Inhibition of PRC2 Activity by a Gain-of-Function H3 M Glioblastoma

Science

340, 857-861

DOI: 10.1126/science.1232245

Citation Report

#	Article	IF	CITATIONS
1	La formalisation de la GRH dans une PME comme enjeu d'une certification RSE. Revue De Gestion Des Ressources Humaines, 2012, $N\hat{A}^\circ$ 83, 20-30.	0.1	8
2	Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development. Epigenetics and Chromatin, 2013, 6, 7.	1.8	79
3	KDM4A Lysine Demethylase Induces Site-Specific Copy Gain and Rereplication of Regions Amplified in Tumors. Cell, 2013, 154, 541-555.	13.5	189
5	The histones have it. Nature Reviews Cancer, 2013, 13, 294-294.	12.8	1
6	Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nature Reviews Genetics, 2013, 14, 765-780.	7.7	373
7	Chromatin proteins and modifications as drug targets. Nature, 2013, 502, 480-488.	13.7	389
8	Histone H3.3 Mutations: A Variant Path to Cancer. Cancer Cell, 2013, 24, 567-574.	7.7	117
9	Is Glioblastoma an Epigenetic Malignancy?. Cancers, 2013, 5, 1120-1139.	1.7	51
10	PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells. Nature Structural and Molecular Biology, 2013, 20, 1258-1264.	3.6	281
11	Recurrent H3.3 alterations in childhood tumors. Nature Genetics, 2013, 45, 1413-1414.	9.4	16
12	A new world of Polycombs: unexpected partnerships and emerging functions. Nature Reviews Genetics, 2013, 14, 853-864.	7.7	261
13	The evolving epigenome. Human Molecular Genetics, 2013, 22, R1-R6.	1.4	55
14	Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas. Cancer Cell, 2013, 24, 660-672.	7.7	633
15	Histone exchange: sculpting the epigenome. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2013, 7, 63-79.	1.1	7
16	Pediatric high-grade astrocytomas: a distinct neuro-oncological paradigm. Genome Medicine, 2013, 5, 66.	3.6	23
17	Cancer Stem Cells Activate STAT3 the EZ Way. Cancer Cell, 2013, 23, 711-713.	7.7	22
18	Histone mutations take the MYCN. Nature Reviews Cancer, 2013, 13, 382-383.	12.8	1
19	Putting a halt on PRC2 in pediatric glioblastoma. Nature Genetics, 2013, 45, 587-589.	9.4	9

#	ARTICLE	IF	Citations
20	Genome-based cancer therapeutics: targets, kinase drug resistance and future strategies for precision oncology. Current Opinion in Pharmacology, 2013, 13, 486-496.	1.7	55
21	Poisoning the "histone code―in pediatric gliomagenesis. Cell Cycle, 2013, 12, 3241-3242.	1.3	25
22	The PML-Interacting Protein DAXX: Histone Loading Gets into the Picture. Frontiers in Oncology, 2013, 3, 152.	1.3	36
23	Chromatin targeting drugs in cancer and immunity. Genes and Development, 2013, 27, 1731-1738.	2.7	25
24	Next-generation molecular genetics of brain tumours. Current Opinion in Neurology, 2013, 26, 681-687.	1.8	15
25	Molecular biomarkers in pediatric glial tumors. Current Opinion in Oncology, 2013, 25, 665-673.	1.1	14
26	The evolving landscape of glioblastoma stem cells. Current Opinion in Neurology, 2013, 26, 701-707.	1.8	69
27	A lesson learned from the H3.3K27M mutation found in pediatric glioma. Cell Cycle, 2013, 12, 2546-2552.	1.3	50
28	(Poly)Combing the Pediatric Cancer Genome for Answers. Science, 2013, 340, 823-824.	6.0	11
29	Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nature Genetics, 2013, 45, 1479-1482.	9.4	667
30	Single Cell Analysis of RNA-mediated Histone H3.3 Recruitment to a Cytomegalovirus Promoter-regulated Transcription Site. Journal of Biological Chemistry, 2013, 288, 19882-19899.	1.6	15
31	A statistical method to estimate DNA copy number from Illumina high-density methylation arrays. Systems Biomedicine (Austin, Tex), 2013, 1, 94-98.	0.7	1
32	Epigenetic Contributions to the Cancer Transcriptome. , 2014, , 367-380.		0
33	Regulation and Role of EZH2 in Cancer. Cancer Research and Treatment, 2014, 46, 209-222.	1.3	243
34	HIRA orchestrates a dynamic chromatin landscape in senescence and is required for suppression of neoplasia. Genes and Development, 2014, 28, 2712-2725.	2.7	128
35	Management of diffuse intrinsic pontine glioma in children: current and future strategies for improving prognosis. CNS Oncology, 2014, 3, 421-431.	1.2	21
36	Pax3 expression enhances PDGF-B-induced brainstem gliomagenesis and characterizes a subset of brainstem glioma. Acta Neuropathologica Communications, 2014, 2, 134.	2.4	27
37	Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathologica, 2014, 128, 573-581.	3.9	258

#	Article	IF	CITATIONS
38	Specific detection of methionine 27 mutation in histone 3 variants (H3K27M) in fixed tissue from high-grade astrocytomas. Acta Neuropathologica, 2014, 128, 733-741.	3.9	116
39	Molecular characteristics of pediatric high-grade gliomas. CNS Oncology, 2014, 3, 433-443.	1.2	26
40	Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nature Genetics, 2014, 46, 462-466.	9.4	381
41	Replication-dependent histone genes are actively transcribed in differentiating and aging retinal neurons. Cell Cycle, 2014, 13, 2526-2541.	1.3	21
42	Human germline and pan-cancer variomes and their distinct functional profiles. Nucleic Acids Research, 2014, 42, 11570-11588.	6.5	22
43	SETD2-Dependent Histone H3K36 Trimethylation Is Required for Homologous Recombination Repair and Genome Stability. Cell Reports, 2014, 7, 2006-2018.	2.9	370
44	Children are not just little adults: recent advances in understanding of diffuse intrinsic pontine glioma biology. Pediatric Research, 2014, 75, 205-209.	1.1	70
45	For pediatric glioma, leave no histone unturned. Science, 2014, 346, 1458-1459.	6.0	9
46	Promoter architecture dictates cell-to-cell variability in gene expression. Science, 2014, 346, 1533-1536.	6.0	200
47	Synthetic Chromatin Approaches To Probe the Writing and Erasing of Histone Modifications. ChemMedChem, 2014, 9, 495-504.	1.6	10
48	Assembly of telomeric chromatin to create ALTernative endings. Trends in Cell Biology, 2014, 24, 675-685.	3.6	54
49	Epigenetic dysregulation: a novel pathway of oncogenesis in pediatric brain tumors. Acta Neuropathologica, 2014, 128, 615-627.	3.9	49
50	Stable-isotope-labeled Histone Peptide Library for Histone Post-translational Modification and Variant Quantification by Mass Spectrometry. Molecular and Cellular Proteomics, 2014, 13, 2450-2466.	2.5	53
51	An epigenetic therapy for diffuse intrinsic pontine gliomas. Nature Medicine, 2014, 20, 1378-1379.	15.2	25
52	Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science, 2014, 346, 1529-1533.	6.0	312
53	Management of high-grade gliomas in the pediatric patient: Past, present, and future. Neuro-Oncology Practice, 2014, 1, 145-157.	1.0	31
54	Sumoylated Human Histone H4 Prevents Chromatin Compaction by Inhibiting Long-range Internucleosomal Interactions. Journal of Biological Chemistry, 2014, 289, 33827-33837.	1.6	69
55	The N-myc Oncogene: Maximizing its Targets, Regulation, and Therapeutic Potential. Molecular Cancer Research, 2014, 12, 815-822.	1.5	116

#	Article	IF	CITATIONS
56	Histone H3 Mutations in Pediatric Brain Tumors. Cold Spring Harbor Perspectives in Biology, 2014, 6, a018689-a018689.	2.3	29
57	A sensitive and specific histopathologic prognostic marker for H3F3A K27M mutant pediatric glioblastomas. Acta Neuropathologica, 2014, 128, 743-753.	3.9	114
58	Molecular cloning and functional analysis of nine cinnamyl alcohol dehydrogenase family members in Populus tomentosa. Planta, 2014, 240, 1097-1112.	1.6	27
59	A global assessment of cancer genomic alterations in epigenetic mechanisms. Epigenetics and Chromatin, 2014, 7, 29.	1.8	64
60	Increased 5-hydroxymethylcytosine and decreased 5-methylcytosine are indicators of global epigenetic dysregulation in diffuse intrinsic pontine glioma. Acta Neuropathologica Communications, 2014, 2, 59.	2.4	35
61	Molecular Genetics of Gliomas. Cancer Journal (Sudbury, Mass), 2014, 20, 66-72.	1.0	93
62	The HIRA complex that deposits the histone H3.3 is conserved in <i>Arabidopsis</i> and facilitates transcriptional dynamics. Biology Open, 2014, 3, 794-802.	0.6	58
63	New insights and challenges in mismatch repair: Getting over the chromatin hurdle. DNA Repair, 2014, 19, 48-54.	1.3	33
64	Transitioning from genotypes to epigenotypes: Why the time has come for medulloblastoma epigenomics. Neuroscience, 2014, 264, 171-185.	1.1	45
65	Comparative multidimensional molecular analyses of pediatric diffuse intrinsic pontine glioma reveals distinct molecular subtypes. Acta Neuropathologica, 2014, 127, 881-895.	3.9	91
66	The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nature Communications, 2014, 5, 3630.	5.8	342
67	ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature, 2014, 508, 263-268.	13.7	276
68	Genetic alterations in paediatric high grade astrocytomas. Diagnostic Histopathology, 2014, 20, 84-90.	0.2	1
69	H3F3A K27M mutations in thalamic gliomas from young adult patients. Neuro-Oncology, 2014, 16, 140-146.	0.6	151
70	A Novel Microscopy-Based High-Throughput Screening Method to Identify Proteins That Regulate Global Histone Modification Levels. Journal of Biomolecular Screening, 2014, 19, 287-296.	2.6	5
71	Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nature Reviews Genetics, 2014, 15, 259-271.	7.7	285
72	Diffuse intrinsic pontine glioma: a reassessment. Journal of Neuro-Oncology, 2014, 119, 7-15.	1.4	99
73	Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nature Reviews Cancer, 2014, 14, 92-107.	12.8	469

#	ARTICLE	IF	CITATIONS
74	Histone variants: the tricksters of the chromatin world. Current Opinion in Genetics and Development, 2014, 25, 8-14.	1.5	45
75	Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nature Medicine, 2014, 20, 1394-1396.	15.2	411
76	Regulatory variation: an emerging vantage point for cancer biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2014, 6, 37-59.	6.6	6
77	PRC2 loss amplifies Ras signaling in cancer. Nature Genetics, 2014, 46, 1154-1155.	9.4	19
78	SPRTN is a new player in an old story. Nature Genetics, 2014, 46, 1155-1157.	9.4	8
79	Pan-cancer patterns of DNA methylation. Genome Medicine, 2014, 6, 66.	3.6	149
80	Histone H3.3 Is Required to Maintain Replication Fork Progression after UV Damage. Current Biology, 2014, 24, 2195-2201.	1.8	53
81	Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nature Genetics, 2014, 46, 457-461.	9.4	423
82	The Genetic Signatures of Pediatric High-Grade Glioma: No Longer a One-Act Play. Seminars in Radiation Oncology, 2014, 24, 240-247.	1.0	43
83	Histone H3 Variants and Their Chaperones During Development and Disease: Contributing to Epigenetic Control. Annual Review of Cell and Developmental Biology, 2014, 30, 615-646.	4.0	107
84	Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling. Science, 2014, 345, 1065-1070.	6.0	163
85	Diffuse Intrinsic Pontine Gliomas. Advances in Cancer Research, 2014, 121, 235-259.	1.9	18
86	Histone Methyltransferase EZH2 Is Transcriptionally Induced by Estradiol as Well as Estrogenic Endocrine Disruptors Bisphenol-A and Diethylstilbestrol. Journal of Molecular Biology, 2014, 426, 3426-3441.	2.0	100
87	The Molecular Landscape of Pediatric Brain Tumors in the Next-Generation Sequencing Era. Current Neurology and Neuroscience Reports, 2014, 14, 474.	2.0	11
88	Hira-Mediated H3.3 Incorporation Is Required for DNA Replication and Ribosomal RNA Transcription in the Mouse Zygote. Developmental Cell, 2014, 30, 268-279.	3.1	143
89	Somatic alterations and dysregulation of epigenetic modifiers in cancers. Biochemical and Biophysical Research Communications, 2014, 455, 24-34.	1.0	29
90	<i>ACVR1</i> Mutations in DIPG: Lessons Learned from FOP. Cancer Research, 2014, 74, 4565-4570.	0.4	76
91	Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nature Reviews Cancer, 2014, 14, 651-661.	12.8	241

#	Article	IF	Citations
92	Diverse Epigenetic Mechanisms of Human Disease. Annual Review of Genetics, 2014, 48, 237-268.	3.2	107
93	Strategy for "Detoxification―of a Cancer-Derived Histone Mutant Based on Mapping Its Interaction with the Methyltransferase PRC2. Journal of the American Chemical Society, 2014, 136, 13498-13501.	6.6	95
94	Human pontine glioma cells can induce murine tumors. Acta Neuropathologica, 2014, 127, 897-909.	3.9	63
95	Molecular Pathways: Deregulation of Histone H3 Lysine 27 Methylation in Cancer—Different Paths, Same Destination. Clinical Cancer Research, 2014, 20, 5001-5008.	3.2	75
96	Driver mutations of cancer epigenomes. Protein and Cell, 2014, 5, 265-296.	4.8	139
97	BS69/ZMYND11 Reads and Connects Histone H3.3 Lysine 36 Trimethylation-Decorated Chromatin to Regulated Pre-mRNA Processing. Molecular Cell, 2014, 56, 298-310.	4.5	194
98	The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nature Genetics, 2014, 46, 444-450.	9.4	871
99	Persistent Replicative Stress Alters Polycomb Phenotypes and Tissue Homeostasis in Drosophila melanogaster. Cell Reports, 2014, 7, 859-870.	2.9	21
100	ZFHX4 Interacts with the NuRD Core Member CHD4 and Regulates the Glioblastoma Tumor-Initiating Cell State. Cell Reports, 2014, 6, 313-324.	2.9	106
101	Cancer Epigenetics: Tumor Heterogeneity, Plasticity of Stem-like States, and Drug Resistance. Molecular Cell, 2014, 54, 716-727.	4.5	771
102	Glial Progenitors as Targets for Transformation in Glioma. Advances in Cancer Research, 2014, 121, 1-65.	1.9	38
103	Histone variants: key players of chromatin. Cell and Tissue Research, 2014, 356, 457-466.	1.5	119
104	Histone Chaperones: Assisting Histone Traffic and Nucleosome Dynamics. Annual Review of Biochemistry, 2014, 83, 487-517.	5.0	258
105	Examining the impact of gene variants on histone lysine methylation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1463-1476.	0.9	29
106	Histone variants: emerging players in cancer biology. Cellular and Molecular Life Sciences, 2014, 71, 379-404.	2.4	141
107	Harnessing the potential of epigenetic therapy to target solid tumors. Journal of Clinical Investigation, 2014, 124, 56-63.	3.9	130
108	Genetics and epigenetics of gliomas. Swiss Medical Weekly, 2014, 144, w14018.	0.8	7
109	PM-12 * Pax3 EXPRESSION ENHANCES PDGF-B-INDUCED BRAINSTEM GLIOMAGENESIS AND CHARACTERIZES A SUBSET OF BRAINSTEM GLIOMA. Neuro-Oncology, 2014, 16, v171-v171.	0.6	O

#	ARTICLE	IF	CITATIONS
110	Diagnostic value of <i>H3F3A</i> mutations in giant cell tumour of bone compared to osteoclastâ€rich mimics. Journal of Pathology: Clinical Research, 2015, 1, 113-123.	1.3	135
111	Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis. Genes and Development, 2015, 29, 2547-2562.	2.7	77
112	Proteomic profiling identifies specific histone species associated with leukemic and cancer cells. Clinical Proteomics, 2015, 12, 22.	1.1	18
114	Pediatric gliomas as neurodevelopmental disorders. Glia, 2016, 64, 879-895.	2.5	51
116	Middle-Down and Chemical Proteomic Approaches to Reveal Histone H4 Modification Dynamics in Cell Cycle. Mass Spectrometry, 2015, 4, A0039-A0039.	0.2	14
117	The methyltransferase EZH2 is not required for mammary cancer development, although high EZH2 and low H3K27me3 correlate with poor prognosis of ERâ€positive breast cancers. Molecular Carcinogenesis, 2015, 54, 1172-1180.	1.3	52
118	Targeted Histone Peptides: Insights into the Spatial Regulation of the Methyltransferase PRC2 by using a Surrogate of Heterotypic Chromatin. Angewandte Chemie - International Edition, 2015, 54, 6457-6461.	7.2	16
119	Polycomb Group (PcG) Proteins and Human Cancers: Multifaceted Functions and Therapeutic Implications. Medicinal Research Reviews, 2015, 35, 1220-1267.	5.0	93
120	Chromatin Dynamics in Vivo: A Game of Musical Chairs. Genes, 2015, 6, 751-776.	1.0	31
121	Pathology, Molecular Genetics, and Epigenetics of Diffuse Intrinsic Pontine Glioma. Frontiers in Oncology, 2015, 5, 147.	1.3	91
122	Future Clinical Trials in DIPG: Bringing Epigenetics to the Clinic. Frontiers in Oncology, 2015, 5, 148.	1.3	50
123	Pre-Clinical Models of Diffuse Intrinsic Pontine Glioma. Frontiers in Oncology, 2015, 5, 172.	1.3	36
124	Genome-Wide Identification, Evolutionary, and Expression Analyses of Histone H3 Variants in Plants. BioMed Research International, 2015, 2015, 1-7.	0.9	14
125	Chemical and Genetic Approaches to Study Histone Modifications. , 2015, , 149-168.		2
126	Diffusely infiltrating astrocytomas: pathology, molecular mechanisms and markers. Acta Neuropathologica, 2015, 129, 789-808.	3.9	45
127	Next-generation (epi)genetic drivers of childhood brain tumours and the outlook for targeted therapies. Lancet Oncology, The, 2015, 16, e293-e302.	5.1	72
128	Biomarker-driven diagnosis of diffuse gliomas. Molecular Aspects of Medicine, 2015, 45, 87-96.	2.7	71
129	Epigenetic changes in the developing brain: Effects on behavior. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6789-6795.	3.3	52

#	Article	IF	CITATIONS
130	Emerging roles of ATRX in cancer. Epigenomics, 2015, 7, 1365-1378.	1.0	54
131	PRC2 mediated H3K27 methylations in cellular identity and cancer. Current Opinion in Cell Biology, 2015, 37, 42-48.	2.6	193
132	Regulation of gene transcription by Polycomb proteins. Science Advances, 2015, 1, e1500737.	4.7	287
133	Glioma Stem-like Cells Keep Their H3.3 Variant Levels at Bay. Cancer Cell, 2015, 28, 679-680.	7.7	0
134	Histone Variants and Epigenetics. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019364.	2.3	275
135	Pediatric High-Grade Gliomas and DIPG. Molecular Pathology Library, 2015, , 95-104.	0.1	0
136	Prolonged Ezh2 Depletion in Glioblastoma Causes a Robust Switch in Cell Fate Resulting in Tumor Progression. Cell Reports, 2015, 10, 383-397.	2.9	70
137	Practical Molecular Pathologic Diagnosis of Infiltrating Gliomas. Surgical Pathology Clinics, 2015, 8, 49-61.	0.7	3
138	Interrogating the Function of Metazoan Histones using Engineered Gene Clusters. Developmental Cell, 2015, 32, 373-386.	3.1	139
139	Chromatin signatures of cancer. Genes and Development, 2015, 29, 238-249.	2.7	171
140	The controversial role of the Polycomb group proteins in transcription and cancer: how much do we not understand Polycomb proteins?. FEBS Journal, 2015, 282, 1703-1722.	2.2	50
141	Pediatric Brainstem Gliomas: New Understanding Leads to Potential New Treatments for Two Very Different Tumors. Current Oncology Reports, 2015, 17, 436.	1.8	49
142	Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathologica, 2015, 129, 669-678.	3.9	277
143	Histone H3.3 and cancer: A potential reader connection. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6814-6819.	3.3	25
144	Inhibitors of Jumonji C-Domain Histone Demethylases., 2015,, 439-469.		1
145	Point mutations in an epigenetic factor lead to multiple types of bone tumors: role of H3.3 histone variant in bone development and disease. BoneKEy Reports, 2015, 4, 715.	2.7	6
146	Control of cancer formation by intrinsic genetic noise and microenvironmental cues. Nature Reviews Cancer, 2015, 15, 499-509.	12.8	65
147	KM mutant highlights enhancers in minor ZGA. Cell Cycle, 2015, 14, 2541-2542.	1.3	0

#	Article	IF	CITATIONS
148	The H3.3 K27M mutation results in a poorer prognosis in brainstem gliomas than thalamic gliomas in adults. Human Pathology, 2015, 46, 1626-1632.	1.1	88
149	An Interactive Database for the Assessment of Histone Antibody Specificity. Molecular Cell, 2015, 59, 502-511.	4.5	139
150	Diffuse Intrinsic Pontine Glioma. , 2015, , 117-126.		0
151	CRISPR/Cas9-Mediated Genome Editing of Epigenetic Factors for Cancer Therapy. Human Gene Therapy, 2015, 26, 463-471.	1.4	55
152	"Modifying―My Career toward Chromatin Biology. Journal of Biological Chemistry, 2015, 290, 15904-15908.	1.6	3
153	Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis, 2015, 36, S61-S88.	1.3	149
154	Pediatric cancer epigenome and the influence of folate. Epigenomics, 2015, 7, 961-973.	1.0	18
155	Histone H3 mutationsâ€"a special role for H3.3 in tumorigenesis?. Chromosoma, 2015, 124, 177-189.	1.0	77
156	Chemical "Diversity―of Chromatin Through Histone Variants and Histone Modifications. Current Molecular Biology Reports, 2015, 1, 39-59.	0.8	6
157	The Emerging Molecular Foundations of Pediatric Brain Tumors. Journal of Child Neurology, 2015, 30, 1838-1850.	0.7	17
158	Osteoclast-rich lesions of bone: a clinical and molecular overview., 2015,, 257-272.		1
159	Homozygosity mapping and sequencing identify two genes that might contribute to pointing behavior in hunting dogs. Canine Genetics and Epidemiology, 2015, 2, 5.	2.9	11
160	Clinicopathology of diffuse intrinsic pontine glioma and its redefined genomic and epigenomic landscape. Cancer Genetics, 2015, 208, 367-373.	0.2	35
161	Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nature Medicine, 2015, 21, 555-559.	15.2	473
162	Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development. EMBO Reports, 2015, 16, 803-812.	2.0	69
163	Molecular Pathways in Gliomagenesis and Their Relevance to Neuropathologic Diagnosis. Advances in Anatomic Pathology, 2015, 22, 50-58.	2.4	78
164	Gain-of-function mutation of chromatin regulators as a tumorigenic mechanism and an opportunity for therapeutic intervention. Current Opinion in Oncology, 2015, 27, 57-63.	1.1	19
166	Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations. Expert Review of Proteomics, 2015, 12, 499-517.	1.3	51

#	Article	IF	CITATIONS
167	Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathologica, 2015, 130, 815-827.	3.9	482
168	Histone H3 Lysine 36 Trimethylation Is Established over the <i>Xist</i> Promoter by Antisense <i>Tsix</i> Transcription and Contributes to Repressing <i>Xist</i> Expression. Molecular and Cellular Biology, 2015, 35, 3909-3920.	1.1	27
169	The Histone Demethylase UTX Promotes Brown Adipocyte Thermogenic Program Via Coordinated Regulation of H3K27 Demethylation and Acetylation. Journal of Biological Chemistry, 2015, 290, 25151-25163.	1.6	67
170	Histone H3 Threonine Phosphorylation Regulates Asymmetric Histone Inheritance in the Drosophila Male Germline. Cell, 2015, 163, 920-933.	13.5	110
171	Genome-wide redistribution of H3K27me3 is linked to genotoxic stress and defective growth. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6339-48.	3.3	84
172	Inhibiting WEE1 Selectively Kills Histone H3K36me3-Deficient Cancers by dNTP Starvation. Cancer Cell, 2015, 28, 557-568.	7.7	244
173	Targeting epigenetic regulations in cancer. Acta Biochimica Et Biophysica Sinica, 2016, 48, 97-109.	0.9	60
174	Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science, 2015, 350, aac4383.	6.0	319
175	Chromatin complex, crystal clear. Science, 2015, 350, 278-279.	6.0	0
176	EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling. Molecular Cell, 2015, 60, 307-318.	4.5	161
177	Analytical strategies used to identify the readers of histone modifications: A review. Analytica Chimica Acta, 2015, 891, 32-42.	2.6	11
178	Histone variants and cellular plasticity. Trends in Genetics, 2015, 31, 516-527.	2.9	28
179	Deregulation of histone-modifying enzymes and chromatin structure modifiers contributes to glioma development. Future Oncology, 2015, 11, 2587-2601.	1.1	21
180	Rapid Histone-Catalyzed DNA Lesion Excision and Accompanying Protein Modification in Nucleosomes and Nucleosome Core Particles. Journal of the American Chemical Society, 2015, 137, 11022-11031.	6.6	18
181	Hypoxia drives transient site-specific copy gain and drug-resistant gene expression. Genes and Development, 2015, 29, 1018-1031.	2.7	72
182	Polycomb and Trithorax factors in transcriptional and epigenetic regulation. , 2015, , 63-94.		2
183	Genetically altered cancer epigenome. , 2015, , 265-289.		1
184	The PZP Domain of AF10 Senses Unmodified H3K27 to Regulate DOT1L-Mediated Methylation of H3K79. Molecular Cell, 2015, 60, 319-327.	4.5	78

#	Article	IF	CITATIONS
185	MLL5 Orchestrates a Cancer Self-Renewal State by Repressing the Histone Variant H3.3 and Globally Reorganizing Chromatin. Cancer Cell, 2015, 28, 715-729.	7.7	90
187	Functional Crosstalk Between Lysine Methyltransferases on Histone Substrates: The Case of G9A/GLP and Polycomb Repressive Complex 2. Antioxidants and Redox Signaling, 2015, 22, 1365-1381.	2.5	26
188	Quantum harmonic oscillator state synthesis by reservoir engineering. Science, 2015, 347, 53-56.	6.0	173
189	Emerging Interplay of Genetics and Epigenetics in Gliomas: A New Hope for Targeted Therapy. Seminars in Pediatric Neurology, 2015, 22, 14-22.	1.0	12
190	Altered global histone-trimethylation code and H3F3A-ATRX mutation in pediatric GBM. Journal of Neuro-Oncology, 2015, 121, 489-497.	1.4	49
191	Epigenetic Pathways and Glioblastoma Treatment: Insights From Signaling Cascades. Journal of Cellular Biochemistry, 2015, 116, 351-363.	1.2	22
192	Deregulated proliferation and differentiation in brain tumors. Cell and Tissue Research, 2015, 359, 225-254.	1.5	28
193	Role of epigenetic mechanisms in epithelial-to-mesenchymal transition of breast cancer cells. Translational Research, 2015, 165, 126-142.	2.2	37
194	Histones: At the Crossroads of Peptide and Protein Chemistry. Chemical Reviews, 2015, 115, 2296-2349.	23.0	188
195	Diffuse Intrinsic Pontine Glioma: A Therapeutic Challenge. , 0, , .		0
196	HG-76SPATIAL AND TEMPORAL HOMOGENEITY OF DRIVER MUTATIONS IN DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2016, 18, iii66.1-iii66.	0.6	0
197	Prospective Advances in Medical Epigenetics. , 2016, , 891-910.		0
198	Chromo Domain Proteins., 2016, , 113-125.		0
199	Chromatin Dynamics and Epigenetics of Stem Cells and Stem-Like Cancer Cells. , 2016, , 311-327.		0
200	In silico analysis of histone H3 gene expression during human brain development. International Journal of Developmental Biology, 2016, 60, 167-173.	0.3	5
201	Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells. Journal of Biological Chemistry, 2016, 291, 15342-15357.	1.6	30
202	Advances in the biology and treatment of pediatric central nervous system tumors. Current Opinion in Pediatrics, 2016, 28, 34-39.	1.0	9
203	Diffuse Midline Gliomas with Histone <scp>H3â€K27M</scp> Mutation: A Series of 47 Cases Assessing the Spectrum of Morphologic Variation and Associated Genetic Alterations. Brain Pathology, 2016, 26, 569-580.	2.1	334

#	Article	IF	CITATIONS
204	Comment on "Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2― Science, 2016, 354, 1543-1543.	6.0	5
205	Response to Comment on "Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2― Science, 2016, 354, 1543-1543.	6.0	7
206	Genetic mosaics and time-lapse imaging identify functions of H3.3 residues in mouse oocytes and embryos. Development (Cambridge), 2016, 144, 519-528.	1.2	8
207	The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science, 2016, 352, 1344-1348.	6.0	211
208	Investigational new drugs for brain cancer. Expert Opinion on Investigational Drugs, 2016, 25, 937-956.	1.9	16
209	Epigenetic Determinants of Cancer. Cold Spring Harbor Perspectives in Biology, 2016, 8, a019505.	2.3	834
210	Weaver Syndromeâ€Associated EZH2 Protein Variants Show Impaired Histone Methyltransferase Function In Vitro. Human Mutation, 2016, 37, 301-307.	1.1	68
211	DNA Methylation and Cancer. , 2016, , 103-134.		4
212	Mechanisms of epigenetic remodelling during preimplantation development. Reproduction, Fertility and Development, 2016, 28, 25.	0.1	16
213	Enhancer, epigenetics, and human disease. Current Opinion in Genetics and Development, 2016, 36, 27-33.	1.5	19
214	Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science, 2016, 352, 844-849.	6.0	327
215	Emerging roles for Polycomb proteins in cancer. Current Opinion in Genetics and Development, 2016, 36, 50-58.	1.5	105
216	EZH2 phosphorylation by JAK3 mediates a switch to noncanonical function in natural killer/T-cell lymphoma. Blood, 2016, 128, 948-958.	0.6	110
217	An update on the epigenetics of glioblastomas. Epigenomics, 2016, 8, 1289-1305.	1.0	19
218	Recent Advances on the Molecular Pathology of Glial Neoplasms in Children and Adults. Journal of Molecular Diagnostics, 2016, 18, 620-634.	1.2	42
219	Epigenomic Consequences of Coding and Noncoding Driver Mutations. Trends in Cancer, 2016, 2, 585-605.	3.8	8
220	H3K27 Methylation. Advances in Cancer Research, 2016, 131, 59-95.	1.9	48
221	Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial–mesenchymal transition. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12238-12243.	3.3	181

#	Article	IF	CITATIONS
222	Histone H2A T120 Phosphorylation Promotes Oncogenic Transformation via Upregulation of Cyclin D1. Molecular Cell, 2016, 64, 176-188.	4.5	51
223	Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. Nature Reviews Cancer, 2016, 16, 803-810.	12.8	368
224	Elucidating Combinatorial Chromatin States at Single-Nucleosome Resolution. Molecular Cell, 2016, 63, 1080-1088.	4.5	29
225	Mechanisms of Nucleosome Dynamics In Vivo. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026666.	2.9	24
226	Molecular basis for oncohistone H3 recognition by SETD2 methyltransferase. Genes and Development, 2016, 30, 1611-1616.	2.7	111
227	Propagation of trimethylated H3K27 regulated by polycomb protein EED is required for embryogenesis, hematopoietic maintenance, and tumor suppression. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10370-10375.	3.3	24
228	Histone H3K27 Trimethylation Modulates 5-Fluorouracil Resistance by Inhibiting PU.1 Binding to the DPYD Promoter. Cancer Research, 2016, 76, 6362-6373.	0.4	19
229	Evidence of H3 K27M mutations in posterior fossa ependymomas. Acta Neuropathologica, 2016, 132, 635-637.	3.9	73
230	Lowered H3K27me3 and DNA hypomethylation define poorly prognostic pediatric posterior fossa ependymomas. Science Translational Medicine, 2016, 8, 366ra161.	5.8	144
231	Resetting Epigenetic Memory by Reprogramming of Histone Modifications in Mammals. Molecular Cell, 2016, 63, 1066-1079.	4.5	327
232	Role of the Polycomb Repressive Complex 2 (PRC2) in Transcriptional Regulation and Cancer. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026575.	2.9	151
233	Pediatric thalamic glioma with H3F3A K27M mutation, which was detected before and after malignant transformation: a case report. Child's Nervous System, 2016, 32, 2433-2438.	0.6	15
234	Association between EZH2 expression, silencing of tumor suppressors and disease outcome in solid tumors. Cell Cycle, 2016, 15, 2256-2262.	1.3	19
235	Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2. Nature Communications, 2016, 7, 11316.	5.8	326
236	Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma. Nature Communications, 2016, 7, 11185.	5.8	197
237	Histone variant H3F3A promotes lung cancer cell migration through intronic regulation. Nature Communications, 2016, 7, 12914.	5.8	43
238	Practical implications of integrated glioma classification according to the World Health Organization classification of tumors of the central nervous system 2016. Current Opinion in Oncology, 2016, 28, 494-501.	1.1	62
239	The H3F3 K36M mutant antibody is a sensitive and specific marker for the diagnosis of chondroblastoma. Histopathology, 2016, 69, 121-127.	1.6	109

#	Article	IF	Citations
240	$\langle i \rangle S \langle i \rangle$ -adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6182-6187.	3.3	73
241	Global chromatin architecture defines functional cancer hierarchies. Cell Cycle, 2016, 15, 2093-2094.	1.3	3
242	DNA repair mechanisms and their clinical impact in glioblastoma. Mutation Research - Reviews in Mutation Research, 2016, 769, 19-35.	2.4	128
243	The molecular hallmarks of epigenetic control. Nature Reviews Genetics, 2016, 17, 487-500.	7.7	1,945
244	Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro-Oncology, 2017, 19, now101.	0.6	217
245	A Novel Mouse Model of Diffuse Intrinsic Pontine Glioma Initiated in Pax3-Expressing Cells. Neoplasia, 2016, 18, 60-70.	2.3	40
246	Greater Than the Sum of Parts: Complexity of the Dynamic Epigenome. Molecular Cell, 2016, 62, 681-694.	4.5	124
247	Epigenetic balance of gene expression by Polycomb and COMPASS families. Science, 2016, 352, aad9780.	6.0	407
248	Characteristics of gliomas in patients with somatic IDH mosaicism. Acta Neuropathologica Communications, 2016, 4, 31.	2.4	29
249	Context-dependent actions of Polycomb repressors in cancer. Oncogene, 2016, 35, 1341-1352.	2.6	79
250	Pleiotropic Functions of H3K27Me3 Demethylases in Immune Cell Differentiation. Trends in Immunology, 2016, 37, 102-113.	2.9	42
251	Functional roles of enhancer of zeste homolog 2 in gliomas. Gene, 2016, 576, 189-194.	1.0	32
252	Gliomas Genomics and Epigenomics: Arriving at the Start and Knowing It for the First Time. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 497-521.	9.6	37
253	Mutations in chromatin machinery and pediatric high-grade glioma. Science Advances, 2016, 2, e1501354.	4.7	69
254	PRC2 and SWI/SNF Chromatin Remodeling Complexes in Health and Disease. Biochemistry, 2016, 55, 1600-1614.	1.2	104
255	Histone Variant H3.3: A versatile H3 variant in health and in disease. Science China Life Sciences, 2016, 59, 245-256.	2.3	6
256	The epigenetics of tumour initiation: cancer stem cells and their chromatin. Current Opinion in Genetics and Development, 2016, 36, 8-15.	1.5	53
257	Ultra-Deep Sequencing of Bisulfite-Modified DNA. , 2016, , 47-72.		O

#	Article	IF	CITATIONS
258	Clinical Applications of Epigenomics. , 2016, , 271-295.		1
259	Targeting EZH2 in cancer. Nature Medicine, 2016, 22, 128-134.	15.2	1,174
260	RNase P protein subunit Rpp29 represses histone H3.3 nucleosome deposition. Molecular Biology of the Cell, 2016, 27, 1154-1169.	0.9	34
261	Histone variants: nuclear function and disease. Current Opinion in Genetics and Development, 2016, 37, 82-89.	1.5	66
262	Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nature Reviews Genetics, 2016, 17, 284-299.	7.7	679
264	Restoration of miR-127-3p and miR-376a-3p counteracts the neoplastic phenotype of giant cell tumor of bone derived stromal cells by targeting COA1, GLE1 and PDIA6. Cancer Letters, 2016, 371, 134-141.	3.2	27
265	Biomarkers Applied to Specific Tumor Types. , 2016, , 59-98.		0
266	The Necessity of Chromatin: A View in Perspective. Cold Spring Harbor Perspectives in Biology, 2016, 8, a019547.	2.3	21
267	Recurrent Mutations of Chromatin-Remodeling Genes and Kinase Receptors in Pheochromocytomas and Paragangliomas. Clinical Cancer Research, 2016, 22, 2301-2310.	3.2	136
268	An epigenetic gateway to brain tumor cell identity. Nature Neuroscience, 2016, 19, 10-19.	7.1	76
269	The Diagnostic Use of Immunohistochemical Surrogates for Signature Molecular Genetic Alterations in Gliomas. Journal of Neuropathology and Experimental Neurology, 2016, 75, 4-18.	0.9	81
270	Diffuse Intrinsic Pontine Glioma. Journal of Child Neurology, 2016, 31, 1377-1385.	0.7	31
271	Histone H1 alterations in cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 533-539.	0.9	43
272	Tumor location, but not H3.3K27M, significantly influences the blood–brain-barrier permeability in a genetic mouse model of pediatric high-grade glioma. Journal of Neuro-Oncology, 2016, 126, 243-251.	1.4	49
273	Loss of HP1 causes depletion of H3K27me3 from facultative heterochromatin and gain of H3K27me2 at constitutive heterochromatin. Genome Research, 2016, 26, 97-107.	2.4	96
274	Detecting the H3F3A mutant allele found in high-grade pediatric glioma by real-time PCR. Journal of Neuro-Oncology, 2016, 126, 27-36.	1.4	10
275	Malignant brainstem tumors in children, excluding diffuse intrinsic pontine gliomas. Journal of Neurosurgery: Pediatrics, 2016, 17, 57-65.	0.8	20
276	The complexity of epigenetic diseases. Journal of Pathology, 2016, 238, 333-344.	2.1	24

#	Article	IF	CITATIONS
277	Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathologica, 2016, 131, 137-146.	3.9	162
278	The role of histone modifications and telomere alterations in the pathogenesis of diffuse gliomas in adults and children. Journal of Neuro-Oncology, 2017, 132, 1-11.	1.4	35
279	Epigenetic modification in chromatin machinery and its deregulation in pediatric brain tumors: Insight into epigenetic therapies. Epigenetics, 2017, 12, 353-369.	1.3	36
280	<i> <scp>HUWE</scp> $1 < i>$ is a critical colonic tumour suppressor gene that prevents <scp>MYC</scp> signalling, <scp>DNA</scp> damage accumulation and tumour initiation. EMBO Molecular Medicine, 2017, 9, 181-197.</i>	3.3	63
281	Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nature Genetics, 2017, 49, 180-185.	9.4	195
282	ATRX and DAXX: Mechanisms and Mutations. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026567.	2.9	153
283	The EED protein–protein interaction inhibitor A-395 inactivates the PRC2 complex. Nature Chemical Biology, 2017, 13, 389-395.	3.9	186
284	Probe the function of histone lysine 36 methylation using histone H3 lysine 36 to methionine mutant transgene in mammalian cells. Cell Cycle, 2017, 16, 1781-1789.	1.3	7
285	Variants of core histones and their roles in cell fate decisions, development and cancer. Nature Reviews Molecular Cell Biology, 2017, 18, 299-314.	16.1	269
286	Polycomb Repressive Complex 1 Generates Discrete Compacted Domains that Change during Differentiation. Molecular Cell, 2017, 65, 432-446.e5.	4.5	287
287	Giant cell tumor of soft tissue is genetically distinct from its bone counterpart. Modern Pathology, 2017, 30, 728-733.	2.9	40
288	Molecular Architecture ofÂtheÂPolycomb Repressive Complex 2., 2017, , 165-189.		2
289	Molecular architecture of polycomb repressive complexes. Biochemical Society Transactions, 2017, 45, 193-205.	1.6	153
290	New Molecular Considerations for Glioma: IDH, ATRX, BRAF, TERT, H3 K27M. Current Neurology and Neuroscience Reports, 2017, 17, 19.	2.0	87
291	Marked for death: targeting epigenetic changes in cancer. Nature Reviews Drug Discovery, 2017, 16, 241-263.	21.5	244
292	Targeting Epigenetic Pathways in the Treatment of Pediatric Diffuse (High Grade) Gliomas. Neurotherapeutics, 2017, 14, 274-283.	2.1	21
293	EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nature Medicine, 2017, 23, 483-492.	15.2	392
294	Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nature Medicine, 2017, 23, 493-500.	15.2	332

#	Article	IF	CITATIONS
295	SETting the Stage for Cancer Development: SETD2 and the Consequences of Lost Methylation. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026468.	2.9	60
296	Discovery of Peptidomimetic Ligands of EED as Allosteric Inhibitors of PRC2. ACS Combinatorial Science, 2017, 19, 161-172.	3.8	43
297	Histone Lysine-to-Methionine Mutations Reduce Histone Methylation and Cause Developmental Pleiotropy. Plant Physiology, 2017, 173, 2243-2252.	2.3	22
298	Transcriptional Dependencies in Diffuse Intrinsic Pontine Glioma. Cancer Cell, 2017, 31, 635-652.e6.	7.7	290
299	PTEN regulates glioblastoma oncogenesis through chromatin-associated complexes of DAXX and histone H3.3. Nature Communications, 2017, 8, 15223.	5.8	94
300	Detection of Histone H3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma. Acta Neuropathologica Communications, 2017, 5, 28.	2.4	127
301	Use of Histone K-M Mutants for the Analysis of Transcriptional Regulation in Mouse Zygotes. Methods in Molecular Biology, 2017, 1605, 259-270.	0.4	0
303	Prevalence and clinicopathological features of H3.3 G34-mutant high-grade gliomas: a retrospective study of 411 consecutive glioma cases in a single institution. Brain Tumor Pathology, 2017, 34, 103-112.	1.1	69
304	The Histone Variant H3.3 in Transcriptional Regulation and Human Disease. Journal of Molecular Biology, 2017, 429, 1934-1945.	2.0	58
306	Histone H3.3K27M Represses <i>p16</i> to Accelerate Gliomagenesis in a Murine Model of DIPG. Molecular Cancer Research, 2017, 15, 1243-1254.	1.5	120
307	H3 K27M mutations are extremely rare in posterior fossa group A ependymoma. Child's Nervous System, 2017, 33, 1047-1051.	0.6	46
308	Biophysical characterization of histone H3.3 K27M point mutation. Biochemical and Biophysical Research Communications, 2017, 490, 868-875.	1.0	12
309	Molecular basis for the role of oncogenic histone mutations in modulating H3K36 methylation. Scientific Reports, 2017, 7, 43906.	1.6	61
310	Evaluation of a novel antibody to define histone 3.3 G34R mutant brain tumours. Acta Neuropathologica Communications, 2017, 5, 45.	2.4	26
311	Highly recurrent <i>H3F3A</i> mutations with additional epigenetic regulator alterations in giant cell tumor of bone. Genes Chromosomes and Cancer, 2017, 56, 711-718.	1.5	20
312	Increased chromatin plasticity supports enhanced metastatic potential of mouse melanoma cells. Experimental Cell Research, 2017, 357, 282-290.	1.2	17
313	H3K4 Methylation-Dependent Memory of Somatic Cell Identity Inhibits Reprogramming and Development of Nuclear Transfer Embryos. Cell Stem Cell, 2017, 21, 135-143.e6.	5.2	86
314	Diffuse intrinsic pontine gliomasâ€"current management and new biologic insights. Is there a glimmer of hope?. Neuro-Oncology, 2017, 19, 1025-1034.	0.6	91

#	Article	IF	CITATIONS
315	Characteristics of H3 K27M-mutant gliomas in adults. Neuro-Oncology, 2017, 19, 1127-1134.	0.6	207
316	Untangling the role of mutant histone H3 in diffuse intrinsic pontine glioma. Nature Medicine, 2017, 23, 413-414.	15.2	3
317	Shaping the cellular landscape with Set2/SETD2 methylation. Cellular and Molecular Life Sciences, 2017, 74, 3317-3334.	2.4	103
318	Molecular mechanisms and therapeutic targets in pediatric brain tumors. Science Signaling, 2017, 10, .	1.6	53
319	Histone lysine methyltransferase structure activity relationships that allow for segregation of G9a inhibition and anti-Plasmodium activity. MedChemComm, 2017, 8, 1069-1092.	3.5	24
320	Metabolic regulation of gene expression through histone acylations. Nature Reviews Molecular Cell Biology, 2017, 18, 90-101.	16.1	713
321	H3K4 Methyltransferase Activity Is Required for MLL4 Protein Stability. Journal of Molecular Biology, 2017, 429, 2046-2054.	2.0	47
322	Advances in the molecular genetics of gliomas $\hat{a} \in \text{``implications}$ for classification and therapy. Nature Reviews Clinical Oncology, 2017, 14, 434-452.	12.5	497
323	A driver role for GABA metabolism in controlling stem and proliferative cell state through GHB production in glioma. Acta Neuropathologica, 2017, 133, 645-660.	3.9	53
324	Perturbation of H3K27me3-Associated Epigenetic Processes Increases <i>Agrobacterium</i> Mediated Transformation. Molecular Plant-Microbe Interactions, 2017, 30, 35-44.	1.4	7
325	H3K27 methylation: a promiscuous repressive chromatin mark. Current Opinion in Genetics and Development, 2017, 43, 31-37.	1.5	207
326	Epigenetic modifications and reprogramming in paternal pronucleus: sperm, preimplantation embryo, and beyond. Cellular and Molecular Life Sciences, 2017, 74, 1957-1967.	2.4	42
327	H3.3K27M Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas. Cancer Cell, 2017, 32, 684-700.e9.	7.7	192
328	Controversies in Oral and Maxillofacial Pathology. Oral and Maxillofacial Surgery Clinics of North America, 2017, 29, 475-486.	0.4	6
329	Genome Regulation by Polycomb and Trithorax: 70 Years and Counting. Cell, 2017, 171, 34-57.	13.5	842
330	Kinetic Analysis of the Inhibition of the NSD1, NSD2 and SETD2 Protein Lysine Methyltransferases by a K36M Oncohistone Peptide. ChemistrySelect, 2017, 2, 9532-9536.	0.7	7
331	UTX/KDM6A Loss Enhances the Malignant Phenotype of Multiple Myeloma and Sensitizes Cells to EZH2 inhibition. Cell Reports, 2017, 21, 628-640.	2.9	106
332	The histone variant H3.3 G34W substitution in giant cell tumor of the bone link chromatin and RNA processing. Scientific Reports, 2017, 7, 13459.	1.6	43

#	Article	IF	Citations
333	The impact of cellular metabolism on chromatin dynamics and epigenetics. Nature Cell Biology, 2017, 19, 1298-1306.	4.6	369
334	Molecular analysis of PRC2 recruitment to DNA in chromatin and its inhibition by RNA. Nature Structural and Molecular Biology, 2017, 24, 1028-1038.	3.6	186
335	H3 K27M/I mutations promote context-dependent transformation in acute myeloid leukemia with RUNX1 alterations. Blood, 2017, 130, 2204-2214.	0.6	62
336	Unravelling the biology of chromatin in health and cancer using proteomic approaches. Expert Review of Proteomics, 2017, 14, 905-915.	1.3	5
337	Characterization of H3.3K36M as a tool to study H3K36 methylation in cancer cells. Epigenetics, 2017, 12, 917-922.	1.3	13
338	Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathologica, 2017, 134, 705-714.	3.9	168
339	Epigenetic plasticity and the hallmarks of cancer. Science, 2017, 357, .	6.0	920
340	Polo-like kinase 1 (PLK1)-dependent phosphorylation of methylenetetrahydrofolate reductase (MTHFR) regulates replication via histone methylation. Cell Cycle, 2017, 16, 1933-1942.	1.3	14
341	Shaping Chromatin in the Nucleus: The Bricks and the Architects. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 1-14.	2.0	19
342	Pontine Infantile Glioma Simplified. Cancer Cell, 2017, 32, 548-549.	7.7	1
343	Type II CRISPR/Cas9 approach in the oncological therapy. Journal of Experimental and Clinical Cancer Research, 2017, 36, 80.	3.5	17
344	Pediatric High Grade Glioma. Current Cancer Research, 2017, , 241-266.	0.2	1
345	K27M-mutant histone-3 as a novel target for glioma immunotherapy. Oncolmmunology, 2017, 6, e1328340.	2.1	74
347	Targeting EZH2 in cancer therapy. Current Opinion in Oncology, 2017, 29, 375-381.	1.1	179
348	Targeting chromatin defects in selected solid tumors based on oncogene addiction, synthetic lethality and epigenetic antagonism. Annals of Oncology, 2017, 28, 254-269.	0.6	66
349	From profiles to function in epigenomics. Nature Reviews Genetics, 2017, 18, 51-66.	7.7	233
350	Oncogenic Mechanisms of Histone H3 Mutations. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026443.	2.9	56
351	The Multiple Facets of PRC2 Alterations in Cancers. Journal of Molecular Biology, 2017, 429, 1978-1993.	2.0	44

#	Article	IF	CITATIONS
352	Genetic Analysis of Giant Cell Lesions of the Maxillofacial and Axial/Appendicular Skeletons. Journal of Oral and Maxillofacial Surgery, 2017, 75, 298-308.	0.5	6
353	Molecular pathology of paediatric central nervous system tumours. Journal of Pathology, 2017, 241, 159-172.	2.1	51
354	Brainstem Gliomas. Pediatric Oncology, 2017, , 51-67.	0.5	2
355	H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication. Nucleic Acids Research, 2017, 45, 169-180.	6.5	53
356	Oncohistones: drivers of pediatric cancers. Genes and Development, 2017, 31, 2313-2324.	2.7	85
357	Epigenetic dysregulation in brain tumors and neurodevelopment. , 2017, , 261-276.		0
358	Potential New Therapies for Pediatric Diffuse Intrinsic Pontine Glioma. Frontiers in Pharmacology, 2017, 8, 495.	1.6	48
359	Histone Modifications and Histone Variants in Pluripotency and Differentiation., 2017,, 35-64.		0
360	Regulation of PRC2 Activity., 2017,, 225-258.		0
361	Therapeutic Targeting of Histone Modifications in Adult and Pediatric High-Grade Glioma. Frontiers in Oncology, 2017, 7, 45.	1.3	45
362	Genomic Insights into Diffuse Intrinsic Pontine Glioma. Frontiers in Oncology, 2017, 7, 57.	1.3	59
363	Pre-Clinical Study of Panobinostat in Xenograft and Genetically Engineered Murine Diffuse Intrinsic Pontine Glioma Models. PLoS ONE, 2017, 12, e0169485.	1.1	130
364	Epigenetic Targeted Therapy for Diffuse Intrinsic Pontine Glioma. Neurologia Medico-Chirurgica, 2017, 57, 331-342.	1.0	36
365	Combination of EZH2 inhibitor and BET inhibitor for treatment of diffuse intrinsic pontine glioma. Cell and Bioscience, 2017, 7, 56.	2.1	40
366	Characterizing temporal genomic heterogeneity in pediatric high-grade gliomas. Acta Neuropathologica Communications, 2017, 5, 78.	2.4	48
367	Tumor-Specific Mutations in Gliomas and Their Implications for Immunotherapy., 2017,, 83-107.		0
368	Pediatric Gliomas: Current Concepts on Diagnosis, Biology, and Clinical Management. Journal of Clinical Oncology, 2017, 35, 2370-2377.	0.8	223
369	Brain Tumors: Challenges and Opportunities to Cure. Journal of Clinical Oncology, 2017, 35, 2343-2345.	0.8	18

#	Article	IF	CITATIONS
370	Diffuse Intrinsic Pontine Glioma., 2017,, 991-994.		0
371	Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation. Genes and Development, 2018, 32, 202-223.	2.7	171
372	Extraskeletal osteosarcoma: <scp>MDM</scp> 2 and H3K27me3 analysis of 19 cases suggest disease heterogeneity. Histopathology, 2018, 73, 147-156.	1.6	16
373	Importance of immune monitoring approaches and the use of immune checkpoints for the treatment of diffuse intrinsic pontine glioma: From bench to clinic and vice versa (Review). International Journal of Oncology, 2018, 52, 1041-1056.	1.4	4
374	Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science, 2018, 360, 331-335.	6.0	461
375	The clinicopathological and prognostic significance of TP53 alteration in K27M mutated gliomas: an individual-participant data meta-analysis. Neurological Sciences, 2018, 39, 1191-1201.	0.9	7
376	Reconstructing the molecular life history of gliomas. Acta Neuropathologica, 2018, 135, 649-670.	3.9	61
377	Histone H3.3K27M Mobilizes Multiple Cancer/Testis (CT) Antigens in Pediatric Glioma. Molecular Cancer Research, 2018, 16, 623-633.	1.5	10
378	Compartmentalization of HP1 Proteins in Pluripotency Acquisition and Maintenance. Stem Cell Reports, 2018, 10, 627-641.	2.3	20
379	Adult Brainstem Gliomas With H3K27M Mutation: Radiology, Pathology, and Prognosis. Journal of Neuropathology and Experimental Neurology, 2018, 77, 302-311.	0.9	60
380	Epigenetic regulation in medulloblastoma. Molecular and Cellular Neurosciences, 2018, 87, 65-76.	1.0	22
381	Chromatin remodeling and epigenetic regulation of oligodendrocyte myelination and myelin repair. Molecular and Cellular Neurosciences, 2018, 87, 18-26.	1.0	30
382	Polycomb Repressive Complex 2: Emerging Roles in the Central Nervous System. Neuroscientist, 2018, 24, 208-220.	2.6	22
383	Precision oncology in the age of integrative genomics. Nature Biotechnology, 2018, 36, 46-60.	9.4	104
384	Histone H3 Mutations in Cancer. Current Pharmacology Reports, 2018, 4, 292-300.	1.5	44
385	Histone H3.3 G34 Mutations Alter Histone H3K36 and H3K27 Methylation In Cis. Journal of Molecular Biology, 2018, 430, 1562-1565.	2.0	70
386	Mechanism of cancer: Oncohistones in action. Journal of Genetics and Genomics, 2018, 45, 227-236.	1.7	21
387	Atrx inactivation drives disease-defining phenotypes in glioma cells of origin through global epigenomic remodeling. Nature Communications, 2018, 9, 1057.	5.8	66

#	Article	IF	CITATIONS
388	New Directions in the Treatment of Glioblastoma. Seminars in Neurology, 2018, 38, 050-061.	0.5	33
389	Gliomas in Children. Seminars in Neurology, 2018, 38, 121-130.	0.5	15
390	Coâ€occurrence of histone H3 K27M and BRAF V600E mutations in paediatric midline grade I ganglioglioma. Brain Pathology, 2018, 28, 103-111.	2.1	80
391	Significance of H3K27M mutation with specific histomorphological features and associated molecular alterations in pediatric high-grade glial tumors. Child's Nervous System, 2018, 34, 107-116.	0.6	14
392	Histone 3 lysine 36 to methionine mutations stably interact with and sequester SDG8 in Arabidopsis thaliana. Science China Life Sciences, 2018, 61, 225-234.	2.3	12
393	Structure, mechanism, and regulation of polycomb-repressive complex 2. Journal of Biological Chemistry, 2018, 293, 13805-13814.	1.6	60
394	Signaling pathways and mesenchymal transition in pediatric high-grade glioma. Cellular and Molecular Life Sciences, 2018, 75, 871-887.	2.4	44
395	Glioma epigenetics: From subclassification to novel treatment options. Seminars in Cancer Biology, 2018, 51, 50-58.	4.3	377
396	A Role for Monomethylation of Histone H3-K27 in Gene Activity in <i>Drosophila</i> . Genetics, 2018, 208, 1023-1036.	1.2	11
397	Histone Mutations in Cancer. Annual Review of Cancer Biology, 2018, 2, 337-351.	2.3	23
399	Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location. Neuro-Oncology, 2018, 20, 123-131.	0.6	184
400	Shared ACVR1 mutations in FOP and DIPG: Opportunities and challenges in extending biological and clinical implications across rare diseases. Bone, 2018, 109, 91-100.	1.4	25
401	Intersection of Brain Development and Paediatric Diffuse Midline Gliomas: Potential Role of Microenvironment in Tumour Growth. Brain Sciences, 2018, 8, 200.	1.1	13
402	Pediatric Brain Tumor Genetics: What Radiologists Need to Know. Radiographics, 2018, 38, 2102-2122.	1.4	7 5
403	Increased Trimethylation of histone H3K36 associates with biliary differentiation and predicts poor prognosis in resectable hepatocellular carcinoma. PLoS ONE, 2018, 13, e0206261.	1.1	14
404	Transcriptomic and epigenetic profiling of  diffuse midline gliomas, H3 K27M-mutant' discriminate two subgroups based on the type of histone H3 mutated and not supratentorial or infratentorial location. Acta Neuropathologica Communications, 2018, 6, 117.	2.4	83
405	UBN1/2 of HIRA complex is responsible for recognition and deposition of H3.3 at cis-regulatory elements of genes in mouse ES cells. BMC Biology, 2018, 16, 110.	1.7	35
406	Diffuse Intrinsic Pontine Glioma. , 0, , .		3

#	Article	IF	CITATIONS
407	Epigenetic Targeting of Glioblastoma. Frontiers in Oncology, 2018, 8, 448.	1.3	82
408	Modern Principles of CNS Tumor Classification. , 2018, , 117-129.		0
409	SETD2-dependent H3K36me3 plays a critical role in epigenetic regulation of the HPV31 life cycle. PLoS Pathogens, 2018, 14, e1007367.	2.1	18
410	Clinically Relevant and Minimally Invasive Tumor Surveillance of Pediatric Diffuse Midline Gliomas Using Patient-Derived Liquid Biopsy. Clinical Cancer Research, 2018, 24, 5850-5859.	3.2	118
411	Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nature Reviews Molecular Cell Biology, 2018, 19, 563-578.	16.1	297
412	Genetic Abnormalities, Clonal Evolution, and Cancer Stem Cells of Brain Tumors. Medical Sciences (Basel, Switzerland), 2018, 6, 85.	1.3	9
413	Multiple modes of PRC2 inhibition elicit global chromatin alterations in H3K27M pediatric glioma. Science Advances, 2018, 4, eaau5935.	4.7	126
414	Cutting Edge Therapeutic Insights Derived from Molecular Biology of Pediatric High-Grade Glioma and Diffuse Intrinsic Pontine Glioma (DIPG). Bioengineering, 2018, 5, 88.	1.6	15
415	The Mcm2-Ctf4-Poll̂± Axis Facilitates Parental Histone H3-H4 Transfer to Lagging Strands. Molecular Cell, 2018, 72, 140-151.e3.	4.5	129
416	Polycomb Proteins and their Roles in Skin Development and Regeneration. Contributions To Management Science, 2018, , 75-104.	0.4	0
417	Malignant Peripheral Nerve Sheath Tumors Show Decreased Global DNA Methylation. Journal of Neuropathology and Experimental Neurology, 2018, 77, 958-963.	0.9	9
418	EpiProfile 2.0: A Computational Platform for Processing Epi-Proteomics Mass Spectrometry Data. Journal of Proteome Research, 2018, 17, 2533-2541.	1.8	113
419	Histone H3K27 methylation is required for NHEJ and genome stability by modulating the dynamics of FANCD2 on chromatin. Journal of Cell Science, 2018, 131, .	1.2	25
420	Live-cell single-molecule dynamics of PcG proteins imposed by the DIPG H3.3K27M mutation. Nature Communications, 2018, 9, 2080.	5.8	63
421	Alterations of Histone Modifications in Cancer. , 2018, , 141-217.		10
422	Chemotherapy of Pediatric High-Grade Gliomas. , 2018, , 557-568.		0
423	Tumorigenic Cell Reprogramming and Cancer Plasticity: Interplay between Signaling, Microenvironment, and Epigenetics. Stem Cells International, 2018, 2018, 1-16.	1.2	54
424	Histone Variants and Disease. International Review of Cell and Molecular Biology, 2018, 335, 1-39.	1.6	13

#	Article	IF	CITATIONS
425	An MDS-derived cell line and a series of its sublines serve as an in vitro model for the leukemic evolution of MDS. Leukemia, 2018, 32, 1846-1850.	3.3	11
428	Probing the Function of Oncohistones Using Mutant Transgenes and Knock-In Mutations. Methods in Molecular Biology, 2018, 1832, 339-356.	0.4	2
429	Recognition of cancer mutations in histone H3K36 by epigenetic writers and readers. Epigenetics, 2018, 13, 683-692.	1.3	17
430	Cancer-associated mutations of histones H2B, H3.1 and H2A.Z.1 affect the structure and stability of the nucleosome. Nucleic Acids Research, 2018, 46, 10007-10018.	6.5	58
431	Introduction to the Thematic Minireview Series: Chromatin and transcription. Journal of Biological Chemistry, 2018, 293, 13775-13777.	1.6	14
432	The Integration of Biology Into the Treatment of Diffuse Intrinsic Pontine Glioma: A Review of the North American Clinical Trial Perspective. Frontiers in Oncology, 2018, 8, 169.	1.3	15
433	CDK4/6 and PDGFRA Signaling as Therapeutic Targets in Diffuse Intrinsic Pontine Glioma. Frontiers in Oncology, 2018, 8, 191.	1.3	18
434	H3.3K27M mutant proteins reprogram epigenome by sequestering the PRC2 complex to poised enhancers. ELife, 2018, 7, .	2.8	72
435	Identification of a peptide inhibitor for the histone methyltransferase WHSC1. PLoS ONE, 2018, 13, e0197082.	1.1	22
436	Depletion of Nsd2-mediated histone H3K36 methylation impairs adipose tissue development and function. Nature Communications, 2018, 9, 1796.	5.8	58
437	CAR T cells for childhood diffuse midline gliomas. Nature Medicine, 2018, 24, 534-535.	15.2	3
438	Androgen receptor drives hepatocellular carcinogenesis by activating enhancer of zeste homolog 2-mediated Wnt \hat{l}^2 -catenin signaling. EBioMedicine, 2018, 35, 155-166.	2.7	31
439	Inhibition of a K9/K36 demethylase by an H3.3 point mutation found in paediatric glioblastoma. Nature Communications, 2018, 9, 3142.	5.8	49
440	KDM6B Counteracts EZH2-Mediated Suppression of <i>IGFBP5</i> to Confer Resistance to PI3K/AKT Inhibitor Treatment in Breast Cancer. Molecular Cancer Therapeutics, 2018, 17, 1973-1983.	1.9	35
441	Rpp29 regulates histone H3.3 chromatin assembly through transcriptional mechanisms. Journal of Biological Chemistry, 2018, 293, 12360-12377.	1.6	14
442	Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial. Lancet Oncology, The, 2018, 19, 1040-1050.	5.1	201
443	An Evolutionarily Conserved Structural Platform for PRC2 Inhibition by a Class of Ezh2 Inhibitors. Scientific Reports, 2018, 8, 9092.	1.6	27
444	H3K27me3-mediated silencing of structural genes is required for zebrafish heart regeneration. Development (Cambridge), 2019, 146, .	1.2	33

#	Article	IF	CITATIONS
445	Mitogenic and progenitor gene programmes in single pilocytic astrocytoma cells. Nature Communications, 2019, 10, 3731.	5.8	45
446	Targeting Chromatin Remodeling for Cancer Therapy. Current Molecular Pharmacology, 2019, 12, 215-229.	0.7	37
447	PHF19 promotes multiple myeloma tumorigenicity through PRC2 activation and broad H3K27me3 domain formation. Blood, 2019, 134, 1176-1189.	0.6	57
448	CATACOMB: An endogenous inducible gene that antagonizes H3K27 methylation activity of Polycomb repressive complex 2 via an H3K27M-like mechanism. Science Advances, 2019, 5, eaax2887.	4.7	86
449	Diffuse Intrinsic Pontine Glioma: From Diagnosis to Next-Generation Clinical Trials. Current Treatment Options in Neurology, 2019, 21, 37.	0.7	73
450	Signal Transduction in Diffuse Intrinsic Pontine Glioma. Proteomics, 2019, 19, 1800479.	1.3	36
451	A Mutation in Histone H2B Represents a New Class of Oncogenic Driver. Cancer Discovery, 2019, 9, 1438-1451.	7.7	65
452	DAXX in cancer: phenomena, processes, mechanisms and regulation. Nucleic Acids Research, 2019, 47, 7734-7752.	6.5	80
453	Mutant H3 histones drive human pre-leukemic hematopoietic stem cell expansion and promote leukemic aggressiveness. Nature Communications, 2019, 10, 2891.	5.8	36
454	The roles of DNA, RNA and histone methylation in ageing and cancer. Nature Reviews Molecular Cell Biology, 2019, 20, 573-589.	16.1	359
455	PRC2 engages a bivalent H3K27M-H3K27me3 dinucleosome inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22152-22157.	3.3	33
456	Re-programing Chromatin with a Bifunctional LSD1/HDAC Inhibitor Induces Therapeutic Differentiation in DIPG. Cancer Cell, 2019, 36, 528-544.e10.	7.7	128
457	PRC2 Plays Red Light, Green Light with MHC-I and CD8+ T Cells. Cancer Cell, 2019, 36, 343-345.	7.7	0
458	Redistribution of <scp>EZH</scp> 2 promotes malignant phenotypes by rewiring developmental programmes. EMBO Reports, 2019, 20, e48155.	2.0	9
459	Epigenetic Reprogramming for Targeting IDH-Mutant Malignant Gliomas. Cancers, 2019, 11, 1616.	1.7	17
460	The dark matter of diffuse intrinsic pontine gliomas: an update. Expert Opinion on Orphan Drugs, 2019, 7, 11-20.	0.5	1
461	Inducible histone K-to-M mutations are dynamic tools to probe the physiological role of site-specific histone methylation in vitro and in vivo. Nature Cell Biology, 2019, 21, 1449-1461.	4.6	40
462	Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201. Journal of Neuro-Oncology, 2019, 145, 97-105.	1.4	125

#	Article	IF	CITATIONS
463	Automethylation of PRC2 promotes H3K27 methylation and is impaired in H3K27M pediatric glioma. Genes and Development, 2019, 33, 1428-1440.	2.7	75
464	Nucleation and Propagation of Heterochromatin by the Histone Methyltransferase PRC2: Geometric Constraints and Impact of the Regulatory Subunit JARID2. Journal of the American Chemical Society, 2019, 141, 15029-15039.	6.6	16
465	Understanding Cancer Through the Lens of Epigenetic Inheritance, Allele-Specific Gene Expression, and High-Throughput Technology. Frontiers in Oncology, 2019, 9, 794.	1.3	10
466	Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nature Reviews Cancer, 2019, 19, 625-637.	12.8	278
467	A mass spectrometry-based assay using metabolic labeling to rapidly monitor chromatin accessibility of modified histone proteins. Scientific Reports, 2019, 9, 13613.	1.6	32
468	Suz 12 inactivation cooperates with JAK3 mutant signaling in the development of T-cell acute lymphoblastic leukemia. Blood, 2019, 134, 1323-1336.	0.6	37
469	An Evolutionarily Conserved Function of Polycomb Silences the MHC Class I Antigen Presentation Pathway and Enables Immune Evasion in Cancer. Cancer Cell, 2019, 36, 385-401.e8.	7.7	359
470	Histone Variant and Cell Context Determine H3K27M Reprogramming of the Enhancer Landscape and Oncogenic State. Molecular Cell, 2019, 76, 965-980.e12.	4.5	110
471	Emerging roles of telomeric chromatin alterations in cancer. Journal of Experimental and Clinical Cancer Research, 2019, 38, 21.	3.5	30
472	Differentiation between spinal cord diffuse midline glioma with histone H3 K27M mutation and wild type: comparative magnetic resonance imaging. Neuroradiology, 2019, 61, 313-322.	1.1	41
473	Impact of the H3K27M mutation on survival in pediatric high-grade glioma: a systematic review and meta-analysis. Journal of Neurosurgery: Pediatrics, 2019, 23, 308-316.	0.8	71
474	Lysine 27 of replication-independent histone H3.3 is required for Polycomb target gene silencing but not for gene activation. PLoS Genetics, 2019, 15, e1007932.	1.5	34
475	Identification of genes functionally involved in the detrimental effects of mutant histone H3.3-K27M in Drosophila melanogaster. Neuro-Oncology, 2019, 21, 628-639.	0.6	5
476	The 100 most-cited articles about diffuse intrinsic pontine glioma: a bibliometric analysis. Child's Nervous System, 2019, 35, 2339-2346.	0.6	12
477	Identification of Novel RAS Signaling Therapeutic Vulnerabilities in Diffuse Intrinsic Pontine Gliomas. Cancer Research, 2019, 79, 4026-4041.	0.4	16
478	First clinical experience with DRD2/3 antagonist ONC201 in H3 K27M–mutant pediatric diffuse intrinsic pontine glioma: a case report. Journal of Neurosurgery: Pediatrics, 2019, 23, 719-725.	0.8	52
479	Radiosensitization by Histone H3 Demethylase Inhibition in Diffuse Intrinsic Pontine Glioma. Clinical Cancer Research, 2019, 25, 5572-5583.	3.2	52
480	Activation and regulation of H2B-Ubiquitin-dependent histone methyltransferases. Current Opinion in Structural Biology, 2019, 59, 98-106.	2.6	44

#	Article	IF	Citations
481	Pathology and Classification of Tumors of theÂCentral Nervous System. , 2019, , 3-89.		O
482	H3.3K27M-induced chromatin changes drive ectopic replication through misregulation of the JNK pathway in C. elegans. Nature Communications, 2019, 10, 2529.	5.8	14
483	Histone H3K27 dimethyl loss is highly specific for malignant peripheral nerve sheath tumor and distinguishes true PRC2 loss from isolated H3K27 trimethyl loss. Modern Pathology, 2019, 32, 1434-1446.	2.9	34
484	Anaplastic diffuse leptomeningeal glioneuronal tumor associated with H3 K27M mutation. Human Pathology: Case Reports, 2019, 17, 200296.	0.2	1
485	Histone Modifications., 2019,, 47-72.		6
486	Supratentorial Lobar Gliomas in Childhood and Adolescence. , 2019, , 443-457.		1
487	Preclinical therapeutic targets in diffuse midline glioma. Drug Resistance Updates, 2019, 44, 15-25.	6.5	19
488	PRC2 is high maintenance. Genes and Development, 2019, 33, 903-935.	2.7	197
489	Immunostaining of Increased Expression of Enhancer of Zeste Homolog 2 (EZH2) in Diffuse Midline Glioma H3K27M-Mutant Patients with Poor Survival. Pathobiology, 2019, 86, 152-161.	1.9	25
490	Polycomb Repressive Complex 2: Modulator Development for Functional Regulation of a Multiprotein Complex by Using Structural Information. ChemBioChem, 2019, 20, 2046-2053.	1.3	1
491	PFA ependymoma-associated protein EZHIP inhibits PRC2 activity through a H3 K27M-like mechanism. Nature Communications, 2019, 10, 2146.	5.8	136
492	Histone H3 Mutations: An Updated View of Their Role in Chromatin Deregulation and Cancer. Cancers, 2019, 11, 660.	1.7	105
493	Pervasive H3K27 Acetylation Leads to ERV Expression and a Therapeutic Vulnerability in H3K27M Gliomas. Cancer Cell, 2019, 35, 782-797.e8.	7.7	143
494	CDK4/6 and diffuse intrinsic pontine glioma - Evaluate at diagnosis?. EBioMedicine, 2019, 44, 16-17.	2.7	4
495	Control of Intra-Thymic $\hat{l}\pm\hat{l}^2$ T Cell Selection and Maturation by H3K27 Methylation and Demethylation. Frontiers in Immunology, 2019, 10, 688.	2.2	4
496	A Rare High-Grade Glioma with a Histone H3 K27M Mutation in the Hypothalamus of an Adult Patient. World Neurosurgery, 2019, 128, 527-531.	0.7	11
497	Brainstem biopsy in pediatric diffuse intrinsic pontine glioma in the era of precision medicine: the INFORM study experience. European Journal of Cancer, 2019, 114, 27-35.	1.3	51
498	Spinal cord high-grade infiltrating gliomas in adults: clinico-pathological and molecular evaluation. Modern Pathology, 2019, 32, 1236-1243.	2.9	44

#	Article	IF	Citations
499	Malignant Peripheral Nerve Sheath Tumors: From Epigenome to Bedside. Molecular Cancer Research, 2019, 17, 1417-1428.	1.5	52
500	The expanding landscape of â€~oncohistone' mutations in human cancers. Nature, 2019, 567, 473-478.	13.7	271
501	Intratumoral Genetic and Functional Heterogeneity in Pediatric Glioblastoma. Cancer Research, 2019, 79, 2111-2123.	0.4	28
502	Reirradiation for diffuse intrinsic pontine glioma: a systematic review and meta-analysis. Child's Nervous System, 2019, 35, 739-746.	0.6	27
503	ACVR1 R206H cooperates with H3.1K27M in promoting diffuse intrinsic pontine glioma pathogenesis. Nature Communications, 2019, 10, 1023.	5.8	87
504	Developmental origins and emerging therapeutic opportunities for childhood cancer. Nature Medicine, 2019, 25, 367-376.	15.2	112
505	Meeting the Challenge of Targeting Cancer Stem Cells. Frontiers in Cell and Developmental Biology, 2019, 7, 16.	1.8	109
506	Chemical and biophysical methods to explore dynamic mechanisms of chromatin silencing. Current Opinion in Chemical Biology, 2019, 51, 1-10.	2.8	6
507	H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nature Communications, 2019, 10, 1262.	5.8	215
508	Histone H3 tail binds a unique sensing pocket in EZH2 to activate the PRC2 methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8295-8300.	3.3	71
509	Applications of molecular neuro-oncology - a review of diffuse glioma integrated diagnosis and emerging molecular entities. Diagnostic Pathology, 2019, 14, 29.	0.9	40
510	Epigenetics as a New Frontier in Orthopedic Regenerative Medicine and Oncology. Journal of Orthopaedic Research, 2019, 37, 1465-1474.	1.2	49
511	EZHIP/CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa ependymoma. Neuro-Oncology, 2019, 21, 878-889.	0.6	106
512	Overview of DNA methylation in adult diffuse gliomas. Brain Tumor Pathology, 2019, 36, 84-91.	1.1	45
513	DECIPHER pooled shRNA library screen identifies PP2A and FGFR signaling as potential therapeutic targets for diffuse intrinsic pontine gliomas. Neuro-Oncology, 2019, 21, 867-877.	0.6	24
514	Developmental origins and oncogenic pathways in malignant brain tumors. Wiley Interdisciplinary Reviews: Developmental Biology, 2019, 8, e342.	5.9	35
515	Role of Radiation Therapy in the Management of Diffuse Intrinsic Pontine Glioma: A Systematic Review. Advances in Radiation Oncology, 2019, 4, 520-531.	0.6	69
516	Origins and clinical relevance of proteoforms in pediatric malignancies. Expert Review of Proteomics, 2019, 16, 185-200.	1.3	12

#	ARTICLE	IF	CITATIONS
517	H3.3 K27M depletion increases differentiation and extends latency of diffuse intrinsic pontine glioma growth in vivo. Acta Neuropathologica, 2019, 137, 637-655.	3.9	85
518	Knock-down of oncohistone H3F3A-G34W counteracts the neoplastic phenotype of giant cell tumor of bone derived stromal cells. Cancer Letters, 2019, 448, 61-69.	3.2	26
519	Molecular profiling and targeted therapy in pediatric gliomas: review and consensus recommendations. Neuro-Oncology, 2019, 21, 968-980.	0.6	52
520	Biology and targeting of the Jumonji-domain histone demethylase family in childhood neoplasia: a preclinical overview. Expert Opinion on Therapeutic Targets, 2019, 23, 267-280.	1.5	11
521	Genetic mechanisms of primary chemotherapy resistance in pediatric acute myeloid leukemia. Leukemia, 2019, 33, 1934-1943.	3.3	69
522	Screening and authentication of molecular markers in malignant glioblastoma based on gene expression profiles. Oncology Letters, 2019, 18, 4593-4604.	0.8	11
524	Brain Tumors of Glial Origin. Advances in Experimental Medicine and Biology, 2019, 1190, 281-297.	0.8	19
525	Reprogramming: identifying the mechanisms that safeguard cell identity. Development (Cambridge), 2019, 146, .	1.2	45
526	Diffuse intrinsic pontine glioma: molecular landscape and emerging therapeutic targets. Current Opinion in Oncology, 2019, 31, 522-530.	1.1	45
527	A novel histone H4 variant H4G regulates rDNA transcription in breast cancer. Nucleic Acids Research, 2019, 47, 8399-8409.	6.5	50
528	Oncohistone Mutations in Diffuse Intrinsic Pontine Glioma. Trends in Cancer, 2019, 5, 799-808.	3.8	13
529	Nucleosome Positioning by an Evolutionarily Conserved Chromatin Remodeler Prevents Aberrant DNA Methylation in <i>Neurospora</i>). Genetics, 2019, 211, 563-578.	1.2	13
530	Histone H3.3 K27M Accelerates Spontaneous Brainstem Glioma and Drives Restricted Changes in Bivalent Gene Expression. Cancer Cell, 2019, 35, 140-155.e7.	7.7	194
531	Transcriptional and epigenetic mechanisms underlying astrocyte identity. Progress in Neurobiology, 2019, 174, 36-52.	2.8	26
532	Chromatin regulatory mechanisms and therapeutic opportunities in cancer. Nature Cell Biology, 2019, 21, 152-161.	4.6	140
533	Constructing and Deconstructing Cancers using Human Pluripotent Stem Cells and Organoids. Cell Stem Cell, 2019, 24, 12-24.	5.2	59
534	Recent Structural Insights into Polycomb Repressive Complex 2 Regulation and Substrate Binding. Biochemistry, 2019, 58, 346-354.	1.2	20
535	An RNA Aptamer Targeting the Receptor Tyrosine Kinase PDGFRα Induces Anti-tumor Effects through STAT3 and p53 in Glioblastoma. Molecular Therapy - Nucleic Acids, 2019, 14, 131-141.	2.3	38

#	Article	IF	CITATIONS
536	Linking Enhancer to Epigenetics: New Way to Think About Human Diseases., 2019, , 145-163.		0
537	Tails of a Super Histone. Cancer Cell, 2019, 35, 7-9.	7.7	4
538	H3.3K4M destabilizes enhancer H3K4 methyltransferases MLL3/MLL4 and impairs adipose tissue development. Nucleic Acids Research, 2019, 47, 607-620.	6. 5	1,326
539	Histone deacetylase inhibitor panobinostat potentiates the anti-cancer effects of mesenchymal stem cell-based sTRAIL gene therapy against malignant glioma. Cancer Letters, 2019, 442, 161-169.	3.2	34
540	Detection of H3K27M mutation in cases of brain stem subependymoma. Human Pathology, 2019, 84, 262-269.	1.1	16
541	Proteomic approaches for cancer epigenetics research. Expert Review of Proteomics, 2019, 16, 33-47.	1.3	5
542	Genomic and transcriptomic characterisation of undifferentiated pleomorphic sarcoma of bone. Journal of Pathology, 2019, 247, 166-176.	2.1	28
543	Potential application of cell reprogramming techniques for cancer research. Cellular and Molecular Life Sciences, 2019, 76, 45-65.	2.4	27
544	H3K27me3 deficiency defines a subset of dedifferentiated chondrosarcomas with characteristic clinicopathological features. Modern Pathology, 2019, 32, 435-445.	2.9	32
545	ABC Transporter Inhibition Plus Dexamethasone Enhances the Efficacy of Convection Enhanced Delivery in H3.3K27M Mutant Diffuse Intrinsic Pontine Glioma. Neurosurgery, 2020, 86, 742-751.	0.6	8
546	ChlPseqSpikeInFree: a ChIP-seq normalization approach to reveal global changes in histone modifications without spike-in. Bioinformatics, 2020, 36, 1270-1272.	1.8	25
547	Chromatin modification and epigenetic control in functional nerve regeneration. Seminars in Cell and Developmental Biology, 2020, 97, 74-83.	2.3	6
548	Epigenetic reprogramming and chromatin accessibility in pediatric diffuse intrinsic pontine gliomas: a neural developmental disease. Neuro-Oncology, 2020, 22, 195-206.	0.6	14
549	Midline Glioma in Adults: Clinicopathological, Genetic, and Epigenetic Analysis. Neurologia Medico-Chirurgica, 2020, 60, 136-146.	1.0	26
550	Mutation-driven epigenetic alterations as a defining hallmark of central cartilaginous tumours, giant cell tumour of bone and chondroblastoma. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2020, 476, 135-146.	1.4	15
551	Cancer of the Central Nervous System. , 2020, , 906-967.e12.		9
552	A basic motif anchoring ISWI to nucleosome acidic patch regulates nucleosome spacing. Nature Chemical Biology, 2020, 16, 134-142.	3.9	51
553	Histone Lysine Methylation Dynamics Control <i>EGFR</i> DNA Copy-Number Amplification. Cancer Discovery, 2020, 10, 306-325.	7.7	31

#	Article	IF	CITATIONS
554	Principles and methods of integrative chromatin analysis in primary tissues and tumors. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188333.	3.3	7
555	Invited Review: Emerging functions of histone H3 mutations in paediatric diffuse highâ€grade gliomas. Neuropathology and Applied Neurobiology, 2020, 46, 73-85.	1.8	22
556	Radio-Resistance and DNA Repair in Pediatric Diffuse Midline Gliomas. Cancers, 2020, 12, 2813.	1.7	19
557	Histone-Mutant Glioma: Molecular Mechanisms, Preclinical Models, and Implications for Therapy. International Journal of Molecular Sciences, 2020, 21, 7193.	1.8	15
558	A comparative study of brain tumor cells from different age and anatomical locations using 3D biomimetic hydrogels. Acta Biomaterialia, 2020, 116, 201-208.	4.1	10
559	Histone H3.3 G34 mutations promote aberrant PRC2 activity and drive tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27354-27364.	3.3	57
560	Senescence Induced by BMI1 Inhibition Is a Therapeutic Vulnerability in H3K27M-Mutant DIPG. Cell Reports, 2020, 33, 108286.	2.9	39
561	H3 K27M and EZHIP Impede H3K27-Methylation Spreading by Inhibiting Allosterically Stimulated PRC2. Molecular Cell, 2020, 80, 726-735.e7.	4.5	83
562	Convergent epigenetic regulation of glial plasticity in myelin repair and brain tumorigenesis: A focus on histone modifying enzymes. Neurobiology of Disease, 2020, 144, 105040.	2.1	1
563	Paediatric Strategy Forum for medicinal product development of epigenetic modifiers for children. European Journal of Cancer, 2020, 139, 135-148.	1.3	20
564	Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduction and Targeted Therapy, 2020, 5, 228.	7.1	120
565	The roles of histone variants in fine-tuning chromatin organization and function. Nature Reviews Molecular Cell Biology, 2020, 21, 522-541.	16.1	231
566	The mechanistic GEMMs of oncogenic histones. Human Molecular Genetics, 2020, 29, R226-R235.	1.4	1
567	Super Elongation Complex as a Targetable Dependency in Diffuse Midline Glioma. Cell Reports, 2020, 31, 107485.	2.9	27
568	Reciprocal H3.3 gene editing identifies K27M and G34R mechanisms in pediatric glioma including NOTCH signaling. Communications Biology, 2020, 3, 363.	2.0	32
569	Preclinical and clinical investigation of intratumoral chemotherapy pharmacokinetics in DIPG using gemcitabine. Neuro-Oncology Advances, 2020, 2, vdaa021.	0.4	10
570	Single-molecule and in silico dissection of the interaction between Polycomb repressive complex 2 and chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30465-30475.	3.3	41
571	Cytoplasm protein GFAP magnetic beads construction and application as cell separation target for brain tumors. Journal of Nanobiotechnology, 2020, 18, 169.	4.2	10

#	ARTICLE	IF	CITATIONS
572	H3K27M in Gliomas Causes a One-Step Decrease in H3K27 Methylation and Reduced Spreading within the Constraints of H3K36 Methylation. Cell Reports, 2020, 33, 108390.	2.9	50
573	Histone tail analysis reveals H3K36me2 and H4K16ac as epigenetic signatures of diffuse intrinsic pontine glioma. Journal of Experimental and Clinical Cancer Research, 2020, 39, 261.	3.5	16
574	Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell, 2020, 183, 1617-1633.e22.	13.5	93
575	Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nature Genetics, 2020, 52, 1271-1281.	9.4	209
576	Mechanistic Insights into the Allosteric Regulation of the Clr4 Protein Lysine Methyltransferase by Autoinhibition and Automethylation. International Journal of Molecular Sciences, 2020, 21, 8832.	1.8	5
577	Epigenetic activation of a RAS/MYC axis in H3.3K27M-driven cancer. Nature Communications, 2020, 11, 6216.	5.8	35
578	Histone H3.3 beyond cancer: Germline mutations in <i>Histone 3 Family 3A and 3B</i> cause a previously unidentified neurodegenerative disorder in 46 patients. Science Advances, 2020, 6, .	4.7	43
579	Effects of H3.3G34V mutation on genomic H3K36 and H3K27 methylation patterns in isogenic pediatric glioma cells. Acta Neuropathologica Communications, 2020, 8, 219.	2.4	14
580	Updates in Pediatric Glioma Pathology. Surgical Pathology Clinics, 2020, 13, 801-816.	0.7	6
581	The epigenomics of sarcoma. Nature Reviews Cancer, 2020, 20, 608-623.	12.8	121
582	Variations in attitudes towards stereotactic biopsy of adult diffuse midline glioma patients: a survey of members of the AANS/CNS Tumor Section. Journal of Neuro-Oncology, 2020, 149, 161-170.	1.4	3
583	Structural Paradigms in the Recognition of the Nucleosome Core Particle by Histone Lysine Methyltransferases. Frontiers in Cell and Developmental Biology, 2020, 8, 600.	1.8	6
584	Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics, 2020, 10, 8721-8743.	4.6	208
585	RACK7 recognizes H3.3G34R mutation to suppress expression of MHC class II complex components and their delivery pathway in pediatric glioblastoma. Science Advances, 2020, 6, eaba2113.	4.7	25
586	EED-mediated histone methylation is critical for CNS myelination and remyelination by inhibiting WNT, BMP, and senescence pathways. Science Advances, 2020, 6, eaaz6477.	4.7	29
587	Integrated Metabolic and Epigenomic Reprograming by H3K27M Mutations in Diffuse Intrinsic Pontine Gliomas. Cancer Cell, 2020, 38, 334-349.e9.	7.7	87
588	BAHCC1 binds H3K27me3 via a conserved BAH module to mediate gene silencing and oncogenesis. Nature Genetics, 2020, 52, 1384-1396.	9.4	57
	Globally altered epigenetic landscape and delayed osteogenic differentiation in H3.3-G34W-mutant		

#	Article	IF	CITATIONS
590	Base-resolution methylomes of gliomas bearing histone H3.3 mutations reveal a G34 mutant-specific signature shared with bone tumors. Scientific Reports, 2020, 10, 16162.	1.6	12
591	Low-Grade Gemistocytic Morphology in H3 G34R-Mutant Gliomas and Concurrent K27M Mutation: Clinicopathologic Findings. Journal of Neuropathology and Experimental Neurology, 2020, 79, 1038-1043.	0.9	3
592	H3.3 G34W Promotes Growth and Impedes Differentiation of Osteoblast-Like Mesenchymal Progenitors in Giant Cell Tumor of Bone. Cancer Discovery, 2020, 10, 1968-1987.	7.7	40
593	Epigenomic Reprogramming as a Driver of Malignant Glioma. Cancer Cell, 2020, 38, 647-660.	7.7	66
594	Inactivation of Epigenetic Regulators due to Mutations in Solid Tumors. Biochemistry (Moscow), 2020, 85, 735-748.	0.7	2
595	Diffuse midline glioma: review of epigenetics. Journal of Neuro-Oncology, 2020, 150, 27-34.	1.4	29
596	Advances in Therapeutic Targeting of Cancer Stem Cells within the Tumor Microenvironment: An Updated Review. Cells, 2020, 9, 1896.	1.8	73
597	Impact of the Tumor Microenvironment on Tumor Heterogeneity and Consequences for Cancer Cell Plasticity and Stemness. Cancers, 2020, 12, 3716.	1.7	78
598	Targeting Chromatin Complexes in Myeloid Malignancies and Beyond: From Basic Mechanisms to Clinical Innovation. Cells, 2020, 9, 2721.	1.8	13
599	Hemispherical Pediatric High-Grade Glioma: Molecular Basis and Therapeutic Opportunities. International Journal of Molecular Sciences, 2020, 21, 9654.	1.8	16
600	Histone Variant H3.3 Mutations in Defining the Chromatin Function in Mammals. Cells, 2020, 9, 2716.	1.8	10
601	Biophysical and Epigenetic Regulation of Cancer Stemness, Invasiveness, and Immune Action. Current Tissue Microenvironment Reports, 2020, 1, 277-300.	1.3	7
602	Identification of a differentiation stall in epithelial mesenchymal transition in histone H3–mutant diffuse midline glioma. GigaScience, 2020, 9, .	3.3	8
603	Histone Modifications in Stem Cell Development and Their Clinical Implications. Stem Cell Reports, 2020, 15, 1196-1205.	2.3	17
604	The histone and non-histone methyllysine reader activities of the UHRF1 tandem Tudor domain are dispensable for the propagation of aberrant DNA methylation patterning in cancer cells. Epigenetics and Chromatin, 2020, 13, 44.	1.8	10
605	Histone Variants: Guardians of Genome Integrity. Cells, 2020, 9, 2424.	1.8	27
606	The changing chromatome as a driver of disease: A panoramic view from different methodologies. BioEssays, 2020, 42, 2000203.	1.2	4
607	MLL4-associated condensates counterbalance Polycomb-mediated nuclear mechanical stress in Kabuki syndrome. Nature Genetics, 2020, 52, 1397-1411.	9.4	53

#	Article	IF	Citations
608	Modeling cancer progression using human pluripotent stem cell-derived cells and organoids. Stem Cell Research, 2020, 49, 102063.	0.3	12
609	The Glioma Stem Cell Model in the Era of Single-Cell Genomics. Cancer Cell, 2020, 37, 630-636.	7.7	153
611	Cancer Stem Cell Plasticity – A Deadly Deal. Frontiers in Molecular Biosciences, 2020, 7, 79.	1.6	106
612	Molecular markers and targeted therapy in pediatric low-grade glioma. Journal of Neuro-Oncology, 2020, 150, 5-15.	1.4	23
613	H4K20 monomethylation inhibition causes loss of genomic integrity in mouse preimplantation embryos. Journal of Reproduction and Development, 2020, 66, 411-419.	0.5	13
614	The Use of Mononucleosome Immunoprecipitation for Analysis of Combinatorial Histone Post-translational Modifications and Purification of Nucleosome-Interacting Proteins. Frontiers in Cell and Developmental Biology, 2020, 8, 331.	1.8	7
615	Graphene oxide suppresses the growth and malignancy of glioblastoma stem cell-like spheroids via epigenetic mechanisms. Journal of Translational Medicine, 2020, 18 , 200 .	1.8	17
616	An Update on Pediatric Gliomas. Surgical Pathology Clinics, 2020, 13, 217-233.	0.7	3
617	In situ chromatin interactomics using a chemical bait and trap approach. Nature Chemistry, 2020, 12, 520-527.	6.6	53
618	Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells. Journal of Experimental and Clinical Cancer Research, 2020, 39, 100.	3.5	44
619	Prognostic role of H3K27M mutation, histone H3K27 methylation status, and EZH2 expression in diffuse spinal cord gliomas. Brain Tumor Pathology, 2020, 37, 81-88.	1.1	14
620	Molecular-Targeted Therapy for Childhood Brain Tumors: A Moving Target. Journal of Child Neurology, 2020, 35, 791-798.	0.7	11
621	Adult H3K27M-mutant diffuse midline glioma with gliomatosis cerebri growth pattern: Case report and review of the literature. International Journal of Surgery Case Reports, 2020, 68, 124-128.	0.2	13
622	Dynamic Signatures of the Epigenome: Friend or Foe?. Cells, 2020, 9, 653.	1.8	17
623	ALK2: A Therapeutic Target for Fibrodysplasia Ossificans Progressiva and Diffuse Intrinsic Pontine Glioma. Chemical and Pharmaceutical Bulletin, 2020, 68, 194-200.	0.6	9
624	Histone variant H3.3 residue S31 is essential for Xenopus gastrulation regardless of the deposition pathway. Nature Communications, 2020, 11, 1256.	5.8	38
625	Cancer-associated histone mutation H2BG53D disrupts DNA–histone octamer interaction and promotes oncogenic phenotypes. Signal Transduction and Targeted Therapy, 2020, 5, 27.	7.1	17
626	Targeting Epigenetic Dependencies in Solid Tumors: Evolutionary Landscape Beyond Germ Layers Origin. Cancers, 2020, 12, 682.	1.7	7

#	ARTICLE	IF	CITATIONS
627	Diffuse intrinsic pontine glioma-like tumor with EZHIP expression and molecular features of PFA ependymoma. Acta Neuropathologica Communications, 2020, 8, 37.	2.4	20
628	Pharmacologic inhibition of lysine-specific demethylase 1 as a therapeutic and immune-sensitization strategy in pediatric high-grade glioma. Neuro-Oncology, 2020, 22, 1302-1314.	0.6	42
629	Invited Review: The role and contribution of transcriptional enhancers in brain cancer. Neuropathology and Applied Neurobiology, 2020, 46, 48-56.	1.8	3
630	Invaders Exposed: Understanding and Targeting Tumor Cell Invasion in Diffuse Intrinsic Pontine Glioma. Frontiers in Oncology, 2020, 10, 92.	1.3	22
631	Job Opening for Nucleosome Mechanic: Flexibility Required. Cells, 2020, 9, 580.	1.8	5
632	Lysine 4 of histone H3.3 is required for embryonic stem cell differentiation, histone enrichment at regulatory regions and transcription accuracy. Nature Genetics, 2020, 52, 273-282.	9.4	37
633	Mutant ACVR1 Arrests Glial Cell Differentiation to Drive Tumorigenesis in Pediatric Gliomas. Cancer Cell, 2020, 37, 308-323.e12.	7.7	56
634	H3F3A mutant allele specific imbalance in an aggressive subtype of diffuse midline glioma, H3 K27M-mutant. Acta Neuropathologica Communications, 2020, 8, 8.	2.4	14
635	Histone Signatures Predict Therapeutic Efficacy in Breast Cancer. IEEE Open Journal of Engineering in Medicine and Biology, 2020, 1, 74-82.	1.7	3
636	Regeneration enhancers: A clue to reactivation of developmental genes. Development Growth and Differentiation, 2020, 62, 343-354.	0.6	20
637	The growing role of epigenetics in childhood cancers. Current Opinion in Pediatrics, 2020, 32, 67-75.	1.0	9
638	Invited Review: Epigenetics in neurodevelopment. Neuropathology and Applied Neurobiology, 2020, 46, 6-27.	1.8	34
639	Off-target effect of the BMI1 inhibitor PTC596 drives epithelial-mesenchymal transition in glioblastoma multiforme. Npj Precision Oncology, 2020, 4, 1.	2.3	75
640	Regulation of epigenetic state by non-histone chromatin proteins and transcription factors: Implications in disease. Journal of Biosciences, 2020, 45, 1.	0.5	4
641	Alternative Lengthening of Telomeres: Building Bridges To Connect Chromosome Ends. Trends in Cancer, 2020, 6, 247-260.	3.8	43
642	Drugging histone methyltransferases in cancer. Current Opinion in Chemical Biology, 2020, 56, 51-62.	2.8	40
643	Isolation and characterization of immune cells from the tumor microenvironment of genetically engineered pediatric high-grade glioma models using the sleeping beauty transposon system. Methods in Enzymology, 2020, 632, 369-388.	0.4	9
644	Combined Targeting of Mutant p53 and Jumonji Family Histone Demethylase Augments Therapeutic Efficacy of Radiation in H3K27M DIPG. International Journal of Molecular Sciences, 2020, 21, 490.	1.8	26

#	Article	IF	CITATIONS
645	DNA mismatch repair in the context of chromatin. Cell and Bioscience, 2020, 10, 10.	2.1	15
647	Histone Mutations and Cancer. Advances in Experimental Medicine and Biology, 2021, , .	0.8	3
648	Evaluating H3F3A K27M and G34R/V somatic mutations in a cohort of pediatric brain tumors of different and rare histologies. Child's Nervous System, 2021, 37, 375-382.	0.6	5
649	Histone isoforms and the oncohistone code. Current Opinion in Genetics and Development, 2021, 67, 61-66.	1.5	15
650	Accelerating the Field of Epigenetic Histone Modification Through Mass Spectrometry–Based Approaches. Molecular and Cellular Proteomics, 2021, 20, 100006.	2.5	33
651	Understanding the epigenetic landscape and cellular architecture of childhood brain tumors. Neurochemistry International, 2021, 144, 104940.	1.9	2
652	Preventing phenotypic plasticity in cancer to mitigate therapy resistance., 2021, , 119-160.		0
653	Diffuse intrinsic pontine glioma: current insights and future directions. Chinese Neurosurgical Journal, 2021, 7, 6.	0.3	35
654	Mass spectrometryâ€based characterization of histones in clinical samples: applications, progress, and challenges. FEBS Journal, 2022, 289, 1191-1213.	2.2	20
655	Epigenetics and regenerative medicine. , 2021, , 853-872.		0
656	Parental nucleosome segregation and the inheritance of cellular identity. Nature Reviews Genetics, 2021, 22, 379-392.	7.7	63
657	Genomic Heterogeneity of Aggressive Pediatric and Adult Diffuse Astrocytomas. Molecular Pathology Library, 2021, , 153-174.	0.1	0
658	Therapeutic targeting of transcriptional elongation in diffuse intrinsic pontine glioma. Neuro-Oncology, 2021, 23, 1348-1359.	0.6	12
659	The elevated transcription of ADAM19 by the oncohistone H2BE76K contributes to oncogenic properties in breast cancer. Journal of Biological Chemistry, 2021, 296, 100374.	1.6	17
660	Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nature Reviews Drug Discovery, 2021, 20, 265-286.	21,5	116
661	OUP accepted manuscript. Neuro-Oncology, 2021, 23, S4-S15.	0.6	3
662	Drosophila melanogaster: a fruitful model for oncohistones. Fly, 2021, 15, 28-37.	0.9	0
663	DNA methylation and histone variants in aging and cancer. International Review of Cell and Molecular Biology, 2021, 364, 1-110.	1.6	18

#	Article	IF	Citations
664	The progress in the study of reprogramming to acquire the features of stem cells in iPSCs and cancers. , 2021 , , $87-114$.		1
665	Molecular Stratification of Adult and Pediatric High Grade Gliomas. Molecular Pathology Library, 2021, , 123-151.	0.1	0
667	Regulation of the Dot1 histone H3K79 methyltransferase by histone H4K16 acetylation. Science, 2021, 371, .	6.0	70
668	Structures of monomeric and dimeric PRC2:EZH1 reveal flexible modules involved in chromatin compaction. Nature Communications, 2021, 12, 714.	5.8	54
669	Chromatin Manipulation and Editing: Challenges, New Technologies and Their Use in Plants. International Journal of Molecular Sciences, 2021, 22, 512.	1.8	9
670	Brain stem gliomas and current landscape. Journal of Neuro-Oncology, 2021, 151, 21-28.	1.4	2
671	Diffuse Glioma Heterogeneity and Its Therapeutic Implications. Cancer Discovery, 2021, 11, 575-590.	7.7	193
672	Pediatric highâ€grade glioma: moving toward subtypeâ€specific multimodal therapy. FEBS Journal, 2021, 288, 6127-6141.	2.2	40
673	Targeting EZH2 as cancer therapy. Journal of Biochemistry, 2021, 170, 1-4.	0.9	29
674	Surprising phenotypic diversity of cancer-associated mutations of Gly 34 in the histone H3 tail. ELife, 2021, 10, .	2.8	22
675	Epigenetic signatures in cancer: proper controls, current challenges and the potential for clinical translation. Genome Medicine, 2021, 13, 23.	3.6	45
676	Paediatric Gliomas: BRAF and Histone H3 as Biomarkers, Therapy and Perspective of Liquid Biopsies. Cancers, 2021, 13, 607.	1.7	16
678	Diffuse Gliomas of the Brainstem and Cerebellum in Adults Show Molecular Heterogeneity. American Journal of Surgical Pathology, 2021, 45, 1082-1090.	2.1	12
679	Pediatric Glioma: An Update of Diagnosis, Biology, and Treatment. Cancers, 2021, 13, 758.	1.7	20
680	Solid tumours hijack the histone variant network. Nature Reviews Cancer, 2021, 21, 257-275.	12.8	39
682	Genetic Impairments of PRC2 Activity in Oncology: Problems and Prospects. Russian Journal of Genetics, 2021, 57, 258-272.	0.2	5
683	Oncohistones: corruption at the core. Nature Chemical Biology, 2021, 17, 370-371.	3.9	2
684	â€~Enhancing' red cell fate through epigenetic mechanisms. Current Opinion in Hematology, 2021, 28, 129-137.	1.2	1

#	Article	IF	CITATIONS
685	Oncohistone mutations enhance chromatin remodeling and alter cell fates. Nature Chemical Biology, 2021, 17, 403-411.	3.9	50
686	Molecular Mechanisms of Oncogenesis through the Lens of Nucleosomes and Histones. Journal of Physical Chemistry B, 2021, 125, 3963-3976.	1.2	14
687	H3.3-K27M drives neural stem cell-specific gliomagenesis in a human iPSC-derived model. Cancer Cell, 2021, 39, 407-422.e13.	7.7	56
688	Cancer epigenetics: Past, present and future. Seminars in Cancer Biology, 2022, 83, 4-14.	4.3	35
689	Advanced Pediatric Diffuse Pontine Glioma Murine Models Pave the Way towards Precision Medicine. Cancers, 2021, 13, 1114.	1.7	8
690	The dark side of histones: genomic organization and role of oncohistones in cancer. Clinical Epigenetics, 2021, 13, 71.	1.8	30
691	Clinical and Genomic Characteristics of Adult Diffuse Midline Glioma. Cancer Research and Treatment, 2021, 53, 389-398.	1.3	14
692	A conserved BAH module within mammalian BAHD1 connects H3K27me3 to Polycomb gene silencing. Nucleic Acids Research, 2021, 49, 4441-4455.	6.5	15
693	Tumour immune landscape of paediatric high-grade gliomas. Brain, 2021, 144, 2594-2609.	3.7	21
694	Dysregulation of chromatin organization in pediatric and adult brain tumors: oncoepigenomic contributions to tumorigenesis and cancer stem cell properties. Genome, 2021, 64, 326-336.	0.9	1
696	Nucleotide variation in histone H2BL drives crossalk of histone modification and promotes tumour cell proliferation by upregulating c-Myc. Life Sciences, 2021, 271, 119127.	2.0	0
697	Pediatric Gliomas. Neurosurgery Clinics of North America, 2021, 32, 181-190.	0.8	6
698	Physical Nature of Chromatin in the Nucleus. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040675.	2.3	34
699	The interplay between DNA and histone methylation: molecular mechanisms and disease implications. EMBO Reports, 2021, 22, e51803.	2.0	83
700	Dual targeting of the epigenome via FACT complex and histone deacetylase is a potent treatment strategy for DIPG. Cell Reports, 2021, 35, 108994.	2.9	21
701	The language of chromatin modification in human cancers. Nature Reviews Cancer, 2021, 21, 413-430.	12.8	179
702	The Multiple Facets of ATRX Protein. Cancers, 2021, 13, 2211.	1.7	23
703	Regional identity of human neural stem cells determines oncogenic responses to histone H3.3 mutants. Cell Stem Cell, 2021, 28, 877-893.e9.	5.2	42

#	Article	IF	CITATIONS
704	Dissecting the impact of regional identity and the oncogenic role of human-specific NOTCH2NL in an hESC model of H3.3G34R-mutant glioma. Cell Stem Cell, 2021, 28, 894-905.e7.	5.2	36
706	Oncohistones: a roadmap to stalled development. FEBS Journal, 2022, 289, 1315-1328.	2.2	19
707	The histone H3K9M mutation synergizes with H3K14 ubiquitylation to selectively sequester histone H3K9 methyltransferase Clr4 at heterochromatin. Cell Reports, 2021, 35, 109137.	2.9	8
708	Spreading and epigenetic inheritance of heterochromatin require a critical density of histone H3 lysine 9 tri-methylation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42
709	Targeting histone acetylation dynamics and oncogenic transcription by catalytic P300/CBP inhibition. Molecular Cell, 2021, 81, 2183-2200.e13.	4.5	59
710	Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein and Cell, 2022, 13, 877-919.	4.8	179
711	Not just a writer: PRC2 as a chromatin reader. Biochemical Society Transactions, 2021, 49, 1159-1170.	1.6	17
712	Histone H2B Mutations in Cancer. Biomedicines, 2021, 9, 694.	1.4	5
713	Copper: An Intracellular Achilles' Heel Allowing the Targeting of Epigenetics, Kinase Pathways, and Cell Metabolism in Cancer Therapeutics. ChemMedChem, 2021, 16, 2315-2329.	1.6	43
714	Chromatin Mechanisms Driving Cancer. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040956.	2.3	9
715	Polycomb Gene Silencing Mechanisms: PRC2 Chromatin Targeting, H3K27me3 'Readout', and Phase Separation-Based Compaction. Trends in Genetics, 2021, 37, 547-565.	2.9	71
716	The H3.3K27M oncohistone antagonizes reprogramming in Drosophila. PLoS Genetics, 2021, 17, e1009225.	1.5	11
718	Case series of diffuse extraneural metastasis in H3F3A mutant high-grade gliomas: Clinical, molecular phenotype and literature review. Journal of Clinical Neuroscience, 2021, 89, 405-411.	0.8	6
719	Current knowledge on the immune microenvironment and emerging immunotherapies in diffuse midline glioma. EBioMedicine, 2021, 69, 103453.	2.7	37
720	The H3K36me2 writer-reader dependency in H3K27M-DIPG. Science Advances, 2021, 7, .	4.7	20
721	Structural Basis of RACK7 PHD Domain to Read a Pediatric Glioblastomaâ€Associated Histone Mutation H3 . 3G34R. Chinese Journal of Chemistry, 2021, 39, 2433-2440.	2.6	1
722	Simultaneous disruption of PRC2 and enhancer function underlies histone H3.3-K27M oncogenic activity in human hindbrain neural stem cells. Nature Genetics, 2021, 53, 1221-1232.	9.4	36
723	Janus Bioparticles: Asymmetric Nucleosomes and Their Preparation Using Chemical Biology Approaches. Accounts of Chemical Research, 2021, 54, 3215-3227.	7.6	8

#	Article	IF	Citations
724	Functional Roles of Bromodomain Proteins in Cancer. Cancers, 2021, 13, 3606.	1.7	28
725	Synthetic lethality and synergetic effect: the effective strategies for therapy of IDH-mutated cancers. Journal of Experimental and Clinical Cancer Research, 2021, 40, 263.	3.5	4
726	Modulation of H3.3 chromatin assembly by PML: A way to regulate epigenetic inheritance. BioEssays, 2021, 43, e2100038.	1.2	6
727	Pediatric brain tumors: the era of molecular diagnostics, targeted and immune-based therapeutics, and a focus on long term neurologic sequelae. Current Problems in Cancer, 2021, 45, 100777.	1.0	17
730	Classification and Treatment of Pediatric Gliomas in the Molecular Era. Children, 2021, 8, 739.	0.6	8
731	Diffuse midline gliomas, H3 K27M-mutant are associated with less peritumoral edema and contrast enhancement in comparison to glioblastomas, H3 K27M-wildtype of midline structures. PLoS ONE, 2021, 16, e0249647.	1.1	14
733	The Evolving Molecular Landscape of High-Grade Gliomas. Cancer Journal (Sudbury, Mass), 2021, 27, 337-343.	1.0	5
734	Histone H1 Mutations in Lymphoma: A Link(er) between Chromatin Organization, Developmental Reprogramming, and Cancer. Cancer Research, 2021, 81, 6061-6070.	0.4	11
735	Emerging Advances in Combinatorial Treatments of Epigenetically Altered Pediatric High-Grade H3K27M Gliomas. Frontiers in Genetics, 2021, 12, 742561.	1.1	15
736	Polycomb repressive complex 2 in the driver's seat of childhood and young adult brain tumours. Trends in Cell Biology, 2021, 31, 814-828.	3.6	17
737	Pioneer factors in development and cancer. IScience, 2021, 24, 103132.	1.9	15
738	Epigenetic heterogeneity in primary bone cancers. , 2022, , 431-445.		0
739	Epigenetics and Cancer. Learning Materials in Biosciences, 2021, , 151-177.	0.2	1
740	Short H2A histone variants are expressed in cancer. Nature Communications, 2021, 12, 490.	5.8	29
741	Histone Methylation in Chromatin Signaling. , 2014, , 213-256.		4
742	Impact of Nonsynonymous Single-Nucleotide Variations on Post-Translational Modification Sites in Human Proteins. Methods in Molecular Biology, 2017, 1558, 159-190.	0.4	2
743	Linking Enhancer to Epigenetics: New Way to Think About Human Diseases. , 2017, , 1-20.		1
744	Brainstem Tumors. , 2019, , 1-35.		4

#	Article	IF	Citations
745	Causes, effects, and clinical implications of perturbed patterns within the cancer epigenome. Seminars in Cancer Biology, 2022, 83, 15-35.	4.3	11
746	Epigenetics and Cancer Stem Cells: Unleashing, Hijacking, and Restricting Cellular Plasticity. Trends in Cancer, 2017, 3, 372-386.	3.8	252
747	Transcriptome and protein interaction profiling in cancer cells with mutations in histone H3.3. Scientific Data, 2018, 5, 180283.	2.4	2
748	Fostering open collaboration in drug development for paediatric brain tumours. Biochemical Society Transactions, 2019, 47, 1471-1479.	1.6	3
749	Convection-Enhanced Delivery of Enhancer of Zeste Homolog-2 (EZH2) Inhibitor for the Treatment of Diffuse Intrinsic Pontine Glioma. Neurosurgery, 2020, 87, E680-E688.	0.6	11
753	Everolimus improves the efficacy of dasatinib in PDGFRα-driven glioma. Journal of Clinical Investigation, 2020, 130, 5313-5325.	3.9	41
754	Pediatric Brain Tumors. CONTINUUM Lifelong Learning in Neurology, 2017, 23, 1727-1757.	0.4	19
755	Epigenetic regulation of oligodendrocyte myelination in developmental disorders and neurodegenerative diseases. F1000Research, 2020, 9, 105.	0.8	28
756	Histone modifications and a choice of variant: a language that helps the genome express itself. F1000prime Reports, 2014, 6, 76.	5.9	42
757	dBRWD3 Regulates Tissue Overgrowth and Ectopic Gene Expression Caused by Polycomb Group Mutations. PLoS Genetics, 2016, 12, e1006262.	1.5	4
758	PD-0332991, a CDK4/6 Inhibitor, Significantly Prolongs Survival in a Genetically Engineered Mouse Model of Brainstem Glioma. PLoS ONE, 2013, 8, e77639.	1.1	136
759	A High-Throughput In Vitro Drug Screen in a Genetically Engineered Mouse Model of Diffuse Intrinsic Pontine Glioma Identifies BMS-754807 as a Promising Therapeutic Agent. PLoS ONE, 2015, 10, e0118926.	1.1	57
760	The histone variant H3.3 claims its place in the crowded scene of epigenetics. Aging, 2017, 9, 602-614.	1.4	26
761	Vamorolone, a dissociative steroidal compound, reduces pro-inflammatory cytokine expression in glioma cells and increases activity and survival in a murine model of cortical tumor. Oncotarget, 2017, 8, 9366-9374.	0.8	9
762	New <i>in vivo</i> avatars of diffuse intrinsic pontine gliomas (DIPG) from stereotactic biopsies performed at diagnosis. Oncotarget, 2017, 8, 52543-52559.	0.8	41
763	Peptide inhibition of the SETD6 methyltransferase catalytic activity. Oncotarget, 2018, 9, 4875-4885.	0.8	16
764	Diagnostic tools in the differential diagnosis of giant cell-rich lesions of bone at biopsy. Oncotarget, 2018, 9, 30106-30114.	0.8	20
765	Detection of histone H3 K27M mutation and post-translational modifications in pediatric diffuse midline glioma via tissue immunohistochemistry informs diagnosis and clinical outcomes. Oncotarget, 2018, 9, 37112-37124.	0.8	44

#	Article	IF	Citations
766	Deregulated expression of NKL homeobox genes in T-cell lymphomas. Oncotarget, 2019, 10, 3227-3247.	0.8	10
767	The emerging role of NG2 in pediatric diffuse intrinsic pontine glioma. Oncotarget, 2015, 6, 12141-12155.	0.8	30
768	Chromatin remodeling defects in pediatric brain tumors. Annals of Translational Medicine, 2018, 6, 248-248.	0.7	9
769	JAK3-mediated phosphorylation of EZH2: a novel mechanism of non-canonical EZH2 activation and oncogenic function. Translational Cancer Research, 2016, 5, S1208-S1211.	0.4	5
770	Diffuse Intrinsic Pontine Glioma: New Pathophysiological Insights and Emerging Therapeutic Targets. Current Neuropharmacology, 2017, 15, 88-97.	1.4	88
771	Convection-Enhanced Delivery for Diffuse Intrinsic Pontine Glioma Treatment. Current Neuropharmacology, 2017, 15, 116-128.	1.4	72
772	Impact of H3K27 Demethylase Inhibitor GSKJ4 on NSCLC Cells Alone and in Combination with Metformin. Anticancer Research, 2016, 36, 6083-6092.	0.5	29
773	Progress in diffuse intrinsic pontine glioma: advocating for stereotactic biopsy in the standard of care. Neurosurgical Focus, 2020, 48, E4.	1.0	43
774	Molecular Biomarkers of Brain and Spinal Cord Astrocytomas. Acta Naturae, 2019, 11, 17-27.	1.7	9
775	Polycomb and Trithorax Group Proteins: The Long Road from Mutations in Drosophila to Use in Medicine. Acta Naturae, 2020, 12, 66-85.	1.7	12
776	Effects of miR‑195‑5p on cell proliferation and apoptosis in gestational diabetes mellitus via targeting EZH2. Molecular Medicine Reports, 2020, 22, 803-809.	1.1	15
777	Distinct and separable roles for EZH2 in neurogenic astroglia. ELife, 2014, 3, e02439.	2.8	60
778	A histone H3K9M mutation traps histone methyltransferase Clr4 to prevent heterochromatin spreading. ELife, 2016, 5, .	2.8	36
779	Histone gene replacement reveals a post-transcriptional role for H3K36 in maintaining metazoan transcriptome fidelity. ELife, 2017, 6, .	2.8	42
780	Histone H3G34R mutation causes replication stress, homologous recombination defects and genomic instability in S. pombe. ELife, 2017, 6, .	2.8	36
781	Structural basis for COMPASS recognition of an H2B-ubiquitinated nucleosome. ELife, 2020, 9, .	2.8	79
782	Histone deposition pathways determine the chromatin landscapes of H3.1 and H3.3 K27M oncohistones. ELife, 2020, 9 , .	2.8	42
783	Proteins in DNA methylation and their role in neural stem cell proliferation and differentiation. Cell Regeneration, 2021, 10, 7.	1.1	8

#	ARTICLE	IF	CITATIONS
784	Polycomb group proteins in cancer: multifaceted functions and strategies for modulation. NAR Cancer, 2021, 3, zcab039.	1.6	10
785	Inhibition of the H3K27 demethylase UTX enhances the epigenetic silencing of HIV proviruses and induces HIV-1 DNA hypermethylation but fails to permanently block HIV reactivation. PLoS Pathogens, 2021, 17, e1010014.	2.1	13
786	Cell Biology of Giant Cell Tumour of Bone: Crosstalk between m/wt Nucleosome H3.3, Telomeres and Osteoclastogenesis. Cancers, 2021, 13, 5119.	1.7	13
787	Epigenetically defined therapeutic targeting in H3.3G34R/V high-grade gliomas. Science Translational Medicine, 2021, 13, eabf7860.	5.8	18
789	Interplay between chromatin marks in development and disease. Nature Reviews Genetics, 2022, 23, 137-153.	7.7	65
791	An Epigenetic Perspective on Intra-Tumour Heterogeneity: Novel Insights and New Challenges from Multiple Fields. Cancers, 2021, 13, 4969.	1.7	16
792	An Update on the Genome, Epigenome, and Transcriptome in Gliomas. Japanese Journal of Neurosurgery, 2017, 26, 798-805.	0.0	0
795	Genetic Basis and Classification of Cerebral Neoplasms. , 2018, , 1-21.		1
807	Brainstem Tumors. , 2020, , 1957-1983.		0
808	Genome Medicine for Brain Tumors: Current Status and Future Perspectives. Neurologia Medico-Chirurgica, 2020, 60, 531-542.	1.0	5
812	H3K36 trimethylation-mediated biological functions in cancer. Clinical Epigenetics, 2021, 13, 199.	1.8	25
814	Immune-stimulatory (TK/Flt3L) gene therapy opens the door to a promising new treatment strategy against brainstem gliomas. Oncotarget, 2020, 11, 4607-4612.	0.8	7
815	Pediatric Brain Tumors. CONTINUUM Lifelong Learning in Neurology, 2020, 26, 1553-1583.	0.4	6
816	A Protocol for the Generation of Treatment-na \tilde{A} -ve Biopsyderived Diffuse Intrinsic Pontine Glioma and Diffuse Midline Glioma Models., 2020, 1, 158-167.		3
817	A Structural Perspective on Gene Repression by Polycomb Repressive Complex 2. Sub-Cellular Biochemistry, 2021, 96, 519-562.	1.0	6
820	Genetic Basis and Classification of Cerebral Neoplasms. , 2020, , 1775-1791.		0
821	Transcriptional and epigenetic regulatory mechanisms in glioblastoma stem cells., 2020,, 231-255.		1
823	Diffuse Midline Glioma– Diffuse Intrinsic Pontine Glioma. , 2020, , 159-193.		2

#	Article	IF	CITATIONS
824	Future Therapies for Malignant Brainstem Tumors. , 2020, , 347-392.		0
827	H3.3K27M Mutation Controls Cell Growth and Resistance to Therapies in Pediatric Glioma Cell Lines. Cancers, 2021, 13, 5551.	1.7	10
829	Histone H3.3 K27M and K36M mutations de-repress transposable elements through perturbation of antagonistic chromatin marks. Molecular Cell, 2021, 81, 4876-4890.e7.	4.5	26
831	Histone H3K27M Mutation in Brain Tumors. Advances in Experimental Medicine and Biology, 2021, 1283, 43-52.	0.8	10
832	Histone H3G34 Mutation in Brain and Bone Tumors. Advances in Experimental Medicine and Biology, 2021, 1283, 63-71.	0.8	2
833	Epigenetic-Targeted Treatments for H3K27M-Mutant Midline Gliomas. Advances in Experimental Medicine and Biology, 2021, 1283, 73-84.	0.8	3
834	Histone Lysine-to-Methionine Mutation as Anticancer Drug Target. Advances in Experimental Medicine and Biology, 2021, 1283, 85-96.	0.8	1
835	Diverse involvement of EZH2 in cancer epigenetics. American Journal of Translational Research (discontinued), 2015, 7, 175-93.	0.0	90
836	EZHIP: a new piece of the puzzle towards understanding pediatric posterior fossa ependymoma. Acta Neuropathologica, 2022, 143, 1-13.	3.9	17
837	Pharmaco-proteogenomic profiling of pediatric diffuse midline glioma to inform future treatment strategies. Oncogene, 2022, 41, 461-475.	2.6	39
838	Gene of the month: H3F3A and H3F3B. Journal of Clinical Pathology, 2022, 75, 1-4.	1.0	9
839	Impact of Chromatin Dynamics and DNA Repair on Genomic Stability and Treatment Resistance in Pediatric High-Grade Gliomas. Cancers, 2021, 13, 5678.	1.7	6
840	The H3.3K27M oncohistone affects replication stress outcome and provokes genomic instability in pediatric glioma. PLoS Genetics, 2021, 17, e1009868.	1.5	14
841	Thalamic gliomas in adults: a systematic review of clinical characteristics, treatment strategies, and survival outcomes. Journal of Neuro-Oncology, 2021, 155, 215-224.	1.4	17
842	UBR7 acts as a histone chaperone for postâ€nucleosomal histone H3. EMBO Journal, 2021, 40, e108307.	3.5	12
843	Loss of Polycomb Repressive Complex 2 Function Alters Digestive Organ Homeostasis and Neuronal Differentiation in Zebrafish. Cells, 2021, 10, 3142.	1.8	1
844	Nuclear deformation guides chromatin reorganization in cardiac development and disease. Nature Biomedical Engineering, 2021, 5, 1500-1516.	11.6	41
845	Pathogen-Induced Epigenetic Modifications in Cancers: Implications for Prevention, Detection and Treatment of Cancers in Africa. Cancers, 2021, 13, 6051.	1.7	8

#	Article	IF	CITATIONS
846	Tissue-Wide Genetic and Cellular Landscape Instructs the Execution of Sequential PRC2 Functions in Neural Stem Cell Lineage Progression. SSRN Electronic Journal, 0, , .	0.4	0
847	The Polycomb Protein Bmi1 is a Key Effector of the H3.3 K27m Oncohistone. SSRN Electronic Journal, 0, , .	0.4	0
848	Therapeutic Targets in Diffuse Midline Gliomas—An Emerging Landscape. Cancers, 2021, 13, 6251.	1.7	12
849	Multi-omic profiling of histone variant H3.3 lysine 27 methylation reveals a distinct role from canonical H3 in stem cell differentiation. Molecular Omics, 2022, 18, 296-314.	1.4	2
850	CNS High Grade Glioma. , 0, , .		0
851	Mechanisms of Polycomb group protein function in cancer. Cell Research, 2022, 32, 231-253.	5.7	52
852	Oncohistones: Hijacking the Histone Code. Annual Review of Cancer Biology, 2022, 6, 293-312.	2.3	8
853	Synthesis of Oriented Hexasomes and Asymmetric Nucleosomes Using a Template Editing Process. Journal of the American Chemical Society, 2022, 144, 2284-2291.	6.6	5
854	Recent strategies targeting Embryonic Ectoderm Development (EED) for cancer therapy: Allosteric inhibitors, PPI inhibitors, and PROTACs. European Journal of Medicinal Chemistry, 2022, 231, 114144.	2.6	6
855	Histone 3 Methyltransferases Alter Melanoma Initiation and Progression Through Discrete Mechanisms. Frontiers in Cell and Developmental Biology, 2022, 10, 814216.	1.8	2
856	Hypofractionated Radiation Therapy For Diffuse Intrinsic Pontine Glioma: A Noninferiority Randomized Study Including 253 Children. International Journal of Radiation Oncology Biology Physics, 2022, 113, 360-368.	0.4	9
857	The epigenetic dysfunction underlying malignant glioma pathogenesis. Laboratory Investigation, 2022, 102, 682-690.	1.7	4
858	Regulation of epigenetic state by non-histone chromatin proteins and transcription factors: Implications in disease. Journal of Biosciences, 2020, 45, .	0.5	2
859	Identifying pediatric glioma's Achilles heel through rational combination therapies. American Journal of Cancer Research, 2021, 11, 5756-5758.	1.4	0
860	The diverse landscape of histone-mutant pediatric high-grade gliomas: A narrative review. Glioma (Mumbai, India), 2022, 5, 5.	0.0	0
861	Epigenetic mechanisms in paediatric brain tumours: regulators lose control. Biochemical Society Transactions, 2022, 50, 167-185.	1.6	3
862	The Different Temozolomide Effects on Tumorigenesis Mechanisms of Pediatric Glioblastoma PBT24 and SF8628 Cell Tumor in CAM Model and on Cells In Vitro. International Journal of Molecular Sciences, 2022, 23, 2001.	1.8	4
863	Acidic patch histone mutations and their effects on nucleosome remodeling. Biochemical Society Transactions, 2022, 50, 907-919.	1.6	5

#	Article	IF	CITATIONS
864	Histone Methylases and Demethylases Regulating Antagonistic Methyl Marks: Changes Occurring in Cancer. Cells, 2022, 11, 1113.	1.8	12
865	Incorporation of a histone mutant with H3K56 site substitution perturbs the replication machinery in mouse embryonic stem cells. Journal of Molecular Cell Biology, 2022, , .	1.5	0
867	Pediatric High Grade Glioma Classification Criteria and Molecular Features of a Case Series. Genes, 2022, 13, 624.	1.0	11
870	A tumor suppressor role for EZH2 in diffuse midline glioma pathogenesis. Acta Neuropathologica Communications, 2022, 10, 47.	2.4	11
871	The epigenetic–metabolic interplay in gliomagenesis. Open Biology, 2022, 12, 210350.	1.5	2
872	Recurrent de novo missense variants across multiple histone H4 genes underlie a neurodevelopmental syndrome. American Journal of Human Genetics, 2022, 109, 750-758.	2.6	13
874	Childhood Malignant Brain Tumors: Balancing the Bench and Bedside. Cancers, 2021, 13, 6099.	1.7	15
875	Tracking the Dynamic Histone Methylation of H3K27 in Live Cancer Cells. ACS Sensors, 2021, 6, 4369-4378.	4.0	5
876	Cell-of-Origin and Genetic, Epigenetic, and Microenvironmental Factors Contribute to the Intra-Tumoral Heterogeneity of Pediatric Intracranial Ependymoma. Cancers, 2021, 13, 6100.	1.7	4
877	The role of HIRA-dependent H3.3 deposition and its modifications in the somatic hypermutation of immunoglobulin variable regions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
878	Magnetic Resonance Imaging Characteristics of Molecular Subgroups in Pediatric H3ÂK27M Mutant Diffuse Midline Glioma. Clinical Neuroradiology, 2022, 32, 249-258.	1.0	8
879	Comprehensive analysis of epigenetics regulation, prognostic and the correlation with immune infiltrates of GPX7 in adult gliomas. Scientific Reports, 2022, 12, 6442.	1.6	3
880	Loss of MAT2A compromises methionine metabolism and represents a vulnerability in H3K27M mutant glioma by modulating the epigenome. Nature Cancer, 2022, 3, 629-648.	5.7	16
886	Polycombâ€mediated gene regulation in human brain development and neurodevelopmental disorders. Developmental Neurobiology, 2022, 82, 345-363.	1.5	11
887	The intrinsic and microenvironmental features of diffuse midline glioma: Implications for the development of effective immunotherapeutic treatment strategies. Neuro-Oncology, 2022, 24, 1408-1422.	0.6	27
888	Oncohistone Mutations Occur at Functional Sites of Regulatory ADP-Ribosylation. Cancer Research, 2022, 82, 2361-2377.	0.4	3
889	New twists to the ALTernative endings at telomeres. DNA Repair, 2022, 115, 103342.	1.3	12
890	Structural basis of nucleosomal H4K20 methylation by methyltransferase SET8. FASEB Journal, 2022, 36, e22338.	0.2	6

#	Article	IF	CITATIONS
891	A novel mouse model of diffuse midline glioma initiated in neonatal oligodendrocyte progenitor cells highlights cellâ€ofâ€origin dependent effects of <scp>H3K27M</scp> . Glia, 2022, 70, 1681-1698.	2.5	15
892	Glioma Stem Cells in Pediatric High-Grade Gliomas: From Current Knowledge to Future Perspectives. Cancers, 2022, 14, 2296.	1.7	11
893	Loss of dimethylated H3K27 (H3K27me2) expression is not a specific marker of malignant peripheral nerve sheath tumor (MPNST): An immunohistochemical study of 137 cases, with emphasis on MPNST and melanocytic tumors. Annals of Diagnostic Pathology, 2022, 59, 151967.	0.6	3
894	A <i>Saccharomyces cerevisiae</i> model and screen to define the functional consequences of oncogenic histone missense mutations. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	3
895	Tumor-Derived Lactate Creates a Favorable Niche for Tumor via Supplying Energy Source for Tumor and Modulating the Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	14
896	H3-K27M-mutant nucleosomes interact with MLL1 to shape the glioma epigenetic landscape. Cell Reports, 2022, 39, 110836.	2.9	16
897	Major Features of the 2021 WHO Classification of CNS Tumors. Neurotherapeutics, 2022, 19, 1691-1704.	2.1	31
898	Structural and functional specificity of H3K36 methylation. Epigenetics and Chromatin, 2022, 15, 17.	1.8	20
899	Histone H3.3 K27M chromatin functions implicate a network of neurodevelopmental factors including ASCL1 and NEUROD1 in DIPG. Epigenetics and Chromatin, 2022, 15, 18.	1.8	9
900	Recent Advances in Research on Spinal Cord Gliomas. Spinal Surgery, 2022, 36, 18-23.	0.0	0
901	Therapeutic targeting of prenatal pontine ID1 signaling in diffuse midline glioma. Neuro-Oncology, 2023, 25, 54-67.	0.6	5
902	Bromodomain and Extra-Terminal Protein Inhibitors: Biologic Insights and Therapeutic Potential in Pediatric Brain Tumors. Pharmaceuticals, 2022, 15, 665.	1.7	5
903	H2A.Z's â€~social' network: functional partners of an enigmatic histone variant. Trends in Biochemical Sciences, 2022, 47, 909-920.	3.7	8
906	Toward Elucidating Epigenetic and Metabolic Regulation of Stem Cell Lineage Plasticity in Skin Aging. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	3
908	The Intricate Epigenetic and Transcriptional Alterations in Pediatric High-Grade Gliomas: Targeting the Crosstalk as the Oncogenic Achilles' Heel. Biomedicines, 2022, 10, 1311.	1.4	3
909	Patterns of care in adult histone mutant gliomas: results of an international survey. Neuro-Oncology Practice, 0, , .	1.0	0
910	SETD2: from chromatin modifier to multipronged regulator of the genome and beyond. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	15
913	Histone editing elucidates the functional roles of H3K27 methylation and acetylation in mammals. Nature Genetics, 2022, 54, 754-760.	9.4	59

#	Article	IF	CITATIONS
914	H3K27M Mutation Doesn't Mean Worse Prognosis in Old Patients. Frontiers in Oncology, 0, 12, .	1.3	3
915	Single-cell epigenetic analysis reveals principles of chromatin states in H3.3-K27M gliomas. Molecular Cell, 2022, 82, 2696-2713.e9.	4.5	16
916	Recognition of Key Genes in Human Anaplastic Thyroid Cancer via the Weighing Gene Coexpression Network. BioMed Research International, 2022, 2022, 1-17.	0.9	4
917	PRC2, Chromatin Regulation, and Human Disease: Insights From Molecular Structure and Function. Frontiers in Oncology, 0, 12, .	1.3	13
918	PRC2-Inactivating Mutations in Cancer Enhance Cytotoxic Response to DNMT1-Targeted Therapy via Enhanced Viral Mimicry. Cancer Discovery, 2022, 12, 2120-2139.	7.7	14
919	Tumor-Associated Microenvironment of Adult Gliomas: A Review. Frontiers in Oncology, 0, 12, .	1.3	7
920	Direct assessment of histone function using histone replacement. Trends in Biochemical Sciences, 2023, 48, 53-70.	3.7	3
921	Targeting KDM4 for treating PAX3-FOXO1–driven alveolar rhabdomyosarcoma. Science Translational Medicine, 2022, 14, .	5.8	16
922	Tumor-intrinsic PRC2 inactivation drives a context-dependent immune-desert microenvironment and is sensitized by immunogenic viruses. Journal of Clinical Investigation, 2022, 132, .	3.9	8
923	Oncohistones: Exposing the nuances and vulnerabilities of epigenetic regulation. Molecular Cell, 2022, 82, 2925-2938.	4.5	20
924	Multivariate Analysis of RNA Chemistry Marks Uncovers Epitranscriptomics-Based Biomarker Signature for Adult Diffuse Glioma Diagnostics. Analytical Chemistry, 2022, 94, 11967-11972.	3.2	5
925	Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell International, 2022, 22, .	1.8	16
927	Decrease of circARID1A retards glioblastoma invasion by modulating miR-370-3p/ TGFBR2 pathway. International Journal of Biological Sciences, 2022, 18, 5123-5135.	2.6	5
928	Aberrant paracrine signalling for bone remodelling underlies the mutant histone-driven giant cell tumour of bone. Cell Death and Differentiation, 2022, 29, 2459-2471.	5.0	8
929	Know when to fold $\hat{a}\in \hat{e}$ m: Polycomb complexes in oncogenic 3D genome regulation. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
930	PRC2-indepdendent actions of H3.3K27M in embryonic stem cell differentiation. Nucleic Acids Research, 0, , .	6.5	3
933	ZMYND8 suppresses MAPT213 LncRNA transcription to promote neuronal differentiation. Cell Death and Disease, 2022, 13, .	2.7	1
935	Nucleosome proteostasis and histone turnover. Frontiers in Molecular Biosciences, 0, 9, .	1.6	2

#	Article	IF	Citations
936	H3.3-G34 mutations impair DNA repair and promote cGAS/STING-mediated immune responses in pediatric high-grade glioma models. Journal of Clinical Investigation, 2022, 132, .	3.9	29
937	Oncohistone interactome profiling uncovers contrasting oncogenic mechanisms and identifies potential therapeutic targets in high grade glioma. Acta Neuropathologica, 2022, 144, 1027-1048.	3.9	10
938	The Effect of Atm Loss on Radiosensitivity of a Primary Mouse Model of Pten-Deleted Brainstem Glioma. Cancers, 2022, 14, 4506.	1.7	3
939	Multistate structures of the MLL1-WRAD complex bound to H2B-ubiquitinated nucleosome. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
940	Advances on Epigenetic Drugs for Pediatric Brain Tumors. Current Neuropharmacology, 2023, 21, 1519-1535.	1.4	1
941	Characterizing the biology of primary brain tumors and their microenvironment via single-cell profiling methods. Neuro-Oncology, 2023, 25, 234-247.	0.6	9
942	The histone methyltransferase SETD2 negatively regulates cell size. Journal of Cell Science, 2022, 135, .	1.2	2
943	H3F3A K27M Mutation Promotes the Infiltrative Growth of High-Grade Glioma in Adults by Activating \hat{I}^2 -Catenin/USP1 Signaling. Cancers, 2022, 14, 4836.	1.7	O
944	H3K27me3 in Diffuse Midline Glioma and Epithelial Ovarian Cancer: Opposing Epigenetic Changes Leading to the Same Poor Outcomes. Cells, 2022, 11, 3376.	1.8	9
945	H3.3K27M mutation is not a suitable target for immunotherapy in HLA-A2 ⁺ patients with diffuse midline glioma., 2022, 10, e005535.		11
948	Epigenome Programming by H3.3K27M Mutation Creates a Dependence of Pediatric Glioma on SMARCA4. Cancer Discovery, 2022, 12, 2906-2929.	7.7	11
949	The Role of DNA Methylation and DNA Methyltransferases in Cancer. Advances in Experimental Medicine and Biology, 2022, , 317-348.	0.8	7
950	Investigating pathological epigenetic aberrations by epi-proteomics. Clinical Epigenetics, 2022, 14, .	1.8	2
951	Photo-Cross-Linking To Delineate Epigenetic Interactome. Journal of the American Chemical Society, 2022, 144, 20979-20997.	6.6	6
952	CK2-mediated phosphorylation of SUZ12 promotes PRC2 function by stabilizing enzyme active site. Nature Communications, 2022, 13 , .	5.8	7
955	De novo methylation of histone H3K23 by the methyltransferases EHMT1/GLP and EHMT2/G9a. Epigenetics and Chromatin, 2022, 15, .	1.8	3
956	K27M in canonical and noncanonical H3 variants occurs in distinct oligodendroglial cell lineages in brain midline gliomas. Nature Genetics, 2022, 54, 1865-1880.	9.4	27
957	The landscape of tumor cell states and spatial organization in H3-K27M mutant diffuse midline glioma across age and location. Nature Genetics, 2022, 54, 1881-1894.	9.4	43

#	Article	IF	CITATIONS
958	Targets of histone H3 lysine 9 methyltransferases. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
959	Epigenetic programming of pediatric high-grade glioma: Pushing beyond proof of concept to clinical benefit. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
960	The cancer epigenome: Nonâ€cell autonomous player in tumor immunity. Cancer Science, 2023, 114, 730-740.	1.7	2
963	Novel genetically engineered H3.3G34R model reveals cooperation with ATRX loss in upregulation of <i>Hoxa</i> cluster genes and promotion of neuronal lineage. Neuro-Oncology Advances, 2023, 5, .	0.4	1
964	Targeting the epigenome of cancer stem cells in pediatric nervous system tumors. Molecular and Cellular Biochemistry, 2023, 478, 2241-2255.	1.4	3
965	Targeting Menin disrupts the KMT2A/B and polycomb balance to paradoxically activate bivalent genes. Nature Cell Biology, 0, , .	4.6	3
966	Chromatin mutations in pediatric high grade gliomas. Frontiers in Oncology, 0, 12, .	1.3	1
967	Defining a Correlative Transcriptional Signature Associated with Bulk Histone H3 Acetylation Levels in Adult Glioblastomas. Cells, 2023, 12, 374.	1.8	2
968	Nuclear condensates of YAP fusion proteins alter transcription to drive ependymoma tumourigenesis. Nature Cell Biology, 0, , .	4.6	6
969	Diffuse intrinsic pontine glioma: Insights into oncogenesis and opportunities for targeted therapy. Pediatric Hematology Oncology Journal, 2023, 8, 73-79.	0.1	2
970	Developing H3K27M mutant selective radiosensitization strategies in diffuse intrinsic pontine glioma. Neoplasia, 2023, 37, 100881.	2.3	3
971	Superenhancers as master gene regulators and novel therapeutic targets in brain tumors. Experimental and Molecular Medicine, 2023, 55, 290-303.	3.2	3
972	H3K27-altered diffuse midline glioma: a paradigm shifting opportunity in direct delivery of targeted therapeutics. Expert Opinion on Therapeutic Targets, 2023, 27, 9-17.	1.5	1
973	Common molecular features of H3K27M DMGs and PFA ependymomas map to hindbrain developmental pathways. Acta Neuropathologica Communications, 2023, 11 , .	2.4	10
974	DNA Methylation and Histone Modification in Low-Grade Gliomas: Current Understanding and Potential Clinical Targets. Cancers, 2023, 15, 1342.	1.7	13
975	A non-genetic switch triggers alternative telomere lengthening and cellular immortalization in ATRX deficient cells. Nature Communications, 2023, 14, .	5.8	4
976	The "Superoncogene―Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. International Journal of Molecular Sciences, 2023, 24, 4217.	1.8	4
979	Single substitution in H3.3G34 alters DNMT3A recruitment to cause progressive neurodegeneration. Cell, 2023, 186, 1162-1178.e20.	13.5	17

#	Article	IF	CITATIONS
980	Oncohistones in brain tumors: the soil and seed. Trends in Cancer, 2023, 9, 444-455.	3.8	2
982	Identification of nonhistone substrates of the lysine methyltransferase PRDM9. Journal of Biological Chemistry, 2023, 299, 104651.	1.6	3
983	A Compendium of Syngeneic, Transplantable Pediatric High-Grade Glioma Models Reveals Subtype-Specific Therapeutic Vulnerabilities. Cancer Discovery, 2023, 13, 1592-1615.	7.7	6
984	Antisense oligonucleotide therapy for H3.3K27M diffuse midline glioma. Science Translational Medicine, 2023, 15, .	5.8	5
990	Oncohistones., 2023,, 65-83.		0
1022	Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	7
1024	Alterations of histone modifications in cancer. , 2024, , 85-172.		0
1026	(B)On(e)-cohistones and the epigenetic alterations at the root of bone cancer. Cell Death and Differentiation, $0,$	5.0	0
1046	Histone Readers and Their Roles in Cancer. Cancer Treatment and Research, 2023, , 245-272.	0.2	0
1052	Polycomb Repressive Complex 2 in Oncology. Cancer Treatment and Research, 2023, , 273-320.	0.2	1
1054	The role of H3K27me3 methylation in cancer development. Genome Instability & Disease, 2024, 5, 17-34.	0.5	0
1055	HIRA vs. DAXX: the two axes shaping the histone H3.3 landscape. Experimental and Molecular Medicine, 2024, 56, 251-263.	3.2	0
1058	Epigenetic dysregulation in brain tumors. , 2024, , 269-285.		0
1062	Gliomas: a reflection of temporal gliogenic principles. Communications Biology, 2024, 7, .	2.0	0