258	Vitreous enamel as sodium source for efficient kesterite solar cells on commercial ceramic tiles. Solar Energy Materials and Solar Cells, 2016, 154, 11-17.	3.0	10
259	Band gap engineering of CuAl _{1â^'<i>x</i>} In _{<i>x</i>} S ₂ alloys for photovoltaic applications: a first principles study. Journal Physics D: Applied Physics, 2016, 49, 205103.	1.3	4
260	Investigation of the potassium fluoride post deposition treatment on the CIGSe/CdS interface using hard X-ray photoemission spectroscopy – a comparative study. Physical Chemistry Chemical Physics, 2016, 18, 14129-14138.	1.3	26
261	Progress in Cleaning and Wet Processing for Kesterite Thin Film Solar Cells. Solid State Phenomena, 2016, 255, 348-353.	0.3	2
262	Printable Solar Cells from Advanced Solution-Processible Materials. CheM, 2016, 1, 197-219.	5.8	68
263	Characteristics of CIGS photovoltaic devices co-evaporated with various Se flux rates at low temperatures. Semiconductor Science and Technology, 2016, 31, 085004.	1.0	7
264	Photovoltage Tomography in Polycrystalline Solar Cells. ACS Energy Letters, 2016, 1, 899-905.	8.8	12
265	Ohmic-like contact formation at the rear interface between Cu(In,Ga)Se2 and ZnO:Al in a lift-off Cu(In,Ga)Se2 solar cell. Thin Solid Films, 2016, 616, 17-22.	0.8	10
266	Nano-structuration effect on the mechanical behavior of gold thin films studied by 2D synchrotron x-ray diffraction. Surface and Coatings Technology, 2016, 308, 418-423.	2.2	2
267	Surface Passivation for Reliable Measurement of Bulk Electronic Properties of Heterojunction Devices. Small, 2016, 12, 5339-5346.	5.2	17
268	Effect of Na on sulfurization growth of SnS thin films and solar cells using NaF/Sn-S precursor. Thin Solid Films, 2016, 615, 25-28.	0.8	12
269	Flexible Perovskite Solar Cell. , 2016, , 325-341.		2
270	The influence of sodium on the point defect characteristics in off stoichiometric CuInSe2. Journal of Physics and Chemistry of Solids, 2016, 98, 309-315.	1.9	10
271	Efficiency enhancement of CIGS compound solar cell fabricated using homomorphic thin Cr2O3 diffusion barrier formed on stainless steel substrate. Applied Surface Science, 2016, 389, 645-650.	3.1	26
272	Naâ€Điffusion Enhanced pâ€ŧype Conductivity in Cu(In,Ga)Se ₂ : A New Mechanism for Efficient Doping in Semiconductors. Advanced Energy Materials, 2016, 6, 1601191.	10.2	115
273	Suppressed Formation of Conductive Phases in One-Pot Electrodeposited CuInSe ₂ by Tuning Se Concentration in Aqueous Electrolyte. ACS Applied Materials & Interfaces, 2016, 8, 24585-24593.	4.0	8
274	Influence of minimum position in [Ga]/([Ga]+[In]) profile of Cu(In,Ga)Se2 on flexible stainless steel substrate on its photovoltaic performances. Solar Energy Materials and Solar Cells, 2016, 157, 750-756.	3.0	12

#	Article	IF	CITATIONS
275	A novel quinternary alloy (Cu2Zn _{1â^'x} Cd _x SnS ₄) nanostructured sensor for biomedical diagnosis. Materials Research Express, 2016, 3, 085022.	0.8	22
276	Effects of the incorporation of alkali elements on Cu(In,Ga)Se2 thin film solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 695-702.	3.0	53
277	Advanced light management based on periodic textures for Cu(In,Ga)Se_2 thin-film solar cells. Optics Express, 2016, 24, A693.	1.7	32
278	Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices. ACS Applied Materials & Interfaces, 2016, 8, 23086-23094.	4.0	28
279	New world record Cu(In, Ga)(Se, S) <inf>2</inf> thin film solar cell efficiency beyond 22%. , 2016, , .		132
280	Defect visualization of Cu(InGa)(SeS)2 thin films using DLTS measurement. Scientific Reports, 2016, 6, 30554.	1.6	22
281	Coevaporated KInSe ₂ : A Fast Alternative to KF Postdeposition Treatment in High-Efficiency Cu(In,Ga)Se ₂ Thin Film Solar Cells. IEEE Journal of Photovoltaics, 2016, 6, 1316-1320.	1.5	46
282	High-efficiency, hybrid Si/C60 heterojunction solar cells. Journal of Materials Chemistry A, 2016, 4, 16410-16417.	5.2	11
283	The effect of sodium on antimony selenide thin film solar cells. RSC Advances, 2016, 6, 87288-87293.	1.7	31
284	Effect of pre-annealing on the phase formation and efficiency of CZTS solar cell prepared by sulfurization of Zn/(Cu,Sn) precursor with H 2 S gas. Solar Energy, 2016, 136, 499-504.	2.9	26
285	Organic-Inorganic Halide Perovskite Photovoltaics. , 2016, , .		115
286	Revealing Surface Modifications of Potassiumâ€Fluorideâ€Treated Cu(In,Ga)Se ₂ : A Study of Material Structure, Chemistry, and Photovoltaic Performance. Advanced Materials Interfaces, 2016, 3, 1600013.	1.9	24
287	Effects of heavy alkali elements in Cu(In,Ga)Se ₂ solar cells with efficiencies up to 22.6%. Physica Status Solidi - Rapid Research Letters, 2016, 10, 583-586.	1.2	1,285
288	Numerical Analysis of In2S3 Layer Thickness, Band Gap and Doping Density for Effective Performance of a CIGS Solar Cell Using SCAPS. Journal of Electronic Materials, 2016, 45, 5721-5727.	1.0	32
289	Growth of cubic CdS films on TiO2-terminated (100) SrTiO3 substrate. Materials Chemistry and Physics, 2016, 183, 334-338.	2.0	2
290	Effects of the surface sulfurization reactions on the structural and photovoltaic properties of Cu(In,Ga)(Se,S)2 solar cells. Thin Solid Films, 2016, 616, 746-753.	0.8	6
291	CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nature Energy, 2016, 1, .	19.8	307
292	Spatial Electron-hole Separation in a One Dimensional Hybrid Organic–Inorganic Lead Iodide. Scientific Reports, 2016, 6, 20626.	1.6	25

	CHARLON		
#	Article	IF	CITATIONS
293	Sn doping induced intermediate band in CuGaS ₂ . RSC Advances, 2016, 6, 110511-110516.	1.7	16
294	Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis. Scientific Reports, 2016, 6, 20001.	1.6	39
295	High efficiency solution-processed thin-film Cu(In,Ga)(Se,S) ₂ solar cells. Energy and Environmental Science, 2016, 9, 3674-3681.	15.6	105
297	Band-gap engineering of CdS, CdSe and ZnSe first-principles calculations. , 2016, , .		1
298	Interface Analysis of Cu(In,Ga)Se2 and ZnS Formed Using Sulfur Thermal Cracker. ETRI Journal, 2016, 38, 265-271.	1.2	13
299	Surface morphology control of In 2 S 3 buffer layer by Sn incorporation and its application to cadmium-free Cu(In,Ga)Se 2 thin-film solar cells. Current Applied Physics, 2016, 16, 1040-1045.	1.1	15
300	Acetate Salts as Nonhalogen Additives To Improve Perovskite Film Morphology for High-Efficiency Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 15333-15340.	4.0	56
301	Quaternary Sputtered Cu(In,Ga)Se ₂ Absorbers for Photovoltaics: A Review. IEEE Journal of Photovoltaics, 2016, 6, 1036-1050.	1.5	18
302	Efficient planar Sb ₂ S ₃ solar cells using a low-temperature solution-processed tin oxide electron conductor. Physical Chemistry Chemical Physics, 2016, 18, 16436-16443.	1.3	86
303	Photo and electrical peculiarities of the nanostructured glass/ITO/AAO and glass/ITO/CdS systems. Journal of Materials Science: Materials in Electronics, 2016, 27, 9853-9860.	1.1	1
304	Properties of Cu1â^'x K x InSe2 alloys. Journal of Materials Science, 2016, 51, 6812-6823.	1.7	29
305	Temperature dependency of the Ga/In distribution in Cu(In,Ga)Se2 absorbers in high temperature processes. Journal of Crystal Growth, 2016, 442, 31-40.	0.7	0
306	Development of semitransparent CIGS thin-film solar cells modified with a sulfurized-AgGa layer for building applications. Journal of Materials Chemistry A, 2016, 4, 10542-10551.	5.2	57
307	Effect of potassium fluoride post-deposition treatment on Cu(In,Ga)Se2 thin films and solar cells fabricated onto sodalime glass substrates. Solar Energy Materials and Solar Cells, 2016, 155, 280-287.	3.0	83
308	A Bottomâ€Up Approach toward Allâ€Solutionâ€Processed Highâ€Efficiency Cu(In,Ga)S ₂ Photocathodes for Solar Water Splitting. Advanced Energy Materials, 2016, 6, 1501949.	10.2	88
309	Toward low-cost large-area CIGS thin film: Compositional and structural variations in sequentially electrodeposited CIGS thin films. Solar Energy, 2016, 125, 415-425.	2.9	26
310	Ultra-thin CdS for highly performing chalcogenides thin film based solar cells. Solar Energy Materials and Solar Cells, 2016, 158, 138-146.	3.0	31
311	Impact of Annealing-Induced Intermixing on the Electronic Level Alignment at the In ₂ S ₃ /Cu(In,Ga)Se ₂ Thin-Film Solar Cell Interface. ACS Applied Materials & Interfaces, 2016, 8, 2120-2124.	4.0	23

#	Article	IF	CITATIONS
312	Alkali doping strategies for flexible and light-weight Cu ₂ ZnSnSe ₄ solar cells. Journal of Materials Chemistry A, 2016, 4, 1895-1907.	5.2	88
313	Arrays of CZTS sensitized ZnO/ZnS and ZnO/ZnSe core/shell nanorods for liquid junction nanowire solar cells. Solar Energy Materials and Solar Cells, 2016, 146, 121-128.	3.0	43
314	Molecular-ink route to 13.0% efficient low-bandgap Culn(S,Se) ₂ and 14.7% efficient Cu(In,Ga)(S,Se) ₂ solar cells. Energy and Environmental Science, 2016, 9, 130-134.	15.6	122
315	Semi-transparent thin film solar cells by a solution process. Korean Journal of Chemical Engineering, 2016, 33, 880-884.	1.2	14
316	Toward low-cost large-area CIGS thin film II: Out-of-plane compositional variations of sequentially electrodeposited Cu/In/Cu/Ga/Cu stacked layers selenized in rapid thermal process. Solar Energy, 2016, 129, 116-125.	2.9	14
317	Control of electrical properties of BaSi2 thin films by alkali-metal doping using alkali-metal fluorides. Thin Solid Films, 2016, 603, 218-223.	0.8	6
318	Tuning the Band Gap of Cu ₂ ZnSn(S,Se) ₄ Thin Films via Lithium Alloying. ACS Applied Materials & Interfaces, 2016, 8, 5308-5313.	4.0	68
319	Substrate temperature optimization for Cu(In, Ga)Se 2 solar cells on flexible stainless steels. Applied Surface Science, 2016, 368, 464-469.	3.1	23
320	Effects of the Cu/(Ga+In) ratio on the bulk and interface properties of Cu(InGa)(SSe)2 solar cells. Solar Energy Materials and Solar Cells, 2016, 149, 195-203.	3.0	18
321	Effects of Mo surface oxidation on Cu(In,Ga)Se ₂ solar cells fabricated by three-stage process with KF postdeposition treatment. Japanese Journal of Applied Physics, 2016, 55, 022304.	0.8	15
322	Metal precursor with bi-layer indium for Cu(In,Ga)Se2 thin film preparation. Solar Energy Materials and Solar Cells, 2016, 150, 88-94.	3.0	3
323	Insights into Intrinsic Defects and the Incorporation of Na and K in the Cu ₂ ZnSnSe ₄ Thin-Film Solar Cell Material from Hybrid-Functional Calculations. Journal of Physical Chemistry C, 2016, 120, 2064-2069.	1.5	18
324	Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives. Journal of Materials Chemistry A, 2016, 4, 1591-1597.	5.2	183
325	Faster synthesis of CIGS nanoparticles using a modified solvothermal method. Journal of Alloys and Compounds, 2016, 659, 178-183.	2.8	23
326	The role of Na incorporation in the low-temperature processed CIGS thin film solar cells using post deposition treatment. Journal of Alloys and Compounds, 2016, 658, 12-18.	2.8	25
327	Cu2SnS3 solar cells fabricated by chemical bath deposition–annealing of SnS/Cu stacked layers. Solar Energy Materials and Solar Cells, 2016, 144, 281-288.	3.0	63
328	Enhancement of the photoelectric performance in inverted bulk heterojunction solid solar cell with inorganic nanocrystals. Applied Energy, 2017, 185, 2217-2223.	5.1	17
329	CIGS thin-film solar module processing: case of high-speed laser scribing. Scientific Reports, 2017, 7, 40502.	1.6	32

#	Article	IF	CITATIONS
330	Influence of CdS and ZnSnO Buffer Layers on the Photoluminescence of Cu(In,Ga)Se \$_2\$ Thin Films. IEEE Journal of Photovoltaics, 2017, 7, 670-675.	1.5	23
331	Orientation of <mml:math <br="" altimg="si0013.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:msub><mml:mrow><mml:mi>Zn</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m< td=""><td>l;mn>3<td>nml:mn> «/r ow> </td></td></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	l;mn>3 <td>nml:mn> «/r ow> </td>	nml:mn> «/r ow>
334	Formation of a K—In—Se Surface Species by NaF/KF Postdeposition Treatment of Cu(In,Ga)Se ₂ Thin-Film Solar Cell Absorbers. ACS Applied Materials & Interfaces, 2017, 9, 3581-3589.	4.0	94
335	CuInGaS ₂ photocathodes treated with SbX ₃ (X  =  Cl, I): the effect of t on solar water splitting performance. Journal Physics D: Applied Physics, 2017, 50, 044003.	he halide 1.3	12
336	Semi-transparent solar cells. Journal Physics D: Applied Physics, 2017, 50, 093001.	1.3	70
337	Controllable Crystallization of CH ₃ NH ₃ Sn _{0.25} Pb _{0.75} I ₃ Perovskites for Hysteresisâ€Free Solar Cells with Efficiency Reaching 15.2%. Advanced Functional Materials, 2017, 27, 1605469.	7.8	84
338	Defect Engineering in Multinary Earthâ€Abundant Chalcogenide Photovoltaic Materials. Advanced Energy Materials, 2017, 7, 1602366.	10.2	250
339	Time-resolved photoluminescence of Cu(In,Ga)(Se,S) 2 thin films and temperature dependent current density-voltage characteristics of their solar cells on surface treatment effect. Current Applied Physics, 2017, 17, 461-466.	1.1	14
340	Crystallographic and optical properties of CuGa3S5, CuGa3Se5 and CuIn3(S,Se)5 and CuGa3(S,Se)5 systems. Thin Solid Films, 2017, 633, 23-30.	0.8	20
341	Potassium Fluoride Ex Situ Treatment on Both Cu-Rich and Cu-Poor CuInSe2 Thin Film Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 684-689.	1.5	24
342	Effect of the KF post-deposition treatment on grain boundary properties in Cu(In, Ga)Se2 thin films. Scientific Reports, 2017, 7, 41361.	1.6	76
343	KF addition to Cu ₂ SnS ₃ thin films prepared by sulfurization process. Japanese Journal of Applied Physics, 2017, 56, 04CS02.	0.8	6
344	Over 14% Efficiency of Directly Sputtered Cu(In,Ga)Se ₂ Absorbers without Postselenization by Postâ€Treatment of Alkali Metals. Advanced Energy Materials, 2017, 7, 1602571.	10.2	35
345	ZnSnP 2 thin-film solar cell prepared by phosphidation method under optimized Zn/Sn atomic ratio of its absorbing layer. Current Applied Physics, 2017, 17, 557-564.	1.1	12
346	Cu(In,Ga)(Se,S) ₂ solar cell research in Solar Frontier: Progress and current status. Japanese Journal of Applied Physics, 2017, 56, 04CA02.	0.8	142
347	Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2. Scientific Reports, 2017, 7, 43266.	1.6	29
348	Chalcopyrite compound semiconductors for thin film solar cells. Current Opinion in Green and Sustainable Chemistry, 2017, 4, 1-7.	3.2	40
349	Cd doping at PVD-CdS/CuInGaSe2 heterojunctions. Solar Energy Materials and Solar Cells, 2017, 164, 128-134.	3.0	16

		REPORT	
#	Article	IF	CITATIONS
350	Device physics of Cu(In,Ga)Se2 solar cells for long-term operation. , 2017, , .		0
351	Potassium-ion doped Cu(In,Ga)Se 2 thin films solar cells: Phase formation, microstructures, and photovoltaic characteristics. Applied Surface Science, 2017, 409, 270-276.	3.1	8
352	Thin-film Cu(In,Ga)(Se,S) ₂ -based solar cell with (Cd,Zn)S buffer layer and Zn _{1â^'<i>x</i>} Mg _{<i>x</i>} O window layer. Progress in Photovoltaics: Research and Applications, 2017, 25, 431-440.	4.4	41
353	The role of Sb in solar cell material Cu ₂ ZnSnS ₄ . Journal of Materials Chemistry A, 2017, 5, 6606-6612.	5.2	36
354	Investigation of selenization and various CBD CdS deposition conditions to fabricate high performing spray pyrolysis synthesized Cu(In,Ga)(S,Se)2 solar cells. Journal of Renewable and Sustainable Energy, 2017, 9, 013504.	0.8	2
355	Compound Copper Chalcogenide Nanocrystals. Chemical Reviews, 2017, 117, 5865-6109.	23.0	670
356	Ultrahigh, ultrafast and large response size visible-near-infrared optical position sensitive detectors based on CIGS structures. Journal of Materials Chemistry C, 2017, 5, 4915-4922.	2.7	40
357	Na role during sulfurization of NaF/Cu/SnS 2 stacked precursor for formation of Cu 2 SnS 3 thin film as absorber of solar cell. Applied Surface Science, 2017, 414, 140-146.	3.1	29
358	Influence of Cu/(Ge + Sn) composition ratio on photovoltaic performances of Cu 2 Sn 1â^'x Ge x S 3 solar cell. Solar Energy, 2017, 149, 341-346.	2.9	11
359	Spontaneous Passivation of Hybrid Perovskite by Sodium Ions from Glass Substrates: Mysterious Enhancement of Device Efficiency Revealed. ACS Energy Letters, 2017, 2, 1400-1406.	8.8	143
360	Control of valence band offset of Cu(In,Ga)Se ₂ solar cells with single-graded band profile. Japanese Journal of Applied Physics, 2017, 56, 062301.	0.8	14
361	Effect of p-BaSi ₂ layer thickness on the solar cell performance of p-BaSi ₂ /n-Si heterojunction solar cells. Japanese Journal of Applied Physics, 2017, 56, 05DB03.	0.8	19
362	Effects of combined additional indium deposition and potassium fluoride post-deposition treatments on Cu(In,Ga)Se ₂ thin film solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 871-877.	4.4	29
363	Determination of the temperature dependency of the electrical parameters of CIGS solar cells. Journal of Renewable and Sustainable Energy, 2017, 9, .	0.8	27
364	Hydrazine solution processed CuSbSe2: Temperature dependent phase and crystal orientation evolution. Solar Energy Materials and Solar Cells, 2017, 168, 112-118.	3.0	23
365	Introduction of Na into Cu 2 SnS 3 thin film for improvement of its photovoltaic performances. Solar Energy Materials and Solar Cells, 2017, 168, 207-213.	3.0	49
366	Revealing the Role of Potassium Treatment in CZTSSe Thin Film Solar Cells. Chemistry of Materials, 2017, 29, 4273-4281.	3.2	43
367	Profiling the organic cation-dependent degradation of organolead halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 1103-1111.	5.2	155

#	Article	IF	CITATIONS
368	Laser annealing of electrodeposited CuInSe2semiconductor precursors: experiment and modeling. Journal of Materials Chemistry C, 2017, 5, 1336-1345.	2.7	6
369	Interface Engineering in CuInSe ₂ Solar Cells Using Ammonium Sulfide Vapors. Solar Rrl, 2017, 1, 1700067.	3.1	7
370	Aluminumâ€doped Zn _{1Ââ^'Â<i>x</i>} Mg _{<i>x</i>} O as transparent conductive oxide of Cu(In,Ga)(S,Se) ₂ â€based solar cell for minimizing surface carrier recombination. Progress in Photovoltaics: Research and Applications, 2017, 25, 996-1004.	4.4	39
371	Defects in Na-, K-, and Cd-Doped CulnSe\$_2\$: Canonical Thermodynamics Based on Ab Initio Calculations. IEEE Journal of Photovoltaics, 2017, 7, 1143-1152.	1.5	5
372	Efficient Flexible Solar Cell based on Compositionâ€Tailored Hybrid Perovskite. Advanced Materials, 2017, 29, 1605900.	11.1	184
373	Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices. Journal of Materials Chemistry A, 2017, 5, 13639-13647.	5.2	68
374	Enhanced Sb ₂ Se ₃ solar cell performance through theory-guided defect control. Progress in Photovoltaics: Research and Applications, 2017, 25, 861-870.	4.4	154
375	Nanoscale insight into the pâ€n junction of alkaliâ€incorporated Cu(In,Ga)Se 2 solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 764-772.	4.4	31
376	Evolution of opto-electronic properties during film formation of complex semiconductors. Scientific Reports, 2017, 7, 45463.	1.6	47
377	CuInSe2, CuIn3Se5, and CuIn5Se8 phases in Cu-poor Cu2Se–In2Se3 pseudo-binary system – Their crystal structures, optical properties and electronic structures. Current Opinion in Green and Sustainable Chemistry, 2017, 4, 77-83.	3.2	12
378	Shining a light on transition metal chalcogenides for sustainable photovoltaics. Chemical Science, 2017, 8, 4177-4187.	3.7	84
379	Reduction of point defects and Cu surface composition in Cu(In,Ga)Se 2 film by Se annealing with a NaF overlayer at intermediate temperatures. Current Applied Physics, 2017, 17, 820-828.	1.1	11
380	Impact of front-side point contact/passivation geometry on thin-film solar cell performance. Solar Energy Materials and Solar Cells, 2017, 165, 94-102.	3.0	39
381	Cu(In, Ga)Se 2 thin film solar cells grown at low temperatures. Solid-State Electronics, 2017, 132, 57-63.	0.8	6
382	Crystallographic, optical, and electronic properties of (Cu,Li)InS2 system. Thin Solid Films, 2017, 633, 172-178.	0.8	7
383	Effect of alkali doping on CIGS photovoltaic ceramic tiles. Solar Energy, 2017, 147, 1-7.	2.9	16
384	Systematic survey of suitable buffer and high resistive window layer materials in CuIn 1â´'x Ga x Se 2 solar cells by numerical simulations. Solar Energy Materials and Solar Cells, 2017, 165, 119-127.	3.0	56
385	Secondary phase formation in (Ag,Cu)(In,Ca)Se2 thin films grown by three-stage co-evaporation. Solar Energy Materials and Solar Cells, 2017, 166, 18-26.	3.0	17

#	Article	IF	CITATIONS
386	Sb2Se3 thin film solar cells in substrate configuration and the back contact selenization. Solar Energy Materials and Solar Cells, 2017, 161, 190-196.	3.0	178
387	Cd and Impurity Redistribution at the CdS/CIGS Interface After Annealing of CIGS-Based Solar Cells Resolved by Atom Probe Tomography. IEEE Journal of Photovoltaics, 2017, 7, 313-321.	1.5	19
388	Optoelectronic Enhancement of Ultrathin CuIn _{1–x} Ga _x Se ₂ Solar Cells by Nanophotonic Contacts. Advanced Optical Materials, 2017, 5, 1600637.	3.6	39
389	In Situ and Ex Situ Investigations of KF Postdeposition Treatment Effects on CIGS Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 665-669.	1.5	43
390	Investigation on the performance of Mo 2 N thin film as barrier layer against Fe in the flexible Cu(In,Ga)Se 2 solar cells on stainless steel substrates. Journal of Alloys and Compounds, 2017, 698, 194-199.	2.8	9
391	Impact of compositional grading and overall Cu deficiency on the near-infrared response in Cu(In,) Tj ETQq1 1 0.	784314 rş 4.4	gBT _{3/2} Overlock
392	High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nature Energy, 2017, 2, .	19.8	247
393	CdS-Free p-Type Cu2ZnSnSe4/Sputtered n-Type In x Ga1â^'x N Thin Film Solar Cells. Journal of Electronic Materials, 2017, 46, 1481-1487.	1.0	0
394	Influence of coevaporation process on CIGS solar cells with reduced absorber thickness and current enhancement with periodically textured glass substrates. Thin Solid Films, 2017, 621, 188-194.	0.8	8
395	Effects of Rubidium Fluoride and Potassium Fluoride Postdeposition Treatments on Cu(In,Ga)Se ₂ Thin Films and Solar Cell Performance. Chemistry of Materials, 2017, 29, 9695-9704.	3.2	91
396	Impact of Wide-Ranging Nanoscale Chemistry on Band Structure at Cu(In, Ga)Se2 Grain Boundaries. Scientific Reports, 2017, 7, 14163.	1.6	21
397	Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2. Engineering, 2017, 3, 445-451.	3.2	79
398	Defect physics in intermediate-band materials: Insights from an optimized hybrid functional. Physical Review B, 2017, 96, .	1.1	13
399	High Efficiency Solar Cell Based on Full PVD Processed Cu(In,Ga)Se ₂ /CdIn ₂ S ₄ Heterojunction. Solar Rrl, 2017, 1, 1700140.	3.1	16
400	Review on Alkali Element Doping in Cu(In,Ga)Se 2 Thin Films and Solar Cells. Engineering, 2017, 3, 452-459.	3.2	93
401	Chemistry and Dynamics of Ge in Kesterite: Toward Band-Gap-Graded Absorbers. Chemistry of Materials, 2017, 29, 9399-9406.	3.2	59
402	Mechanical properties of CIGS film with different metallic composition by co-evaporation method. Materials Research Express, 2017, 4, 115006.	0.8	5
403	Thermodynamic limitations for alkali metals in Cu(In,Ga)Se ₂ . Journal of Materials Research, 2017, 32, 3789-3800.	1.2	10

#	Article	IF	CITATIONS
404	Cu(In,Ga)Se ₂ Solar Cells with Amorphous In ₂ O ₃ -Based Front Contact Layers. ACS Applied Materials & Interfaces, 2017, 9, 29677-29686.	4.0	14
405	Si-Doping Effects in Cu(In,Ga)Se ₂ Thin Films and Applications for Simplified Structure High-Efficiency Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 31119-31128.	4.0	11
406	Restraining the Band Fluctuation of CBDâ€Zn(O,S) Layer: Modifying the Heteroâ€Junction Interface for High Performance Cu ₂ ZnSnSe ₄ Solar Cells With Cdâ€Free Buffer Layer. Solar Rrl, 2017, 1, 1700075.	3.1	29
407	Low-temperature solution-based processing to 7.24% efficient superstrate CuInS2 solar cells. Solar Energy, 2017, 157, 581-586.	2.9	13
408	KF post-deposition treatment of industrial Cu(In, Ga)(S, Se)2 thin-film surfaces: Modifying the chemical and electronic structure. Applied Physics Letters, 2017, 111, .	1.5	19
409	Enhanced Efficiency of Cd-Free Cu(In,Ga)(Se,S)2 Minimodule Via (Zn,Mg)O Second Buffer Layer and Alkali Metal Post-Treatment. IEEE Journal of Photovoltaics, 2017, 7, 1773-1780.	1.5	98
410	Highly efficient perovskite solar cells incorporating NiO nanotubes: increased grain size and enhanced charge extraction. Journal of Materials Chemistry A, 2017, 5, 21750-21756.	5.2	23
411	Addressing the impact of rear surface passivation mechanisms on ultra-thin Cu(In,Ga)Se2 solar cell performances using SCAPS 1-D model. Solar Energy, 2017, 157, 603-613.	2.9	45
412	Impact of a RbF Postdeposition Treatment on the Electronic Structure of the CdS/Cu(In,Ga)Se ₂ Heterojunction in High-Efficiency Thin-Film Solar Cells. ACS Energy Letters, 2017, 2, 2383-2387.	8.8	76
413	Cigs flexible nano solar cell by inert argon gas condensation. Applied Solar Energy (English) Tj ETQq1 1 0.78431	4 rgBT /Ov 0.2	verlock 10 Tr 5
414	Effect of a TiN alkali diffusion barrier layer on the physical properties of Mo back electrodes for CIGS solar cell applications. Current Applied Physics, 2017, 17, 1747-1753.	1.1	12
415	Review of grain interior, grain boundary, and interface effects of K in CIGS solar cells: Mechanisms for performance enhancement. Solar Energy Materials and Solar Cells, 2017, 172, 18-24.	3.0	82
416	Improvement of minority carrier lifetime and conversion efficiency by Na incorporation in Cu2ZnSnSe4 solar cells. Journal of Applied Physics, 2017, 122, .	1.1	37
417	(Invited) Synthesis, Kinetics, Characterization and Application of Sodium and Potassium (poly)Selenides for Chalcogenide Semiconductor Doping. ECS Transactions, 2017, 77, 63-66.	0.3	1
418	Growth and characterization of EDTA assisted CBD-CdS. Materials Chemistry and Physics, 2017, 200, 1-8.	2.0	15
419	Cu(In,Ca)Se2 thin films annealed with SnSe2 for solar cell absorber fabricated by magnetron sputtering. Solar Energy, 2017, 155, 601-607.	2.9	12
420	KF post deposition treatment in coâ€evaporated Cu(In,Ga)Se ₂ thin film solar cells: Beneficial or detrimental effect induced by the absorber characteristics. Progress in Photovoltaics: Research and Applications, 2017, 25, 1068-1076.	4.4	57
421	Efficiency enhancement of flexible Cu(In,Ga)Se ₂ solar cells deposited on polyimide-coated soda lime glass substrate by alkali treatment. Japanese Journal of Applied Physics, 2017, 56, 08MC15.	0.8	6

#	Article	IF	CITATIONS
422	Control of oxygen for magnetron sputtered ZnO:Al window layer in Cu(In,Ga)Se ₂ thin film solar cells. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700132.	0.8	6
423	Air-annealing of Cu(In, Ga)Se 2 /CdS and performances of CIGS solar cells. Applied Surface Science, 2017, 426, 1213-1220.	3.1	19
424	Chemistry of K in Cu(In,Ga)Se2 photovoltaic absorbers: Effects of temperature on Cu-K-In-Se films. Journal of Alloys and Compounds, 2017, 726, 538-546.	2.8	12
425	Effects of long-term heat-light soaking on Cu(In,Ga)Se ₂ solar cells with KF postdeposition treatment. Applied Physics Express, 2017, 10, 092301.	1.1	51
426	Exceptionally Robust CuInS ₂ /ZnS Nanoparticles as Single Component Photocatalysts for H ₂ Evolution. Journal of Physical Chemistry C, 2017, 121, 19031-19035.	1.5	27
427	Fabrication of Cd-free CuInSe2 solar cells using wet processes. Journal of Materials Science, 2017, 52, 13533-13540.	1.7	3
428	Evidence for Chemical and Electronic Nonuniformities in the Formation of the Interface of RbF-Treated Cu(In,Ga)Se ₂ with CdS. ACS Applied Materials & Interfaces, 2017, 9, 44173-44180.	4.0	25
429	Voltage dependent admittance spectroscopy for the detection of near interface defect states for thin film solar cells. Physical Chemistry Chemical Physics, 2017, 19, 30410-30417.	1.3	19
430	IZO or IOH Window Layers Combined with Zn(O,S) and CdS Buffers for Cu(In,Ca)Se ₂ Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700688.	0.8	3
431	Rubidium segregation at random grain boundaries in Cu(In,Ga)Se2 absorbers. Nano Energy, 2017, 42, 307-313.	8.2	70
432	Self-anti-reflective density-modulated thin films by HIPS technique. Nanotechnology, 2017, 28, 335703.	1.3	3
433	Influence of Na in Cu2SnS3 film on its physical properties and photovoltaic performances. Thin Solid Films, 2017, 636, 431-437.	0.8	23
434	Ga-grading and Solar Cell Capacitance Simulation of an industrial Cu(In,Ga)Se2 solar cell produced by an in-line vacuum, all-sputtering process. Thin Solid Films, 2017, 636, 367-374.	0.8	11
435	Gallium In-Depth Profile in Bromine- Etched Copper–Indium–Galium–(Di)selenide (CICS) Thin Films Inspected Using Raman Spectroscopy. Applied Spectroscopy, 2017, 71, 1334-1339.	1.2	5
436	Investigation of the resistivity of molybdenum diselenide prepared with varied sodium content. Journal of Alloys and Compounds, 2017, 725, 69-76.	2.8	3
437	Fabrication and device characterization of potassium fluoride solution treated CZTSSe solar cell. Current Applied Physics, 2017, 17, 1353-1360.	1.1	4
438	Top PV market solar cells 2016. Opto-electronics Review, 2017, 25, 55-64.	2.4	67
439	Performance prediction of chalcopyrite-based dual-junction tandem solar cells. Solar Energy, 2017, 155, 167-177.	2.9	16

#	Article	IF	CITATIONS
440	New Insight of Li-Doped Cu ₂ ZnSn(S,Se) ₄ Thin Films: Li-Induced Na Diffusion from Soda Lime Glass by a Cation-Exchange Reaction. ACS Applied Materials & Interfaces, 2017, 9, 23878-23883.	4.0	36
441	Changes in gamma attenuation behaviour of sol-gel derived CIGS thin film irradiated using Co-60 radioisotope. Journal of Alloys and Compounds, 2017, 695, 1405-1413.	2.8	7
442	Comparison of CIGS Solar Cells Made With Different Structures and Fabrication Techniques. IEEE Journal of Photovoltaics, 2017, 7, 286-293.	1.5	25
443	Potassium post deposition treatment of solution-processed kesterite solar cells. Thin Solid Films, 2017, 633, 131-134.	0.8	11
444	Effect of different alkali (Li, Na, K, Rb, Cs) metals on Cu 2 ZnSnSe 4 solar cells. Thin Solid Films, 2017, 633, 156-161.	0.8	52
445	Fabrication of Cu 2 SnS 3 thin film solar cells using Cu/Sn layered metallic precursors prepared by a sputtering process. Solar Energy, 2017, 145, 27-32.	2.9	36
446	Effect of annealing on the morphology and compositions of Cu2ZnSnSe4 thin films fabricated by thermal evaporation for solar cells. Thin Solid Films, 2017, 621, 47-51.	0.8	15
447	Transient and modulated charge separation at CuInSe2/C60 and CuInSe2/ZnPc hybrid interfaces. Applied Surface Science, 2017, 396, 366-374.	3.1	10
448	High-efficiency Cu(In,Ga)Se2 solar cells. Thin Solid Films, 2017, 633, 13-17.	0.8	58
449	Effect of Cu/(In+Ga) ratios on the secondary phases and the performance of Cu2InGa(S,Se)4 thin film solar cells. Journal of Alloys and Compounds, 2017, 690, 152-159.	2.8	12
450	On the beneficial effect of Al2O3 front contact passivation in Cu(In,Ga)Se2 solar cells. Solar Energy Materials and Solar Cells, 2017, 159, 189-196.	3.0	27
451	CdS and Zn1â^'xSnxOy buffer layers for CIGS solar cells. Solar Energy Materials and Solar Cells, 2017, 159, 272-281.	3.0	56
452	Progress in thin film CIGS photovoltaics – Research and development, manufacturing, and applications. Progress in Photovoltaics: Research and Applications, 2017, 25, 645-667.	4.4	248
453	Ultra-thin Cu(In,Ga)Se 2 solar cells prepared by an alternative hybrid co-sputtering/evaporation process. Thin Solid Films, 2017, 633, 66-70.	0.8	11
454	Mapping and comparison of the shortcomings of kesterite absorber layers, and how they could affect industrial scalability. Thin Solid Films, 2017, 633, 146-150.	0.8	5
455	Effects of Sodium and Potassium on the Photovoltaic Performance of CIGS Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 303-306.	1.5	41
456	High <italic>V</italic> _{oc} in (Cu,Ag)(In,Ga)Se ₂ Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 1789-1794.	1.5	72
457	Crystallographic and optical properties and band diagrams of CuGaS ₂ and CuGa ₅ S ₈ phases in Cu-poor Cu ₂ S〓Ga ₂ S ₃ pseudo-binary system. Japanese Journal of Applied Physics. 2017. 56. 04CS12.	0.8	15

ARTICLE IF CITATIONS # CdSBuffer Layer by CBD on 300 mm X 300 mm Glass for CIGS Solar Cell Application. Materials Today: 458 0.9 9 Proceedings, 2017, 4, 12525-12528. Transition Metal Oxides Nano-Layers as Efficient Back Electron Reflectors For Cu2ZnSnSe4 Solar Cells., 2017,,. 4. Microstructure analysis of chalcopyrite-type Cu₂ZnSe₄ and kesterite-type 460 1 Cu2ZnSnSe4 absorber layers in thin film solar cells. , 2017, , 73-98. Ternary phosphide semiconductor in solar cells., 2017,,. CIGSe Absorber Preparation: an Alternative to H2Se., 2017,,. 462 1 CuInSe2 absorber layer grown under copper excess with a copper poor surface formed by a KF post deposition treatment., 2017,,. A Practical Irradiance Model for Bifacial PV Modules., 2017,,. 464 57 Thermodynamic Efficiency Limit of Bifacial Solar Cells for Various Spectral Albedos., 2017,,. 465 Growth of Mos2 Thin Films with Microdome Texture as Omnidirectional Light Trap for Solar Cell 466 1 Applications., 2017,,. Photovoltaics Fundamentals, Technology and Application., 2017, , 765-850. Photovoltaic Performance and Impedance Spectroscopy Analysis of CuInS2 Thin Film Solar Cells Deposited on Polyimide Foil via Spray Pyrolysis. International Journal of Electrochemical Science, 468 0.5 8 2017, 12, 9626-9639. Lightweight Carbon Fiber Mirrors for Solar Concentrator Applications., 2017,,. Comparative study of water and ammonia rinsing processes of potassium fluoride-treated 470 0.8 18 Cu(In,Ga)Se₂thin film solar cells. Japanese Journal of Applied Physics, 2017, 56, 08MC12. Notice of Removal Co-evaporated KInSe2: A fast alternative to KF post deposition treatment in high 471 efficiency Cu(In,Ga)Se2 thin film solar cells. , 2017, , . Notice of Removal In-situ and ex-situ characterizations of CIGS solar cells with KF post deposition 472 2 treatment., 2017,,. Interface Effects of Alkali Treatment on Cu-Rich Thin Film Solar Cells., 2017,,. Stability of Cd1-xZnxTe alloys under CdTe processing conditions., 2017, , . 474 0 In-line Potassium Fluoride Treatment of CICS Absorbers Deposited on Flexible Substrates in a Production-Scale Process Tool., 2017,,.

ARTICLE IF CITATIONS Supply and Demand Constraints on Future PV Power in the USA., 2017,,. 1 476 CU2ZnSnSe4 Solar Cells onto Polyimide Substrates Fabricated at Low Temperature., 2017, , . Depth Profile of Impurity Phase in Wide-Bandgap Cu(In1â[^]x,Gax)Se2 Film Fabricated by Three-Stage 478 1.0 6 Process. Journal of Electronic Materials, 2018, 47, 4944-4949. An investigation on performance enhancement for KF post deposition treated CICS solar cells 479 fabricated by sputtering CIGS quaternary targets. Vacuum, 2018, 151, 233-236. Effects of Mo films prepared via different sputtering conditions on the formation of MoSe2 during 480 2.8 6 selenization. Journal of Alloys and Compounds, 2018, 747, 621-628. CIGS thin films grown by hybrid sputtering-evaporation method: Properties and PV performance. Solar Energy, 2018, 175, 16-24. Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic 482 5.8 51 absorbers. Nature Communications, 2018, 9, 826. Rubidium distribution at atomic scale in high efficient Cu(In,Ga)Se2 thin-film solar cells. Applied 1.5 57 Physics Letters, 2018, 112, . Injection Current Barrier Formation for RbF Postdepositionâ€Treated Cu(In,Ga)Se₂â€Based 484 1.9 51 Solar Cells. Advanced Materials Interfaces, 2018, 5, 1701007. Deep surface Cu depletion induced by K in highâ€efficiency Cu(In,Ga)Se₂ solar cell 4.4 absorbers. Progress in Photovoltaics: Research and Applications, 2018, 26, 730-739. Investigation of correlation between open-circuit voltage deficit and carrier recombination rates in 486 32 1.5 Cu(In,Ga)(S,Se)2-based thin-film solar cells. Applied Physics Letters, 2018, 112, 151601. Reduced recombination in a surface-sulfurized Cu(InGa)Se₂thin-film solar cell. Japanese 0.8 Journal of Applied Physics, 2018, 57, 055701. Optimization of Copper Indium Gallium Diselenide Thin Film Solar Cell (CIGS). Lecture Notes in 488 0.5 2 Networks and Systems, 2018, , 479-485. The effect of Na on Cu-K-In-Se thin film growth. Journal of Crystal Growth, 2018, 488, 36-42. 489 Spatial control of cocatalysts and elimination of interfacial defects towards efficient and robust 490 15.6 114 CIGS photocathodes for solar water splitting. Energy and Environmental Science, 2018, 11, 2025-2034. Atomic layer deposition of Zn(O,S) buffer layers for Cu(In,Ga)Se2 solar cells with KF post-deposition treatment. Solar Energy Materials and Solar Cells, 2018, 183, 8-15. A direct measurement of higher photovoltage at grain boundaries in CdS/ CZTSe solar cells using 493 3.043 KPFM technique. Solar Energy Materials and Solar Cells, 2018, 183, 34-40. Historical Analysis of Champion Photovoltaic Module Efficiencies. IEEE Journal of Photovoltaics, 494 1.5 2018, 8, 363-372.

	CITATION	Report	
#	Article	IF	CITATIONS
495	Cu(In,Ga)Se2 solar cells on low cost mild steel substrates. Solar Energy, 2018, 175, 25-30.	2.9	35
496	Recent progress of colloidal quantum dot based solar cells. Chinese Physics B, 2018, 27, 018808.	0.7	16
497	Atomic Layer Deposition of Conducting CuS Thin Films from Elemental Sulfur. Advanced Materials Interfaces, 2018, 5, 1701366.	1.9	15
498	Cation Substitution in Earthâ€Abundant Kesterite Photovoltaic Materials. Advanced Science, 2018, 5, 1700744.	5.6	161
499	Group III Elemental Composition Dependence of RbF Postdeposition Treatment Effects on Cu(In,Ga)Se ₂ Thin Films and Solar Cells. Journal of Physical Chemistry C, 2018, 122, 3809-3817.	1.5	86
500	Effects of potassium on kesterite solar cells: Similarities, differences and synergies with sodium. AIP Advances, 2018, 8, .	0.6	22
501	Multi-phase structures of boron-doped copper tin sulfide nanoparticles synthesized by chemical bath deposition for optoelectronic devices. Journal of Physics and Chemistry of Solids, 2018, 115, 103-112.	1.9	16
502	Growth dynamics controllable deposition of homoepitaxial MgO films on the IBAD-MgO substrates. Applied Surface Science, 2018, 435, 225-228.	3.1	3
503	Increase in conversion efficiency of above 14% in Cu(In,Ga)3Se5 (β-CIGS) solar cells by Na2S incorporation through the surface of β –CIGS film. Solar Energy Materials and Solar Cells, 2018, 179, 289-296.	3.0	13
504	Surface and bulk effects of K in Cu1â^'xKxIn1â^'yGaySe2 solar cells. Solar Energy Materials and Solar Cells, 2018, 179, 362-371.	3.0	11
505	Hierarchical CuInS2 synthesized with the induction of histidine for polymer/CuInS2 solar cells. Materials Science in Semiconductor Processing, 2018, 76, 14-24.	1.9	16
506	Modelling of flexible thin-film modules for building and product integrated photovoltaics. Solar Energy Materials and Solar Cells, 2018, 181, 38-45.	3.0	21
507	The effect of thermal evaporated MoO3 intermediate layer as primary back contact for kesterite Cu2ZnSnS4 solar cells. Thin Solid Films, 2018, 648, 39-45.	0.8	34
508	Compositionally Graded Absorber for Efficient and Stable Nearâ€Infraredâ€Transparent Perovskite Solar Cells. Advanced Science, 2018, 5, 1700675.	5.6	65
509	Siâ€Đoped Cu(In,Ga)Se ₂ Photovoltaic Devices with Energy Conversion Efficiencies Exceeding 16.5% without a Buffer Layer. Advanced Energy Materials, 2018, 8, 1702391.	10.2	8
510	Effect of an additional Cu-deficient layer deposition on alkali treated Cu(In,Ga)Se2 solar cells deposited at low temperature. Solar Energy Materials and Solar Cells, 2018, 184, 67-72.	3.0	9
511	ZnO nanowire based CIGS solar cell and its efficiency enhancement by the piezo-phototronic effect. Nano Energy, 2018, 49, 508-514.	8.2	95
512	Influence of Na and Ga on the electrical properties of perfect 60° dislocations in Cu(In, Ga)Se2 thin-film photovoltaic absorbers. Journal of Applied Physics, 2018, 123,	1.1	1

#	Article	IF	CITATIONS
513	Nanosecond laser scribing of CIGS thin film solar cell based on ITO bottom contact. Applied Physics Letters, 2018, 112, .	1.5	14
514	Effect of thermal annealing on the redistribution of alkali metals in Cu(In,Ga)Se2solar cells on glass substrate. Journal of Applied Physics, 2018, 123, 093101.	1.1	14
515	A short review on the advancements in electroplating of CuInGaSe2 thin films. Materials for Renewable and Sustainable Energy, 2018, 7, 1.	1.5	23
516	What Makes a Good Solar Cell?. Advanced Energy Materials, 2018, 8, 1703385.	10.2	167
517	Interplay between potassium doping and bandgap profiling in selenized Cu(In,Ga)Se2 solar cells: A functional CuGa:KF surface precursor layer. Nano Energy, 2018, 47, 393-400.	8.2	16
518	20% Efficient Zn _{0.9} Mg _{0.1} O:Al/Zn _{0.8} Mg _{0.2} O/Cu(In,Ga)(S,Se) ₂ Solar Cell Prepared by All-Dry Process through a Combination of Heat-Light-Soaking and Light-Soaking Processes ACS Applied Materials & amp: Interfaces 2018 10 1136111368	4.0	38
519	Intrinsic point defects in <i>β</i> -In2S3 studied by means of hybrid density-functional theory. Journal of Applied Physics, 2018, 123, .	1.1	22
520	Role of Na in solution-processed CuInSe2 (CISe) devices: A different story for improving efficiency. Nano Energy, 2018, 48, 401-412.	8.2	24
521	Highly efficient Ag-alloyed Cu(In,Ga)Se2 solar cells with wide bandgaps and their application to chalcopyrite-based tandem solar cells. Nano Energy, 2018, 48, 345-352.	8.2	33
522	Formation of CdS using electrochemical atomic layer deposition (E-ALD) and successive ionic layer adsorption reaction (SILAR). Electrochimica Acta, 2018, 271, 19-26.	2.6	9
523	Single-graded CIGS with narrow bandgap for tandem solar cells. Science and Technology of Advanced Materials, 2018, 19, 263-270.	2.8	51
524	Cu(In,Ga)Se2 surface treatment with Na and NaF: A combined photoelectron spectroscopy and surface photovoltage study in ultra-high vacuum. Applied Surface Science, 2018, 444, 436-441.	3.1	4
525	TiO2 as intermediate buffer layer in Cu(In,Ga)Se2 solar cells. Solar Energy Materials and Solar Cells, 2018, 174, 397-404.	3.0	44
526	C <scp>ZTS</scp> e solar cells developed on polymer substrates: Effects of lowâ€temperature processing. Progress in Photovoltaics: Research and Applications, 2018, 26, 55-68.	4.4	23
527	ZnSnP2 solar cell with (Cd,Zn)S buffer layer: Analysis of recombination rates. Solar Energy Materials and Solar Cells, 2018, 174, 412-417.	3.0	18
528	Heterointerface recombination of Cu(In,Ga)(S,Se) ₂ â€based solar cells with different buffer layers. Progress in Photovoltaics: Research and Applications, 2018, 26, 127-134.	4.4	31
529	Tuning to the band gap by complex defects engineering: insights from hybrid functional calculations in CulnS ₂ . Journal Physics D: Applied Physics, 2018, 51, 025105.	1.3	10
530	Complexing agent-assisted highly dense CuInSe2 thin films prepared by one-step electrochemical deposition. Journal of Electroanalytical Chemistry, 2018, 808, 211-217.	1.9	6

	CITATION	N REPORT	
#	Article	IF	CITATIONS
531	First-principles study on the alkali chalcogenide secondary compounds in Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4 thin film solar cells. Journal of Energy Chemistry, 2018, 27, 1140-1150.	7.1	16
532	Unravelling the Correlation of Electronic Structure and Carrier Dynamics in CulnS2 Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 974-980.	1.5	18
533	Examination of electrical and optical properties of Zn1â^'xMgxO:Al fabricated by radio frequency magnetron co-sputtering. Thin Solid Films, 2018, 646, 105-111.	0.8	10
534	Correlative transmission <scp>Kikuchi</scp> diffraction and atom probe tomography study of <scp>Cu(In,Ga)Se₂</scp> grain boundaries. Progress in Photovoltaics: Research and Applications, 2018, 26, 196-204.	4.4	36
535	Proposed suitable electron reflector layer materials for thin-film CuIn1â^'xGaxSe2 solar cells. Optical Materials, 2018, 75, 216-223.	1.7	26
536	Impact of heatâ€light soaking on potassium fluoride treated <scp>CIGS</scp> solar cells with <scp>CdS</scp> buffer layer. Progress in Photovoltaics: Research and Applications, 2018, 26, 171-178.	4.4	46
537	Effect of KF absorber treatment on the functionality of different transparent conductive oxide layers in CIGSe solar cells. Progress in Photovoltaics: Research and Applications, 2018, 26, 13-23.	4.4	22
538	Curve-Correction Factor for Characterization of the Output of a Three-Dimensional Curved Photovoltaic Module on a Car Roof. Coatings, 2018, 8, 432.	1.2	27
539	Surface reactivity of CIGS absorber on soda-lime and flexible substrates studied by XPS: a global approach of deoxidation, ageing and alkali elements distribution. , 2018, , .		1
540	Mechanical Perturbations at the Working Electrode to Materials Synthesis by Electrodeposition. , 0, , .		0
541	Tailored lead iodide growth for efficient flexible perovskite solar cells and thin-film tandem devices. NPG Asia Materials, 2018, 10, 1076-1085.	3.8	35
542	Voids and compositional inhomogeneities in Cu(In,Ga)Se ₂ thin films: evolution during growth and impact on solar cell performance. Science and Technology of Advanced Materials, 2018, 19, 871-882.	2.8	23
543	ALD-Zn _{<i>x</i>} Ti _{<i>y</i>} O as Window Layer in Cu(In,Ga)Se ₂ Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 43603-43609.	4.0	20
544	Overall Distribution of Rubidium in Highly Efficient Cu(In,Ga)Se ₂ Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 40592-40598.	4.0	44
545	Real Time Measurement, Monitoring, and Control of Culn1â^'xGaxSe2 by Spectroscopic Ellipsometry. Springer Series in Optical Sciences, 2018, , 209-253.	0.5	0
546	Thin-film solar cells exceeding 22% solar cell efficiency: An overview on CdTe-, Cu(In,Ga)Se2-, and perovskite-based materials. Applied Physics Reviews, 2018, 5, .	5.5	175
547	Quantitative Analysis and Band Gap Determination for CIGS Absorber Layers Using Surface Techniques. Journal of Analytical Methods in Chemistry, 2018, 2018, 1-9.	0.7	8
548	Assessing the impact of rear point-contact/passivation on CIGS cells with different absorber thickness and grading. , 2018, , .		2

#	Article	IF	CITATIONS
549	Enhanced Heteroâ€Junction Quality and Performance of Kesterite Solar Cells by Aluminum Hydroxide Nanolayers and Efficiency Limitation Revealed by Atomicâ€resolution Scanning Transmission Electron Microscopy. Solar Rrl, 2018, 3, 1800279.	3.1	6
550	Properties of Coâ€Evaporated RbInSe ₂ Thin Films. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800564.	1.2	16
551	The Formation and Impact of Sodium rich Secondary Phases in the Absorber layer of Cu(In,Ga)Se <inf>2</inf> Based Solar Cells. , 2018, , .		2
552	Modification of electronic grain boundary properties of Cu(In, Ga)Se <inf>2</inf> by alkali-fluoride post deposition treatments. , 2018, , .		0
553	RbF-PDT induced sodium displacement in Cu(In, Ga)Se <inf>2</inf> absorbers grown under high substrate temperatures. , 2018, , .		0
554	An innovative alkali doping strategy for Cu <inf>2</inf> ZnSnSe <inf>4</inf> through the CdS buffer layer. , 2018, , .		1
555	Highly efficient flexible solar cells based on a room-temperature processed inorganic perovskite. Journal of Materials Chemistry A, 2018, 6, 20365-20373.	5.2	34
556	Rubidium Fluoride Post-Deposition Treatment: Impact on the Chemical Structure of the Cu(In,Ga)Se ₂ Surface and CdS/Cu(In,Ga)Se ₂ Interface in Thin-Film Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 37602-37608.	4.0	19
557	Deposition Technologies of High-Efficiency CIGS Solar Cells: Development of Two-Step and Co-Evaporation Processes. Crystals, 2018, 8, 296.	1.0	29
558	Diffusion of Rb in polycrystalline Cu(In,Ca)Se2 layers and effect of Rb on solar cell parameters of Cu(In,Ga)Se2 thin-film solar cells. Journal of Applied Physics, 2018, 124, .	1.1	51
559	Investigation of near-surface material composition of Cu(In,Ga)Se ₂ film after air exposure and chemical etching for its Cd-free solar cell. Japanese Journal of Applied Physics, 2018, 57, 121201.	0.8	3
560	Modification of Mo Back Contact with MoO _{3â^'x} Layer and its Effect to Enhance the Performance of Cu ₂ ZnSnS ₄ Solar Cells. Solar Rrl, 2018, 2, 1800243.	3.1	28
561	Increasing markets and decreasing package weight for high-specific-power photovoltaics. Nature Energy, 2018, 3, 1002-1012.	19.8	103
562	Grain-Resolved Ultrafast Photophysics in Cu ₂ BaSnS _{4–<i>x</i>} Se _{<i>x</i>} Semiconductors Using Pump–Probe Diffuse Reflectance Spectroscopy and Microscopy. ACS Applied Materials & amp; Interfaces, 2018. 10. 39615-39623.	4.0	13
563	Cadmium and ytterbium Co-doped TiO2 nanorod arrays perovskite solar cells: enhancement of open circuit voltage and short circuit current density. Journal of Materials Science: Materials in Electronics, 2018, 29, 21138-21144.	1.1	10
564	A Review on Sputtered Chalcopyrite and Kesterite Thin Film Solar Cell. , 2018, , .		1
565	Luminescence and Stimulated Emission of Polycrystalline Cu(In,Ga)Se2 Films Deposited by Magnetron-Assisted Sputtering. Semiconductors, 2018, 52, 1238-1243.	0.2	0
566	Utilizing magnetron sputtered AZO-ITO bilayer structure as transparent conducting oxide for improving the performance of flexible CIGS solar cell. Superlattices and Microstructures, 2018, 123, 251-256.	1.4	12

#	Article	IF	CITATIONS
567	Efficiency Improvement of Sb ₂ Se ₃ Solar Cells via Grain Boundary Inversion. ACS Energy Letters, 2018, 3, 2335-2341.	8.8	112
568	In vacuo XPS investigation of Cu(In,Ga)Se2 surface after RbF post-deposition treatment. Thin Solid Films, 2018, 665, 143-147.	0.8	31
569	Direct insights into RbInSe2 formation at Cu(In,Ga)Se2 thin film surface with RbF postdeposition treatment. Applied Physics Letters, 2018, 113, .	1.5	65
570	Quantum dot-sensitized solar cells. Chemical Society Reviews, 2018, 47, 7659-7702.	18.7	344
571	Improving the lateral homogeneity of Cu(In, Ga)Se2 layers fabricated by RF magnetron sputtering from a quaternary ceramic target. Ceramics International, 2018, 44, 21928-21932.	2.3	3
572	Control of Donor Concentration in <italic>n</italic> -Type Buffer Layer for High-Efficiency Cu(In,Ca)Se ₂ Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 1841-1846.	1.5	8
573	Study of Gallium Front Grading at Low Deposition Temperature on Polyimide Substrates and Impacts on the Solar Cell Properties. IEEE Journal of Photovoltaics, 2018, 8, 1852-1857.	1.5	7
574	Effect of Combined Alkali (KF + CsF) Postâ€Deposition Treatment on Cu(InGa)Se ₂ Solar Cel Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800372.	ls. 1.2	17
575	Pre-incorporation of Na into flexible Cu(In,Ga)Se2 thin film solar cells. Solar Energy, 2018, 173, 1080-1086.	2.9	5
576	High-performance perovskite/Cu(In,Ca)Se ₂ monolithic tandem solar cells. Science, 2018, 361, 904-908.	6.0	314
577	Electrical properties of CZTS thin films. AIP Conference Proceedings, 2018, , .	0.3	2
578	Surface and bulk effects of K in highly efficient Cu1-xKxInSe2 solar cells. Solar Energy Materials and Solar Cells, 2018, 185, 45-53.	3.0	13
579	Characterization of Interface Between Accurately Controlled Cu-Deficient Layer and Cu(In,Ga)Se2 Absorber for Cu(In,Ga)Se2 Solar Cells. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800129.	1.2	11
580	Refractive indices of layers and optical simulations of Cu(In,Ga)Se ₂ solar cells. Science and Technology of Advanced Materials, 2018, 19, 396-410.	2.8	46
581	Silver (Ag) incorporated Cu2ZnSnS4 thin film for improved optical and morphological properties. Superlattices and Microstructures, 2018, 120, 54-59.	1.4	11
582	Impact of KF Post-Deposition Treatment on Aging of the Cu(In,Ca)Se ₂ Surface and Its Interface with CdS. ACS Applied Energy Materials, 2018, 1, 2681-2688.	2.5	12
583	Thin Film Photovoltaics. , 2018, , 361-370.		11
584	Innovative approaches in thin-film photovoltaic cells. , 2018, , 595-632.		0

ARTICLE IF CITATIONS Flexible Perovskite Solar Cells., 2018, , 341-371. 585 4 Impressive self-healing phenomenon of Cu ₂ ZnSn(S, Se) ₄ solar cells. Chinese Physics B, 2018, 27, 066108. Alkali treatments of Cu(In,Ga)Se₂ thinâ€film absorbers and their impact on transport 587 4.4 49 barriers. Progress in Photovoltaics: Research and Applications, 2018, 26, 911-923. Tunable Carrier Concentration of NaFâ€Treated CIGS Solar Cells Using Heat–Light Soaking and 1.2 Subsequent Heating. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800053. Influence of selenization temperatures on the microstructures and photoelectric properties of 589 1.6 6 iron-ion doped Cu(In,Ga)Se2 thin-film solar cells. Vacuum, 2018, 156, 212-218. Interdiffusion and Doping Gradients at the Buffer/Absorber Interface in Thin-Film Solar Cells. ACS Applied Materials & amp; Interfaces, 2018, 10, 28553-28565. 4.0 Influence of Sodium and Rubidium Postdeposition Treatment on the Quasi-Fermi Level Splitting of 591 1.5 24 Cu(In,Ga)Se₂Thin Films. IEEE Journal of Photovoltaics, 2018, 8, 1320-1325. In-depth photoluminescence spectra of pure CIGS thin films. Applied Optics, 2018, 57, 1849. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat 593 19.8 623 treatment. Nature Energy, 2018, 3, 764-772. Effect of Crystal Orientation and Conduction Band Grading of Absorber on Efficiency of 594 Cu(In,Ga)Se₂ Solar Cells Grown on Flexible Polyimide Foil at Low Temperature. Advanced 10.2 Energy Materials, 2018, 8, 1801501. Flexible Cu(In,Ga)Se2 solar cell with superstrate-type configuration fabricated by a lift-off process. 595 0.8 13 Thin Solid Films, 2018, 662, 110-115. Crystallographic, optical, and electronic properties of Li-doped Culn(S,Se)₂, 0.8 (Cu,Li)In(S,Se) < sub>2 < /sub>. Japanese Journal of Applied Physics, 2018, 57, 08RC15. Influences of Fe and absorber thickness on photovoltaic performances of flexible Cu(In,Ga)Se2 solar 597 2.9 10 cell on stainless steel substrate. Solar Energy, 2018, 173, 126-131. Single-crystal Cu(In,Ga)Se₂solar cells grown on GaAs substrates. Applied Physics Express, 2018, 11, 082302. 1.1 Numerical modeling of the effect of multiple incoherent layers in Cu(In,Ga)Se₂solar cells 599 0.9 7 based on the equispaced thickness averaging method. Applied Optics, 2018, 57, 2758. Effect of sodium addition on Cu2SnS3 thin-film solar cells fabricated on alkali-free glass substrates. Japanese Journal of Applied Physics, 2018, 57, 08RC11. Influence of potassium treatment on electronic properties of $Cu(ln < sub > 1a^{2} < sub > <i > <sub > x < sub > x < sub > Tj ETQq0 0 0 rgBT /Overlock 10$ 601 0.8 6 Japanese Journal of Applied Physics, 2018, 57, 08RC13. Elucidating the Mechanism of an RbF Post Deposition Treatment in CIGS Thin Film Solar Cells. Solar 3.1 Rrl, 2018, 2, 1800156.

#	Article	IF	CITATIONS
603	Engineered Cu(InGa)Se2 thin films through CaF2 post-deposition treatment for enhancing solar cell performance. Journal of Alloys and Compounds, 2018, 766, 1046-1053.	2.8	4
604	Rear interface modification for efficient Cu(In,Ga)Se2 solar cells processed with metallic precursors and low-cost Se vapor. Solar Energy Materials and Solar Cells, 2018, 186, 243-253.	3.0	19
605	Insulator Materials for Interface Passivation of Cu(In,Ga)Se ₂ Thin Films. IEEE Journal of Photovoltaics, 2018, 8, 1313-1319.	1.5	39
606	The alterations of carrier separation in kesterite solar cells. Nano Energy, 2018, 52, 38-53.	8.2	42
607	Development of flexible Cd-free Cu(In,Ga)Se2 solar cell on stainless steel substrate through multi-layer precursor method. Journal of Alloys and Compounds, 2018, 756, 111-116.	2.8	13
608	Impact of front contact layers on performance of Cu(In,Ga)Se ₂ solar cells in relaxed and metastable states. Progress in Photovoltaics: Research and Applications, 2018, 26, 789-799.	4.4	11
609	Reversible correlation between subnanoscale structure and Cu content in co-evaporated Cu(In,Ga)Se2 thin films. Acta Materialia, 2018, 153, 8-14.	3.8	11
610	Theoretical Investigation of the Interaction of the CuInSe ₂ Absorber Material with Oxygen, Hydrogen, and Water. Journal of Physical Chemistry C, 2018, 122, 21202-21209.	1.5	8
611	Significance of metastable acceptors in Cu(In,Ga)Se ₂ solar cells in accelerated lifetime testing. Japanese Journal of Applied Physics, 2018, 57, 092301.	0.8	7
612	Effects of RbF postdeposition treatment and heat-light soaking on the metastable acceptor activation of CuInSe2 thin film photovoltaic devices. Applied Physics Letters, 2018, 113, .	1.5	25
613	Improving V _{oc} With Indium and Alkali Fluorides in Cu(In,Ga)Se ₂ Solar Cells Deposited at Low Temperature on Polyimide. IEEE Journal of Photovoltaics, 2018, 8, 1343-1348.	1.5	10
614	Enhancement of Solar Energy Absorption and Optoelectronic Properties of SrCuSbS ₃ by Lead Doping. Solar Rrl, 2018, 2, 1800021.	3.1	9
615	Revealing the beneficial role of K in grain interiors, grain boundaries, and at the buffer interface for highly efficient CuInSe ₂ solar cells. Progress in Photovoltaics: Research and Applications, 2018, 26, 825-834.	4.4	19
616	Above 10% efficiency earth-abundant Cu2ZnSn(S,Se)4 solar cells by introducing alkali metal fluoride nanolayers as electron-selective contacts. Nano Energy, 2018, 51, 597-603.	8.2	21
617	Understanding the cell-to-module efficiency gap in Cu(In,Ga)(S,Se)2 photovoltaics scale-up. Nature Energy, 2018, 3, 466-475.	19.8	76
618	Enhancement of photovoltaic performances of Cu (In,Ga)(S,Se) ₂ solar cell through combination of heatâ€light soaking and light soaking processes. Progress in Photovoltaics: Research and Applications, 2018, 26, 868-876.	4.4	26
619	Strategies toward highly efficient CIGSe thin-film solar cells fabricated by sequential process. Sustainable Energy and Fuels, 2018, 2, 1671-1685.	2.5	24
620	Synthesis of K2Se solar cell dopant in liquid NH3 by solvated electron transfer to elemental selenium. Electrochemistry Communications, 2018, 93, 44-48.	2.3	5

#	Article	IF	CITATIONS
621	Novel back contact reflector for high efficiency and doubleâ€graded Cu(In,Ga)Se ₂ thinâ€film solar cells. Progress in Photovoltaics: Research and Applications, 2018, 26, 894-900.	4.4	14
622	Effect of heatâ€bias soaking on cesium fluorideâ€treated CIGS thin film solar cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 22-29.	4.4	31
623	Optimization of (Zn,Sn)O buffer layer in Cu(In,Ga)Se2 based solar cells. Solar Energy, 2019, 189, 464-470.	2.9	25
624	Thin Ag Precursor Layer-Assisted Co-Evaporation Process for Low-Temperature Growth of Cu(In,Ga)Se ₂ Thin Film. ACS Applied Materials & Interfaces, 2019, 11, 31923-31933.	4.0	29
625	Influence of Ga and Ag on the KF Treatment Chemistry for CIGS Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1846-1851.	1.5	17
626	The Effect of Electron Irradiation on Cesium Fluorideâ€Free and Cesium Fluorideâ€Treated Cu(In _{1â^'<i>x</i>} ,Ga _{<i>x</i>})Se ₂ Solar Cells. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900415.	1.2	7
627	Effect of calcium incorporation on properties of Cu(InGa)Se2 thin film and solar cell. Materials Research Express, 2019, 6, 096430.	0.8	0
628	<pre><mml:math altimg="si12.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>i²</mml:mi><mml:mtext>-</mml:mtext><mml:msub><mml:mrow><r mathvariant="normal">In</r></mml:mrow><mml:mrow><mml:mrow>2</mml:mrow>S</mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math></pre>	nml:mi 14 10> <td>nsub><mmlan< td=""></mmlan<></td>	nsub> <mmlan< td=""></mmlan<>
629	by ab initio calculati. Computational Materials Science, 2019, 168, 221-228. High <i>V</i> _{oc} upon KF Post-Deposition Treatment for Ultrathin Single-Stage Coevaporated Cu(In, Ga)Se ₂ Solar Cells. ACS Applied Energy Materials, 2019, 2, 6102-6111.	2.5	22
630	Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film. Nano Energy, 2019, 64, 103929.	8.2	164
631	Efficiency Improvement of Nearâ€Stoichiometric CuInSe ₂ Solar Cells for Application in Tandem Devices. Advanced Energy Materials, 2019, 9, 1901428.	10.2	69
632	Crystallographic and Optical Properties of (Cu 1â~' x Li x) 2 SnS 3 Photovoltaic Semiconductor. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800889.	0.8	3
633	CuGaSe2 and CuInxGa1–xSe2 Nanocrystals with Sphalerite or Wurtzite Phase for Optoelectronic Applications. ACS Applied Nano Materials, 2019, 2, 4673-4680.	2.4	8
634	Flexible Cu2ZnSn(S,Se)4 solar cells with over 10% efficiency and methods of enlarging the cell area. Nature Communications, 2019, 10, 2959.	5.8	100
635	Similarities and Critical Differences in Heavy Alkali-Metal Rubidium and Cesium Effects on Chalcopyrite Cu(In,Ga)Se ₂ Thin-Film Solar Cells. Journal of Physical Chemistry C, 2019, 123, 17757-17764.	1.5	39
636	Effect of Nanosecond Laser Beam Shaping on Cu(In,Ga)Se ₂ Thin Film Solar Cell Scribing. ACS Applied Energy Materials, 2019, 2, 5057-5065.	2.5	6
637	GoSolAr – A Gossamer Solar Array Concept for High Power Spacecraft Applications using flexible Photovoltaics. , 2019, , .		8
638	Examination of Relationship between Urbach Energy and Open-Circuit Voltage Deficit of Flexible Cu(In,Ga)Se2 Solar Cell for Its Improved Photovoltaic Performance. ACS Applied Energy Materials, 2019, 2, 7843-7849.	2.5	22

#	Article	IF	CITATIONS
639	Impact of Post-Deposition Recrystallization by Alkali Fluorides on Cu(In,Ga)Se2Thin-Film Materials and Solar Cells. Thin Solid Films, 2019, 690, 137526.	0.8	20
640	Charge Carrier Collection and Contact Selectivity in Solar Cells. Advanced Materials Interfaces, 2019, 6, 1900252.	1.9	39
641	Suppressed Deep Traps and Bandgap Fluctuations in Cu ₂ CdSnS ₄ Solar Cells with â‰^8% Efficiency. Advanced Energy Materials, 2019, 9, 1902509.	10.2	65
642	A facile random copolymer strategy to achieve highly conductive polymer gel electrolytes for electrochemical applications. Journal of Materials Chemistry C, 2019, 7, 161-169.	2.7	42
643	Aging Effect of a Cu(In,Ga)(S,Se) 2 Absorber on the Photovoltaic Performance of Its Cdâ€Free Solar Cell Fabricated by an Allâ€Dry Process: Its Carrier Recombination Analysis. Advanced Energy Materials, 2019, 9, 1902869.	10.2	26
644	Variations in the Chemical and Electronic Impact of Post-Deposition Treatments on Cu(In,Ga)(S,Se) ₂ Absorbers. ACS Applied Energy Materials, 2019, 2, 8641-8648.	2.5	3
645	Structural analysis of Cu(In,Ga)Se ₂ thin-films by depth-resolved XAFS. Japanese Journal of Applied Physics, 2019, 58, 105502.	0.8	2
646	Electrochemical Atomic Layer Deposition of CuInSe 2 on Au Surface. Bulletin of the Korean Chemical Society, 2019, 40, 963-970.	1.0	1
647	Engineering CIGS grains qualities to achieve high efficiency in ultrathin Cu(In Ga1â^)Se2 solar cells with a single-gradient band gap profile. Results in Physics, 2019, 12, 704-711.	2.0	37
648	Effectiveness of an RbF Post Deposition Treatment of CIGS Solar Cells in Dependence on the Cu Content of the Absorber Layer. IEEE Journal of Photovoltaics, 2019, 9, 1839-1845.	1.5	40
649	Direct evidence for grain boundary passivation in Cu(In,Ga)Se2 solar cells through alkali-fluoride post-deposition treatments. Nature Communications, 2019, 10, 3980.	5.8	95
650	Passivation of Deep-Level Defects by Cesium Fluoride Post-Deposition Treatment for Improved Device Performance of Cu(In,Ga)Se ₂ Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 35653-35660.	4.0	41
651	Application of Al-Doped (Zn, Mg)O on pure-sulfide Cu(In, Ga)S2 solar cells for enhancement of open-circuit voltage. Solar Energy Materials and Solar Cells, 2019, 202, 110157.	3.0	19
652	Urbach energy of Cu(In,Ga)Se2 and Cu(In,Ga)(S,Se)2 absorbers prepared by various methods: Indicator of their quality. Materials Today Communications, 2019, 21, 100652.	0.9	12
653	Effect of S/(S+Se) ratio during the annealing process on the performance of Cu2ZnSn(S,Se)4 solar cells prepared by sputtering from a quaternary target. Solar Energy Materials and Solar Cells, 2019, 203, 110167.	3.0	8
654	Ultrasensitive, flexible, and low-cost nanoporous piezoresistive composites for tactile pressure sensing. Nanoscale, 2019, 11, 2779-2786.	2.8	72
655	First principle study of structural, electronic, optical and electric properties of Ag2ZnGeX4(S, Se). Computational Condensed Matter, 2019, 19, e00364.	0.9	7
656	Selenization of CuInS ₂ by rapid thermal processing – an alternative approach to induce a band gap grading in chalcopyrite thin-film solar cell absorbers?. Journal of Materials Chemistry A, 2019, 7, 2087-2094.	5.2	5

#	Article	IF	CITATIONS
657	CuGaSe ₂ Thin Film Solar Cells: Challenges for Developing Highly Efficient Wideâ€Gap Chalcopyrite Photovoltaics. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800873.	0.8	24
658	Growth improved of CIGS thin films by applying mechanical perturbations to the working electrode during the electrodeposition process. Superlattices and Microstructures, 2019, 128, 144-150.	1.4	6
659	Flexible quintuple cation perovskite solar cells with high efficiency. Journal of Materials Chemistry A, 2019, 7, 4960-4970.	5.2	93
660	A study of ZnO:Al thin films reactively sputtered under the control of target voltage for application in Cu(In,Ga)Se2 thin film solar cells. Vacuum, 2019, 161, 297-305.	1.6	15
661	Characterization of Cd-Free Zn _{1–<i>x</i>} Mg _{<i>x</i>} O:Al/Zn _{1–<i>x</i>} Mg _{<i>x</i>} O Solar Cells Fabricated by an All Dry Process Using Ultraviolet Light Excited Time-Resolved Photoluminescence. ACS Applied Materials & amp: Interfaces. 2019. 11. 7539-7545.	D/Cu(In,Ga 4.0	n)(S,Se)
662	Effects of substrate orientation and solution movement in chemical bath deposition on Zn(O,S) buffer layer and Cu(In,Ga)Se2 thin film solar cells. Nano Energy, 2019, 58, 427-436.	8.2	33
663	Stacking fault reduction during annealing in Cu-poor CuInSe2 thin film solar cell absorbers analyzed by <i>in situ</i> XRD and grain growth modeling. Journal of Applied Physics, 2019, 125, .	1.1	10
664	Nucleic Acid Complementation Analysis on Biosensors. , 2019, , 95-115.		1
665	Surface passivation and point defect control in Cu(In,Ga)Se ₂ films with a Na ₂ S post deposition treatment for higher than 19% CIGS cell performance. Sustainable Energy and Fuels, 2019, 3, 709-716.	2.5	17
666	Nearâ€Surface [Ga]/([In]+[Ga]) Composition in Cu(In,Ga)Se 2 Thinâ€Film Solar Cell Absorbers: An Overlooked Material Feature. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800856.	0.8	6
667	Chemical Dynamics of Back Contact with MoO ₃ Interfacial Layer in Kesterite Solar Cells: Microstructure Evolution and Photovoltaic Performance. Solar Rrl, 2019, 3, 1900131.	3.1	25
668	Property comparison of flexible Cu(InGa)Se2 thin film solar cells on Ti and Ni foils without diffusion barrier. Journal of Materials Science: Materials in Electronics, 2019, 30, 11754-11763.	1.1	4
669	Effects of KF and RbF post deposition treatments on the growth of the CdS buffer layer on CIGS thin films - a comparative study. Solar Energy Materials and Solar Cells, 2019, 200, 109997.	3.0	26
670	Examination of a Cu-Deficient Layer on Cu(In, Ga)Se ₂ Films Fabricated by a Three-Stage Process for Highly Efficient Solar Cells. ACS Applied Energy Materials, 2019, 2, 5103-5108.	2.5	13
671	Perovskites with d-block metals for solar energy applications. Dalton Transactions, 2019, 48, 9516-9537.	1.6	24
672	Irradiance and temperature considerations in the design and deployment of high annual energy yield perovskite/CIGS tandems. Sustainable Energy and Fuels, 2019, 3, 1841-1851.	2.5	30
673	Effects of Cu(In,Ga)3Se5 defect phase layer in Cu(In,Ga)Se2 thin film solar cells. Journal of Alloys and Compounds, 2019, 800, 305-313.	2.8	12
674	Segregation of point defects at the CuInSe2(001)/GaAs(001) interface. Solid State Communications, 2019, 299, 113652.	0.9	1

	CITATION	Report	
#	Article	IF	CITATIONS
675	Designing of AlxGa1-xAs/CIGS tandem solar cell by analytical model. Solar Energy, 2019, 188, 1-9.	2.9	38
676	Over 12% efficient low-bandgap CuIn(S, Se)2 solar cells with the absorber processed from aqueous metal complexes solution in air. Nano Energy, 2019, 62, 818-822.	8.2	25
677	Bioinspired synthesis of SnO crosses as backbone in artificial sponges. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190130.	1.6	1
678	Comparative <i>operando</i> XPS studies of quasi-Fermi level splitting and open-circuit voltage in CZTSe/CdS and CIGS/CdS junctions and device structures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	10
679	A critical review on flexible Cu(In, Ga)Se2 (CIGS) solar cells. Materials Chemistry and Physics, 2019, 234, 329-344.	2.0	42
680	Advanced Alkali Treatments for Highâ€Efficiency Cu(In,Ga)Se ₂ Solar Cells on Flexible Substrates. Advanced Energy Materials, 2019, 9, 1900408.	10.2	175
681	Significantly Enhanced Detectivity of CIGS Broadband High-Speed Photodetectors by Grain Size Control and ALD-Al ₂ O ₃ Interfacial-Layer Modification. ACS Applied Materials & Interfaces, 2019, 11, 20157-20166.	4.0	34
682	Enhancing photocurrent of Cu(In,Ga)Se2 solar cells with actively controlled Ga grading in the absorber layer. Nano Energy, 2019, 62, 205-211.	8.2	47
683	Giant V oc Boost of Lowâ€Temperature Annealed Cu(In,Ga)Se 2 with Sputtered Zn(O,S) Buffers. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900145.	1.2	6
684	Enabling Flexible All-Perovskite Tandem Solar Cells. Joule, 2019, 3, 2193-2204.	11.7	331
685	Wavelength-dependent J–V characteristics of CuIn1-x Ga x (S,Se)2 solar cells and carrier recombination. Applied Physics Express, 2019, 12, 061001.	1.1	5
686	Synergistic effect of Na and Se on CZTSe solar cells through a soft chemical process. Solar Energy Materials and Solar Cells, 2019, 198, 35-43.	3.0	20
687	Alkali Atoms Diffusion Mechanism in CuInSe ₂ Explained by Kinetic Monte Carlo Simulations. Advanced Theory and Simulations, 2019, 2, 1900036.	1.3	12
688	Impact of heatâ€light soaking and heatâ€bias soaking on NaFâ€treated CIGS thin film solar cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 623-629.	4.4	18
689	Characteristics of Zn1â^'xMgxO:B and its application as transparent conductive oxide layer in Cu(In,Ga)(S,Se)2 solar cells with and without CdS buffer layer. Solar Energy, 2019, 184, 553-560.	2.9	24
690	Time-resolved photoluminescence on double graded Cu(In,Ga)Se2 – Impact of front surface recombination and its temperature dependence. Science and Technology of Advanced Materials, 2019, 20, 313-323.	2.8	17
691	A theoretical modeling of the Cu(In, Ga)Se2 solar cell. AIP Conference Proceedings, 2019, , .	0.3	1
692	Mo/CIGS/CdS Structures by Eâ€ALD. Bulletin of the Korean Chemical Society, 2019, 40, 496-503.	1.0	2

#	Article	IF	CITATIONS
693	Investigation of Mo:Na and Mo related back contacts for the application in Cu(In,Ga)Se2 thin film solar cells. Solid-State Electronics, 2019, 157, 48-54.	0.8	2
694	Structures of Cu(In,Ga)(S,Se) ₂ solar cells for minimizing openâ€circuit voltage deficit: Investigation of carrier recombination rates. Progress in Photovoltaics: Research and Applications, 2019, 27, 630-639.	4.4	13
695	Structural characterization of coevaporated Cu(In,Ga)Se2 absorbers deposited at low temperature. Journal of Alloys and Compounds, 2019, 794, 654-661.	2.8	8
696	Seed-Mediated Growth of Conductive and Transparent Anatase Nb-TiO ₂ Films for CdS-Based Devices. ACS Applied Nano Materials, 2019, 2, 1802-1807.	2.4	0
697	Effect of series and shunt resistance on the photovoltaic properties of solution-processed zinc oxide nanowire based CZTS solar cell in superstrate configuration. Materials Science in Semiconductor Processing, 2019, 100, 1-7.	1.9	36
698	Investigation of Mo films deposited on high temperature polyimide substrate by magnetron sputtering for flexible CIGS thin film solar cells application. AIP Advances, 2019, 9, .	0.6	10
699	Ultrathin Solar Absorber Layers of Silver Bismuth Sulfide from Molecular Precursors. ACS Applied Materials & Interfaces, 2019, 11, 16674-16682.	4.0	24
700	<i>In situ</i> investigation of as grown Cu(In,Ga)Se2 thin films by means of photoemission spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	3
701	Earth-abundant photovoltaic semiconductor NaSbS2 in the rocksalt-derived structure: A first-principles study. Progress in Natural Science: Materials International, 2019, 29, 322-328.	1.8	8
702	A simple and robust route toward flexible CIGS photovoltaic devices on polymer substrates: Atomic level microstructural analysis and local opto-electronic investigation. Solar Energy Materials and Solar Cells, 2019, 195, 280-290.	3.0	19
703	Si/CuIn _{0.7} Ga _{0.3} Se ₂ Core–Shell Heterojunction for Sensitive and Selfâ€Driven UV–vis–NIR Broadband Photodetector. Advanced Optical Materials, 2019, 7, 1900023.	3.6	25
704	Influence of RbF post deposition treatment on heterojunction and grain boundaries in high efficient (21.1%) Cu(In,Ga)Se2 solar cells. Nano Energy, 2019, 60, 103-110.	8.2	46
705	Improvement of Ga distribution with Sb incorporation for two-step low-temperature processing of CIGSe thin film solar cells. Solar Energy Materials and Solar Cells, 2019, 194, 244-251.	3.0	6
706	Improved efficiency of Cu(In,Ga)Se ₂ miniâ€module via highâ€mobility In ₂ O ₃ :W,H transparent conducting oxide layer. Progress in Photovoltaics: Research and Applications, 2019, 27, 491-500.	4.4	16
707	Solution processing route to Na incorporation in CZTSSe nanoparticle ink solar cells on foil substrate. Journal of Materials Science: Materials in Electronics, 2019, 30, 7883-7889.	1.1	10
708	Grain growth enhancing through preheating treatment of a sputtered stacked metallic precursor for Cu(In, Al)Se2 thin film solar cells application. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 242, 31-36.	1.7	5
709	Photovoltaic solar cell technologies: analysing the state of the art. Nature Reviews Materials, 2019, 4, 269-285.	23.3	727
710	Ag Alloying and KF Treatment Effects on Low Bandgap CuInSe ₂ Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 906-911.	1.5	19

#	ARTICLE	IF	CITATIONS
711	Solution-processed SnO2 interfacial layer for highly efficient Sb2Se3 thin film solar cells. Nano Energy, 2019, 60, 802-809.	8.2	111
712	Role of surface microstructure of Mo back contact on alkali atom diffusion and Ga grading in Cu(In,Ga)Se ₂ thin film solar cells. Energy Science and Engineering, 2019, 7, 754-763.	1.9	10
713	Diffusion of Alkali Metals in Polycrystalline CuInSe ₂ and Their Role in the Passivation of Grain Boundaries. ACS Applied Materials & amp; Interfaces, 2019, 11, 14821-14829.	4.0	23
714	Impact of various dopant elements on the properties of kesterite compounds for solar cell applications: a status review. Sustainable Energy and Fuels, 2019, 3, 1365-1383.	2.5	57
715	The use of HfO2 in a point contact concept for front interface passivation of Cu(In,Ga)Se2 solar cells. Solar Energy Materials and Solar Cells, 2019, 195, 213-219.	3.0	25
716	Draw-spun, photonically annealed Ag fibers as alternative electrodes for flexible CIGS solar cells. Science and Technology of Advanced Materials, 2019, 20, 26-34.	2.8	4
717	Trap-Free Heterostructure of PbS Nanoplatelets on InP(001) by Chemical Epitaxy. ACS Nano, 2019, 13, 1961-1967.	7.3	7
718	Microstructures and photovoltaic performances of bismuthâ€ion doped Cu(In,Ga)Se 2 films prepared via sputtering process. Journal of the American Ceramic Society, 2019, 102, 3578-3587.	1.9	5
719	RGB-Colored Cu(In,Ga)(S,Se) ₂ Thin-Film Solar Cells with Minimal Efficiency Loss Using Narrow-Bandwidth Stopband Nano-Multilayered Filters. ACS Applied Materials & Interfaces, 2019, 11, 9994-10003.	4.0	18
720	Surface and Interface Properties in Thinâ€Film Solar Cells: Using Soft Xâ€rays and Electrons to Unravel the Electronic and Chemical Structure. Advanced Materials, 2019, 31, e1806660.	11.1	22
721	Enhanced spectral response of CIGS solar cells with anti-reflective subwavelength structures and quantum dots. Solar Energy Materials and Solar Cells, 2019, 194, 177-183.	3.0	24
722	Progress and Perspectives of Thin Film Kesterite Photovoltaic Technology: A Critical Review. Advanced Materials, 2019, 31, e1806692.	11.1	333
723	In-situ Microscopy Characterization of Cu(In,Ga)Se ₂ Potential-Induced Degradation. , 2019, , .		3
724	Influence of Molybdenum Back Contact on the PID Effect for Cu(In,Ga)Se2 Solar Cells. Coatings, 2019, 9, 794.	1.2	11
725	Nano-scale Defect Analysis Through K-Means Clustering of CuInSe ₂ Solar Cells with Ag and K Incorporation. , 2019, , .		1
726	Post Deposition Treatments of (Ag,Cu)(In,Ga)Se ₂ Thin Films for Solar Cells. , 2019, , .		1
727	Control of Vacancy Defects in Reactively Sputtered (Ag,Cu)(In,Ga)Se2 Solar Cells. , 2019, , .		0
728	Reducing Air- and Moisture-Induced Degradation of Cu(In,Ga)Se2 Absorber Layers for Thin Film Solar Cells by RbCl Treatment. , 2019, , .		0

#	Article	IF	CITATIONS
729	Inline Rubidium Fluoride Treatment of (A)CICS Absorbers Deposited onto Flexible Substrates in a Production-Scale Process Tool. , 2019, , .		1
730	Photovoltaic Solar Energy: Is It Applicable in Brazil? – A Review Applied to Brazilian Case. Materials and Geoenvironment, 2019, 66, 99-120.	0.4	2
731	On the effect of KInSe2 (KIS) layer on Cu(In,Ga)Se2 solar cell performance: a numerical study. , 2019, , .		1
732	Evidence of reversible oxidation at CuInSe2 grain boundaries. , 2019, , .		Ο
733	Effects of Ammoniaâ€Induced Surface Modification of Cu(In,Ga)Se ₂ on Highâ€Efficiency Zn(O,S)â€Based Cu(In,Ga)Se ₂ Solar Cells. Solar Rrl, 2019, 3, 1800254.	3.1	29
734	Improvement in the performance of CIGS solar cells by introducing GaN nanowires on the absorber layer. Journal of Alloys and Compounds, 2019, 779, 643-647.	2.8	9
735	Crystallographic, optical, and electronic properties of (Cu, Li)GaS2. Thin Solid Films, 2019, 672, 192-198.	0.8	3
736	Alkali treatment for single-stage co-evaporated thin CuIn0.7Ga0.3Se2 solar cells. Thin Solid Films, 2019, 671, 44-48.	0.8	13
737	Understanding macroscale functionality of metal halide perovskites in terms of nanoscale heterogeneities. JPhys Energy, 2019, 1, 011002.	2.3	3
738	Alkali Postdeposition Treatment-Induced Changes of the Chemical and Electronic Structure of Cu(In,Ga)Se ₂ Thin-Film Solar Cell Absorbers: A First-Principle Perspective. ACS Applied Materials & Interfaces, 2019, 11, 3024-3033.	4.0	9
739	Photoelectrochemical Behavior of Bismuth-Containing Cu ₂ ZnSnS ₄ (CZTS) Absorber Layers for Photovoltaic Applications. Journal of the Electrochemical Society, 2019, 166, H3040-H3046.	1.3	9
740	Optical optimization of a multi-layer wideband anti-reflection coating using porous MgF2 for sub-micron-thick CIGS solar cells. Solar Energy, 2019, 177, 59-67.	2.9	28
741	Engineering flexible dye-sensitized solar cells for portable electronics. Solar Energy, 2019, 177, 80-98.	2.9	72
742	Alkali Metals Doping for Highâ€Performance Planar Heterojunction Sb ₂ S ₃ Solar Cells. Solar Rrl, 2019, 3, 1800272.	3.1	94
743	Micro-scale current path distributions of Zn1-Mg O-coated SnO2:F transparent electrodes prepared by sol-gel and sputtering methods in perovskite solar cells. Thin Solid Films, 2019, 669, 455-460.	0.8	5
744	Predictive Modeling of CulnSe ₂ Nanocrystal Photovoltaics: The Importance of Band Alignment and Carrier Diffusion. ACS Applied Energy Materials, 2019, 2, 1494-1504.	2.5	17
745	Effect of hydrodynamic conditions on the Cu(In,Ga)Se2 thin film growth by electrodeposition. Materials Chemistry and Physics, 2019, 226, 82-87.	2.0	1
746	Control of Structural and Electrical Properties of Indium Tin Oxide (ITO)/Cu(In,Ga)Se ₂ Interface for Transparent Back-Contact Applications. Journal of Physical Chemistry C, 2019, 123, 1635-1644.	1.5	22

#	Article	IF	CITATIONS
747	Fabrication of Sb2S3 thin films by sputtering and post-annealing for solar cells. Ceramics International, 2019, 45, 3044-3051.	2.3	64
748	Accurate control and characterization of Cu depletion layer for highly efficient Cu(In,Ga)Se ₂ solar cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 171-178.	4.4	18
749	RbF post deposition treatment for narrow bandgap Cu(In,Ga)Se2 solar cells. Thin Solid Films, 2019, 670, 34-40.	0.8	33
750	Record Efficiency for Thin-Film Polycrystalline Solar Cells Up to 22.9% Achieved by Cs-Treated Cu(In,Ga)(Se,S) ₂ . IEEE Journal of Photovoltaics, 2019, 9, 325-330.	1.5	265
751	Factors influencing the efficiency of photovoltaic system. Renewable and Sustainable Energy Reviews, 2019, 101, 376-394.	8.2	94
752	Effect of Ga introduction during the second stage of a coevaporation process of Cu(In,Ga)Se2 layers at low temperature on polyimide substrates. Thin Solid Films, 2019, 669, 494-499.	0.8	8
753	DC and RF sputtered molybdenum electrodes for Cu(In,Ga)Se2 thin film solar cells. Applied Surface Science, 2019, 465, 48-55.	3.1	11
754	Influence of antimony dopant on CuIn(S,Se)2 solar thin absorber layer deposited via solution-processed route. Journal of Alloys and Compounds, 2019, 772, 710-718.	2.8	8
755	K ₂ Hg ₂ Te ₃ : Straightforward and Large-Scale Mercury-Flux Synthesis of a Small-Band-Gap Photoconducting Material. Inorganic Chemistry, 2019, 58, 4052-4054.	1.9	5
756	Highly efficient solution-processed CZTSSe solar cells based on a convenient sodium-incorporated post-treatment method. Journal of Energy Chemistry, 2020, 40, 196-203.	7.1	62
757	Angle-Insensitive Color Filters Based on Multilayer Ultrathin-Film Structures. Plasmonics, 2020, 15, 255-261.	1.8	12
758	Concept for a Gossamer solar power array using thin-film photovoltaics. CEAS Space Journal, 2020, 12, 125-135.	1.1	11
759	Mechanisms of extrinsic alkali incorporation in CICS solar cells on flexible polyimide elucidated by nanoscale and quantitative analyses. Nano Energy, 2020, 67, 104201.	8.2	35
760	22%â€efficient Cdâ€free Cu(In,Ga)(S,Se) ₂ solar cell by allâ€dry process using Zn _{0.8} Mg _{0.2} O and Zn _{0.9} Mg _{0.1} O:B as buffer and transparent conductive oxide layers. Progress in Photovoltaics: Research and Applications, 2020, 28, 79-89.	4.4	17
761	Designing composition tuned glasses with enhanced properties for use as substrate in Cu2ZnSnS4 based thin film solar cells. Journal of Alloys and Compounds, 2020, 819, 152984.	2.8	13
762	Investigation of carrier recombination of Na-doped Cu2SnS3 solar cell for its improved conversion efficiency of 5.1%. Solar Energy Materials and Solar Cells, 2020, 206, 110261.	3.0	46
763	Luminescent down-shifting CsPbBr ₃ perovskite nanocrystals for flexible Cu(In,Ga)Se ₂ solar cells. Nanoscale, 2020, 12, 558-562.	2.8	25
764	Interface Formation between CdS and Alkali Postdeposition-Treated Cu(In,Ga)Se ₂ Thin-Film Solar Cell Absorbers—Key To Understanding the Efficiency Gain. ACS Applied Materials & Interfaces, 2020, 12, 6688-6698.	4.0	5

<u> </u>	-	`	
CITATI	ON h	VEDORT	1

#	Article	IF	CITATIONS
765	Heterovalent Ga ³⁺ doping in solution-processed Cu ₂ ZnSn(S,Se) ₄ solar cells for better optoelectronic performance. Sustainable Energy and Fuels, 2020, 4, 1621-1629.	2.5	16
766	Vibrational Properties of RbInSe ₂ : Raman Scattering Spectroscopy and First-Principle Calculations. Journal of Physical Chemistry C, 2020, 124, 1285-1291.	1.5	5
767	Alkali-induced grain boundary reconstruction on Cu(In,Ga)Se2 thin film solar cells using cesium fluoride post deposition treatment. Nano Energy, 2020, 68, 104299.	8.2	56
768	Nanosecond laser scribing for seeâ€ŧhrough CIGS thin film solar cells. Progress in Photovoltaics: Research and Applications, 2020, 28, 135-147.	4.4	10
769	Polycrystalline CuGaSe2 thin film growth and photovoltaic devices fabricated on alkali-free and alkali-containing substrates. Journal of Crystal Growth, 2020, 532, 125407.	0.7	5
770	KF Postdeposition Treatment in N ₂ of Single-Stage Thin Cu(In,Ga)Se ₂ Absorber Layers. IEEE Journal of Photovoltaics, 2020, 10, 255-258.	1.5	3
771	Photoluminescence-Based Method for Imaging Buffer Layer Thickness in CIGS Solar Cells. IEEE Journal of Photovoltaics, 2020, 10, 181-187.	1.5	2
772	Flexible CICS, CdTe and a-Si:H based thin film solar cells: A review. Progress in Materials Science, 2020, 110, 100619.	16.0	270
773	Trivalent copper and indium heterometallic complex with dithiocarbamate and iodide ligands. Journal of Molecular Structure, 2020, 1204, 127478.	1.8	6
774	A review on atomic layer deposited buffer layers for Cu(In,Ga)Se2 (CIGS) thin film solar cells: Past, present, and future. Solar Energy, 2020, 209, 515-537.	2.9	26
775	Correlating facet orientation, defect-level density and dipole layer formation at the surface of polycrystalline CuInSe2 thin films. Acta Materialia, 2020, 200, 463-470.	3.8	8
776	Historical Analysis of Highâ€Efficiency, Largeâ€Area Solar Cells: Toward Upscaling of Perovskite Solar Cells. Advanced Materials, 2020, 32, e2002202.	11.1	103
777	Recent Progress in Interconnection Layer for Hybrid Photovoltaic Tandems. Advanced Materials, 2020, 32, 2002196.	11.1	20
778	Emerging inorganic compound thin film photovoltaic materials: Progress, challenges and strategies. Materials Today, 2020, 41, 120-142.	8.3	81
779	Laser synthesis of 2D structures for photo-thermo sensors with high sensitivity. Applied Physics B: Lasers and Optics, 2020, 126, 1.	1.1	2
780	Application of Two-Dimensional MoSe2 Atomic Layers to the Lift-Off Process for Producing Light-Weight and Flexible Bifacial Cu(In, Ga)Se2 Solar Cells. ACS Applied Energy Materials, 2020, 3, 9504-9508.	2.5	17
781	Optimal CdS Buffer Thickness to Form High-Quality CdS/Cu(In,Ga)Se2 Junctions in Solar Cells without Plasma Damage and Shunt Paths. ACS Omega, 2020, 5, 23983-23988.	1.6	11
782	Preparation of a-IZO thin films by RF magnetron sputtering for Cu (In, Ga) Se2 solar cells. Journal of Physics: Conference Series, 2020, 1549, 042036.	0.3	1

#	Article	IF	CITATIONS
783	Review of CIGS-based solar cells manufacturing by structural engineering. Solar Energy, 2020, 207, 1146-1157.	2.9	106
784	Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface. Nature Communications, 2020, 11, 3634.	5.8	34
785	Short-chain ligands capped CuInSe2 quantum dots as hole transport material for inverted perovskite solar cells. Materials Science in Semiconductor Processing, 2020, 120, 105267.	1.9	9
786	Silver Surface Treatment of Cu(In,Ga)Se ₂ (CIGS) Thin Film: A New Passivation Process for the CdS/CIGS Heterojunction Interface. Solar Rrl, 2020, 4, 2000290.	3.1	21
787	Nanoscale chemical and structural reconstruction in thermally oxidized TiN/SnO2 ultrathin films. Journal of Alloys and Compounds, 2020, 843, 155896.	2.8	1
788	Defect suppression in multinary chalcogenide photovoltaic materials derived from kesterite: progress and outlook. Journal of Materials Chemistry A, 2020, 8, 24920-24942.	5.2	36
789	Failure and Recovery Modes of Submicron Cu(In,Ga)Se ₂ Solar Cells with High Cu Content. ACS Applied Materials & Interfaces, 2020, 12, 52857-52863.	4.0	8
790	Front passivation of Cu(In,Ga)Se2 solar cells using Al2O3: Culprits and benefits. Applied Materials Today, 2020, 21, 100867.	2.3	28
791	Bismuth-doped Cu(In,Ga)Se2 solar cell on flexible stainless steel substrate: Examination of bismuth-doping effectiveness under different substrate temperatures on photovoltaic performances. Solar Energy, 2020, 208, 20-30.	2.9	6
792	Crystallographic Orientation Control of 1D Sb ₂ Se ₃ Nanorod Arrays for Photovoltaic Application by In Situ Backâ€Contact Engineering. Solar Rrl, 2020, 4, 2000294.	3.1	29
793	Effect of cesium for Cu(In,Ga)Se2 and Cu(In,Ga)(S,Se)2 films studied by depth-resolved XAFS. Applied Physics Letters, 2020, 117, .	1.5	6
794	Temperatureâ€dependent current–voltage and admittance spectroscopy analysis on cesiumâ€ŧreated Cu (In _{1 â' <i>x</i>} ,Ga _{<i>x</i>})Se ₂ solar cell before and after heatâ€ŀight soaking and subsequent heatâ€soaking treatments. Progress in Photovoltaics: Research and Applications, 2020, 28, 1158-1166	4.4	10
795	Effect of Naâ€PDT and KFâ€PDT on the photovoltaic performance of wide bandgap Cu (In,Ga)Se2 solar cells. Progress in Photovoltaics: Research and Applications, 2020, 28, 1146-1157.	4.4	12
796	Temperature dependence of CIGS and perovskite solar cell performance: an overview. SN Applied Sciences, 2020, 2, 1.	1.5	26
797	A comparative study of the effects of light and heavy alkali-halide postdeposition treatment on CuGaSe2 and Cu(In,Ga)Se2 thin-film solar cells. Solar Energy, 2020, 211, 1092-1101.	2.9	6
798	Double-Sided Heat-Exchange CBD System for Homogeneous Zn(O,S) Thin Films in Highly Efficient CIGS Solar Devices. ACS Applied Energy Materials, 2020, 3, 11242-11248.	2.5	3
799	Efficiency Enhancement of CIGS Solar Cells via Recombination Passivation. ACS Applied Energy Materials, 2020, 3, 9459-9467.	2.5	13
800	Influence of Sulfur Evaporation during or after KF-Post Deposition Treatment On Cu(In,Ga)Se ₂ /CdS Interface Formation. ACS Applied Materials & Interfaces, 2020, 12, 46953-46962.	4.0	6

#	Article	IF	CITATIONS
801	Effect of deposition time and complexing agents on hierarchical nanoflake-structured CdS thin films. Journal of Materials Science: Materials in Electronics, 2020, 31, 17055-17066.	1.1	38
802	Efficient Narrow Band Gap Cu(In,Ga)Se2 Solar Cells with Flat Surface. ACS Applied Materials & Interfaces, 2020, 12, 45485-45492.	4.0	15
803	Concerted regulation on vertical orientation and film quality of two-dimensional ruddlesden-popper perovskite layer for efficient solar cells. Science China Chemistry, 2020, 63, 1675-1683.	4.2	9
804	<i>In silico</i> investigation of Cu(In,Ga)Se ₂ -based solar cells. Physical Chemistry Chemical Physics, 2020, 22, 26682-26701.	1.3	3
805	Impact of RbF-PDT on Cu(In,Ga)Se ₂ solar cells with CdS and Zn(O,S) buffer layers. EPJ Photovoltaics, 2020, 11, 8.	0.8	17
806	Absorber Delamination-Induced Shunt Defects in Alcohol-Based Solution-Processed Cu(In,Ga)(S,Se)2 Solar Modules. ACS Applied Energy Materials, 2020, 3, 10384-10392.	2.5	4
807	In-Operando Nanoscale X-ray Analysis Revealing the Local Electrical Properties of Rubidium-Enriched Grain Boundaries in Cu(In,Ga)Se ₂ Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 57117-57123.	4.0	7
808	Interfacial modification mechanism by aging effect for high-performance Cd-free and all-dry process Cu(In,Ga)(S,Se)2 solar cells. Applied Physics Letters, 2020, 117, .	1.5	8
809	Numerical simulation of n-TiO2/p-CIGS solar cell. AIP Conference Proceedings, 2020, , .	0.3	0
810	Morphological–Electrical Property Relation in Cu(In,Ga)(S,Se) ₂ Solar Cells: Significance of Crystal Grain Growth and Band Grading by Potassium Treatment. Small, 2020, 16, e2003865.	5.2	12
811	Potassium Treatments for Solution-Processed Cu(In,Ga)(S,Se) ₂ Solar Cells. ACS Applied Energy Materials, 2020, 3, 4821-4830.	2.5	19
812	Ultrafast electron imaging of surface charge carrier dynamics at low voltage. Structural Dynamics, 2020, 7, 021001.	0.9	3
813	Effects of Laserâ€5cribed Mo Groove Shape on Highly Efficient Zn(O,S)â€Based Cu(In,Ga)Se ₂ Solar Modules. Solar Rrl, 2020, 4, 2070042.	3.1	1
814	Lithium-Doping Effects in Cu(In,Ga)Se ₂ Thin-Film and Photovoltaic Properties. ACS Applied Materials & Interfaces, 2020, 12, 25058-25065.	4.0	14
815	Inclusion of Water in Cu(In, Ga)Se2 Absorber Material During Accelerated Lifetime Testing. ACS Applied Energy Materials, 2020, 3, 5120-5125.	2.5	14
816	Challenges and opportunities for an efficiency boost of next generation Cu(In,Ga)Se ₂ solar cells: prospects for a paradigm shift. Energy and Environmental Science, 2020, 13, 2047-2055.	15.6	30
817	Electrodeposition of Culn(Al)Se2-based thin films on various substrates. Journal of Materials Science: Materials in Electronics, 2020, 31, 10241-10250.	1.1	1
818	Manipulation of [Ga]/([Ga]Â+Â[In]) profile in 1.4-μm-thick Cu(In,Ga)Se2 thin film on flexible stainless steel substrate for enhancing short-circuit current density and conversion efficiency of its solar cell. Solar Energy, 2020, 204, 231-237.	2.9	7

#	Article	IF	CITATIONS
819	Analyzing the causes of limited performance improvement in cigs devices after potassium fluoride post-deposition treatment using SCAPS. Optik, 2020, 219, 164757.	1.4	1
820	Heavy Alkali Treatment of Post‧ulfurized Cu(In,Ga)Se ₂ Layers: Effect on Absorber Properties and Solar Cell Performance. Solar Rrl, 2020, 4, 2000248.	3.1	15
821	Simulating the effect of adding BSF layers on Cu2BaSnSSe3 thin film solar cells. Optical Materials, 2020, 107, 109927.	1.7	38
822	Analysis and improvement of CIGS solar cell efficiency using multiple absorber substances simultaneously. Journal of Materials Science: Materials in Electronics, 2020, 31, 11527-11537.	1.1	14
823	Solution-processed Cu(In,Ca)(Se,S)2 solar cells prepared via a surface sulfurization process. Journal of the Taiwan Institute of Chemical Engineers, 2020, 110, 41-50.	2.7	4
824	Effects of Incoherent Front Cover Glass on Current-Voltage Characteristics of Cu(In,Ga)Se2 Solar Cells: Investigation into Calculation Accuracy for Cover Glass Modeled as Optically Coherent or Incoherent. Applied Sciences (Switzerland), 2020, 10, 3312.	1.3	2
825	Defect-Tolerant Sodium-Based Dopant in Charge Transport Layers for Highly Efficient and Stable Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 1198-1205.	8.8	33
826	Performance enhancement of CIGS thin-film solar cells with a functional-window NiO thin layer. Journal of Alloys and Compounds, 2020, 836, 154803.	2.8	26
827	Efficiency Enhancement of Cu(In,Ga)(S,Se) ₂ Solar Cells by Indium-Doped CdS Buffer Layers. ACS Applied Materials & Interfaces, 2020, 12, 18157-18164.	4.0	17
828	The fox and the hound: in-depth and in-grain Na doping and Ga grading in Cu(In,Ga)Se ₂ solar cells. Journal of Materials Chemistry A, 2020, 8, 6471-6479.	5.2	27
829	Improvement of Cu(In,Ga)Se ₂ solar cell performance by thiourea treatment. Japanese Journal of Applied Physics, 2020, 59, 031005.	0.8	5
830	Fabrication of flexible and bifacial Cu(In,Ga)Se2 solar cell with superstrate-type structure using a lift-off process. Solar Energy, 2020, 199, 819-825.	2.9	14
831	Fabrication of Cu ₂ ZnSn(S, Se) ₄ thin-film solar cells by sulfurization using Cu ₂ ZnSnSe ₄ , NaF and KF compounds. Japanese Journal of Applied Physics, 2020, 59, SGGF11.	0.8	5
832	First-principles studies of chalcopyrite-type (Cu, Li)GaS2 and (Cu, Li)InS2 systems. Japanese Journal of Applied Physics, 2020, 59, SCCB18.	0.8	0
833	Investigation of the Maximum Power Point Position on a DSSC Solar Cell Using Different Irradiations. , 2020, , .		3
834	Atomic Layer Deposition of Ternary Compounds on Cu(In,Ga)Se ₂ : An In Situ Quartz Crystal Microbalance Study. ACS Applied Energy Materials, 2020, 3, 7208-7215.	2.5	6
835	NaF/RbF-Treated Cu(In,Ga)Se ₂ Thin-Film Solar Cell Absorbers: Distinct Surface Modifications Caused by Two Different Types of Rubidium Chemistry. ACS Applied Materials & Interfaces, 2020, 12, 34941-34948.	4.0	12
836	Defect properties of Sb2Se3 thin film solar cells and bulk crystals. Applied Physics Letters, 2020, 116, .	1.5	29

#	Article	IF	CITATIONS
837	A Review and Perspective on Cathodoluminescence Analysis of Halide Perovskites. Advanced Energy Materials, 2020, 10, 1903840.	10.2	26
838	High Efficiency CIGS Solar Cells by Bulk Defect Passivation through Ag Substituting Strategy. ACS Applied Materials & Interfaces, 2020, 12, 12717-12726.	4.0	79
839	Incorporation of copper–indium back-end layers in the solution-based Cu(In, Ga)Se ₂ films: enhancement of photovoltaic performance of fabricated solar cells. Materials Research Express, 2020, 7, 026409.	0.8	0
840	Metastable Behavior on Cesium Fluorideâ€Treated Cu(In _{1–<i>x</i>} ,Ga _{<i>x</i>})Se ₂ Solar Cells. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900701.	1.2	10
841	Revealing the origin of the beneficial effect of cesium in highly efficient Cu(In,Ga)Se2 solar cells. Nano Energy, 2020, 71, 104622.	8.2	25
842	System for manufacturing complete Cu(In,Ga)Se2 solar cells in situ under vacuum. Solar Energy, 2020, 198, 490-498.	2.9	10
843	Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chemical Reviews, 2020, 120, 2049-2122.	23.0	152
844	Etching process optimization of non-vacuum fabricated Cu2ZnSnS4 solar cell. Journal of Materials Science: Materials in Electronics, 2020, 31, 3674-3680.	1.1	8
845	Mobility improvement of Zn1-xMgxO:Al prepared under room temperature by co-sputtering through optimizations of Al and Mg contents. Materials Science in Semiconductor Processing, 2020, 109, 104921.	1.9	13
846	Effects of Laserâ€5cribed Mo Groove Shape on Highly Efficient Zn(O,S)â€Based Cu(In,Ga)Se 2 Solar Modules. Solar Rrl, 2020, 4, 1900510.	3.1	5
847	Effect of Alkali Treatment on Photovoltaic Performances of Cu(In,Ga)(S,Se) ₂ Solar Cells and Their Absorber Quality Analyzed by Urbach Energy and Carrier Recombination Rates. ACS Applied Energy Materials, 2020, 3, 1292-1297.	2.5	12
848	Characterization of Surface and Heterointerface of Cu 2 ZnSn 1– x Ge x Se 4 for Solar Cell Applications. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900708.	1.2	7
849	Heavy Alkali Treatment of Cu(In,Ca)Se ₂ Solar Cells: Surface versus Bulk Effects. Advanced Energy Materials, 2020, 10, 1903752.	10.2	107
850	Nanoscale photovoltage mapping in CZTSe/Cu _x Se heterostructure by using kelvin probe force microscopy. Materials Research Express, 2020, 7, 016418.	0.8	1
851	Limitation of Current Transport across the Heterojunction in Cu(In,Ga)Se ₂ Solar Cells Prepared with Alkali Fluoride Postdeposition Treatment. Solar Rrl, 2020, 4, 1900560.	3.1	14
852	Bournonite CuPbSbS3: An electronically-3D, defect-tolerant, and solution-processable semiconductor for efficient solar cells. Nano Energy, 2020, 71, 104574.	8.2	24
853	Enabling Low-Temperature Deposition of High-Efficiency CIGS Solar Cells with a Modified Three-Stage Co-Evaporation Process. ACS Applied Energy Materials, 2020, 3, 4201-4207.	2.5	11
854	Investigations of potassium-induced surface treatment of Cu(In,Ga)Se2 (CIGSe) thin film solar cells prepared by two-stage process using elemental selenium. Applied Surface Science, 2020, 525, 146368.	3.1	6

#	Article	IF	CITATIONS
855	Perspectives of chalcopyrite-based CIGSe thin-film solar cell: a review. Journal of Materials Science: Materials in Electronics, 2020, 31, 7286-7314.	1.1	55
856	Characterization of lattice parameters gradient of Cu(In1-Ga)Se2 absorbing layer in thin-film solar cell by glancing incidence X-ray diffraction technique. Journal of Materials Science and Technology, 2020, 51, 193-201.	5.6	9
857	Performance and stability enhancement of Cu(InGa)Se2 solar cells on ultrathin glass by potassium incorporation. Materials Letters, 2020, 271, 127749.	1.3	3
858	New approach for an industrial low-temperature roll-to-roll CI(G)Se hybrid sputter coevaporation deposition process. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 033201.	0.9	10
859	Transparent Electrode and Buffer Layer Combination for Reducing Carrier Recombination and Optical Loss Realizing over a 22%-Efficient Cd-Free Alkaline-Treated Cu(In,Ga)(S,Se)2 Solar Cell by the All-Dry Process. ACS Applied Materials & Interfaces, 2020, 12, 22298-22307.	4.0	17
860	Investigation of Optimum Conditions for Synthesis of Cu(In,Ga)Se2 Nanoparticles by Refluxing. Journal of the Korean Physical Society, 2020, 76, 527-532.	0.3	0
861	Effects of Copper Substitution by Alkali Metals on the Properties of Chalcopyrites for Tandem Applications: Insights from Theory. Journal of Physical Chemistry C, 2020, 124, 10353-10366.	1.5	5
862	The History of Photovoltaics with Emphasis on CdTe Solar Cells and Modules. Coatings, 2020, 10, 344.	1.2	68
863	Effects of KF and RbF treatments on Cu(In,Ga)Se2-based solar cells: A combined photoelectron spectroscopy and DFT study. Applied Surface Science, 2021, 538, 148085.	3.1	7
864	Evaluating the role of composition and local structure on alkali outâ€diffusion in glasses for thinâ€film solar cells. Journal of the American Ceramic Society, 2021, 104, 851-859.	1.9	4
865	Band gap tuning of Cu(In,Ga)Se2 thin films by electrodeposition and their subsequent selenization using a rapid thermal annealing system. Journal of Solid State Electrochemistry, 2021, 25, 591-601.	1.2	2
866	How different are CZTS grain boundaries?. Scripta Materialia, 2021, 194, 113605.	2.6	4
867	Device Performance of Emerging Photovoltaic Materials (Version 1). Advanced Energy Materials, 2021, 11, 2002774.	10.2	93
868	Synergistic incorporation of NaF and CsF PDT for high efficiency kesterite solar cells: unveiling of grain interior and grain boundary effects. Journal of Materials Chemistry A, 2021, 9, 413-422.	5.2	34
869	Effect of interface defects on high efficient perovskite solar cells. Optik, 2021, 227, 166061.	1.4	36
870	Review on the effects due to alkali metals on copper–indium–gallium–selenide solar cells. Materials Today Energy, 2021, 20, 100617.	2.5	9
871	9.7%-efficient Sb ₂ (S,Se) ₃ solar cells with a dithieno[3,2- <i>b</i> : 2′,3′- <i>d</i>]pyrrole-cored hole transporting material. Energy and Environmental Science, 2021, 14, 359-364.	15.6	70
872	A Device Model for Rb-Conditioned Chalcopyrite Solar Cells. IEEE Journal of Photovoltaics, 2021, 11, 232-240.	1.5	6

#	Article	IF	CITATIONS
873	First-principles study of electronic and optical properties of ternary compounds AuBX2 (X = S, Se, Te) and AuMTe2 (M = Al, In, Ga). Solid State Sciences, 2021, 111, 106508.	1.5	27
874	12.95% Efficient Cu(In,Ga)Se ₂ Solar Cells by Single-Step Atmospheric Selenization, Scaled to Monolithically Integrated Modules. ACS Applied Energy Materials, 2021, 4, 286-294.	2.5	7
875	Balance performance and related soft tissue components across three age groups. Health Care for Women International, 2021, 42, 67-81.	0.6	6
876	Effect of chemical substitution on polytypes and extended defects in chalcopyrites: A density functional theory study. Journal of Applied Physics, 2021, 129, 025703.	1.1	5
877	Local Cu Component Engineering to Achieve Continuous Carrier Transport for Enhanced Kesterite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 795-805.	4.0	16
878	Metal halide perovskite-based flexible tandem solar cells: next-generation flexible photovoltaic technology. Materials Chemistry Frontiers, 2021, 5, 4833-4850.	3.2	15
879	Research Progress of Metal(I) Substitution in Cu ₂ ZnSn(S,Se) ₄ Thin Film Solar Cells. Acta Chimica Sinica, 2021, 79, 303.	0.5	4
880	Significant Passivation Effect of Cu(In, Ga)Se 2 Solar Cells via Back Contact Surface Modification Using Oxygen Plasma. Solar Rrl, 2021, 5, 2000572.	3.1	4
881	Behavior of Na and RbFâ€Treated CdS/Cu(In,Ga)Se ₂ Solar Cells with Stress Testing under Heat, Light, and Junction Bias. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000530.	1.2	3
882	Alkali-metal-ion-doping strategy to improve the photovoltaic properties of Ag ₂ Bil ₅ solar cells. New Journal of Chemistry, 2021, 45, 14158-14166.	1.4	6
883	Alkali Dispersion in (Ag,Cu)(In,Ga)Se ₂ Thin Film Solar Cells—Insight from Theory and Experiment. ACS Applied Materials & Interfaces, 2021, 13, 7188-7199.	4.0	22
884	Present Status of Solutionâ€Processing Routes for Cu(In,Ga)(S,Se) ₂ Solar Cell Absorbers. Advanced Energy Materials, 2021, 11, 2003743.	10.2	57
885	Defect Engineering in Earthâ€Abundant Cu ₂ ZnSn(S,Se) ₄ Photovoltaic Materials via Ga ³⁺ â€Doping for over 12% Efficient Solar Cells. Advanced Functional Materials, 2021, 31, 2010325.	7.8	79
886	Influence of complexing agents-aided CuInSe2 thin films by single-step electrochemical deposition and photoelectrochemical studies. Journal of Materials Science: Materials in Electronics, 2021, 32, 6855-6865.	1.1	9
887	Electronic Structure of the CdS/Cu(In,Ga)Se ₂ Interface of KF- and RbF-Treated Samples by Kelvin Probe and Photoelectron Yield Spectroscopy. ACS Applied Materials & Interfaces, 2021, 13, 7745-7755.	4.0	12
888	Thin oxide buffer layers for avoiding leaks in CICS solar cells; a theoretical analysis. Journal of Materials Science: Materials in Electronics, 2021, 32, 7598-7608.	1.1	18
889	Elucidating Mechanisms behind Ambient Storage-Induced Efficiency Improvements in Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 925-933.	8.8	52
890	Analysis of the Heavy Alkali Element Postdeposition Treatment: Which Factors Determine the Electronic Structure and Transport Properties of the Heterojunction in CIGS Thin Film Solar Cells. ACS Applied Energy Materials, 2021, 4, 3279-3287.	2.5	5

#	Article	IF	CITATIONS
891	Impact of Cu-deficient p-n heterointerface in CuGaSe2 photovoltaic devices. Applied Physics Letters, 2021, 118, .	1.5	8
892	Effect of combined treatment of cesium fluoride as precursor and post-treatment on Cu(In,Ga)Se2 thin film solar cell. Applied Physics Letters, 2021, 118, .	1.5	6
893	Achieving over 15% Efficiency in Solution-Processed Cu(In,Ga)(S,Se) ₂ Thin-Film Solar Cells via a Heterogeneous-Formation-Induced Benign p–n Junction Interface. ACS Applied Materials & Interfaces, 2021, 13, 13289-13300.	4.0	12
894	Kesterite Solar Cells: Insights into Current Strategies and Challenges. Advanced Science, 2021, 8, 2004313.	5.6	90
895	Defects and Surface Electrical Property Transformation Induced by Elemental Interdiffusion at the p–n Heterojunction via High-Temperature Annealing. ACS Applied Materials & Interfaces, 2021, 13, 12211-12220.	4.0	25
896	The Effect of Potassium Fluoride Postdeposition Treatments on the Optoelectronic Properties of Cu(In,Ga)Se 2 Single Crystals. Solar Rrl, 2021, 5, 2000727.	3.1	9
897	Structure, electronic and optical properties of chalcopyrite-type nano-clusters XFeY ₂ (X=Cu, Ag, Au; Y=S, Se, Te): a density functional theory study. Pure and Applied Chemistry, 2021, 93, 591-606.	0.9	10
898	Vapor Transport Deposition of Highly Efficient Sb ₂ (S,Se) ₃ Solar Cells via Controllable Orientation Growth. Advanced Functional Materials, 2021, 31, 2101476.	7.8	38
899	Enhancing Surface Properties for Electrodeposited Cu(In,Ga)Se ₂ Films by (NH ₄) ₂ S Solution at Room Temperature. ACS Applied Energy Materials, 2021, 4, 3822-3831.	2.5	7
900	Enhancing the Hydrogen Evolution Properties of Kesterite Absorber by Siâ€Doping in the Surface of CZTS Thin Film. Advanced Materials Interfaces, 2021, 8, 2002124.	1.9	8
901	Semitransparent and bifacial ultrathin Cu(In,Ca)Se2 solar cells via a single-stage process and light-management strategy. Nano Energy, 2021, 82, 105729.	8.2	32
902	Multi-pulse modulation method in photothermal atomic force microscopy for variable frequency modulation of incident light. Japanese Journal of Applied Physics, 2021, 60, SE1003.	0.8	5
903	Effects of different Cs distribution in the film on the performance of CIGS thin film solar cells. Solar Energy Materials and Solar Cells, 2021, 222, 110917.	3.0	16
904	Theoretical Analysis of Experimental Data of Sodium Diffusion in Oxidized Molybdenum Thin Films. Energies, 2021, 14, 2479.	1.6	14
905	SnO2/2D-Bi2O2Se new hybrid electron transporting layer for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2021, 410, 128436.	6.6	32
906	Device design for high-performance bifacial Cu(In,Ga)Se2 solar cells under front and rear illuminations. Solar Energy, 2021, 218, 76-84.	2.9	13
907	New Solution-Processed Surface Treatment to Improve the Photovoltaic Properties of Electrodeposited Cu(In,Ga)Se ₂ (CIGSe) Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 25451-25460.	4.0	5
908	Effect of the double grading on the internal electric field and on the carrier collection in CIGS solar cells. Solar Energy Materials and Solar Cells, 2021, 223, 110948.	3.0	15

#	Article	IF	CITATIONS
909	Effects of Sputtered In _x S _y Buffer on CIGS with RbF Post-Deposition Treatment. ECS Journal of Solid State Science and Technology, 2021, 10, 055006.	0.9	8
910	Structure engineering of solution-processed precursor films for low temperature fabrication of CuIn(S,Se)2 solar cells. Solar Energy, 2021, 220, 796-801.	2.9	3
911	Study on the Optimization of Cu-Zn-Sn-O to Prepare Cu2ZnSnS4 Thin Film via a Nano Ink Coating Method. Frontiers in Chemistry, 2021, 9, 675642.	1.8	0
912	overflow="scroll"> <mml:mi>Cu</mml:mi> ``-Deficient Interface in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mi>Cu</mml:mi><mml:mo stretchy="false"> (<mml:mi>In</mml:mi><mml:mo>.</mml:mo><mml:mi>Ga</mml:mi><mml:mo) b<="" td="" ti=""><td>1.5 ETOq1 1 0</td><td>13 .784314 rg<mark>8</mark></td></mml:mo)></mml:mo </mml:math 	1.5 ETOq1 1 0	13 .784314 rg <mark>8</mark>
913	3D/2D passivation as a secret to success for polycrystalline thin-film solar cells. Joule, 2021, 5, 1057-1073.	11.7	48
914	On the Importance of Joint Mitigation Strategies for Front, Bulk, and Rear Recombination in Ultrathin Cu(In,Ga)Se ₂ Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 27713-27725. Origin of the Improved Performance of <mml:math< td=""><td>4.0</td><td>11</td></mml:math<>	4.0	11
915	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mi>Cu</mml:mi> <mml:mo< td=""><td></td><td></td></mml:mo<>		

#	Article	IF	CITATIONS
927	Amorphous Zn(O,Se) buffer layer for Cu(In,Ga)Se2 thin film solar cells. Materials Science in Semiconductor Processing, 2021, 132, 105862.	1.9	1
928	Chemical tailoring of sodium content for optimization of interfacial band bending and alignment in flexible kesterite solar cells. Solar Energy Materials and Solar Cells, 2021, 230, 111243.	3.0	8
929	Detrimental Impact of Na Upon Rb Postdeposition Treatments of Cu(In,Ga)Se ₂ Absorber Layers. Solar Rrl, 2021, 5, 2170094.	3.1	1
930	Microscopic insight into the impact of the KF postâ€deposition treatment on optoelectronic properties of (Ag,Cu)(In,Ga)Se 2 solar cells. Progress in Photovoltaics: Research and Applications, 0, , .	4.4	1
931	Bias dependent admittance spectroscopy of thin film solar cells: KF post deposition treatment, accelerated lifetime testing, and their effect on the CVf loss maps. Solar Energy Materials and Solar Cells, 2021, 231, 111289.	3.0	1
932	Multidentate anchoring through additive engineering for highly efficient Sb2S3 planar thin film solar cells. Journal of Materials Science and Technology, 2021, 89, 36-44.	5.6	11
933	Key factors governing the device performance of CIGS solar cells: Insights from machine learning. Solar Energy, 2021, 228, 45-52.	2.9	14
934	Impact of RbF post deposition treatment on CdS/CIGSe and Zn(O,S)/CIGSe interfaces – A comparative HAXPES study. Renewable Energy, 2021, 180, 626-636.	4.3	5
935	Improved carrier transport in CIGS solar cells induced by Ag treatment. Journal of Alloys and Compounds, 2021, 886, 161193.	2.8	10
936	Hard x-ray photoelectron spectroscopy at a soft x-ray source: Present and future perspectives of hard x-ray photoelectron spectroscopy at BESSY II. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	1
937	Review on incorporation of alkali elements and their effects in Cu(In,Ga)Se2 solar cells. Journal of Materials Science and Technology, 2022, 96, 179-189.	5.6	27
938	Role of Cation Ordering on Device Performance in (Ag,Cu)InSe ₂ Solar Cells with KF Post-Deposition Treatment. ACS Applied Energy Materials, 2021, 4, 233-241.	2.5	2
939	Chalcogenide compounds for solar cells. , 2021, , 245-270.		2
940	Progress in Thin Film Solar Cell and Advanced Technologies for Performance Improvement. , 2022, , 661-680.		2
941	Novel dielectrics compounds grown by atomic layer deposition as sustainable materials for chalcogenides thin-films photovoltaics technologies. , 2021, , 71-100.		2
942	Correcting for interference effects in the photoluminescence of Cu(In,Ga)Se ₂ thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, .	0.8	6
943	Quenching interface recombination in wide bandgap Cu(In,Ga)Se ₂ by potassium treatment. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, .	0.8	9
944	Over 10% Efficient Wide Bandgap CIGSe Solar Cells on Transparent Substrate with Na Predeposition Treatment. Solar Rrl, 2020, 4, 2000284.	3.1	8

#	Article	IF	CITATIONS
045	CIGS Miniâ€Modules with Dispensed Metallization on Transparent Conductive Oxide Layer. Solar Rrl,	0.1	7
945	2020, 4, 2000475.	3.1	7
946	CIGS Thin Film Photovoltaic—Approaches and Challenges. Springer Series in Optical Sciences, 2020, , 175-218.	0.5	5
947	Flexible solar-rechargeable energy system. Energy Storage Materials, 2020, 32, 356-376.	9.5	23
948	Performance enhancement of CICS thin-film solar cell. Optik, 2020, 216, 164948.	1.4	40
949	ALD-ZnMgO and absorber surface modifications to substitute CdS buffer layers in co-evaporated CIGSe solar cells. EPJ Photovoltaics, 2020, 11, 12.	0.8	6
950	Evolution and role of vacancy clusters at grain boundaries of ZnO:Al during accelerated degradation of Cu(In,Ga)Se2 solar cells revealed by positron annihilation. Physical Review Materials, 2018, 2, .	0.9	7
951	Potassium fluoride postdeposition treatment with etching step on both Cu-rich and Cu-poor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>CuInS</mml:mi><mml:msub><mml mathvariant="normal">e<mml:mn>2</mml:mn></mml </mml:msub></mml:mrow> thin film color color. Physical Pavious Materials, 2018, 2</mml:math 	: 0 .19	12
952	Frank-Turnbull dopant migration may enhance heteroatom diffusivity: Evidence from alkali-doped Cu(In,Ga)Se2. Physical Review Materials, 2019, 3, .	0.9	10
953	Challenge in Cu-rich <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>CuInSe </mml:mi> <mml:mn>2 thin film solar cells: Defect caused by etching. Physical Review Materials, 2019, 3, .</mml:mn></mml:msub></mml:math 	llonon > <td>n2l7msub><!--</td--></td>	n 2l7 msub> </td
954	Energy level alignment of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Cu</mml:mi> <mml:mrow> <mml:m absorber compounds with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mro.< td=""><td>0>(0.9</td><td>:mo><mml:: 18</mml:: </td></mml:mro.<></mml:math></mml:m </mml:mrow></mml:mrow></mml:math 	0>(0.9	:mo> <mml:: 18</mml::
955	Electronic defects in <mml:math .<br="" 3,="">xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Cu</mml:mi><mml:mrow><mml:m mathvariant="normal">S<mml:msub><mml:mi mathvariant="normal">e<mml:msub><mml:mn>2</mml:mn></mml:msub></mml:mi </mml:msub></mml:m </mml:mrow></mml:mrow></mml:math> : Towards a comprehensive model. Physical Review Materials, 2019, 3	0>(0.9	:mo> <mml:i 48</mml:i
956	Crystalline Characterisitics of Epitaxial Cu(In,Ga)Se2 Layers on GaAs (001) Substrates. , 2020, , .		3
957	High Weight-Specific Power Density of Thin-Film Amorphous Silicon Solar Cells on Graphene Papers. Nanoscale Research Letters, 2019, 14, 324.	3.1	5
958	Various Metal Sandwich Layer Oriented Efficiency Enhancement Superiority on CuInGaSe2 Thin Film Solar Cells. Advances in Chemical Engineering and Science, 2019, 09, 176-181.	0.2	1
959	Fabrication of high-efficiency Cu ₂ (Zn,Cd)SnS ₄ solar cells by a rubidium fluoride assisted co-evaporation/annealing method. Journal of Materials Chemistry A, 2021, 9, 25522-25530.	5.2	11
960	Chalcopyrite Thin-Film Materials and Solar Cells. , 2022, , 335-361.		1
961	Evolution of Morphological and Chemical Properties at p–n Junction of Cu(In,Ga)Se ₂ Solar Cells with Zn(O,S) Buffer Layer as a Function of KF Postdeposition Treatment Time. ACS Applied Materials & Interfaces, 2021, 13, 48611-48621.	4.0	7
962	Potassium versus Sodium in Cu(In,Ga)Se ₂ —Similarities and Differences in the Electrical Characteristics of Solar Cells and Thin Films after NaF or KF Postdeposition Treatment. Physica Status Solidi - Rapid Research Letters, 2022, 16, 2100459.	1.2	5

		CITATION REPORT		
#	Article		IF	Citations
963	Silver-alloyed wide-gap CuGaSe2 solar cells. Solar Energy, 2021, 230, 509-514.		2.9	7
964	Gallium diffusion in CIGS thin films prepared by sequential sputtering/selenization tech Xuebao/Acta Physica Sinica, 2014, 63, 118802.	nique. Wuli	0.2	2
965	III-V Tandem, CuInGa(S,Se) ₂ , and Cu ₂ ZnSn(S,Se) ₄ Compound Semicondu Solar Cells. Applied Chemistry for Engineering, 2015, 26, 526-532.	ıctor Thin Film	0.2	0
966	Recent progress in nanoelectrical characterizations of CdTe and Cu(In,Ga)Se2. , 2017, ,			0
967	In Silico Study of Polymer Sheet Drying Process. International Polymer Processing, 2013	7, 32, 474-482.	0.3	0
968	Fabrication of CIGS/CZTS Thin Films Solar Cells by Non-vacuum Process. Korean Journal Research, 2018, 28, 748-757.	of Materials	0.1	0
969	Recent progress of ion migration in organometal halide perovskite. Wuli Xuebao/Acta F 2019, 68, 158801.	'hysica Sinica,	0.2	11
970	Ga/(Ga + In) grading effects on ultra-thin (UT) CIGS solar cell. , 2019, , .			2
972	Influence of Structural Coherency and Interfacial Defects on the Cu(In,Ga)Se _{2Toward a High-Efficiency Solar Cell. ACS Symposium Series, 2020, , 169-187.}	ub>Thin Film:	0.5	0
973	Setting up a Device Model for Rb-Conditioned Chalcopyrite Solar Cells. , 2020, , .			0
974	CIGS Device Models with Variations of Buffer Layer, Alkali Content, and Oxidation. , 202	20, , .		1
975	Efficiency improvement of flexible Cu(In,Ga)Se2 solar cells by integrating a micro-prism transferred to soft-polydimethylsiloxane. , 2020, , .	array		0
976	Effect of Anti-Reflective Coating on CIGS Solar Cells Performance. , 2020, , .			3
977	Impact of substrate temperature during NaF and KF post-deposition treatments on che optoelectronic properties of alkali-free Cu(In,Ga)Se2 thin film solar cell absorbers. Thin 2021, 739, 138979.	mical and Solid Films,	0.8	3
978	A numerical optimization study of CdS and Mg0.125Zn0.875O buffer layers in CIGS-ba using <i>wx</i> AMPS-1D package. International Journal of Modelling and Simulation, 2	sed solar cells 022, 42, 179-191.	2.3	9
979	Carbon quantum dots anchored on the anti-reflection silica layer as solid luminescence down-shifting materials in solar panel encapsulation. Solar Energy Materials and Solar C 235, 111450.	Cells, 2022,	3.0	6
980	Passivation of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">CuInSe<mml:mn>2</mml:mn></mml:mi </mml:msub>cadmium pre-electrolyte treatment. Physical Review Materials. 2020. 4.</mml:math 	nath> surface via	0.9	2
981	State of Art of Thin Film Photovoltic Cell: A Review. International Journal of Scientific Re Science and Technology, 2020, , 157-163.	search in	0.1	0

#	Article	IF	CITATIONS
982	Evaluation of defect formation in chalcopyrite compounds under Cu-poor conditions by advanced structural and vibrational analyses. Acta Materialia, 2022, 223, 117507.	3.8	5
983	Impact of metallic potassium post-deposition treatment on epitaxial Cu(In,Ga)Se2. Thin Solid Films, 2022, 741, 139002.	0.8	2
984	Charge Dissipation Behavior on the Insulating Polyimide Backsheet in Photovoltaic System. Journal of Physics: Conference Series, 2021, 2087, 012003.	0.3	0
985	Alternative alkali fluoride postâ€deposition treatment under elemental sulfur atmosphere for highâ€efficiency Cu(In,Ga)Se ₂ â€based solar cells. Progress in Photovoltaics: Research and Applications, 2022, 30, 835-842.	4.4	5
986	Efficiency Improvement of Flexible Cu ₂ ZnSn(S,Se) ₄ Solar Cells by Window Layer Interface Engineering. ACS Applied Energy Materials, 2021, 4, 14467-14475.	2.5	14
987	Device Performance of Emerging Photovoltaic Materials (Version 2). Advanced Energy Materials, 2021, 11, .	10.2	66
988	High efficiency CIGS solar cells on flexible stainless steel substrate with SiO2 diffusion barrier layer. Solar Energy, 2021, 230, 1033-1039.	2.9	9
989	Defects Passivation and Crystal Growth Promotion by Solution-Processed K Doping Strategy Toward 16.02% Efficiency Cu(In,Ga)(S,Se) ₂ Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
990	Physical and chemical aspects at the interface and in the bulk of CuInSe ₂ -based thin-film photovoltaics. Physical Chemistry Chemical Physics, 2022, 24, 1262-1285.	1.3	21
991	Ultrathin Oxides for Solar Cells. RSC Energy and Environment Series, 2022, , 27-69.	0.2	1
992	Insights into the Effects of RbFâ€Postâ€Deposition Treatments on the Absorber Surface of High Efficiency Cu(In,Ga)Se ₂ Solar Cells and Development of Analytical and Machine Learning Process Monitoring Methodologies Based on Combinatorial Analysis. Advanced Energy Materials, 2022, 12, .	10.2	6
993	Effects of alkali-metal incorporation into epitaxial Cu(In,Ga)Se2 solar cells prepared by molecular beam epitaxy. Thin Solid Films, 2022, 741, 139034.	0.8	7
994	Ammonia-induced surface microstructure reconstruction on ACIGS thin film at room temperature. Materials Science in Semiconductor Processing, 2022, 140, 106380.	1.9	6
995	Copper-based kesterite thin films for photoelectrochemical water splitting. High Temperature Materials and Processes, 2021, 40, 446-460.	0.6	10
996	Solution growth of chalcopyrite Cu(In1â^'x Ga x)Se2 single crystals for high open-circuit voltage photovoltaic device. High Temperature Materials and Processes, 2021, 40, 439-445.	0.6	0
997	Understanding copper diffusion in CuInSe2 with first-principles based atomistic and continuum models. Journal of Applied Physics, 2021, 130, .	1.1	1
998	High-specific-power flexible transition metal dichalcogenide solar cells. Nature Communications, 2021, 12, 7034.	5.8	84
999	Exploiting the Optical Limits of Thinâ€Film Solar Cells: A Review on Light Management Strategies in Cu(In,Ga)Se ₂ . Advanced Photonics Research, 2022, 3, .	1.7	15

#	Article	IF	Citations
1000	Pre-deposited alkali (Li, Na, K) chlorides layer for effective doping of CuInSSe thin films as absorber layer in solar cells. Solar Energy, 2022, 231, 694-704.	2.9	4
1001	Graphene-based semiconductor nanocrystals for optoelectronics devices. , 2022, , 383-406.		0
1002	Defects passivation and crystal growth promotion by solution-processed K doping strategy toward 16.02% efficiency Cu(In,Ga)(S,Se)2 solar cells. Chemical Engineering Journal, 2022, 436, 135008.	6.6	17
1003	Fabrication of high-efficiency PET polymer-based flexible dye-sensitized solar cells and tapes <i>via</i> heat sink-supported thermal sintering of bilayer TiO ₂ photoanodes. Sustainable Energy and Fuels, 2022, 6, 2503-2513.	2.5	5
1004	DLTS investigations on CIGS solar cells from an inline co-evaporation system with RbF post-deposition treatment. EPJ Photovoltaics, 2022, 13, 7.	0.8	5
1005	Analysis of the combined effect of long-term heat light soaking and KF/NaF post-deposition treatment on the open-circuit voltage loss in CICS solar cells. Japanese Journal of Applied Physics, 2022, 61, SC1050.	0.8	2
1006	Rubidium Fluoride Absorber Treatment for Wideâ€Gap (Ag,Cu)(In,Ga)Se ₂ Solar Cells. Solar Rrl, 2022, 6, .	3.1	14
1007	Lateral Photocurrent Method for Directly Measuring the Sheet Resistance of a Junction Partner for a Chalcogenide Light Absorber in a Thin-Film Solar Cell. Physical Review Applied, 2022, 17, .	1.5	4
1008	Surface Defect Engineering of Metal Halide Perovskites for Photovoltaic Applications. ACS Energy Letters, 2022, 7, 1230-1239.	8.8	46
1009	The Photovoltaic Cell Based on CIGS: Principles and Technologies. Materials, 2022, 15, 1908.	1.3	23
1010	Effect of CZTS/CCZTS Stacked Structures Prepared through Split-Cycle on the Performance of Flexible Solar Cells. ACS Applied Energy Materials, 2022, 5, 3668-3676.	2.5	10
1011	Perovskite/CIGS Tandem Solar Cells: From Certified 24.2% toward 30% and Beyond. ACS Energy Letters, 2022, 7, 1298-1307.	8.8	128
1012	Formation of Native In _{<i>x</i>} (O,S) _{<i>y</i>} Buffer through Surface Oxidation of Cu(In,Ga)(S,Se) ₂ Absorber for Significantly Enhanced Conversion Efficiency of Flexible and Cdâ€Free Solar Cell by Allâ€Dry Process. Solar Rrl, 2022, 6, .	3.1	6
1013	The impact of Ga and S concentration and gradient in Cu(In,Ga)(Se,S)2 solar cells. Optical Materials, 2022, 126, 112143.	1.7	3
1014	Impacts of KF Post-Deposition Treatment on the Band Alignment of Epitaxial Cu(In,Ga)Se ₂ Heterojunctions. ACS Applied Materials & Interfaces, 2022, 14, 16780-16790.	4.0	3
1015	First-principles calculations of electronic and optical properties of AgGa1-xTlxS2 alloys: Analyses and design for solar cell applications. Journal of Solid State Chemistry, 2022, 309, 122996.	1.4	4
1016	Prediction of the power conversion efficiency of Perovskite-on-CIGS tandem and triple junctions thin-film cells under solar concentration irradiations by optimization of structural and optoelectronic materials characteristic. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 280, 115712.	1.7	4
1017	Traces of iron impurities in copper sources can be a poison to Cu(In, Ga)Se ₂ solar cells. Nano Select, 0, , .	1.9	0

		CITATION REPORT		
#	Article		IF	CITATIONS
1018	CIGS photovoltaics: reviewing an evolving paradigm. Journal Physics D: Applied Physics	s, 2022, 55, 173001.	1.3	17
1019	Efficiency enhancement in photoelectrochemical water splitting: Defect passivation ar charge transfer kinetics of zinc oxide nanostructures via chalcopyrite/chalcogenide mix sensitization. Physical Review Materials, 2021, 5, .	nd boosted x	0.9	5
1020	Surface/Interface Effects by Alkali Postdeposition Treatments of (Ag,Cu)(In,Ga)Se <sub Film Solar Cells. ACS Applied Energy Materials, 2022, 5, 461-468.</sub 	>2 Thin	2.5	6
1022	A post-deposition annealing approach for organic residue control in TiO ₂ on Sb ₂ Se ₃ /TiO ₂ device performance. Faraday I 273-286.	and its impact Discussions, 0, 239,	1.6	7
1023	Extrinsic Doping of Inkâ€Based Cu(In,Ga)(S,Se) ₂ â€Absorbers for Photovo Advanced Energy Materials, 2022, 12, .	oltaic Applications.	10.2	13
1024	Toward Understanding Chalcopyrite Solar Cells via Advanced Characterization Technic Materials Interfaces, 2022, 9, .	ues. Advanced	1.9	1
1025	High-yield recycling and recovery of copper, indium, and gallium from waste copper ind selenide thin-film solar panels. Solar Energy Materials and Solar Cells, 2022, 241, 1116	dium gallium 91.	3.0	18
1027	Effect of K Doping on the Performance of Aqueous Solutionâ€Processed Cu(In,Ga)Se < Cell. Advanced Energy and Sustainability Research, 0, , 2200006.	₂ Solar	2.8	2
1028	Growth-Promoting Mechanism of Bismuth-Doped Cu(In,Ga)Se ₂ Solar Cel 400 °C. ACS Applied Materials & Interfaces, 2022, 14, 23426-23435.	ls Fabricated at	4.0	1
1029	Over 12% Efficient CuIn(S,Se) ₂ Solar Cell with the Absorber Fabricated fr Dimethylformamide Solution by Doctorâ€Blading in Ambient Air. Solar Rrl, 2022, 6, .	om	3.1	4
1030	Surface Modification of Cu(in,Ga)Se ₂ Film with a Postâ€Deposition Trea Solution and Its Effect on Solar Cell Performance. Solar Rrl, 0, , 2200058.	tment Using a Kl	3.1	2
1031	Perovskite solar cells by vapor deposition based and assisted methods. Applied Physics .	s Reviews, 2022, 9,	5.5	33
1032	Study on the Performance of Oxygen-Rich Zn(O,S) Buffers Fabricated by Sputtering De Zn(O,S)/Cu(In,Ga)(S,Se) ₂ Interfaces. ACS Applied Materials & amp; Interface3. 24435-24446.	eposition and aces, 2022, 14,	4.0	2
1033	Precisely nanostructured HfO ₂ rear passivation layers for ultraâ€ŧhin Cu(In,Ga)Se ₂ . Progress in Photovoltaics: Research and Applications, 2022	2, 30, 1289-1297.	4.4	2
1034	Will ultrathin CIGS solar cells overtake the champion thin-film cells? Updated SCAPS by reveal main differences between ultrathin and standard CIGS. Solar Energy Materials a 2022, 243, 111792.	aseline models nd Solar Cells,	3.0	11
1035	Performance enhancement of CIGS solar cells using ITO as buffer layer. , 2022, 168, 20	07289.		9
1036	Search of chalcopyrite materials based on hybrid density functional theory calculation. Physics Communications, 2022, 6, 065001.	Journal of	0.5	1
1037	Molybdenum back contact interface engineering of kesterite CZTSSe solar cells: Ultrat intermediate engineering layers. , 2022, , 137-160.	hin		0

# 1038	ARTICLE Photovoltaics of CZTS. Springer Handbooks, 2022, , 1305-1326.	IF 0.3	CITATIONS
1039	Sb ₂ Se ₃ Thinâ€Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition Technology. Advanced Materials, 2022, 34, .	11.1	101
1040	Surface nanopatterning of amorphous gallium oxide thin film for enhanced solar-blind photodetection. Nanotechnology, 2022, 33, 375302.	1.3	7
1041	Characterization of the Interfacial Defect Layer in Chalcopyrite Solar Cells by Depthâ€Resolved Muon Spin Spectroscopy. Advanced Materials Interfaces, 0, , 2200374.	1.9	2
1043	Fabrication of in situ alkali doped flexible CIGSSe solar cells by using aqueous spray deposition. Current Applied Physics, 2022, 41, 66-72.	1.1	7
1044	Influence of argon pressure on sputter-deposited molybdenum back contacts for flexible Cu(In,Ga)Se2 solar cells on polyimide films. Solar Energy, 2022, 241, 327-334.	2.9	2
1045	Incorporation of Na into Ag2ZnSnSe4 from hybrid functional calculations. Physica B: Condensed Matter, 2022, 640, 414084.	1.3	2
1046	Optimization of the substrate temperature of narrow bandgap CIS solar cells by three stage coevaporation process. Materials Science in Semiconductor Processing, 2022, 149, 106879.	1.9	2
1047	Interface Passivation and Band Alignment of High Efficiency Cu(In, Ga)Se2 Solar Cells: Application of Mo(Oxse1-X)2 Buffer Layer at Mo/ Cu(In, Ga)Se2 Interface. SSRN Electronic Journal, 0, , .	0.4	0
1048	Surface Passivation and Detrimental Heat-Induced Diffusion Effects in RbF-Treated Cu(In,Ga)Se ₂ Solar Cell Absorbers. ACS Applied Materials & Interfaces, 2022, 14, 34101-34112.	4.0	3
1049	Effect of Sodium Incorporation on Cuin(S,Se)2 Thin Films Fabricated by Aqueous Spray Deposition and Their Photovoltaic Properties. SSRN Electronic Journal, 0, , .	0.4	0
1050	Back Contact Engineering to Improve CZTSSe Solar Cell Performance by Inserting MoO3 Sacrificial Nanolayers. Sustainability, 2022, 14, 9511.	1.6	4
1051	Fingerprints Indicating Superior Properties of Internal Interfaces in Cu(In,Ga)Se ₂ Thinâ€Film Solar Cells. Advanced Materials, 2022, 34, .	11.1	13
1052	Performance Analysis of a Cu(In1â°'xGax)Se2 Solar Cell with Nontoxic WS2 and WSSe Buffer Layers. Journal of Electronic Materials, 2022, 51, 6168-6179.	1.0	15
1053	K Improves Cu(In,Ga)Se ₂ Surface Band Alignment through Reconstruction. ACS Applied Energy Materials, 0, , .	2.5	0
1054	Enhanced Performance of Ternary CuGaSe ₂ Thinâ€Film Photovoltaic Solar Cells and Photoelectrochemical Water Splitting Hydrogen Evolution with Modified p–n Heterointerfaces. Advanced Materials Interfaces, 2022, 9, .	1.9	12
1056	Effectiveness of band discontinuities between CIGS absorber and copper-based hole transport layer in limiting recombination at the back contact. Materials Today Communications, 2022, 33, 104220.	0.9	10
1057	High Efficiency Aqueous Solution Sprayed CIGSSe Solar Cells: Effects of Zr ⁴⁺ â€Alloyed In ₂ S ₃ Buffer and Kâ€Alloyed CIGSSe Absorber. Advanced Functional Materials, 2022, 32, .	7.8	2

#	Article	IF	CITATIONS
1058	Analysis of a novel method of alkalis treatment: Effect on energy band optimization and carrier recombination at the grain boundary. Solar Energy Materials and Solar Cells, 2022, 248, 112007.	3.0	3
1059	Effect of Cesium for Cu(In,Ga)(S,Se)\$_{2}\$ Solar Cells Using Photothermal Atomic Force Microscopy Under Various Photoexcitation Conditions. IEEE Journal of Photovoltaics, 2022, , 1-5.	1.5	0
1060	Advancement in Copper Indium Gallium Diselenide (CIGS)-Based Thin-Film Solar Cells. Advances in Sustainability Science and Technology, 2022, , 5-39.	0.4	3
1061	Oxides for Photovoltaic Applications. Advances in Sustainability Science and Technology, 2022, , 179-218.	0.4	0
1062	Effect of Sodium Incorporation on Cuin(S,Se)2 Thin Films Fabricated by Aqueous Spray Deposition and Their Photovoltaic Properties. SSRN Electronic Journal, 0, , .	0.4	0
1063	Defects passivation by solution-processed titanium doping strategy towards high efficiency kesterite solar cells. Chemical Engineering Journal, 2023, 451, 139109.	6.6	25
1064	Study of Solar energy dependent determination of wavelength using LASER source. International Journal of Scientific Research in Science, Engineering and Technology, 2022, , 271-276.	0.1	1
1065	A library of polytypic copper-based quaternary sulfide nanocrystals enables efficient solar-to-hydrogen conversion. Nature Communications, 2022, 13, .	5.8	14
1066	Postâ€deposition annealing and interfacial atomic layer deposition buffer layers of Sb ₂ Se ₃ /CdS stacks for reduced interface recombination and increased openâ€circuit voltages. Progress in Photovoltaics: Research and Applications, 2023, 31, 203-219.	4.4	4
1067	Numerical study of high-efficiency CICS solar cells by inserting a BSF µc-Si:H layer. Journal of Computational Electronics, 2022, 21, 1386-1395.	1.3	6
1068	Recent progress in defect engineering for kesterite solar cells. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	4
1069	Versatile Layered Hydroxide Precursors for Generic Synthesis of Cuâ€Based Materials. Small Structures, 2023, 4, .	6.9	3
1070	Manipulation of flexible carbon cloths for stable and efficient catalysts in dye-sensitized solar cells. Journal of Electroanalytical Chemistry, 2022, 923, 116836.	1.9	2
1071	Interface passivation and band alignment of high efficiency Cu(In, Ga)Se2 solar cells: Application of Mo(OxSe1-x)2 buffer layer at Mo/ Cu(In, Ga)Se2 interface. Optical Materials, 2022, 133, 113059.	1.7	2
1072	Lightweight and flexible Cu(In,Ga)Se2 solar minimodules: toward 20% photovoltaic efficiency and beyond. Npj Flexible Electronics, 2022, 6, .	5.1	11
1073	Over 11% Efficient CuGaSe ₂ Solar Cells Without Using KCN Treatment. Solar Rrl, 2022, 6, .	3.1	3
1074	Flexible kesterite thin-film solar cells under stress. Npj Flexible Electronics, 2022, 6, .	5.1	15
1075	Effect of sodium incorporation on Culn(S,Se)2 thin films fabricated by aqueous spray deposition and their photovoltaic properties. Journal of Crystal Growth, 2023, 602, 126975.	0.7	2

#	Article	IF	CITATIONS
1076	Atom-Scale Chemistry in Chalcopyrite-Based Photovoltaic Materials Visualized by Atom Probe Tomography. ACS Applied Materials & Interfaces, 2022, 14, 52825-52837.	4.0	4
1077	Manipulating Ga growth profile enables all-flexible high-performance single-junction CIGS and 4ÂT perovskite/CIGS tandem solar cells. Chemical Engineering Journal, 2023, 455, 140960.	6.6	11
1078	Environment-friendly copper-based chalcogenide thin film solar cells: status and perspectives. Materials Horizons, 2023, 10, 313-339.	6.4	11
1079	RbF-related post-deposition treatments on Cu(In,Ga)(S,Se)2 absorbers: The role of the chalcogen atmosphere. Applied Surface Science, 2023, 614, 155830.	3.1	0
1080	On current technology for light absorber materials used in highly efficient industrial solar cells. Renewable and Sustainable Energy Reviews, 2023, 173, 113027.	8.2	9
1081	Exploring reverse-bias characteristics of CIGS solar cells: impact of alkali-post-deposition treatment and CdS buffer layer. EPJ Photovoltaics, 2022, 13, 26.	0.8	1
1082	Dielectric Front Passivation for Cu(In,Ga)Se ₂ Solar Cells: Status and Prospect. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	4
1083	Chalcopyrite solar cells —state-of-the-art and options for improvement. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	2
1084	2â€step process for 5.4% CuGaSe ₂ solar cell using fluorine doped tin oxide transparent back contacts. Progress in Photovoltaics: Research and Applications, 2023, 31, 524-535.	4.4	2
1085	Investigation of effective local contact Alâ,,Oâ, <i>f</i> rear passivation for high-efficiency thin CIGS solar cells. Optical Materials Express, 0, , .	1.6	1
1086	Comparison and integration of CuInGaSe and perovskite solar cells. Journal of Energy Chemistry, 2023, 78, 463-475.	7.1	4
1087	Impact of Na diffusion on Cu(In, Ga)Se2 solar cells: Unveiling the role of active defects using thermal admittance spectroscopy. Thin Solid Films, 2023, 767, 139673.	0.8	6
1088	Nano-inks for photovoltaics. , 2023, , 413-426.		0
1089	Thin-film materials for space power applications. , 2023, , 215-263.		1
1090	Challenges in the development of metal-halide perovskite single crystal solar cells. Journal of Materials Chemistry A, 2023, 11, 3822-3848.	5.2	3
1091	Revealing surface modifications of caesium indium selenium treated Cu-rich Cu(In,Ga)Se2: A study of the suppression of the interfacial recombination. Applied Surface Science, 2023, 616, 156555.	3.1	1
1092	Energy conversion materials for the space solar power station. Chinese Physics B, 2023, 32, 078802.	0.7	1
1093	Defect suppression for high-efficiency kesterite CZTSSe solar cells: Advances and prospects. Chemical Engineering Journal, 2023, 462, 142121.	6.6	15

#	Article	IF	CITATIONS
1094	Structural, optoelectronic, and thermoelectric properties of the new Ca\$\$_{2}\$\$ZnGeS\$\$_{4}\$\$ material using DFT methods. Journal of Materials Research, 0, , .	1.2	0
1095	Preparation of Cu(In,Ca)(S,Se)2 absorber via CuGa-NaF-KF target and the influence of Na/K ratio. Materials Science in Semiconductor Processing, 2023, 161, 107460.	1.9	1
1096	Exploring the Performance of CZTS Solar Cells Using BSF Layers. Lecture Notes in Networks and Systems, 2023, , 820-825.	0.5	0
1097	Organic Passivation of Deep Defects in Cu(In,Ga)Se ₂ Film for Geometry-Simplified Compound Solar Cells. Research, 2023, 6, .	2.8	3
1098	Re-structuring of glass surface by ion post-embedding for transmission improvement and application in solar panels. Solar Energy, 2023, 252, 373-379.	2.9	0
1099	DFT investigations of optoelectronic and thermoelectric properties of stannite phase of Cu ₂ SrXSe ₄ (X = Ge, Si, Sn) compounds using TB-mBJ mechanism. Modern Physics Letters B, 2023, 37, .	1.0	0
1100	CZTSSe solar cells: insights into interface engineering. Journal of Materials Chemistry A, 2023, 11, 4836-4849.	5.2	12
1101	Production of Electricity using Solar Cell at 6.0 Volts. International Journal of Scientific Research in Science, Engineering and Technology, 2023, , 160-165.	0.1	0
1102	Flexible solar cells. , 2023, , 325-352.		0
1103	Annealing effects on Cu(In,Ca)Se ₂ solar cells irradiated by high-fluence proton beam. Japanese Journal of Applied Physics, 2023, 62, SK1014.	0.8	2
1103 1104	Annealing effects on Cu(In,Ga)Se ₂ solar cells irradiated by high-fluence proton beam. Japanese Journal of Applied Physics, 2023, 62, SK1014. Anisotropic Charge Transport in Cu(In,Ga)Se ₂ by Heavy Alkali Postdeposition Treatment for Reducing Cellâ€toâ€Module Efficiency Loss in Monolithically Integrated Photovoltaic Modules. Solar Rrl, 0, , .	0.8	2
1103 1104 1105	Annealing effects on Cu(In,Ga)Se ₂ solar cells irradiated by high-fluence proton beam. Japanese Journal of Applied Physics, 2023, 62, SK1014. Anisotropic Charge Transport in Cu(In,Ga)Se ₂ by Heavy Alkali Postdeposition Treatment for Reducing Cellâ€toâ€Module Efficiency Loss in Monolithically Integrated Photovoltaic Modules. Solar Rrl, 0, , . Vacuumâ€Healing of Grain Boundaries in Sodiumâ€Đoped CulnSe ₂ Solar Cell Absorbers. Advanced Energy Materials, 2023, 13, .	0.8 3.1 10.2	2 0 4
1103 1104 1105 1106	Annealing effects on Cu(In,Ga)Se ₂ solar cells irradiated by high-fluence proton beam. Japanese Journal of Applied Physics, 2023, 62, SK1014.Anisotropic Charge Transport in Cu(In,Ga)Se ₂ by Heavy Alkali Postdeposition Treatment for Reducing Cellâ€toâ€Module Efficiency Loss in Monolithically Integrated Photovoltaic Modules. Solar Rrl, 0, , .Vacuumâ€Healing of Grain Boundaries in Sodiumâ€Đoped CuInSe ₂ Solar Cell Absorbers. Advanced Energy Materials, 2023, 13, .Enhanced Mechanical Stability of CIGS Solar Module with Glass/Polyimide/Indium Tin Oxide for Potentially Flexible Applications. ACS Applied Energy Materials, 2023, 6, 3745-3755.	0.8 3.1 10.2 2.5	2 0 4 4
1103 1104 1105 1106 1107	Annealing effects on Cu(In,Ga)Se ₂ solar cells irradiated by high-fluence proton beam. Japanese Journal of Applied Physics, 2023, 62, SK1014. Anisotropic Charge Transport in Cu(In,Ga)Se ₂ by Heavy Alkali Postdeposition Treatment for Reducing Cellâ€toâ€Module Efficiency Loss in Monolithically Integrated Photovoltaic Modules. Solar Rrl, 0, , . Vacuumâ€Healing of Grain Boundaries in Sodiumâ€Doped CuInSe ₂ Solar Cell Absorbers. Advanced Energy Materials, 2023, 13, . Enhanced Mechanical Stability of CICS Solar Module with Glass/Polyimide/Indium Tin Oxide for Potentially Flexible Applications. ACS Applied Energy Materials, 2023, 6, 3745-3755. Perovskite organic tandem solar cell: A design towards improved efficiency. Materials Today: Proceedings, 2023,	0.8 3.1 10.2 2.5 0.9	2 0 4 4
 1103 1104 1105 1106 1107 1108 	Annealing effects on Cu(In,Ga)Se ₂ solar cells irradiated by high-fluence proton beam.Japanese Journal of Applied Physics, 2023, 62, SK1014.Anisotropic Charge Transport in Cu(In,Ga)Se ₂ by Heavy Alkali Postdeposition Treatment for Reducing Cellâ€toâ€Module Efficiency Loss in Monolithically Integrated Photovoltaic Modules. Solar Rrl, 0, , .Vacuumâ€Healing of Grain Boundaries in Sodiumâ€Doped CuInSe ₂ Solar Cell Absorbers. Advanced Energy Materials, 2023, 13, .Enhanced Mechanical Stability of CIGS Solar Module with Glass/Polyimide/Indium Tin Oxide for Potentially Flexible Applications. ACS Applied Energy Materials, 2023, 6, 3745-3755.Perovskite organic tandem solar cell: A design towards improved efficiency. Materials Today: Proceedings, 2023,Efficiency enhancement of CZTSe solar cells based on <i>in situ</i> K-doped precursor. Journal of Materials Chemistry A, 2023, 11, 9085-9096.	0.8 3.1 10.2 2.5 0.9 5.2	2 0 4 4 4 3
 1103 1104 1105 1106 1107 1108 1109 	Annealing effects on Cu(In,Ga)Se ₂ solar cells irradiated by high-fluence proton beam. Japanese Journal of Applied Physics, 2023, 62, SK1014. Anisotropic Charge Transport in Cu(In,Ga)Se ₂ by Heavy Alkali Postdeposition Treatment for Reducing CellåEtoåEModule Efficiency Loss in Monolithically Integrated Photovoltaic Modules. Solar Rrl, 0, , . VacuumåCHealing of Grain Boundaries in SodiumåEDoped CuInSe ₂ Solar Cell Absorbers. Advanced Energy Materials, 2023, 13, . Enhanced Mechanical Stability of CIGS Solar Module with Class/Polyimide/Indium Tin Oxide for Potentially Flexible Applications. ACS Applied Energy Materials, 2023, 6, 3745-3755. Perovskite organic tandem solar cell: A design towards improved efficiency. Materials Today: Proceedings, 2023, Efficiency enhancement of CZTSe solar cells based on <i>in situ</i> K-doped precursor. Journal of Materials Chemistry A, 2023, 11, 9085-9096. Nonradiative Recombination Dominates Voltage Losses in Cu(In,Ga)Se ₂ Solar Cells Fabricated using Different Methods. Solar Rrl, 2023, 7, .	0.8 3.1 10.2 2.5 0.9 5.2 3.1	2 0 4 4 3
 1103 1104 1105 1106 1107 1108 1109 	Annealing effects on Cu(In,Ga)Se ₂ solar cells irradiated by high-fluence proton beam. Japanese Journal of Applied Physics, 2023, 62, Sk1014. Anisotropic Charge Transport in Cu(In,Ga)Se ₂ by Heavy Alkali Postdeposition Treatment for Reducing Cella€toa€Module Efficiency Loss in Monolithically Integrated Photovoltaic Modules. Solar Rtl, 0, , . Vacuuma€Healing of Grain Boundaries in Sodiuma€Doped CuInSe ₂ Solar Cell Absorbers. Advanced Energy Materials, 2023, 13, . Enhanced Mechanical Stability of CIGS Solar Module with Glass/Polyimide/Indium Tin Oxide for Potentially Flexible Applications. ACS Applied Energy Materials, 2023, 6, 3745-3755. Perovskite organic tandem solar cell: A design towards Improved efficiency. Materials Today: Proceedings, 2023, Efficiency enhancement of CZTSe solar cells based on <i>in situ </i> K-doped precursor. Journal of Materials Chemistry A, 2023, 11, 9085-9096. Nonradiative Recombination Dominates Voltage Losses in Cu(In,Ga)Se ₂ Solar Cells Fabricated using Different Methods. Solar Rrl, 2023, 7, . Insights into the Efficiency Improvement for CZTSSe Solar Cells with over 12% Efficiency via Ga Incorporation. Advanced Functional Materials, 2023, 33, .	0.8 3.1 10.2 2.5 0.9 5.2 3.1 7.8	2 0 4 4 3 3 1

	Сітат	ion Report	Report		
#	Article	IF	CITATIONS		
1112	II-VI Wide-Bandgap Semiconductor Device Technology: Post-Deposition Treatments. , 2023, , 551-578.		0		
1113	Insight into physical properties of carbon-doped BeSiP2 and BeGeP2 chalcopyrite: An ab initio study. Journal of Solid State Chemistry, 2023, 323, 124054.	1.4	1		
1114	Silverâ€Đoped Cu ₂ (Sn,Ge)S ₃ Solar Cells. Physica Status Solidi - Rapid Resear Letters, 0, , .	ch 1.2	0		
1121	A facile synthesis of a copper(<scp>i</scp>) thiourea sulphate complex and its application for highly efficient chalcopyrite solar cells. Chemical Communications, 2023, 59, 9848-9851.	2.2	1		
1137	Optimization of Na+ Doping in Absorb Layer for Nanoparticles Based on Cu(In,Ga)Se ₂ Solar Cells. , 2023, , .		0		
1145	Effect of shapes and cooling media on the temperature of flexible photovoltaic panels under the climatic conditions of Khulna, Bangladesh. AIP Conference Proceedings, 2023, , .	0.3	0		
1146	Revani diffusion model in Cu(In,Ga)Se ₂ . Journal of Materials Chemistry A, 2023, 11, 26426-26434.	5.2	3		
1148	Electrodeposition of Metal Chalcogenide Thin Films. , 0, , .		0		
1151	Influence of NaF and KF Post-Deposition Treatment on the Sub-Band Gap Absorption of Cu(In,Ga)Se ₂ Absorber Layers. , 2023, , .		0		
1159	Performance Optimization ofÂCuSbS2 Solar Cells by Numerical Simulation Using SCAPS-1D. Advances in Sustainability Science and Technology, 2024, , 349-358.	0.4	0		