Squeezed light from a silicon micromechanical resonate

Nature 500, 185-189 DOI: 10.1038/nature12307

Citation Report

#	Article	IF	CITATIONS
2	Quantum Mechanics Tackles Mechanics. Science, 2013, 342, 702-703.	6.0	2
3	Entangling Mechanical Motion with Microwave Fields. Science, 2013, 342, 710-713.	6.0	524
4	Feeling the squeeze. Nature Photonics, 2013, 7, 854-855.	15.6	4
5	Review of cavity optomechanical cooling. Chinese Physics B, 2013, 22, 114213.	0.7	104
6	Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio. Optics Express, 2013, 21, 32468.	1.7	70
7	Optomechanical parameter estimation. New Journal of Physics, 2013, 15, 103028.	1.2	15
8	Testing quantum mechanics: a statistical approach. Quantum Measurements and Quantum Metrology, 2013, 1, 84-109.	3.3	8
9	Time-Continuous Bell Measurements. Physical Review Letters, 2013, 111, 170404.	2.9	24
10	Strong Optomechanical Squeezing of Light. Physical Review X, 2013, 3, .	2.8	266
11	Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity. Applied Physics Letters, 2013, 103, .	1.5	76
12	Collectively enhanced optomechanical coupling in periodic arrays of scatterers. Physical Review A, 2013, 88, .	1.0	45
13	Squeezed light mutes quantum noise. Nature, 2013, 500, 131-131.	13.7	0
14	Strong squeezing via phonon mediated spontaneous generation of photon pairs. New Journal of Physics, 2014, 16, 113004.	1.2	15
15	Classical non-Gaussian state preparation through squeezing in an optoelectromechanical resonator. Physical Review A, 2014, 90, .	1.0	26
16	Large Suppression of Quantum Fluctuations of Light from a Single Emitter by an Optical Nanostructure. Physical Review Letters, 2014, 113, 263605.	2.9	25
17	Cavity optomechanics. Reviews of Modern Physics, 2014, 86, 1391-1452.	16.4	4,064
18	Optomechanical Crystal Devices. , 2014, , 195-231.		6
19	Detection of weak forces based on noise-activated switching in bistable optomechanical systems. Physical Review A, 2014, 90, .	1.0	16

TATION REDO

		CITATION REPORT		
#	Article		IF	CITATIONS
20	Strong polarization mode coupling in microresonators. Optics Letters, 2014, 39, 5134		1.7	93
21	Optomechanically induced transparency and self-induced oscillations with Bogoliubov modes. Optica, 2014, 1, 425.	mechanical	4.8	41
22	Controllable optomechanically induced transparency and ponderomotive squeezing in optomechanical system assisted by an atomic ensemble. Optics Express, 2014, 22, 17		1.7	42
23	Optical quantum noise in high sensitivity measurements. , 2014, , .			0
24	Optical Response of Gas-Phase Atoms at Less than <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>λstretchy="false">/<mml:mn>80</mml:mn>from a Dielectric S Review Letters, 2014, 112, 253201.</mml:mi></mml:math 		2.9	37
25	Dissipative and Dispersive Optomechanics in a Nanocavity Torque Sensor. Physical Rev	view X, 2014, 4, .	2.8	104
26	Heralded Preparation and Readout of Entangled Phonons in a Photonic Crystal Cavity. Letters, 2014, 113, 143603.	Physical Review	2.9	35
27	Applications of cavity optomechanics. Applied Physics Reviews, 2014, 1, 031105.		5.5	192
28	Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical sys Review A, 2014, 90, .	tems. Physical	1.0	32
29	Superconducting nano-mechanical diamond resonators. Carbon, 2014, 72, 100-105.		5.4	26
30	A cavity-Cooper pair transistor scheme for investigating quantum optomechanics in th coupling regime. New Journal of Physics, 2014, 16, 055008.	e ultra-strong	1.2	59
31	Optimal limits of cavity optomechanical cooling in the strong-coupling regime. Physica 2014, 89, .	l Review A,	1.0	38
32	Implementation of a High- <formula formulatype="inline"><tex notation="TeX">\$Q\$<!--<br-->Small Mode Volume Cavity in Microfibers Using Lattice-Constant-Varying Nanohole Ar Journal of Selected Topics in Quantum Electronics, 2014, 20, 85-88.</tex></formula>		1.9	2
33	Robust stationary mechanical squeezing in a kicked quadratic optomechanical system A, 2014, 89, .	. Physical Review	1.0	101
34	Optomechanical-like coupling between superconducting resonators. Physical Review A	v, 2014, 90, .	1.0	66
35	Macroscopic Optomechanics from Displaced Single-Photon Entanglement. Physical Re 2014, 112, .	view Letters,	2.9	61
36	Circuit optomechanics: concepts and materials. IEEE Transactions on Ultrasonics, Ferr Frequency Control, 2014, 61, 1889-1898.	pelectrics, and	1.7	3
37	Ground-state cooling of mechanical motion in the unresolved sideband regime by use optomechanically induced transparency. Physical Review A, 2014, 90, .	of	1.0	76

	Сітя	ation Report	
#	Article	IF	CITATIONS
38	Photon propagation in a one-dimensional optomechanical lattice. Physical Review A, 2014, 89, .	1.0	36
39	Theory of an optomechanical quantum heat engine. Physical Review A, 2014, 90, .	1.0	47
40	State transfer and entanglement of two mechanical oscillators in coupled cavity optomechanical system. Journal of Modern Optics, 2014, 61, 1180-1186.	0.6	14
41	<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml: mathvariant="script">PT</mml: </mml:mrow></mml:math> -Symmetric Phonon Laser. Physical Revie Letters, 2014, 113, 053604.		502
42	Optomechanical Micro-Macro Entanglement. Physical Review Letters, 2014, 112, .	2.9	69
43	Quantum squeezed light in gravitational-wave detectors. Classical and Quantum Gravity, 2014, 31, 183001.	1.5	47
44	Generating large steady-state optomechanical entanglement by the action of Casimir force. Science China: Physics, Mechanics and Astronomy, 2014, 57, 2276-2284.	2.0	27
45	On-chip cavity optomechanical coupling. EPJ Techniques and Instrumentation, 2014, 1, .	0.5	25
46	Design of silicon micro-resonators with low mechanical and optical losses for quantum optics experiments. Microsystem Technologies, 2014, 20, 907-917.	1.2	8
47	Triply resonant cavity electro-optomechanics at X-band. New Journal of Physics, 2014, 16, 063060.	1.2	16
48	Dissipative optomechanical squeezing of light. New Journal of Physics, 2014, 16, 063058.	1.2	64
49	Quantum Optomechanical Heat Engine. Physical Review Letters, 2014, 112, 150602.	2.9	196
50	High-Q optomechanical circuits made from polished nanocrystalline diamond thin films. Diamond and Related Materials, 2014, 44, 49-53.	1.8	10
51	Frequency-noise cancellation in optomechanical systems for ponderomotive squeezing. Physical Review A, 2014, 89, .	1.0	29
52	Deterministic quantum superpositions and Fock states of mechanical oscillators via quantum interference in single-photon cavity optomechanics. Physical Review A, 2014, 89, .	1.0	17
53	Generation of cluster states in optomechanical quantum systems. Physical Review A, 2015, 92, .	1.0	41
54	Enhanced optomechanical levitation of minimally supported dielectrics. Physical Review A, 2015, 91, .	1.0	10
55	Tunable fast and slow light in a hybrid optomechanical system. Physical Review A, 2015, 92, .	1.0	105

#	Article	IF	CITATIONS
56	Effects of linear and quadratic dispersive couplings on optical squeezing in an optomechanical system. Physical Review A, 2015, 92, .	1.0	20
57	On-Chip Optical Squeezing. Physical Review Applied, 2015, 3, .	1.5	165
58	Optomechanical response of a nonlinear mechanical resonator. Physical Review B, 2015, 92, .	1.1	8
59	Optimal State Estimation for Cavity Optomechanical Systems. Physical Review Letters, 2015, 114, 223601.	2.9	75
60	Squeezing of Quantum Noise of Motion in a Micromechanical Resonator. Physical Review Letters, 2015, 115, 243601.	2.9	306
61	Generating quadrature squeezed light with dissipative optomechanical coupling. Physical Review A, 2015, 91, .	1.0	39
62	Low-Loss Optomechanical Oscillator for Quantum-Optics Experiments. Physical Review Applied, 2015, 3,	1.5	11
63	Nonlinear Radiation Pressure Dynamics in an Optomechanical Crystal. Physical Review Letters, 2015, 115, 233601.	2.9	60
64	Intracavity Squeezing Can Enhance Quantum-Limited Optomechanical Position Detection through Deamplification. Physical Review Letters, 2015, 115, 243603.	2.9	98
65	Laser optomechanics. Scientific Reports, 2015, 5, 13700.	1.6	31
66	Quantum Coherent Feedback Control for Generation System of Optical Entangled State. Scientific Reports, 2015, 5, 11132.	1.6	24
67	Strong optomechanical interactions in a sliced photonic crystal nanobeam. Scientific Reports, 2015, 5, 15974.	1.6	53
68	Design and experimental demonstration of optomechanical paddle nanocavities. Applied Physics Letters, 2015, 107, 231107.	1.5	3
69	Squeezingâ€enhanced measurement sensitivity in a cavity optomechanical system. Annalen Der Physik, 2015, 527, 107-114.	0.9	11
70	Dynamical backâ€action effects in low loss optomechanical oscillators. Annalen Der Physik, 2015, 527, 89-99.	0.9	4
71	From membraneâ€inâ€theâ€middle to mirrorâ€inâ€theâ€middle with a highâ€reflectivity subâ€wavelength grati Annalen Der Physik, 2015, 527, 81-88.	^{1g} 0.9	25
74	Si <inline-formula><tex-math>\$_{f 3}\$</tex-math></inline-formula> N <inline-formula> <tex-math>\$_{f 4}\$</tex-math></inline-formula> Nanobeam Optomechanical Crystals. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 61-71.	1.9	19
75	Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical oscillators via dissipative optomechanical coupling. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-8.	2.0	9

#	Article	IF	CITATIONS
76	Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-13.	2.0	97
77	Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity. Physical Review A, 2015, 91, .	1.0	165
78	Squeezed Optomechanics with Phase-Matched Amplification and Dissipation. Physical Review Letters, 2015, 114, 093602.	2.9	268
80	Nonlinear power spectral densities for the harmonic oscillator. Annals of Physics, 2015, 361, 148-183.	1.0	15
81	Low loss single-crystal silicon mechanical resonators for the investigation of thermal noise statistical properties. Sensors and Actuators A: Physical, 2015, 227, 48-54.	2.0	2
82	Einstein-Podolsky-Rosen–entangled motion of two massive objects. Physical Review A, 2015, 92, .	1.0	32
83	Macroscopic optomechanical superposition via periodic qubit flipping. Physical Review A, 2015, 91, .	1.0	27
84	Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator. Review of Scientific Instruments, 2015, 86, 013107.	0.6	15
85	Steady-state one-way Einstein-Podolsky-Rosen steering in optomechanical interfaces. Physical Review A, 2015, 91, .	1.0	49
86	Cavity Cooling a Single Charged Levitated Nanosphere. Physical Review Letters, 2015, 114, 123602.	2.9	228
87	Real photons from vacuum fluctuations in optomechanics: The role of polariton interactions. Physical Review A, 2015, 91, .	1.0	23
88	Strong localization of photonics in symmetric Fibonacci superlattices. Journal Physics D: Applied Physics, 2015, 48, 295101.	1.3	4
89	Large distance continuous variable communication with concatenated swaps. Physica Scripta, 2015, 90, 074055.	1.2	16
90	Entanglement and squeezing of continuous-wave stationary light. New Journal of Physics, 2015, 17, 043025.	1.2	26
91	2D photonic-crystal optomechanical nanoresonator. Optics Letters, 2015, 40, 174.	1.7	22
92	Ponderomotive squeezing and entanglement in a ring cavity with two vibrational mirrors. Chinese Physics B, 2015, 24, 050301.	0.7	5
93	Entanglement-enhanced time-continuous quantum control in optomechanics. Physical Review A, 2015, 91, .	1.0	44
94	Multimode optomechanical dynamics in a cavity with avoided crossings. Nature Communications, 2015, 6, 6232.	5.8	64

#	Article	IF	CITATIONS
95	Strong opto-electro-mechanical coupling in a silicon photonic crystal cavity. Optics Express, 2015, 23, 3196.	1.7	52
96	Quantum optomechanical piston engines powered by heat. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 175501.	0.6	47
97	Quantum cooling and squeezing of a levitating nanosphere via time-continuous measurements. New Journal of Physics, 2015, 17, 073019.	1.2	31
98	Optomechanical interfaces for hybrid quantum networks. National Science Review, 2015, 2, 510-519.	4.6	48
99	Quantum phase gate for optical qubits with cavity quantum optomechanics. Optics Express, 2015, 23, 7786.	1.7	21
100	Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12  GHz. Optica, 2015, 2, 826.	4.8	72
101	Integrated source of broadband quadrature squeezed light. Optics Express, 2015, 23, 12013.	1.7	21
102	Nonlinear optomechanical paddle nanocavities. Optica, 2015, 2, 271.	4.8	35
103	Fabrication and characterization of low loss MOMS resonators for cavity opto-mechanics. Microelectronic Engineering, 2015, 145, 138-142.	1.1	3
104	Operator approach to quantum optomechanics. Physica Scripta, 2015, 90, 068010.	1.2	13
105	Dynamics and transmissivity of optomechanical system in squeezed environment. International Journal of Modern Physics B, 2015, 29, 1550201.	1.0	2
106	Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity. Nature Communications, 2015, 6, 8491.	5.8	74
107	Low loss optomechanical cavities based on silicon oscillator. Proceedings of SPIE, 2015, , .	0.8	0
108	Position-Squared Coupling in a Tunable Photonic Crystal Optomechanical Cavity. Physical Review X, 2015, 5, .	2.8	72
109	Normal-mode splitting and output-field squeezing in a Kerr-down conversion optomechanical system. Journal of Modern Optics, 2015, 62, 114-124.	0.6	16
110	More nonlocality with less entanglement in a tripartite atomâ€optomechanical system. Annalen Der Physik, 2015, 527, 147-155.	0.9	29
111	Squeezing quadrature rotation in the acoustic band via optomechanics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 065401.	0.6	2
112	30 years of squeezed light generation. Physica Scripta, 2016, 91, 053001.	1.2	268

#	Article	IF	CITATIONS
113	Control of microwave signals using bichromatic electromechanically induced transparency in multimode circuit electromechanical systems. Chinese Physics B, 2016, 25, 054204.	0.7	7
114	Diamond optomechanical crystals. Optica, 2016, 3, 1404.	4.8	125
115	Microfabrication of large-area circular high-stress silicon nitride membranes for optomechanical applications. AIP Advances, 2016, 6, 065004.	0.6	41
116	Quantum feedback cooling of a mechanical oscillator using variational measurements: tweaking Heisenberg's microscope. Journal of Optics (United Kingdom), 2016, 18, 084004.	1.0	13
117	Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification. Nature Communications, 2016, 7, 11338.	5.8	124
118	Strong vacuum squeezing from bichromatically driven Kerrlike cavities: from optomechanics to superconducting circuits. Scientific Reports, 2016, 6, 21964.	1.6	8
119	Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity. Scientific Reports, 2016, 6, 24421.	1.6	35
120	Steady-state mechanical squeezing in a double-cavity optomechanical system. Scientific Reports, 2016, 6, 38559.	1.6	46
121	Quantum nonlinear dynamics of optomechanical systems in the strong-coupling regime. Physical Review A, 2016, 94, .	1.0	7
122	Nonclassical correlation between optical and microwave photons in a hybrid electro-optomechanical system. Optics Communications, 2016, 376, 21-25.	1.0	1
123	On-chip continuous-variable quantum entanglement. Nanophotonics, 2016, 5, 469-482.	2.9	14
124	Optimal control of the power adiabatic stroke of an optomechanical heat engine. Physical Review E, 2016, 94, 022141.	0.8	13
125	Sociotechnical systems design: coordination of virtual teamwork in innovation. Team Performance Management, 2016, 22, 354-369.	0.6	18
126	Acoustic confinement in superlattice cavities. Physical Review A, 2016, 94, .	1.0	12
127	Evolution of an electromagnetic field in the presence of a mobile membrane. Physical Review A, 2016, 94, .	1.0	0
128	Superconducting Cavity Electromechanics on a Silicon-on-Insulator Platform. Physical Review Applied, 2016, 6, .	1.5	16
129	Design of tunable GHz-frequency optomechanical crystal resonators. Optics Express, 2016, 24, 11407.	1.7	17
130	Mechanical squeezing and photonic anti-bunching in a coupled two-cavity optomechanical system. Optics Express, 2016, 24, 20036.	1.7	4

#	Article	IF	CITATIONS
131	Editorial: Hybridizing Quantum Physics and Engineering. Physical Review Letters, 2016, 117, 100001.	2.9	14
132	Heralded Control of Mechanical Motion by Single Spins. Physical Review Letters, 2016, 117, 077203.	2.9	26
133	Enhanced electromechanical coupling of a nanomechanical resonator to coupled superconducting cavities. Scientific Reports, 2016, 6, 19065.	1.6	15
134	Nonlinear dynamics and cavity cooling of levitated nanoparticles. Proceedings of SPIE, 2016, , .	0.8	3
135	Cavity mode frequencies and strong optomechanical coupling in two-membrane cavity optomechanics. Journal of Optics (United Kingdom), 2016, 18, 084001.	1.0	25
136	Ultrastrong optomechanics incorporating the dynamical Casimir effect. Physical Review A, 2016, 93, .	1.0	22
137	Degenerate parametric oscillation in quantum membrane optomechanics. Physical Review A, 2016, 93, .	1.0	21
138	Classical and quantum-linearized descriptions of degenerate optomechanical parametric oscillators. Physical Review A, 2016, 93, .	1.0	12
139	Dissipative structures in optomechanical cavities. Physical Review A, 2016, 93, .	1.0	5
140	Practical quantum metrology with large precision gains in the low-photon-number regime. Physical Review A, 2016, 93, .	1.0	34
141	Optically defined mechanical geometry. Physical Review A, 2016, 93, .	1.0	7
142	Unifying Brillouin scattering and cavity optomechanics. Physical Review A, 2016, 93, .	1.0	50
143	Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling. Physical Review A, 2016, 93, .	1.0	54
144	Vector cavity optomechanics in the parameter configuration of optomechanically induced transparency. Physical Review A, 2016, 94, .	1.0	39
145	Deterministic synthesis of mechanical NOON states in ultrastrong optomechanics. Physical Review A, 2016, 94, .	1.0	17
146	Proposal for an Optomechanical Bell Test. Physical Review Letters, 2016, 116, 070405.	2.9	32
147	Proposal to Test Bell's Inequality in Electromechanics. Physical Review Letters, 2016, 116, 070406.	2.9	18
148	Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature. Physical Review Letters, 2016, 116, 147202.	2.9	240

#	Article	IF	CITATIONS
149	Complex Squeezing and Force Measurement Beyond the Standard Quantum Limit. Physical Review Letters, 2016, 117, 030801.	2.9	50
150	Optomechanics and thermometry of cryogenic silica microresonators. Physical Review A, 2016, 93, .	1.0	15
151	Response of a mechanical oscillator in an optomechanical cavity driven by a finite-bandwidth squeezed vacuum excitation. Physical Review A, 2016, 93, .	1.0	8
152	Quantum backaction and noise interference in asymmetric two-cavity optomechanical systems. Physical Review A, 2016, 93, .	1.0	24
153	Near-Field Integration of a SiN Nanobeam and a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>SiO</mml:mi><mml:mn>2</mml:mn></mml:msub>Microca for Heisenberg-Limited Displacement Sensing. Physical Review Applied, 2016, 5, .</mml:math 	vitÿ	48
154	Chip-scale cavity optomechanics in lithium niobate. Scientific Reports, 2016, 6, 36920.	1.6	38
155	Perfect photon absorption in hybrid atom-optomechanical system. Europhysics Letters, 2016, 115, 64002.	0.7	8
156	Brillouin scattering self-cancellation. Nature Communications, 2016, 7, 11759.	5.8	85
157	Topological phase transitions and chiral inelastic transport induced by the squeezing of light. Nature Communications, 2016, 7, 10779.	5.8	92
158	Nonlinear optomechanical measurement of mechanical motion. Nature Communications, 2016, 7, 10988.	5.8	106
159	Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles. Physical Review Letters, 2016, 117, 173602.	2.9	119
160	Topological Quantum Fluctuations and Traveling Wave Amplifiers. Physical Review X, 2016, 6, .	2.8	81
161	Split-sideband spectroscopy in slowly modulated optomechanics. New Journal of Physics, 2016, 18, 113021.	1.2	19
162	Tunable ponderomotive squeezing induced by Coulomb interaction in an optomechanical system. Chinese Physics B, 2016, 25, 010304.	0.7	4
163	Squeezed light and correlated photons from dissipatively coupled optomechanical systems. Journal of Optics (United Kingdom), 2016, 18, 014007.	1.0	21
164	The POLIS interferometer for ponderomotive squeezed light generation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 824, 614-616.	0.7	0
165	Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser. Optics Letters, 2016, 41, 1333.	1.7	47
166	Overwhelming Thermomechanical Motion with Microwave Radiation Pressure Shot Noise. Physical Review Letters, 2016, 116, 013602.	2.9	55

#	Article	IF	CITATIONS
167	Laser Cooling of a Micromechanical Membrane to the Quantum Backaction Limit. Physical Review Letters, 2016, 116, 063601.	2.9	183
169	Cavity-mediated coupling of mechanical oscillators limited by quantum back-action. Nature Physics, 2016, 12, 27-31.	6.5	60
170	Appearance and Disappearance of Quantum Correlations in Measurement-Based Feedback Control of a Mechanical Oscillator. Physical Review X, 2017, 7, .	2.8	52
171	Sideband cooling beyond the quantum backaction limit with squeezed light. Nature, 2017, 541, 191-195.	13.7	196
172	Observation of thermal fluctuations in a superfluid optomechanical system. , 2017, , .		0
173	Interactive optomechanical coupling with nonlinear polaritonic systems. Physical Review B, 2017, 95, .	1.1	11
174	Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system. Physical Review A, 2017, 95, .	1.0	62
175	Noiseless Quantum Measurement and Squeezing of Microwave Fields Utilizing Mechanical Vibrations. Physical Review Letters, 2017, 118, 103601.	2.9	51
176	Estimation of nonclassical independent Gaussian processes by classical interferometry. Scientific Reports, 2017, 7, 39641.	1.6	3
177	Super-Strong Photonic Localizations in Symmetric Defect Waveguide-Ring Networks. IEEE Photonics Journal, 2017, 9, 1-14.	1.0	3
178	Coherent coupling between an optomechanical membrane and an interacting photon Bose–Einstein condensate. Journal of Modern Optics, 2017, 64, 1725-1738.	0.6	2
179	Squeezed states of light and their applications in laser interferometers. Physics Reports, 2017, 684, 1-51.	10.3	292
180	Controllable optical multistability in hybrid optomechanical system assisted by parametric interactions. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	2.0	10
181	Quantum correlations from a room-temperature optomechanical cavity. Science, 2017, 356, 1265-1268.	6.0	116
182	Towards an integrated squeezed light source. Proceedings of SPIE, 2017, , .	0.8	2
183	Multimode optomechanical system in the quantum regime. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 62-66.	3.3	89
184	Measuring and imaging nanomechanical motion with laser light. Applied Physics B: Lasers and Optics, 2017, 123, 8.	1.1	16
185	Quantum Correlations of Light from a Room-Temperature Mechanical Oscillator. Physical Review X, 2017, 7, .	2.8	47

	Сіта	TION REPORT	
#	Article	IF	CITATIONS
186	Quantum limits to gravity estimation with optomechanics. Physical Review A, 2017, 96, .	1.0	37
187	Optomechanics with a position-modulated Kerr-type nonlinear coupling. Physical Review A, 2017, 96, .	1.0	17
188	Kuznetsov-Ma Soliton Dynamics Based on the Mechanical Effect of Light. Physical Review Letters, 2017, 119, 153901.	2.9	74
189	Quantum correlation measurements in interferometric gravitational-wave detectors. Physical Review A, 2017, 95, .	1.0	16
190	Squeezed-twin-beam generation in strongly absorbing media. Physical Review A, 2017, 96, .	1.0	20
191	Steady-state light-mechanical quantum steerable correlations in cavity optomechanics. Physical Review A, 2017, 95, .	1.0	24
192	Editorial for special issue on nano-optomechanics. Journal of Optics (United Kingdom), 2017, 19, 080401.	1.0	1
193	Deep-subwavelength plasmonic-photonic hybrid band gap opening by acoustic Lamb waves. Applied Physics Letters, 2017, 111, 021904.	1.5	1
194	Towards the Fundamental Quantum Limit of Linear Measurements of Classical Signals. Physical Review Letters, 2017, 119, 050801.	2.9	32
195	Enhanced photothermal cooling of nanowires. Quantum Science and Technology, 2017, 2, 034005.	2.6	0
196	Cavity-mediated coupling of phonons and magnons. Physical Review A, 2017, 96, .	1.0	53
197	Improving Broadband Displacement Detection with Quantum Correlations. Physical Review X, 2017, 7, .	2.8	46
198	Strong quantum squeezing of mechanical resonator via parametric amplification and coherent feedback. Physical Review A, 2017, 96, .	1.0	16
199	Building mechanical Greenberger-Horne-Zeilinger and cluster states by harnessing optomechanical quantum steerable correlations. Physical Review A, 2017, 96, .	1.0	8
200	Shelving-style QND phonon-number detection in quantum optomechanics. New Journal of Physics, 2017, 19, 033014.	1.2	8
201	Enhancing a slow and weak optomechanical nonlinearity with delayed quantum feedback. Nature Communications, 2017, 8, 15886.	5.8	25
202	Entangling two oscillators with arbitrary asymmetric initial states. Physical Review A, 2017, 95, .	1.0	28
203	Strong and tunable couplings in flux-mediated optomechanics. Physical Review B, 2017, 96, .	1.1	23

#	Article	IF	CITATIONS
204	Cooling a Harmonic Oscillator by Optomechanical Modification of Its Bath. Physical Review Letters, 2017, 118, 223602.	2.9	22
205	Nonlinear cavity optomechanics with nanomechanical thermal fluctuations. Nature Communications, 2017, 8, ncomms16024.	5.8	92
206	Nonlinear effects in modulated quantum optomechanics. Physical Review A, 2017, 95, .	1.0	59
207	Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry. Nature Nanotechnology, 2017, 12, 127-131.	15.6	60
208	Coherent optical propagation and ultrahigh resolution mass sensor based on photonic molecules optomechanics. Optics Communications, 2017, 382, 73-79.	1.0	10
209	Superfluid Brillouin optomechanics. Nature Physics, 2017, 13, 74-79.	6.5	40
210	Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator. Optics Express, 2017, 25, 508.	1.7	22
211	High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 15 μm MOPA laser. Optics Express, 2017, 25, 13324.	1.7	17
212	Quantum optomechanics beyond the quantum coherent oscillation regime. Optica, 2017, 4, 1382.	4.8	13
213	Quantum Control of Optomechanical Systems. Advances in Atomic, Molecular and Optical Physics, 2017, 66, 263-374.	2.3	5
214	The discovery of gravitational waves: a gentle fight against noise. Journal of Physics: Conference Series, 2017, 880, 012007.	0.3	1
215	Detection of light-matter interaction in the weak-coupling regime by quantum light. Physical Review A, 2018, 97, .	1.0	5
216	Measuring and Imaging Nanomechanical Motion with Laser Light. , 2018, , 71-85.		2
217	Two-color second-order sideband generation in an optomechanical system with a two-level system. Scientific Reports, 2018, 8, 1060.	1.6	15
218	Imaging Correlations in Heterodyne Spectra for Quantum Displacement Sensing. Physical Review Letters, 2018, 120, 020503.	2.9	13
219	Quantum reservoir engineering through quadratic optomechanical interaction in the reversed dissipation regime. Physical Review A, 2018, 97, .	1.0	12
220	Levitated optomechanics with a fiber Fabry–Perot interferometer. New Journal of Physics, 2018, 20, 023017.	1.2	10
221	Optomechanical approach to controlling the temperature and chemical potential of light. Physical Review A, 2018, 97, .	1.0	2

ARTICLE IF CITATIONS # Bulk crystalline optomechanics. Nature Physics, 2018, 14, 601-607. 222 6.5 61 Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime. 223 1.0 Physical Review A, 2018, 97, . Sensitivity-Bandwidth Limit in a Multimode Optoelectromechanical Transducer. Physical Review 224 1.5 33 Applied, 2018, 9, . Cavity optomechanics: Manipulating photons and phonons towards the single-photon strong coupling. Chinese Physics B, 2018, 27, 024204. Quantum nondemolition measurement of optical field fluctuations by optomechanical interaction. 226 1.0 17 Physical Review A, 2018, 97, . Evidence for structural damping in a high-stress silicon nitride nanobeam and its implications for quantum optomechanics. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2251-2255 A maser based on dynamical backaction on microwave light. Physics Letters, Section A: General, Atomic 228 0.9 6 and Solid State Physics, 2018, 382, 2233-2237. Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror 220 1.4 10 couplings. Superlattices and Microstructures, 2018, 113, 301-309. Precision Measurement of Magnetic Field Based on Second-Order Sideband Generation in a Hybrid 230 2.4 11 Electromagnetic-Optomechanical System. IEEE Sensors Journal, 2018, 18, 9145-9150. Normal mode splitting in quantum degenerate Fermi gas in nano-cavity. European Physical Journal D, 2018, 72, 1. Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator. Nature, 2018, 232 176 13.7563, 666-670. Quadrature-squeezed light and optomechanical entanglement in a dissipative optomechanical system 1.0 with a mechanical parametric drive. Physical Review A, 2018, 98, . Two-timescale stochastic Langevin propagation for classical and quantum optomechanics. Physical 234 1.0 1 Review A, 2018, 98, . Revealing Hidden Quantum Correlations in an Electromechanical Measurement. Physical Review Letters, 2018, 121, 243601. Enhanced nonlinear interaction effects in a four-mode optomechanical ring. Physical Review A, 2018, 236 1.0 5 98,. Enhancing Squeezing and Nonclassicality of Light in Atom–Optomechanical Systems. Annalen Der Physik, 2018, 530, 1800138. Multiple transparency in a multimode quadratic coupling optomechanical system with an ensemble of 238 0.9 12 three-level atoms. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2550. Phonon quantum nondemolition measurements in nonlinearly coupled optomechanical cavities. 239

CITATION REPORT

Physical Review A, 2018, 98, .

ARTICLE IF CITATIONS # Third-Order Optical Nonlinearity in Two-Dimensional Transition Metal Dichalcogenides. 240 1.1 7 Communications in Theoretical Physics, 2018, 70, 344. Electrooptomechanical Equivalent Circuits for Quantum Transduction. Physical Review Applied, 2018, 241 1.5 Manipulation of fast and slow light propagation by photonic-molecule optomechanics. Journal of 242 1.1 12 Applied Physics, 2018, 124, . Single crystal diamond micro-disk resonators by focused ion beam milling. APL Photonics, 2018, 3, . 243 Phase-controlled phonon laser. New Journal of Physics, 2018, 20, 093005. 244 1.2 18 Quantum nondemolition measurement of mechanical motion quanta. Nature Communications, 2018, 9, 5.8 3621. 246 Backaction-Evading Measurement of Mechanical Motion in the Optical Domain., 2018,,. 0 Quadrature squeezing of a higher-order sideband spectrum in cavity optomechanics. Optics Letters, 1.7 2018, 43, 9. Fundamental Quantum Limits of Multicarrier Optomechanical Sensors. Physical Review Letters, 2018, 248 2.9 14 121, 110505. 249 Parametric excitation of a SiN membrane via piezoelectricity. AIP Advances, 2018, 8, . Generation of mechanical interference fringes by multi-photon counting. New Journal of Physics, 250 1.2 28 2018, 20, 053042. Generation and detection of non-Gaussian phonon-added coherent states in optomechanical systems. 30 Physical Review A, 2018, 98, . Reaching the optomechanical strong-coupling regime with a single atom in a cavity. Physical Review A, 252 1.0 21 2018, 97, . Enhanced photon-phonon coupling via dimerization in one-dimensional optomechanical crystals. 1.5 Applied Physics Letters, 2018, 112, . Highly-coherent stimulated phonon oscillations in a multi-core optical fiber. Scientific Reports, 2018, 254 20 1.6 8,9514. Temporal rocking in a nonlinear hybrid optomechanical system. Optics Express, 2018, 26, 6285. 256 Suspended polarization beam splitter on silicon-on-insulator. Optics Express, 2018, 26, 2675. 1.7 17 Quantum enhanced optomechanical magnetometry. Optica, 2018, 5, 850. 4.8

	СПАНОК	KLFOKT	
#	Article	IF	CITATIONS
258	Method of Higher-order Operators for Quantum Optomechanics. Scientific Reports, 2018, 8, 11566.	1.6	5
259	Optomechanically induced transparency and the long-lived slow light in a nonlinear system. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1649.	0.9	24
260	Complex Fiber Micro-Knots. Sensors, 2018, 18, 1273.	2.1	15
261	Optical response mediated by a two-level system in the hybrid optomechanical system. Quantum Information Processing, 2018, 17, 1.	1.0	5
262	Normalization approach for scattering modes in classical and quantum electrodynamics. Physical Review A, 2018, 97, .	1.0	1
263	Controllable and tunable multiple optomechanically induced transparency and Fano resonance mediated by different mechanical resonators. AIP Advances, 2019, 9, .	0.6	3
264	Brillouin optomechanics in nanophotonic structures. APL Photonics, 2019, 4, .	3.0	68
265	Quantum-Limited Measurements Using an Optical Cavity with Modulated Intrinsic Loss. Physical Review Letters, 2019, 123, 043602.	2.9	13
266	Synchronization of Optomechanical Nanobeams by Mechanical Interaction. Physical Review Letters, 2019, 123, 017402.	2.9	44
267	Tunable transparency and amplification in a hybrid optomechanical system with quadratic coupling. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 215402.	0.6	2
268	Strong mechanical squeezing and optomechanical steering via continuous monitoring in optomechanical systems. Physical Review A, 2019, 100, .	1.0	9
269	Controllable Optical Bistability and Four-Wave Mixing in a Photonic-Molecule Optomechanics. Nanoscale Research Letters, 2019, 14, 73.	3.1	14
270	Auxiliary cavity enhanced mode splitting and ground-state cooling of mechanical resonator in hybrid optomechanical system. European Physical Journal D, 2019, 73, 1.	0.6	3
271	Optomechanically induced transparency and nonlinear responses based on graphene optomechanics system. EPJ Quantum Technology, 2019, 6, .	2.9	4
272	Transmissivity of optomechanical system containing a two-level system. International Journal of Modern Physics B, 2019, 33, 1950252.	1.0	2
273	Continuous force and displacement measurement below the standard quantum limit. Nature Physics, 2019, 15, 745-749.	6.5	137
274	High-Gain and Narrow-Bandwidth Optical Amplifier via Optomechanical Four-Wave Mixing. Physical Review Applied, 2019, 11, .	1.5	5
275	Stationary entangled radiation from micromechanical motion. Nature, 2019, 570, 480-483.	13.7	98

#	Article	IF	CITATIONS
276	Generation of Optical and Mechanical Squeezing in the Linearâ€andâ€Quadratic Optomechanics. Annalen Der Physik, 2019, 531, 1800399.	0.9	10
277	Squeezed states of coupled photons and phonons in nanoscale waveguides. Journal of Optics (United) Tj ETQq1 1	0.78431 1.0	4 _{.f} gBT /Ove
278	Carrier-mediated cavity optomechanics in a semiconductor laser. Physical Review A, 2019, 99, .	1.0	4
279	Bose condensation of squeezed light. Physical Review B, 2019, 99, .	1.1	0
280	Optical backaction-evading measurement of a mechanical oscillator. Nature Communications, 2019, 10, 2086.	5.8	49
281	Generation of squeezed states and single-phonon states via homodyne detection and photon subtraction on the filtered output of an optomechanical cavity. Physical Review A, 2019, 99, .	1.0	13
282	Directional steering as a sufficient and necessary condition for Gaussian entanglement swapping: Application to distant optomechanical oscillators. Physical Review A, 2019, 99, .	1.0	6
283	Enhancement of few-photon optomechanical effects with cross-Kerr nonlinearity. Physical Review A, 2019, 99, .	1.0	35
284	Robust optomechanical state transfer under composite phase driving. Scientific Reports, 2019, 9, 4382.	1.6	15
285	Multipartite entanglement swapping and mechanical cluster states. Physical Review A, 2019, 99, .	1.0	8
286	Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics. Optica, 2019, 6, 213.	4.8	125
287	Novel transparency, absorption and amplification in a driven optomechanical system with a two-level defect. Laser Physics Letters, 2019, 16, 035202.	0.6	4
288	Nonlinear Interactions and Non-classical Light. Springer Series in Optical Sciences, 2019, , 51-101.	0.5	6
289	High spectral resolution of GaAs/AlAs phononic cavities by subharmonic resonant pump-probe excitation. Physical Review B, 2019, 99, .	1.1	4
291	Quantum entanglement via a controllable four-wave-mixing mechanism in an optomechanical system. Physical Review A, 2019, 100, .	1.0	2
292	Floquet dynamics in the quantum measurement of mechanical motion. Physical Review A, 2019, 100, .	1.0	13
293	Quadrature squeezing of the mechanical mode in a superconducting electromechanical system. Laser Physics Letters, 2019, 16, 015205.	0.6	3
294	Electromagnetic Engineered Mechanical Trapping Potential and the Conversion in Optomechanics. IEEE Journal of Quantum Electronics, 2019, 55, 1-7.	1.0	0

#	Article	IF	CITATIONS
295	Optomechanically induced transparency under the influence of spin ensemble system. Optik, 2019, 179, 1027-1034.	1.4	4
296	Squeezed vacuum states of light for gravitational wave detectors. Reports on Progress in Physics, 2019, 82, 016905.	8.1	74
297	Weak-force sensing with squeezed optomechanics. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	51
298	Optomechanics of Chiral Dielectric Metasurfaces. Advanced Optical Materials, 2020, 8, 1901507.	3.6	24
299	Dynamic Cooling of a Micromechanical Membrane in a Double-cavity Optomechanical System. International Journal of Theoretical Physics, 2020, 59, 454-464.	0.5	2
300	Chip-scale nonlinear photonics for quantum light generation. AVS Quantum Science, 2020, 2, .	1.8	47
301	Controllable optical response in a quadratically coupled optomechanical system with mechanical driving. Optics Communications, 2020, 475, 126249.	1.0	6
302	Photonic quantum metrology. AVS Quantum Science, 2020, 2, .	1.8	226
303	Two-dimensional optomechanical crystal cavity with high quantum cooperativity. Nature Communications, 2020, 11, 3373.	5.8	56
304	Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nature Communications, 2020, 11, 4460.	5.8	56
305	Coupling of light and mechanics in a photonic crystal waveguide. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29422-29430.	3.3	9
306	Opto-Mechanical Photonic Crystal Cavities for Sensing Application. Applied Sciences (Switzerland), 2020, 10, 7080.	1.3	29
307	Quantum correlations of light mediated by gravity. Physical Review A, 2020, 101, .	1.0	34
309	Critical quantum fluctuations and photon antibunching in optomechanical systems with large single-photon cooperativity. Physical Review A, 2020, 101, .	1.0	11
310	Dynamics and stability of an optically levitated mirror. Physical Review A, 2020, 101, .	1.0	6
311	Optomechanical generation of a mechanical catlike state by phonon subtraction. Physical Review A, 2020, 101, .	1.0	14
312	Tunable fast to slow light and second-order sideband generation in an optomechanical system with phonon pump. European Physical Journal D, 2020, 74, 1.	0.6	1
313	Room-temperature optomechanical squeezing. Nature Physics, 2020, 16, 784-788.	6.5	45

		CITATION REPORT		
#	Article		IF	CITATIONS
314	Quantum optomechanics of a two-dimensional atomic array. Physical Review A, 2020, 1	.01, .	1.0	18
315	Microfiber Mechanical Resonator for Optomechanics. ACS Photonics, 2020, 7, 695-700	r I	3.2	1
316	Entanglement of propagating optical modes via a mechanical interface. Nature Commu 11, 943.	nications, 2020,	5.8	53
317	Laser Cooling of a Nanomechanical Oscillator to Its Zero-Point Energy. Physical Review I 124, 173601.	letters, 2020,	2.9	55
318	Controllable coherent optical response in a ring cavity optomechanical system. Physica Low-Dimensional Systems and Nanostructures, 2021, 125, 114394.	E:	1.3	3
319	Competition between heating and cooling effects in an optomechanical oscillator using field. Journal of Modern Optics, 2021, 68, 63-71.	a squeezed	0.6	3
320	Strong optomechanical coupling at room temperature by coherent scattering. Nature Communications, 2021, 12, 276.		5.8	35
321	Review of micromachined optical accelerometers: from m <i>g</i> to sub-μ8 Opto-Electronic Advances, 2021, 4, 200045-200045.	ılt;i>g.	6.4	37
322	Tripartite entanglement in a Laguerre–Gaussian rotational-cavity system with an yttri sphere. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 285.	um iron garnet	0.9	20
323	Fluctuation-enhanced Kerr nonlinearity in an atom-assisted optomechanical system with interactions. Optics Express, 2021, 29, 5367.	n atom-cavity	1.7	4
324	Tunable ponderomotive squeezing in an optomechanical system with two coupled reso Chinese Physics B, 2021, 30, 020303.	nators*.	0.7	0
325	Cavity optomechanics with photonic bound states in the continuum. Physical Review Re	esearch, 2021, 3,	1.3	19
326	Design of an optomagnonic crystal: Towards optimal magnon-photon mode matching a microscale. Physical Review Research, 2021, 3, .	t the	1.3	21
327	Gravitational Forces Between Nonclassical Mechanical Oscillators. Physical Review Appl	ied, 2021, 15, .	1.5	17
328	Optomechanically induced transparency, amplification, and Fano resonance in a multim optomechanical system with quadratic coupling. EPJ Quantum Technology, 2021, 8, .	ode	2.9	3
329	Discriminative sensing of temperature and acoustic impedance by using forward Brillou in large effective area fiber. Applied Physics Express, 2021, 14, 042004.	in scattering	1.1	11
330	Transparency, Stokes, and Anti‣tokes Processes in a Multimode Quadratic Coupling Parametric Amplifier. Annalen Der Physik, 2021, 533, 2000612.	System with	0.9	6
331	Enhanced optomechanically induced transparency via atomic ensemble in optomechani Quantum Information Processing, 2021, 20, 116.	cal system.	1.0	5

#	Article	IF	CITATIONS
332	Squeezed light generation in cascaded optomechanical systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 075403.	0.6	1
333	A Nanoscale Photonic Crystal Cavity Optomechanical System for Ultrasensitive Motion Sensing. Crystals, 2021, 11, 462.	1.0	1
334	Squeezed light from a nanophotonic molecule. Nature Communications, 2021, 12, 2233.	5.8	56
335	Two-photon blockade generated and enhanced by mechanical squeezing. Physical Review A, 2021, 103, .	1.0	32
336	Strong tunable spin-spin interaction in a weakly coupled nitrogen vacancy spin-cavity electromechanical system. Physical Review B, 2021, 103, .	1.1	19
337	Normal Mode Splitting in a Cavity Optomechanical System with a Cubic Anharmonic Oscillator. International Journal of Theoretical Physics, 2021, 60, 2766-2777.	0.5	3
338	Efficient Brillouin Optomechanical Interaction Assisted by Piezomechanics on the SOI Platform. IEEE Photonics Journal, 2021, 13, 1-9.	1.0	0
339	Robust Four-Wave Mixing and Double Second-Order Optomechanically Induced Transparency Sideband in a Hybrid Optomechanical System. Photonics, 2021, 8, 234.	0.9	1
340	High-resolution biomolecules mass sensing based on a spinning optomechanical system with phonon pump. Applied Physics Express, 2021, 14, 082005.	1.1	6
341	Polariton multistability in a nonlinear optomechanical cavity. Journal of Physics Condensed Matter, 2021, 33, 365302.	0.7	4
342	Cavity optomechanical sensing. Nanophotonics, 2021, 10, 2799-2832.	2.9	78
343	Enhancing cross-Kerr coupling via mechanical parametric amplification. Optics Express, 2021, 29, 28835.	1.7	9
344	Controllable Fast and Slow Light in Photonic-Molecule Optomechanics with Phonon Pump. Micromachines, 2021, 12, 1074.	1.4	1
345	Spatial localization and pattern formation in discrete optomechanical cavities and arrays. New Journal of Physics, 2020, 22, 093076.	1.2	2
346	Optical squeezing for an optomechanical system without quantizing the mechanical motion. Physical Review Research, 2020, 2, .	1.3	7
347	Flux-mediated optomechanics with a transmon qubit in the single-photon ultrastrong-coupling regime. Physical Review Research, 2020, 2, .	1.3	20
348	Stationary optomechanical entanglement between a mechanical oscillator and its measurement apparatus. Physical Review Research, 2020, 2, .	1.3	21
349	Entanglement dynamics in dispersive optomechanics: Nonclassicality and revival. Physical Review Research, 2020, 2, .	1.3	6

#	Article	IF	CITATIONS
350	Freestanding optical micro-disk resonators in single-crystal diamond by reactive ion etching and multidirectional focused ion-beam milling. , 2018, , .		2
351	Tuning of 2D rod-type photonic crystal cavity for optical modulation and impact sensing. , 2019, , .		2
352	Optomechanical transistor: controlling the optical bistability in a photonic molecule. Applied Optics, 2019, 58, 2463.	0.9	4
353	Efficient side-coupling to photonic crystal nanobeam cavities via state-space overlap. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 585.	0.9	7
354	Normal-mode splitting in a linear and quadratic optomechanical system with an ensemble of two-level atoms. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 148.	0.9	10
355	Normal-mode splitting and ponderomotive squeezing in a nonlinear optomechanical system assisted by an atomic ensemble. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 911.	0.9	4
356	Mechanical driving mediated slow light in a quadratically coupled optomechanical system. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 650.	0.9	9
357	Continuous-wave squeezed states of light via â€~up-down' self-phase modulation. Optics Express, 2019, 27, 22408.	1.7	4
358	Enhanced four-wave mixing in <i>P T</i> -symmetric optomechanical systems. Optics Express, 2020, 28, 9049.	1.7	7
359	Thermal intermodulation noise in cavity-based measurements. Optica, 2020, 7, 1609.	4.8	15
360	Sensing and tracking enhanced by quantum squeezing. Photonics Research, 2019, 7, A14.	3.4	38
361	Quantum precision measurement based on squeezed light. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 234210.	0.2	7
362	Phonon-induced anomalous gauge potential for photonic isolation in frequency space. Optica, 2021, 8, 1448.	4.8	10
363	Strong squeezing via phonon mediated spontaneous generation of photon pairs. , 2014, , .		0
364	Nano-Optomechanical Systems (NOMS). , 2015, , 1-8.		0
365	Arrays of optomechanical systems. , 2015, , 296-317.		0
366	Single-photon optomechanics. , 2015, , 212-249.		0
367	Measurements of High Cooperativity Optomechanical Ring Resonators. , 2016, , .		0

#	ARTICLE	IF	CITATIONS
368	Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 194205.	0.2	8
369	Demonstration of Brillouin Scattering Self-Cancellation. , 2016, , .		0
370	Nano-optomechanical Systems (NOMS). , 2016, , 2539-2546.		0
371	Control of squeezed light by optomechanical interaction. , 2017, , .		0
372	Optomechanical Squeezing of Frequency Combs. , 2017, , .		0
373	Effects of coupling configuration on resonance excitation in a slotted photonic crystal nanobeam. , 2017, , .		1
374	Observation of Quantum Correlations Using Feedback. Springer Theses, 2018, , 165-190.	0.0	0
375	Interference-based multimode opto-electro-mechanical transducers. , 2018, , .		0
376	Optomechanical frequency comb memory. Optics Letters, 2018, 43, 4973.	1.7	1
377	Scheme for enhancing quadripartite entangled optical modes from an opto-mechanical system. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2945.	0.9	1
378	Cascaded on-chip phonon shield for membrane microresonators. Applied Optics, 2018, 57, 10436.	0.9	0
379	The Physics of LIGO–Virgo. Tutorials, Schools, and Workshops in the Mathematical Sciences, 2019, , 139-183.	0.3	0
380	Feedback induced spin-phonon polaron. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 596.	0.9	1
381	Future Work and Conclusion. Springer Theses, 2020, , 131-136.	0.0	0
382	Transduction of large optomechanical amplitudes with racetrack-loaded Mach-Zehnder interferometers. Optics Express, 2020, 28, 21835.	1.7	1
383	Nonlinear optical effect and nonlinear optical mass sensor based on graphene optomechanical system. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 134203.	0.2	2
385	Ultrasensitive and high resolution mass sensor by photonic-molecule optomechanics with phonon pump. Laser Physics, 2020, 30, 115203.	0.6	1
386	Quantum-feedback-controlled macroscopic quantum nonlocality in cavity optomechanics. Quantum Science and Technology, 2020, 5, 045023.	2.6	2

#	Article	IF	CITATIONS
387	Enhanced optomechanical interaction assisted by piezomechanics on the SOI platform. , 2020, , .		0
388	Optomechanical dynamics in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT - and broken- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi< td=""><td>1.0</td><td>20</td></mml:mi<></mml:math </mml:mi </mml:math 	1.0	20
389	Phonon pump enhanced fast and slow light in a spinning optomechanical system. Results in Physics, 2021, 31, 105002.	2.0	7
390	Topologically protected optomechanically induced transparency in a one-dimensional optomechanical array. Physical Review A, 2022, 105, .	1.0	3
391	Generation of an Enhanced Multiâ€Mode Optomechanical‣ike Quantum System and Its Application in Creating Hybrid Entangled States. Annalen Der Physik, 2022, 534, .	0.9	5
392	Hetero-Optomechanical Crystal Zipper Cavity for Multimode Optomechanics. Photonics, 2022, 9, 78.	0.9	7
393	Optomechanical strong coupling between a single photon and a single atom. New Journal of Physics, 2022, 24, 023006.	1.2	1
394	Higher-order exceptional point in a pseudo-Hermitian cavity optomechanical system. Physical Review A, 2021, 104, .	1.0	26
395	High-fidelity synchronization and transfer of quantum states in optomechanical hybrid systems. Physical Review A, 2022, 105, .	1.0	5
396	Nonlinear interaction effects in a three-mode cavity optomechanical system. Physical Review A, 2022, 105, .	1.0	2
397	Nanomechanical design strategy for single-mode optomechanical measurement. Journal Physics D: Applied Physics, 2022, 55, 225101.	1.3	5
398	Enhancing photon entanglement in a three-mode optomechanical system via imperfect phonon measurements. Communications in Theoretical Physics, 2022, 74, 055105.	1.1	1
399	Robust Second-Order Sideband Generation in a Photonic-Molecule Optomechanics with Phonon Pump. Journal of Experimental and Theoretical Physics, 2021, 133, 542-551.	0.2	0
400	Optomechanics for quantum technologies. Nature Physics, 2022, 18, 15-24.	6.5	100
401	Strained crystalline nanomechanical resonators with quality factors above 10 billion. Nature Physics, 2022, 18, 436-441.	6.5	31
402	Dissipative Quantum Feedback in Measurements Using a Parametrically Coupled Microcavity. PRX Quantum, 2022, 3, .	3.5	6
403	Effects of a three-level laser on mechanical squeezing in a doubly resonant optomechanical cavity coupled to biased noise fluctuations. Physical Review A, 2022, 105, .	1.0	2
404	Perimeter Modes of Nanomechanical Resonators Exhibit Quality Factors Exceeding <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><m at Room Temperature. Physical Review X. 2022. 12</m </mml:mrow></mml:msup></mml:mrow></mml:math 	ml <mark>2:8</mark> ml:mn>9<	/mml:mn> <

		CITATION REPORT		
#	Article		IF	CITATIONS
406	Measurement-based preparation of multimode mechanical states. Science Advances, 2	022, 8, .	4.7	6
407	Chiral Quantum Optics and Optical Nonreciprocity Based on Susceptibilityâ€Momentu Advanced Quantum Technologies, 2022, 5, .	m Locking.	1.8	7
408	Squeezed light generated with hyperradiance without nonlinearity. Optics Letters, 0, , .		1.7	2
409	Generation of Atomic-Squeezed States via Pondermotively Squeezed Light. Journal of A Molecular Condensate and Nano Physics, 2016, 3, 17-25.	tomic	0.2	0
410	Ponderomotive Squeezing of Light by a Levitated Nanoparticle in Free Space. Physical I 2022, 129, .	leview Letters,	2.9	16
411	Squeezed Light from a Levitated Nanoparticle at Room Temperature. Physical Review L	etters, 2022, 129, .	2.9	16
412	The fast and slow light in a hybrid spinning optomechanical system mediated by a two- Results in Physics, 2022, 42, 105987.	level system.	2.0	3
413	Large Single-Phonon Optomechanical Coupling Between Quantum Dots and Tightly Co Acoustic Waves in the Quantum Regime. Physical Review Applied, 2022, 18, .	nfined Surface	1.5	13
414	Higher-order exceptional point in a blue-detuned non-Hermitian cavity optomechanical Physical Review A, 2022, 106, .	system.	1.0	7
415	Cooling of mechanical resonator in a hybrid intracavity squeezing optomechanical syst Express, 2022, 30, 38776.	em. Optics	1.7	3
416	Phase-Controlled Entanglement in a Four-Mode Optomechanical System. Photonics, 20)22, 9, 818.	0.9	0
417	Phonon and photon lasing dynamics in optomechanical cavities. Fundamental Research	n, 2023, 3, 37-44.	1.6	4
418	Squeezing microwaves by magnetostriction. National Science Review, 2023, 10, .		4.6	18
419	Generation of second-order sideband and slow-fast light effects in a PT-symmetric optc system. Chaos, Solitons and Fractals, 2023, 166, 112978.	mechanical	2.5	3
420	Enhancement of Optomechanical Squeezing of Light Using the Optical Coherent Feedl 2022, 24, 1741.	oack. Entropy,	1.1	0
421	Stochastic Model of Sub-Poissonian Quantum Light in an Interband Cascade Laser. Phy Applied, 2022, 18, .	sical Review	1.5	2
422	Enhancing the force sensitivity of a squeezed light optomechanical interferometer. Op 2023, 31, 177.	ics Express,	1.7	2
423	Semiclassical gravity phenomenology under the causal-conditional quantum measurem prescription. Physical Review D, 2023, 107, .	ent	1.6	1

#	Article	IF	CITATIONS
424	Holstein–Primakoff (Hâ€₽) Approach to Determine the Optical Response of Hybrid Optomechanical System Containing Multiple Quantum Dots. Annalen Der Physik, 0, , 2200484.	0.9	0
425	A Bright Squeezed Light Source for Quantum Sensing. Chemosensors, 2023, 11, 18.	1.8	0
426	Perspectives on high-frequency nanomechanics, nanoacoustics, and nanophononics. Applied Physics Letters, 2023, 122, .	1.5	5
427	Optical bistability and four-wave mixing response of a quantum dot coupled to an optomechanical photonic crystal nanocavity. Photonics and Nanostructures - Fundamentals and Applications, 2023, 54, 101129.	1.0	1
428	Quantum manipulation of a two-level mechanical system. Quantum - the Open Journal for Quantum Science, 0, 7, 943.	0.0	2
429	Auxiliary-Cavity-Assisted Slow and Fast Light in a Photonic Molecule Spinning Optomechanical System. Micromachines, 2023, 14, 655.	1.4	0
430	Optomechanical-interface-induced strong spin-magnon coupling. Physical Review A, 2023, 107, .	1.0	7
431	Understanding the Quality Factor of Mass-Loaded Tensioned Resonators. Physical Review Applied, 2023, 19, .	1.5	1
432	Optomechanically Induced Transparency in Optomechanical System with a Cubic Anharmonic Oscillator. Photonics, 2023, 10, 407.	0.9	3
441	Heterodyne quantum light detection using free electrons. , 2023, , .		0