Metabolites produced by commensal bacteria promote generation

Nature 504, 451-455 DOI: 10.1038/nature12726

Citation Report

#	Article	IF	CITATIONS
1	Microbiota: Host Interactions in Mucosal Homeostasis and Systemic Autoimmunity. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 193-201.	2.0	43
2	Gut Microbiome in Down Syndrome. PLoS ONE, 2014, 9, e112023.	1.1	51
3	Gut Microbiota-Derived Short-Chain Fatty Acids, T Cells, and Inflammation. Immune Network, 2014, 14, 277.	1.6	473
4	Epigenetics in T-cell Development and Function. Advances in Neuroimmune Biology, 2014, 5, 161-170.	0.7	1
5	Friends with social benefits: host-microbe interactions as a driver of brain evolution and development?. Frontiers in Cellular and Infection Microbiology, 2014, 4, 147.	1.8	118
6	Lymphoma Caused by Intestinal Microbiota. International Journal of Environmental Research and Public Health, 2014, 11, 9038-9049.	1.2	21
7	From lifetime to evolution: timescales of human gut microbiota adaptation. Frontiers in Microbiology, 2014, 5, 587.	1.5	91
8	Natural killer cells and regulatory T cells in early pregnancy loss. International Journal of Developmental Biology, 2014, 58, 219-229.	0.3	116
9	Interplay between Intestinal Microbiota and Host Immune System. Journal of Bacteriology and Virology, 2014, 44, 1.	0.0	12
10	Association among genetic predisposition, gut microbiota, and host immune response in the etiopathogenesis of inflammatory bowel disease. Brazilian Journal of Medical and Biological Research, 2014, 47, 727-737.	0.7	49
11	Microbiome manipulation modifies sex-specific risk for autoimmunity. Gut Microbes, 2014, 5, 485-493.	4.3	65
12	Interplay of Nutrients and Microbial Metabolites in Intestinal Immune Homeostasis: Distinct and Common Mechanisms of Immune Regulation in the Small Bowel and Colon. Nestle Nutrition Institute Workshop Series, 2014, 79, 57-71.	1.5	11
13	Commensal-pathogen interactions in the intestinal tract. Gut Microbes, 2014, 5, 522-532.	4.3	252
14	Pharmacological Modulation of Caspase-8 in Thymus-Related Medical Conditions. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 18-24.	1.3	3
15	Rad50 and CARD9, missing links in cytosolic DNA–stimulated inflammation. Nature Immunology, 2014, 15, 534-536.	7.0	8
16	Gut microbes and adverse food reactions: Focus on gluten related disorders. Gut Microbes, 2014, 5, 594-605.	4.3	37
17	Probiotics and Antibiotics in IBD. Digestive Diseases, 2014, 32, 10-17.	0.8	43
18	Potential of epigenetic therapies in non-cancerous conditions. Frontiers in Genetics, 2014, 5, 438.	1.1	32

#	Article	IF	CITATIONS
19	Organ-Specific and Memory Treg Cells: Specificity, Development, Function, and Maintenance. Frontiers in Immunology, 2014, 5, 333.	2.2	104
20	Global Metabolomic Profiling of Acute Myocarditis Caused by Trypanosoma cruzi Infection. PLoS Neglected Tropical Diseases, 2014, 8, e3337.	1.3	62
21	Fatty Acids, Lipid Mediators, and T-Cell Function. Frontiers in Immunology, 2014, 5, 483.	2.2	115
22	Keeping peace with the microbiome: acetate dampens inflammatory cytokine production in intestinal epithelial cells. Immunology and Cell Biology, 2014, 92, 561-562.	1.0	9
23	Blowing on Embers: Commensal Microbiota and Our Immune System. Frontiers in Immunology, 2014, 5, 318.	2.2	62
24	The Three Genetics (Nuclear DNA, Mitochondrial DNA, and Gut Microbiome) of Longevity in Humans Considered as Metaorganisms. BioMed Research International, 2014, 2014, 1-14.	0.9	25
25	Regulatory T Cells Occupy an Isolated Niche in the Intestine that Is Antigen Independent. Cell Reports, 2014, 9, 1567-1573.	2.9	30
26	Microbe driven Tâ€helper cell differentiation: lessons from <i>Candida albicans</i> and <i>Staphylococcus aureus</i> . Experimental Dermatology, 2014, 23, 795-798.	1.4	7
27	Defining dysbiosis and its influence on host immunity and disease. Cellular Microbiology, 2014, 16, 1024-1033.	1.1	734
28	Effect of yeast cell product (CitriStim) supplementation on turkey performance and intestinal immune cell parameters during an experimental lipopolysaccharide injection. Poultry Science, 2014, 93, 2763-2771.	1.5	11
29	Tolerance induction to human stem cell transplants with extension to their differentiated progeny. Nature Communications, 2014, 5, 5629.	5.8	26
30	Prediction and quantification of bioactive microbiota metabolites in the mouse gut. Nature Communications, 2014, 5, 5492.	5.8	195
31	The short chain fatty acids, butyrate and propionate, have differential effects on the motility of the guinea pig colon. Neurogastroenterology and Motility, 2014, 26, 1586-1596.	1.6	100
32	Marek's disease virus influences the core gut microbiome of the chicken during the early and late phases of viral replication. FEMS Microbiology Ecology, 2014, 90, 300-312.	1.3	38
33	Microbial imbalance and intestinal pathologies: connections and contributions. DMM Disease Models and Mechanisms, 2014, 7, 1131-1142.	1.2	83
34	Gut microbiota composition and its effects on obesity and insulin resistance. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17, 312-318.	1.3	51
35	The probiotic mixture VSL#3 mediates both pro- and anti-inflammatory responses in bone marrow-derived dendritic cells from C57BL/6 and BALB/c mice. British Journal of Nutrition, 2014, 112, 1088-1097.	1.2	16
36	Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbes, 2014, 5, 333-339.	4.3	182

#	Article	IF	Citations
37	Intestinal Inflammation and Mucosal Barrier Function. Inflammatory Bowel Diseases, 2014, 20, 2394-2404.	0.9	287
38	The neonatal bowel microbiome in health and infection. Current Opinion in Infectious Diseases, 2014, 27, 236-243.	1.3	59
39	Epithelial Transport in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2014, 20, 1.	0.9	50
40	TLR4 regulates IFN-Î ³ and IL-17 production by both thymic and induced Foxp3+ Tregs during intestinal inflammation. Journal of Leukocyte Biology, 2014, 96, 895-905.	1.5	41
41	Identifying Gut Microbe–Host Phenotype Relationships Using Combinatorial Communities in Gnotobiotic Mice. Science Translational Medicine, 2014, 6, 220ra11.	5.8	325
42	Dysbiotic Events in Gut Microbiota: Impact on Human Health. Nutrients, 2014, 6, 5786-5805.	1.7	169
43	The Central Role of the Gut Microbiota in Chronic Inflammatory Diseases. Journal of Immunology Research, 2014, 2014, 1-12.	0.9	158
45	Regulatory T-Cell Differentiation and Their Function in Immune Regulation. Advances in Experimental Medicine and Biology, 2014, 841, 67-97.	0.8	18
46	Long term effect of gut microbiota transfer on diabetes development. Journal of Autoimmunity, 2014, 53, 85-94.	3.0	143
47	Shuttling of information between the mucosal and luminal environment drives intestinal homeostasis. FEBS Letters, 2014, 588, 4148-4157.	1.3	27
48	The role of commensal bacteria in the regulation of sensitization to food allergens. FEBS Letters, 2014, 588, 4258-4266.	1.3	53
49	Microbial and dietary factors modulating intestinal regulatory T cell homeostasis. FEBS Letters, 2014, 588, 4182-4187.	1.3	11
50	Commensal bacteria mediated defenses against pathogens. Current Opinion in Immunology, 2014, 29, 16-22.	2.4	115
51	Segmented Filamentous Bacteria Antigens Presented by Intestinal Dendritic Cells Drive Mucosal Th17 Cell Differentiation. Immunity, 2014, 40, 594-607.	6.6	388
52	Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nature Immunology, 2014, 15, 307-310.	7.0	199
53	Role of the Microbiota in Immunity and Inflammation. Cell, 2014, 157, 121-141.	13.5	3,494
54	Intestinal microbiota and its effects on the immune system. Cellular Microbiology, 2014, 16, 1004-1013.	1.1	96
55	Relationship between gut microbiota and development of T cell associated disease. FEBS Letters, 2014, 588, 4195-4206.	1.3	84

#	Article	IF	CITATIONS
56	Regulation of the Immune System by the Resident Intestinal Bacteria. Gastroenterology, 2014, 146, 1477-1488.	0.6	220
57	The Multifaceted Role of the Intestinal Microbiota in Colon Cancer. Molecular Cell, 2014, 54, 309-320.	4.5	284
58	From promotion to management: The wide impact of bacteria on cancer and its treatment. BioEssays, 2014, 36, 658-664.	1.2	10
59	The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells. Nature Immunology, 2014, 15, 571-579.	7.0	147
60	<scp>NLRPs</scp> , microbiota, and gut homeostasis: unravelling the connection. Journal of Pathology, 2014, 233, 321-330.	2.1	58
61	Helper T Cell Plasticity: Impact of Extrinsic and Intrinsic Signals on Transcriptomes and Epigenomes. Current Topics in Microbiology and Immunology, 2014, 381, 279-326.	0.7	57
62	Microbiota-Dependent Crosstalk Between Macrophages and ILC3 Promotes Intestinal Homeostasis. Science, 2014, 343, 1249288.	6.0	670
63	Uhrf to Treg cells: reinforcing the mucosal peacekeepers. Nature Immunology, 2014, 15, 533-534.	7.0	4
64	Sexually dimorphic effects of prenatal exposure to propionic acid and lipopolysaccharide on social behavior in neonatal, adolescent, and adult rats: Implications for autism spectrum disorders. International Journal of Developmental Neuroscience, 2014, 39, 68-78.	0.7	95
65	Adaptive (T and B Cells) Immunity and Control by Dendritic Cells in Atherosclerosis. Circulation Research, 2014, 114, 1640-1660.	2.0	168
66	Microbial view of central nervous system autoimmunity. FEBS Letters, 2014, 588, 4207-4213.	1.3	119
67	Gut microbiota–generated metabolites in animal health and disease. Nature Chemical Biology, 2014, 10, 416-424.	3.9	539
68	The role of lactate on the immunomodulatory properties of the nonbacterial fraction of kefir. Food Research International, 2014, 62, 247-253.	2.9	38
69	Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nature Medicine, 2014, 20, 159-166.	15.2	2,147
70	Microbial metabolites control gut inflammatory responses. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2058-2059.	3.3	81
71	GPR109a: The Missing Link between Microbiome and Good Health?. Immunity, 2014, 40, 8-10.	6.6	33
72	The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2247-2252.	3.3	1,495
73	Bacteria get TReg cells into shape. Nature Reviews Immunology, 2014, 14, 2-3.	10.6	9

#	Article	IF	CITATIONS
74	Th17 Cells at the Crossroads of Autoimmunity, Inflammation, and Atherosclerosis. Immunity, 2014, 40, 10-12.	6.6	28
75	The mucosal immune system for vaccine development. Vaccine, 2014, 32, 6711-6723.	1.7	110
76	Specialized Metabolites from the Microbiome in Health and Disease. Cell Metabolism, 2014, 20, 719-730.	7.2	454
77	Determining Microbial Products and Identifying Molecular Targets in the Human Microbiome. Cell Metabolism, 2014, 20, 731-741.	7.2	82
78	MicroRNA let-7i induced autophagy to protect T cell from apoptosis by targeting IGF1R. Biochemical and Biophysical Research Communications, 2014, 453, 728-734.	1.0	44
79	Modulation of immune development and function by intestinal microbiota. Trends in Immunology, 2014, 35, 507-517.	2.9	259
80	Microbiome Diversity and Asthma and Allergy Risk. Current Allergy and Asthma Reports, 2014, 14, 466.	2.4	59
81	Development and Survival of Th17 Cells within the Intestines: The Influence of Microbiome- and Diet-Derived Signals. Journal of Immunology, 2014, 193, 4769-4777.	0.4	49
82	Epigenomic regulation of host–microbiota interactions. Trends in Immunology, 2014, 35, 518-525.	2.9	60
83	Effect of butyrate on immune response of a chicken macrophage cell line. Veterinary Immunology and Immunopathology, 2014, 162, 24-32.	0.5	48
84	Cellular and molecular pathways through which commensal bacteria modulate sensitization to dietary antigens. Current Opinion in Immunology, 2014, 31, 79-86.	2.4	15
85	New aspects of IgA synthesis in the gut. International Immunology, 2014, 26, 489-494.	1.8	23
86	Diet, Metabolites, and "Western-Lifestyle―Inflammatory Diseases. Immunity, 2014, 40, 833-842.	6.6	736
87	Microbiota-Derived Compounds Drive Steady-State Granulopoiesis via MyD88/TICAM Signaling. Journal of Immunology, 2014, 193, 5273-5283.	0.4	202
88	The interplay between the gut microbiota and the immune system. Gut Microbes, 2014, 5, 411-418.	4.3	161
89	Dynamics of Gut Microbiota in Autoimmune Lupus. Applied and Environmental Microbiology, 2014, 80, 7551-7560.	1.4	250
90	A Gnotobiotic Mouse Model Demonstrates That Dietary Fiber Protects against Colorectal Tumorigenesis in a Microbiota- and Butyrate-Dependent Manner. Cancer Discovery, 2014, 4, 1387-1397.	7.7	344
91	Evaluation of therapeutic properties of fermented vegetables extract (OM-X®) in the model of colitis induced by Citrobacter rodentium in mice. Journal of Functional Foods, 2014, 10, 117-127.	1.6	9

		CITATION REPORT		
#	Article		IF	Citations
92	Finding the Missing Links among Metabolites, Microbes, and the Host. Immunity, 2014	1, 40, 824-832.	6.6	256
93	Intestinal Anti-inflammatory Effects of Oligosaccharides Derived from Lactulose in the Trinitrobenzenesulfonic Acid Model of Rat Colitis. Journal of Agricultural and Food Che 62, 4285-4297.	mistry, 2014,	2.4	39
94	Inflammatory Bowel Disease as a Model for Translating the Microbiome. Immunity, 201	14, 40, 843-854.	6.6	284
95	The intestinal microbiome in type 1 diabetes. Clinical and Experimental Immunology, 2	014, 177, 30-37.	1.1	94
96	T-Cell-Receptor-Dependent Signal Intensity Dominantly Controls CD4+ T Cell Polarizati Immunity, 2014, 41, 63-74.	ion InÂVivo.	6.6	214
97	The cross talk between microbiota and the immune system: metabolites take center st Opinion in Immunology, 2014, 30, 54-62.	tage. Current	2.4	159
98	Commensal bacteria protect against food allergen sensitization. Proceedings of the Na of Sciences of the United States of America, 2014, 111, 13145-13150.	ational Academy	3.3	632
99	Commensal microbes drive intestinal inflammation by IL-17–producing CD4 ^{+ through ICOSL and OX40L costimulation in the absence of B7-1 and B7-2. Proceedings Academy of Sciences of the United States of America, 2014, 111, 10672-10677.}	T cells s of the National	3.3	25
100	Collateral Damage: Microbiota-Derived Metabolites and Immune Function in the Antibi Host and Microbe, 2014, 16, 156-163.	otic Era. Cell	5.1	50
101	Deciphering the epigenetic code of T lymphocytes. Immunological Reviews, 2014, 261	, 50-61.	2.8	15
102	T cells and intestinal commensal bacteriaâ€ignorance, rejection, and acceptance. FEBS 4167-4175.	; Letters, 2014, 588,	1.3	15
103	Gut Microbiome and Multiple Sclerosis. Current Neurology and Neuroscience Reports,	2014, 14, 492.	2.0	106
104	The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Micro 12, 661-672.	biology, 2014,	13.6	2,007
105	Starving our Microbial Self: The Deleterious Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates. Cell Metabolism, 2014, 20, 779-786.		7.2	614
106	Microbial priming of plant and animal immunity: symbionts as developmental signals. T Microbiology, 2014, 22, 607-613.	Frends in	3.5	100
107	Regulation of Regulatory T Cells. Advances in Immunology, 2014, 124, 249-273.		1.1	27
108	Regional specialization within the intestinal immune system. Nature Reviews Immunol 667-685.	ogy, 2014, 14,	10.6	1,155
109	Foxp3+ T Cells Regulate Immunoglobulin A Selection and Facilitate Diversification of B Responsible for Immune Homeostasis. Immunity, 2014, 41, 152-165.	acterial Species	6.6	431

#	Article	IF	Citations
110	Ubiquitous points of control over regulatory T cells. Journal of Molecular Medicine, 2014, 92, 555-569.	1.7	6
111	The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. Journal of Gastroenterology, 2014, 49, 785-798.	2.3	180
112	Does the microbiome play a causal role in spondyloarthritis?. Clinical Rheumatology, 2014, 33, 763-767.	1.0	27
113	The effects of the microbiota on the host immune system. Autoimmunity, 2014, 47, 494-504.	1.2	43
114	Anatomical localization of commensal bacteria in immune cell homeostasis and disease. Immunological Reviews, 2014, 260, 35-49.	2.8	60
115	Treg functional stability and its responsiveness to the microenvironment. Immunological Reviews, 2014, 259, 115-139.	2.8	189
116	Microbiota activation and regulation of innate and adaptive immunity. Immunological Reviews, 2014, 260, 206-220.	2.8	126
117	Epigenetic regulation of asthma and allergic disease. Allergy, Asthma and Clinical Immunology, 2014, 10, 27.	0.9	107
118	Regulation of the gut microbiota by the mucosal immune system in mice. International Immunology, 2014, 26, 481-487.	1.8	26
119	The Microbiota, the Immune System and the Allograft. American Journal of Transplantation, 2014, 14, 1236-1248.	2.6	53
120	TREC-cell therapies for autoimmune rheumatic diseases. Nature Reviews Rheumatology, 2014, 10, 543-551.	3.5	179
121	Emergence of fecal microbiota transplantation as an approach to repair disrupted microbial gut ecology. Immunology Letters, 2014, 162, 77-81.	1.1	38
122	Metabolism of stromal and immune cells in health and disease. Nature, 2014, 511, 167-176.	13.7	377
123	The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatric Research, 2014, 76, 2-10.	1.1	194
124	Microbiota and diabetes: an evolving relationship. Gut, 2014, 63, 1513-1521.	6.1	631
125	Mining the Human Gut Microbiota for Effector Strains that Shape the Immune System. Immunity, 2014, 40, 815-823.	6.6	104
126	Dendritic cell–epithelial cell crosstalk in the gut. Immunological Reviews, 2014, 260, 118-128.	2.8	56
127	Tâ€cell selection and intestinal homeostasis. Immunological Reviews, 2014, 259, 60-74.	2.8	46

#	Article	IF	CITATIONS
128	Lipid metabolites as metabolic messengers in inter-organ communication. Trends in Endocrinology and Metabolism, 2014, 25, 356-363.	3.1	51
129	Deciphering the tête-Ã-tête between the microbiota and the immune system. Journal of Clinical Investigation, 2014, 124, 4197-203.	3.9	89
130	Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World Journal of Gastroenterology, 2014, 20, 16498.	1.4	89
131	Bacteriophages: an underestimated role in human and animal health?. Frontiers in Cellular and Infection Microbiology, 2014, 4, 39.	1.8	142
132	The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood, 2014, 124, 1174-1182.	0.6	711
134	Low-grade inflammation, diet composition and health: current research evidence and its translation. British Journal of Nutrition, 2015, 114, 999-1012.	1.2	600
135	Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutrition Research Reviews, 2015, 28, 42-66.	2.1	251
136	Asthma, Atopy, and Intestinal Microbiota. Journal of Pediatric Biochemistry, 2015, 05, 071-076.	0.2	0
137	The role of gut microbiota and diet in experimental autoimmune encephalitis and multiple sclerosis. Clinical and Experimental Neuroimmunology, 2015, 6, 30-37.	0.5	3
138	Extraâ€ŧhymically induced <scp>T</scp> regulatory cell subsets: the optimal target for antigenâ€specific immunotherapy. Immunology, 2015, 145, 171-181.	2.0	25
139	Dietary rice bran supplementation prevents Salmonella colonization differentially across varieties and by priming intestinal immunity. Journal of Functional Foods, 2015, 18, 653-664.	1.6	29
140	The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Scientific Reports, 2015, 5, 16148.	1.6	269
141	Low urinary indoxyl sulfate levels early after transplantation reflect a disrupted microbiome and are associated with poor outcome. Blood, 2015, 126, 1723-1728.	0.6	164
143	Probiotic supplementation influences faecal short chain fatty acids in infants at high risk for eczema. Beneficial Microbes, 2015, 6, 783-790.	1.0	51
144	Oral treatment with Bifidobacterium longum 51A reduced inflammation in a murine experimental model of gout. Beneficial Microbes, 2015, 6, 799-806.	1.0	39
145	Impact of dietary deviation on disease progression and gut microbiome composition in lupus-prone SNF1 mice. Clinical and Experimental Immunology, 2015, 181, 323-337.	1.1	119
146	Immunoregulation of multiple sclerosis by gut environmental factors. Clinical and Experimental Neuroimmunology, 2015, 6, 362-369.	0.5	5
147	Harnessing Regulatory T Cells for the Treatment of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2015, 21, 1.	0.9	36

		CITATION RE	PORT	
#	Article		IF	CITATIONS
148	Food for thought. Current Opinion in Allergy and Clinical Immunology, 2015, 15, 237-2	42.	1.1	16
149	Gut feelings of safety: tolerance to the microbiota mediated by innate immune recepto Microbiology and Immunology, 2015, 59, 573-585.	rs.	0.7	36
150	Colonic bacterial composition in Parkinson's disease. Movement Disorders, 2015, 30, 1	351-1360.	2.2	932
151	The role of the commensal microbiota in the regulation of tolerance to dietary allergens Opinion in Allergy and Clinical Immunology, 2015, 15, 243-249.	s. Current	1.1	51
152	In-utero exposures and the evolving epidemiology of paediatric allergy. Current Opinior and Clinical Immunology, 2015, 15, 402-408.	ı in Allergy	1.1	28
153	Commensal microbiota-derived signals regulate host immune system through epigenet modifications. Inflammation and Regeneration, 2015, 35, 129-136.	ic	1.5	1
154	Regulation of intestinal inflammation through interaction of intestinal environmental fa innate immune cells. Inflammation and Regeneration, 2015, 35, 028-041.	actors and	1.5	0
155	An Integrated Outlook on the Metagenome and Metabolome of Intestinal Diseases. Dis	eases (Basel,) Tj ETQq1 1	0.784314 1.84314	rgBT /Over
156	Metabolic Interactions in the Gastrointestinal Tract (GIT): Host, Commensal, Probiotics, Bacteriophage Influences. Microorganisms, 2015, 3, 913-932.	, and	1.6	9
157	Regulatory T-Cells at the Interface between Human Host and Pathogens in Infectious D Vaccination. Frontiers in Immunology, 2015, 6, 217.	iseases and	2.2	129
158	Breast Milk and Solid Food Shaping Intestinal Immunity. Frontiers in Immunology, 2015	i, 6, 415.	2.2	65
159	Mechanisms of Microbe–Host Interaction in Crohn's Disease: Dysbiosis vs. Patho Frontiers in Immunology, 2015, 6, 555.	biont Selection.	2.2	83
160	SLE: Another Autoimmune Disorder Influenced by Microbes and Diet?. Frontiers in Imm 608.	unology, 2015, 6,	2.2	112
161	Epigenetics of Peripheral B-Cell Differentiation and the Antibody Response. Frontiers in 2015, 6, 631.	Immunology,	2.2	77
162	The Treg/Th17 Axis: A Dynamic Balance Regulated by the Gut Microbiome. Frontiers in I 6, 639.	mmunology, 2015,	2.2	379
163	Responses in colonic microbial community and gene expression of pigs to a long-term h starch diet. Frontiers in Microbiology, 2015, 6, 877.	nigh resistant	1.5	76
164	Chronic Trichuris muris Infection in C57BL/6 Mice Causes Significant Changes in Host M Metabolome: Effects Reversed by Pathogen Clearance. PLoS ONE, 2015, 10, e0125945	Aicrobiota and	1.1	220
165	Conditional Deletion of TAK1 in T Cells Reveals a Pivotal Role of TCRαβ+ Intraepithelial Preventing Lymphopenia-Associated Colitis. PLoS ONE, 2015, 10, e0128761.	Lymphocytes in	1.1	8

#	Article	IF	CITATIONS
166	Burn Injury Alters the Intestinal Microbiome and Increases Gut Permeability and Bacterial Translocation. PLoS ONE, 2015, 10, e0129996.	1.1	195
167	Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters. PLoS ONE, 2015, 10, e0137429.	1.1	609
168	Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis. Frontiers in Physiology, 2015, 6, 164.	1.3	240
169	Diet, Microbiota and Immune System in Type 1 Diabetes Development and Evolution. Nutrients, 2015, 7, 9171-9184.	1.7	93
170	Non-Celiac Gluten Sensitivity Triggers Gut Dysbiosis, Neuroinflammation, Gut-Brain Axis Dysfunction, and Vulnerability for Dementia. CNS and Neurological Disorders - Drug Targets, 2015, 14, 110-131.	0.8	61
171	Regulation of intestinal Th17 and Treg cells by gut microbiota. Inflammation and Regeneration, 2015, 35, 099-105.	1.5	2
172	Role of the normal gut microbiota. World Journal of Gastroenterology, 2015, 21, 8787.	1.4	1,775
173	The unfolded protein response, inflammation, oscillators, and disease: a systems biology approach. Endoplasmic Reticulum Stress in Diseases, 2015, 2, .	0.2	3
174	Th17 Cells in Type 1 Diabetes: Role in the Pathogenesis and Regulation by Gut Microbiome. Mediators of Inflammation, 2015, 2015, 1-7.	1.4	40
175	The kinase DYRK1A reciprocally regulates the differentiation of Th17 and regulatory T cells. ELife, 2015, 4, .	2.8	48
176	Roles of Commensal Microbiota in Pancreas Homeostasis and Pancreatic Pathologies. Journal of Diabetes Research, 2015, 2015, 1-20.	1.0	35
177	Gut microbial short-chain fatty acids in host defense and immune regulation. Inflammation and Regeneration, 2015, 35, 114-121.	1.5	8
178	Are Obesity-Related Insulin Resistance and Type 2 Diabetes Autoimmune Diseases?. Diabetes, 2015, 64, 1886-1897.	0.3	88
179	Regulatory T cell identity: formation and maintenance. Trends in Immunology, 2015, 36, 344-353.	2.9	119
180	Intestinal microbiota-related effects on graft-versus-host disease. International Journal of Hematology, 2015, 101, 428-437.	0.7	51
181	The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health and Disease, 2015, 26, 26050.	3.8	766
182	Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 497-506.	8.2	200
183	A breakthrough in probiotics: Clostridium butyricum regulates gut homeostasis and anti-inflammatory response in inflammatory bowel disease. Journal of Gastroenterology, 2015, 50, 928-939.	2.3	111

IF ARTICLE CITATIONS # Mucosal Dendritic Cells., 2015, , 489-541. 184 4 Early Factors Leading to Later Obesity: Interactions of the Microbiome, Epigenome, and Nutrition. Current Problems in Pediatric and Adolescent Health Care, 2015, 45, 134-142. 0.8 29 T cells in the control of organ-specific autoimmunity. Journal of Clinical Investigation, 2015, 125, 186 3.9 122 2250-2260. The gut microbiota and Type 1 Diabetes. Clinical Immunology, 2015, 159, 143-153. Site-specific programming of the host epithelial transcriptome by the gut microbiota. Genome Biology, 188 3.8 131 2015, 16, 62. The Tumor Macroenvironment. Advances in Cancer Research, 2015, 128, 235-262. Metagenomic cross-talk: the regulatory interplay between immunogenomics and the microbiome. 190 3.6 68 Genome Medicine, 2015, 7, 120. Neural networks elucidate T cell priming conditions for adoptive transfer., 2015,,. 193 From Hype to Hope: The Gut Microbiota in Enteric Infectious Disease. Cell, 2015, 163, 1326-1332. 13.5 156 194 Microenvironment Matters. Progress in Molecular Biology and Translational Science, 2015, 136, 35-56. The Molecular Control of Regulatory T Cell Induction. Progress in Molecular Biology and 195 0.9 11 Translational Science, 2015, 136, 69-97. Contentious host–microbiota relationship in inflammatory bowel disease – can foes become friends again?. Scandinavian Journal of Gastroenterology, 2015, 50, 34-42. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature, 2015, 517, 197 13.7 427 165-169. Experimental Models of Inflammatory Bowel Diseases. Cellular and Molecular Gastroenterology and 198 2.3 508 Hepatology, 2015, 1, 154-170. Epigenetic modifications of the immune system in health and disease. Immunology and Cell Biology, 199 1.0 95 2015, 93, 226-232. Atheroprotective immunity and cardiovascular disease: therapeutic opportunities and challenges. Journal of Internal Medicine, 2015, 278, 507-519. Feeding immunity: skepticism, delicacies and delights. Nature Immunology, 2015, 16, 215-219. 201 7.0 14 Behçet's syndrome patients exhibit specific microbiome signature. Autoimmunity Reviews, 2015, 14, 269-276.

#	Article	IF	CITATIONS
203	Therapeutic Manipulation of the Microbiome in IBD: Current Results and Future Approaches. Current Treatment Options in Gastroenterology, 2015, 13, 105-120.	0.3	95
204	Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Molecular Human Reproduction, 2015, 21, 389-409.	1.3	150
205	The involvement of gut microbiota in inflammatory bowel disease pathogenesis: Potential for therapy. , 2015, 149, 191-212.		139
206	Cellular Energy Metabolism in T-Lymphocytes. International Reviews of Immunology, 2015, 34, 34-49.	1.5	21
207	Targeting T cell metabolism for therapy. Trends in Immunology, 2015, 36, 71-80.	2.9	204
208	Food, Immunity, and the Microbiome. Gastroenterology, 2015, 148, 1107-1119.	0.6	278
209	Microbiota-Mediated Inflammation and Antimicrobial Defense in the Intestine. Annual Review of Immunology, 2015, 33, 227-256.	9.5	227
210	Fatty acid metabolism in the regulation of T cell function. Trends in Immunology, 2015, 36, 81-91.	2.9	324
212	Gut microbiota trajectory in pediatric patients undergoing hematopoietic SCT. Bone Marrow Transplantation, 2015, 50, 992-998.	1.3	111
213	Pancreatic β-Cells Limit Autoimmune Diabetes via an Immunoregulatory Antimicrobial Peptide Expressed under the Influence of the Gut Microbiota. Immunity, 2015, 43, 304-317.	6.6	247
214	Association of Pneumococcal Carriage and Expression of Foxp3+ Regulatory T Cells and Th17 Cells in the Adenoids of Children. Respiration, 2015, 90, 25-32.	1.2	18
215	A commensal symbiotic factor derived from <i>Bacteroides fragilis</i> promotes human CD39 ⁺ Foxp3 ⁺ T cells and T _{reg} function. Gut Microbes, 2015, 6, 234-242.	4.3	188
216	Dietary intake of inulin-type fructans in active and inactive Crohn's disease and healthy controls: a case–control study. Journal of Crohn's and Colitis, 2015, 9, 1024-1031.	0.6	33
217	Immune–microbiota interactions in health and disease. Clinical Immunology, 2015, 159, 122-127.	1.4	245
218	Microbiota Metabolite Regulation of Host Immune Homeostasis: A Mechanistic Missing Link. Current Allergy and Asthma Reports, 2015, 15, 24.	2.4	54
219	Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nature Communications, 2015, 6, 7320.	5.8	683
220	The Environment of Regulatory T Cell Biology: Cytokines, Metabolites, and the Microbiome. Frontiers in Immunology, 2015, 6, 61.	2.2	116
221	Deciphering the crosstalk among IL-1 and IL-10 family cytokines in intestinal immunity. Trends in Immunology, 2015, 36, 471-478.	2.9	28

#	Article	IF	CITATIONS
222	Population Level Divergence from the Mediterranean Diet and the Risk of Cancer and Metabolic Disease. , 2015, , 209-223.		1
223	Origin and functions of pro-inflammatory cytokine producing Foxp3+ regulatory T cells. Cytokine, 2015, 76, 13-24.	1.4	109
224	Smad2 and Smad3 Inversely Regulate TGF-β Autoinduction in Clostridium butyricum-Activated Dendritic Cells. Immunity, 2015, 43, 65-79.	6.6	153
225	New insights from animal models of colon cancer: inflammation control as a new facet on the tumor suppressor APC gem. Gastrointestinal Cancer: Targets and Therapy, 2015, , 39.	5.5	2
226	Tissue resident regulatory T cells: novel therapeutic targets for human disease. Cellular and Molecular Immunology, 2015, 12, 543-552.	4.8	47
227	Impacts of Gut Bacteria on Human Health and Diseases. International Journal of Molecular Sciences, 2015, 16, 7493-7519.	1.8	662
228	Type 1 diabetes and gut microbiota: Friend or foe?. Pharmacological Research, 2015, 98, 9-15.	3.1	48
229	The inflammasome: Learning from bacterial evasion strategies. Seminars in Immunology, 2015, 27, 102-110.	2.7	52
230	Humoral autoimmunity: A failure of regulatory T cells?. Autoimmunity Reviews, 2015, 14, 735-741.	2.5	45
231	A Role for Gut Microbiota and the Metaboliteâ€5ensing Receptor GPR43 in a Murine Model of Gout. Arthritis and Rheumatology, 2015, 67, 1646-1656.	2.9	192
232	Symbiotic and antibiotic interactions between gut commensal microbiota and host immune system. Medicina (Lithuania), 2015, 51, 69-75.	0.8	40
233	Identifying the immunomodulatory components of helminths. Parasite Immunology, 2015, 37, 293-303.	0.7	56
234	The impact of diet on asthma and allergic diseases. Nature Reviews Immunology, 2015, 15, 308-322.	10.6	201
235	The Microbiome and Allogeneic Stem Cell Transplantation. Current Stem Cell Reports, 2015, 1, 53-59.	0.7	2
236	Xylo-oligosaccharides and virginiamycin differentially modulate gut microbial composition in chickens. Microbiome, 2015, 3, 15.	4.9	127
237	Manipulation of the Quorum Sensing Signal AI-2 Affects the Antibiotic-Treated Gut Microbiota. Cell Reports, 2015, 10, 1861-1871.	2.9	313
238	Innate immunity: Actuating the gears of celiac disease pathogenesis. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2015, 29, 425-435.	1.0	51
239	Microbiota—implications for immunity and transplantation. Nature Reviews Nephrology, 2015, 11, 342-353.	4.1	47

ARTICLE IF CITATIONS # Where Next for Microbiome Research?. PLoS Biology, 2015, 13, e1002050. 240 2.6 115 Microbiota and Autoimmunity: Exploring New Avenues. Cell Host and Microbe, 2015, 17, 548-552. 241 5.1 An Integrative View of Microbiome-Host Interactions in Inflammatory Bowel Diseases. Cell Host and 242 235 5.1Microbe, 2015, 17, 577-591. Macrophages and cancer: from mechanisms to therapeutic implications. Trends in Immunology, 2015, 243 2.9 36, 229-239. Essential role of mitochondrial energy metabolism in Foxp3 ⁺ Tâ€regulatory cell function 244 0.2 213 and allograft survival. FASEB Journal, 2015, 29, 2315-2326. Dietary Gut Microbial Metabolites, Short-chain Fatty Acids, and Host Metabolic Regulation. Nutrients, 2015, 7, 2839-2849. 1.7 674 Towards a more comprehensive concept for prebiotics. Nature Reviews Gastroenterology and 246 8.2 679 Hepatology, 2015, 12, 303-310. Prebiotics, probiotics, synbiotics, and the immune system. Current Opinion in Gastroenterology, 2015, 947 1.0 204 31, 153-158. 248 The gut microbiome in health and in disease. Current Opinion in Gastroenterology, 2015, 31, 69-75. 1.0 1,193 249 Intestinal dendritic cells. Current Opinion in Gastroenterology, 2015, 31, 98-103. 1.0 34 Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis 250 5.8983 through regulation of the inflammasome. Nature Communications, 2015, 6, 6734. Cancer and the microbiota. Science, 2015, 348, 80-86. 6.0 942 CD5 Instructs Extrathymic Regulatory T Cell Development in Response to Self and Tolerizing Antigens. 252 6.6 89 Immunity, 2015, 42, 471-483. Autoimmune host–microbiota interactions at barrier sites and beyond. Trends in Molecular Medicine, 3.5 100 2015, 21, 233-244. Why Is Initial Bacterial Colonization of the Intestine Important to Infants' and Children's Health?. 254 0.9 252 Journal of Pediatric Gastroenterology and Nutrition, 2015, 60, 294-307. The small bowel microbiota. Current Opinion in Gastroenterology, 2015, 31, 130-136. 23 Mast Cell Activation Disease and Microbiotic Interactions. Clinical Therapeutics, 2015, 37, 941-953. 256 1.1 19 Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science 5.8 1,277 Translational Medicine, 2015, 7, 307ra152.

#	Article	IF	CITATIONS
258	Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS. Acta Neuropathologica, 2015, 130, 279-295.	3.9	160
259	Emerging Influence of the Intestinal Microbiota during Allogeneic Hematopoietic Cell Transplantation: Control the Gut and the Body Will Follow. Biology of Blood and Marrow Transplantation, 2015, 21, 1360-1366.	2.0	42
260	The outer mucus layer hosts a distinct intestinal microbial niche. Nature Communications, 2015, 6, 8292.	5.8	390
262	Impact of Gut Microbiota on Obesity, Diabetes, and Cardiovascular Disease Risk. Current Cardiology Reports, 2015, 17, 120.	1.3	125
263	The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation. Immunity, 2015, 43, 998-1010.	6.6	362
264	Commensal <i>Bifidobacterium</i> promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science, 2015, 350, 1084-1089.	6.0	2,782
265	Microbiota-Dependent Hepatic Lipogenesis Mediated by Stearoyl CoA Desaturase 1 (SCD1) Promotes Metabolic Syndrome in TLR5-Deficient Mice. Cell Metabolism, 2015, 22, 983-996.	7.2	129
266	Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology, 2015, 11, 577-591.	4.3	1,484
267	Individual intestinal symbionts induce a distinct population of RORÎ ³ ⁺ regulatory T cells. Science, 2015, 349, 993-997.	6.0	707
268	Helminths and the microbiota: parts of the hygiene hypothesis. Parasite Immunology, 2015, 37, 314-323.	0.7	70
269	Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity, 2015, 43, 817-829.	6.6	637
270	Butyrate and Mucosal Inflammation: New Scientific Evidence Supports Clinical Observation. Clinical and Translational Gastroenterology, 2015, 6, e108.	1.3	63
271	Cohabitation in the Intestine: Interactions among Helminth Parasites, Bacterial Microbiota, and Host Immunity. Journal of Immunology, 2015, 195, 4059-4066.	0.4	154
272	Lack of soluble fiber drives diet-induced adiposity in mice. American Journal of Physiology - Renal Physiology, 2015, 309, G528-G541.	1.6	128
273	Microbiota in Inflammatory Bowel Disease Pathogenesis and Therapy. Nutrition in Clinical Practice, 2015, 30, 760-779.	1.1	60
274	Transcriptional and Epigenetic Control of Regulatory T Cell Development. Progress in Molecular Biology and Translational Science, 2015, 136, 1-33.	0.9	27
275	The Special Relationship in the Development and Function of T Helper 17 and Regulatory T Cells. Progress in Molecular Biology and Translational Science, 2015, 136, 99-129.	0.9	37
276	Diagnostic and Prognostic Microbial Biomarkers in Inflammatory Bowel Diseases. Gastroenterology, 2015, 149, 1265-1274.e3.	0.6	59

	CHATION R	EPORT	
#	Article	IF	Citations
277	T cell metabolic reprogramming and plasticity. Molecular Immunology, 2015, 68, 507-512.	1.0	54
278	Immune Responses to Intestinal Microbes in Inflammatory Bowel Diseases. Current Allergy and Asthma Reports, 2015, 15, 61.	2.4	41
279	A Distinct Function of Regulatory T Cells in Tissue Protection. Cell, 2015, 162, 1078-1089.	13.5	734
280	Gut Microbiota Dysbiosis in Obesity-Linked Metabolic Diseases and Prebiotic Potential of Polyphenol-Rich Extracts. Current Obesity Reports, 2015, 4, 389-400.	3.5	146
281	New developments providing mechanistic insight into the impact of the microbiota on allergic disease. Clinical Immunology, 2015, 159, 170-176.	1.4	39
282	The Cellular and Molecular Basis of Translational Immunometabolism. Immunity, 2015, 43, 421-434.	6.6	161
283	Microbe-associated immunomodulatory metabolites: Influence on T cell fate and function. Molecular Immunology, 2015, 68, 575-584.	1.0	23
284	Control of Regulatory T Cell Migration, Function, and Homeostasis. Journal of Immunology, 2015, 195, 2507-2513.	0.4	154
285	Gut Microbiome and the Development of Food Allergy and Allergic Disease. Pediatric Clinics of North America, 2015, 62, 1479-1492.	0.9	60
286	A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. Nature, 2015, 528, 132-136.	13.7	123
287	The gut microbiota keeps enteric glial cells on the move; prospective roles of the gut epithelium and immune system. Gut Microbes, 2015, 6, 398-403.	4.3	45
288	Malaria parasites target the hepatocyte receptor EphA2 for successful host infection. Science, 2015, 350, 1089-1092.	6.0	119
289	CD5L/AIM Regulates Lipid Biosynthesis and Restrains Th17 Cell Pathogenicity. Cell, 2015, 163, 1413-1427.	13.5	313
290	Asthma Prevention: Right Bugs, Right Time?. Cell Host and Microbe, 2015, 18, 523-525.	5.1	5
291	Gut Microbiota–Immune System Crosstalk. , 2015, , 127-137.		6
292	Standardised animal models of host microbial mutualism. Mucosal Immunology, 2015, 8, 476-486.	2.7	112
293	The interplay between the intestinal microbiota and the immune system. Clinics and Research in Hepatology and Gastroenterology, 2015, 39, 9-19.	0.7	60
294	The Role of the Gut Microbiota in the Pathogenesis of Antiphospholipid Syndrome. Current Rheumatology Reports, 2015, 17, 472.	2.1	32

#	Article	IF	CITATIONS
295	The rest of the story: the microbiome and gastrointestinal infections. Current Opinion in Microbiology, 2015, 23, 121-125.	2.3	22
296	Microbiome and cancer. Seminars in Immunopathology, 2015, 37, 65-72.	2.8	56
297	The gut microbiota and its role in the development of allergic disease: a wider perspective. Clinical and Experimental Allergy, 2015, 45, 43-53.	1.4	166
298	Gut microbiome and anticancer immune response: really hot Sh*t!. Cell Death and Differentiation, 2015, 22, 199-214.	5.0	100
299	Commensal microbiota regulates T cell fate decision in the gut. Seminars in Immunopathology, 2015, 37, 17-25.	2.8	90
300	Gut microbiota and allergy: the importance of the pregnancy period. Pediatric Research, 2015, 77, 214-219.	1.1	99
301	Epigenomics and the Microbiota. Toxicologic Pathology, 2015, 43, 101-106.	0.9	30
302	Sexually dimorphic effects of prenatal exposure to lipopolysaccharide, and prenatal and postnatal exposure to propionic acid, on acoustic startle response and prepulse inhibition in adolescent rats: Relevance to autism spectrum disorders. Behavioural Brain Research, 2015, 278, 244-256.	1.2	85
303	A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased <i>Akkermansia</i> spp. population in the gut microbiota of mice. Gut, 2015, 64, 872-883.	6.1	910
304	Diet and host–microbial crosstalk in postnatal intestinal immune homeostasis. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 14-25.	8.2	85
305	Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway. Mucosal Immunology, 2015, 8, 80-93.	2.7	824
306	Metabolic control of regulatory T cell development and function. Trends in Immunology, 2015, 36, 3-12.	2.9	227
307	Obesity-Associated Gut Microbiota. , 2015, , 149-171.		3
308	6. Die physiologische Standortflora. , 2016, , 61-82.		0
309	15. Interaktion zwischen Immunsystem und Mikrobiota. , 2016, , 219-232.		0
310	Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis. World Journal of Gastroenterology, 2016, 22, 9257.	1.4	55
311	Maintenance of gut homeostasis by the mucosal immune system. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2016, 92, 423-435.	1.6	48
312	Epigenomics of Intestinal Disease. , 2016, , 257-273.		0

#	Article	IF	CITATIONS
313	THE GUT MICROBIOTA AND IMMUNE SYSTEM RELATIONSHIP IN HUMAN GRAFT-VERSUS-HOST DISEASE. Mediterranean Journal of Hematology and Infectious Diseases, 2016, 8, 2016025.	0.5	53
314	Distinctly altered gut microbiota in the progression of liver disease. Oncotarget, 2016, 7, 19355-19366.	0.8	180
315	Role of the Microbiota in Immune Development. , 2016, , 109-119.		0
316	The gut microbiota: a key regulator of metabolic diseases. BMB Reports, 2016, 49, 536-541.	1.1	46
317	The Hygiene Hypothesis and Immunity to Parasitic Helminths. , 2016, , 166-172.		0
318	Epigenetics: The New Frontier in the Landscape of Asthma. Scientifica, 2016, 2016, 1-7.	0.6	12
319	Microbiome and the Effect on Immune Response. , 2016, , 171-194.		0
320	Microbial Influences on the Development of Atopy. , 2016, , 209-217.		1
321	Prevention of Allergy/Asthma—New Strategies. , 2016, , 337-350.		0
322	The Gut Microbiota in Immune-Mediated Inflammatory Diseases. Frontiers in Microbiology, 2016, 7, 1081.	1.5	315
323	The Mucosal Immune System and Its Regulation by Autophagy. Frontiers in Immunology, 2016, 7, 240.	2.2	75
324	Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK Cells. Frontiers in Immunology, 2016, 7, 273.	2.2	63
325	Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Frontiers in Immunology, 2016, 7, 290.	2.2	93
326	Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation. Frontiers in Immunology, 2016, 7, 507.	2.2	296
327	Metabiotics: One Step ahead of Probiotics; an Insight into Mechanisms Involved in Anticancerous Effect in Colorectal Cancer. Frontiers in Microbiology, 2016, 7, 1940.	1.5	101
328	Correlation of Gut Microbiota Composition with Resistance to Experimental Autoimmune Encephalomyelitis in Rats. Frontiers in Microbiology, 2016, 7, 2005.	1.5	46
329	Histone Posttranslational Modifications of CD4+ T Cell in Autoimmune Diseases. International Journal of Molecular Sciences, 2016, 17, 1547.	1.8	21
330	Clostridium Butyricum CGMCC0313.1 Modulates Lipid Profile, Insulin Resistance and Colon Homeostasis in Obese Mice. PLoS ONE, 2016, 11, e0154373.	1.1	59

	CITATION R	EPORT	
#	ARTICLE	IF	CITATIONS
331	Regulation of Host Chromatin by Bacterial Metabolites. , 2016, , 423-442.		Э
333	Disrupted regulatory T cell homeostasis in inflammatory bowel diseases. World Journal of Gastroenterology, 2016, 22, 974.	1.4	43
334	Vaginal Mucosal Homeostatic Response May Determine Pregnancy Outcome in Women With Bacterial Vaginosis. Medicine (United States), 2016, 95, e2668.	0.4	10
335	Microbiota as Therapeutic Targets. Digestive Diseases, 2016, 34, 558-565.	0.8	14
336	The Circadian <i>Clock</i> Mutation Promotes Intestinal Dysbiosis. Alcoholism: Clinical and Experimental Research, 2016, 40, 335-347.	1.4	134
337	Sporadic colorectal cancer: microbial contributors to disease prevention, development and therapy. British Journal of Cancer, 2016, 115, 273-280.	2.9	105
338	Links Between the Microbiome and Bone. Journal of Bone and Mineral Research, 2016, 31, 1638-1646.	3.1	151
339	Diet–microbiota interactions as moderators of human metabolism. Nature, 2016, 535, 56-64.	13.7	1,602
340	The microbiota in adaptive immune homeostasis and disease. Nature, 2016, 535, 75-84.	13.7	1,336
341	Cytokine Networks and T-Cell Subsets in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2016, 22, 1157-1167.	0.9	118
342	Gut microbiome and lipid metabolism. Current Opinion in Lipidology, 2016, 27, 216-224.	1.2	72
343	AACR Cancer Progress Report 2016. Clinical Cancer Research, 2016, 22, S1-S137.	3.2	29
344	Impact of the microbial derived short chain fatty acid propionate on host susceptibility to bacterial and fungal infections in vivo. Scientific Reports, 2016, 6, 37944.	1.6	96
345	Raw meat based diet influences faecal microbiome and end products of fermentation in healthy dogs. BMC Veterinary Research, 2016, 13, 65.	0.7	128
346	Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood, 2016, 128, 2083-2088.	0.6	279
347	Network analysis of psoriasis reveals biological pathways and roles for coding and long non-coding RNAs. BMC Genomics, 2016, 17, 841.	1.2	74
349	Microbiome–Host Immune System Interactions. Seminars in Liver Disease, 2016, 36, 317-326.	1.8	21
350	Microbes, Metabolites and Health. , 2016, , 13-48.		0

#	Article	IF	CITATIONS
351	Role of the intestinal mucosa in acute gastrointestinal GVHD. Hematology American Society of Hematology Education Program, 2016, 2016, 119-127.	0.9	6
352	Microbiota, regulatory T cell subsets, and allergic disorders. Allergo Journal International, 2016, 25, 114-123.	0.9	26
353	The role of the gut microbiota in food allergy. Current Opinion in Pediatrics, 2016, 28, 748-753.	1.0	79
354	Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation Scientific Reports, 2016, 6, 19032.	1.6	328
355	Is There a Role for Diet in the Therapy of Rheumatoid Arthritis?. Current Rheumatology Reports, 2016, 18, 23.	2.1	42
357	Short-Chain Fatty Acids Regulate Cytokines and Th17/Treg Cells in Human Peripheral Blood Mononuclear Cells <i>in vitro</i> . Immunological Investigations, 2016, 45, 205-222.	1.0	132
358	Regulatory mechanisms of immune tolerance in type 1 diabetes and their failures. Journal of Autoimmunity, 2016, 71, 69-77.	3.0	34
359	Gut microbiota, metabolites and host immunity. Nature Reviews Immunology, 2016, 16, 341-352.	10.6	2,212
360	Childhood allergies and asthma: New insights on environmental exposures and local immunity at the lung barrier. Current Opinion in Immunology, 2016, 42, 41-47.	2.4	25
362	Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clinical and Translational Immunology, 2016, 5, e82.	1.7	196
363	Memory CD8 + T Cells Require Increased Concentrations of Acetate Induced by Stress for Optimal Function. Immunity, 2016, 44, 1312-1324.	6.6	257
364	The microbiota and immune response during Clostridium difficile infection. Anaerobe, 2016, 41, 79-84.	1.0	28
365	Functional Characterization of Inflammatory Bowel Disease–Associated Gut Dysbiosis in Gnotobiotic Mice. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 468-481.	2.3	189
366	Immunometabolism of regulatory T cells. Nature Immunology, 2016, 17, 618-625.	7.0	259
367	Functional changes in gut microbiota during hematopoietic stem cell transplantation for severe combined immunodeficiency. Journal of Allergy and Clinical Immunology, 2016, 138, 622-625.e3.	1.5	8
368	Maternal Antibiotic Treatment Impacts Development of the Neonatal Intestinal Microbiome and Antiviral Immunity. Journal of Immunology, 2016, 196, 3768-3779.	0.4	130
369	Molecular and cellular mechanisms of food allergy and food tolerance. Journal of Allergy and Clinical Immunology, 2016, 137, 984-997.	1.5	227
370	Microbiome and Anticancer Immunosurveillance. Cell, 2016, 165, 276-287.	13.5	366

#	Article	IF	CITATIONS
371	Metabolomics in rheumatic diseases: desperately seeking biomarkers. Nature Reviews Rheumatology, 2016, 12, 269-281.	3.5	128
372	Gastrointestinal Microbiota and Colon Cancer. Digestive Diseases, 2016, 34, 244-250.	0.8	61
373	Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways. Journal of Molecular Biology, 2016, 428, 3266-3281.	2.0	67
374	Acyl-CoA reductase PGN_0723 utilizes succinyl-CoA to generate succinate semialdehyde in a butyrate-producing pathway of Porphyromonas gingivalis. Archives of Biochemistry and Biophysics, 2016, 596, 138-148.	1.4	8
376	Development and maintenance of intestinal regulatory T cells. Nature Reviews Immunology, 2016, 16, 295-309.	10.6	442
377	From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Molecular Psychiatry, 2016, 21, 738-748.	4.1	683
378	Emerging Concepts on the Gut Microbiome and Multiple Sclerosis. Journal of Interferon and Cytokine Research, 2016, 36, 347-357.	0.5	27
379	Gut Immunity and Type 1 Diabetes: a Mélange of Microbes, Diet, and Host Interactions?. Current Diabetes Reports, 2016, 16, 60.	1.7	13
380	Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. , 2016, 164, 144-151.		386
381	The Microbiome, Timing, and Barrier Function in the Context of Allergic Disease. Immunity, 2016, 44, 728-738.	6.6	126
382	Microbiome therapeutics — Advances and challenges. Advanced Drug Delivery Reviews, 2016, 105, 44-54.	6.6	198
383	Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Medicine, 2016, 8, 46.	3.6	402
384	Mismatch Repair and Colon Cancer: Mechanisms and Therapies Explored. Trends in Molecular Medicine, 2016, 22, 274-289.	3.5	136
385	Diagnosis and interpretation of intestinal dysbiosis in dogs and cats. Veterinary Journal, 2016, 215, 30-37.	0.6	126
386	Regulation of immune cell function by shortâ€chain fatty acids. Clinical and Translational Immunology, 2016, 5, e73.	1.7	885
387	Germ-free and Antibiotic-treated Mice are Highly Susceptible to Epithelial Injury in DSS Colitis. Journal of Crohn's and Colitis, 2016, 10, 1324-1335.	0.6	179
388	Novel perspectives on therapeutic modulation of the gut microbiota. Therapeutic Advances in Gastroenterology, 2016, 9, 580-593.	1.4	63
389	Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends in Molecular Medicine, 2016, 22, 458-478.	3.5	630

	Ci	CITATION REPORT	
#	Article	IF	CITATIONS
390	Mechanisms of Pediatric Inflammatory Bowel Disease. Annual Review of Immunology, 2016, 34, 31-6	4. 9.5	124
391	Tissue Tregs. Annual Review of Immunology, 2016, 34, 609-633.	9.5	442
392	Linking the Microbiota, Chronic Disease, and the Immune System. Trends in Endocrinology and Metabolism, 2016, 27, 831-843.	3.1	195
393	Regulatory T cells in allergic diseases. Journal of Allergy and Clinical Immunology, 2016, 138, 639-652	. 1.5	272
394	Microbiota-Mediated Immunomodulation and Asthma: Current and Future Perspectives. Current Treatment Options in Allergy, 2016, 3, 292-309.	0.9	6
395	The Role of the Microbiota in Shaping Infectious Immunity. Trends in Immunology, 2016, 37, 647-658	3. 2.9	81
396	Gut Microbiota, Inflammation, and Colorectal Cancer. Annual Review of Microbiology, 2016, 70, 395-411.	2.9	448
397	FOXP3 + CD4 T-cell maturity and responses to microbial stimulation alter with age and associate with early-life gut colonization. Journal of Allergy and Clinical Immunology, 2016, 138, 905-908.e4.	n 1.5	3
398	Regulatory T Cells and Cancer: A Two-Sided Story. Immunological Investigations, 2016, 45, 797-812.	1.0	36
399	Alterations of Enteric Microbiota in Patients with a Normal Ileal Pouch Are Predictive of Pouchitis. Journal of Crohn's and Colitis, 2017, 11, 314-320.	0.6	28
400	Function and Phylogeny of Bacterial Butyryl Coenzyme A:Acetate Transferases and Their Diversity in the Proximal Colon of Swine. Applied and Environmental Microbiology, 2016, 82, 6788-6798.	1.4	24
401	When pathogenic bacteria meet the intestinal microbiota. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150504.	1.8	100
402	Nutrient sensing, signal transduction and immune responses. Seminars in Immunology, 2016, 28, 396-407.	2.7	50
403	Rapid and Efficient Generation of Regulatory T Cells to Commensal Antigens in the Periphery. Cell Reports, 2016, 17, 206-220.	2.9	115
404	Mortality in children with complicated severe acute malnutrition is related to intestinal and systemic inflammation: an observational cohort study. American Journal of Clinical Nutrition, 2016, 104, 1441-1449.	2.2	112
405	Metabolite and Microbiome Interplay in Cancer Immunotherapy. Cancer Research, 2016, 76, 6146-61	.52. 0.4	85
406	Engineering Human Microbiota: Influencing Cellular and Community Dynamics for Therapeutic Applications. International Review of Cell and Molecular Biology, 2016, 324, 67-124.	1.6	12
407	A clinical update on the significance of the gut microbiota in systemic autoimmunity. Journal of Autoimmunity, 2016, 74, 85-93.	3.0	122

#	Article	IF	CITATIONS
408	Randomised clinical study: inulin shortâ€chain fatty acid esters for targeted delivery of shortâ€chain fatty acids to the human colon. Alimentary Pharmacology and Therapeutics, 2016, 44, 662-672.	1.9	37
409	Environmental factors in autoimmune diseases and their role in multiple sclerosis. Cellular and Molecular Life Sciences, 2016, 73, 4611-4622.	2.4	82
411	Advances in asthma 2015: Across the lifespan. Journal of Allergy and Clinical Immunology, 2016, 138, 397-404.	1.5	11
412	The Effect of Microbiota and the Immune System on the Development and Organization of the Enteric Nervous System. Gastroenterology, 2016, 151, 836-844.	0.6	178
413	Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host and Microbe, 2016, 20, 202-214.	5.1	601
414	Metabolites: messengers between the microbiota and the immune system. Genes and Development, 2016, 30, 1589-1597.	2.7	321
415	The microbiome–systemic diseases connection. Oral Diseases, 2016, 22, 719-734.	1.5	96
416	The interplay between microbiota and inflammation: lessons from peritonitis and sepsis. Clinical and Translational Immunology, 2016, 5, e90.	1.7	36
417	High fat diet exacerbates dextran sulfate sodium induced colitis through disturbing mucosal dendritic cell homeostasis. International Immunopharmacology, 2016, 40, 1-10.	1.7	72
418	Gut Microbiota: Modulation of Host Physiology in Obesity. Physiology, 2016, 31, 327-335.	1.6	48
419	Oxygen Sensing by T Cells Establishes an Immunologically Tolerant Metastatic Niche. Cell, 2016, 166, 1117-1131.e14.	13.5	203
420	Glimpse of natural selection of long-lived T-cell clones in healthy life. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9858-9863.	3.3	19
421	Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium. Scientific Reports, 2016, 6, 27572.	1.6	164
422	New insights into the immunopathogenesis of systemic lupus erythematosus. Nature Reviews Rheumatology, 2016, 12, 716-730.	3.5	909
423	Role of the intestinal mucosa in acute gastrointestinal GVHD. Blood, 2016, 128, 2395-2402.	0.6	39
424	Role of Metabolism in the Immunobiology of Regulatory T Cells. Journal of Immunology, 2016, 197, 2567-2575.	0.4	103
425	Transitioning From Descriptive to Mechanistic Understanding of the Microbiome: The Need for a Prospective Longitudinal Approach to Predicting Disease. Journal of Pediatrics, 2016, 179, 240-248.	0.9	13
426	Microbiota, regulatory T cell subsets, and allergic disorders. Allergo Journal, 2016, 25, 16-25.	0.1	0

#	Article	IF	CITATIONS
427	Food Fight: Role of Itaconate and Other Metabolites in Antimicrobial Defense. Cell Metabolism, 2016, 24, 379-387.	7.2	96
428	Induced Regulatory T Cells: Their Development, Stability, and Applications. Trends in Immunology, 2016, 37, 803-811.	2.9	295
429	Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2574-2583.	1.9	7
430	Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. Molecular Metabolism, 2016, 5, 795-803.	3.0	132
431	The Microbiota, Immunoregulation, and Mental Health: Implications for Public Health. Current Environmental Health Reports, 2016, 3, 270-286.	3.2	150
432	Mango Supplementation Modulates Gut Microbial Dysbiosis and Short-Chain Fatty Acid Production Independent of Body Weight Reduction in C57BL/6 Mice Fed a High-Fat Diet. Journal of Nutrition, 2016, 146, 1483-1491.	1.3	47
433	Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke. Journal of Neuroscience, 2016, 36, 7428-7440.	1.7	530
434	The Microbiota and Its Modulation in Immune-Mediated Disorders. , 2016, , 191-227.		1
435	Antigen Presentation in Transplantation. Trends in Immunology, 2016, 37, 831-843.	2.9	58
436	Gut microbiota-host interactions and juvenile idiopathic arthritis. Pediatric Rheumatology, 2016, 14, 44.	0.9	38
437	The gut–brain connection: triggering of brain autoimmune disease by commensal gut bacteria. Rheumatology, 2016, 55, ii68-ii75.	0.9	30
438	Control of Intestinal Regulatory T Cells by Human Commensal Bacteria. , 2016, , 591-601.		0
439	Pectin enhances the effect of fecal microbiota transplantation in ulcerative colitis by delaying the loss of diversity of gut flora. BMC Microbiology, 2016, 16, 255.	1.3	64
440	Changes in duodenal tissue-associated microbiota following hookworm infection and consecutive gluten challenges in humans with coeliac disease. Scientific Reports, 2016, 6, 36797.	1.6	59
441	Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Science Translational Medicine, 2016, 8, 339ra71.	5.8	404
442	Next-generation sequencing characterization of the gut bacterial community of gilthead sea bream (Sparus aurata, L.) fed low fishmeal based diets with increasing soybean meal levels. Animal Feed Science and Technology, 2016, 222, 204-216.	1.1	72
443	Gut microbiota induce IGF-1 and promote bone formation and growth. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7554-E7563.	3.3	480
444	Irritable bowel syndrome. Nature Reviews Disease Primers, 2016, 2, 16014.	18.1	674

#	Article	IF	CITATIONS
445	The microbiota and chronic kidney diseases: a doubleâ€edged sword. Clinical and Translational Immunology, 2016, 5, e86.	1.7	62
446	Ontogeny of Tumor-associated CD4+CD25+Foxp3+ T-regulatory Cells. Immunological Investigations, 2016, 45, 729-745.	1.0	6
447	Regulatory T cells control strain specific resistance to Experimental Autoimmune Prostatitis. Scientific Reports, 2016, 6, 33097.	1.6	11
448	Butyrate inhibits interleukin-17 and generates Tregs to ameliorate colorectal colitis in rats. BMC Gastroenterology, 2016, 16, 84.	0.8	166
449	Intestinal microbiome changes and stem cell transplantation: Lessons learned. Virulence, 2016, 7, 930-938.	1.8	15
450	Obese Mice Fed a Diet Supplemented with Enzyme-Treated Wheat Bran Display Marked Shifts in the Liver Metabolome Concurrent with Altered Gut Bacteria. Journal of Nutrition, 2016, 146, 2445-2460.	1.3	16
452	Human gut microbiota and healthy aging: Recent developments and future prospective. Nutrition and Healthy Aging, 2016, 4, 3-16.	0.5	150
453	In Vitro Differentiation of Human CD4 ⁺ FOXP3 ⁺ Induced Regulatory T Cells (iTregs) from Naïve CD4 ⁺ T Cells Using a TGF-β-containing Protocol. Journal of Visualized Experiments, 2016	0.2	11
454	The role of the gastrointestinal microbiome in infectious complications during induction chemotherapy for acute myeloid leukemia. Cancer, 2016, 122, 2186-2196.	2.0	121
455	Understanding Luminal Microorganisms and Their Potential Effectiveness in Treating Intestinal Inflammation. Inflammatory Bowel Diseases, 2016, 22, 194-201.	0.9	8
456	The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC. American Journal of Physiology - Renal Physiology, 2016, 310, G1138-G1146.	1.6	110
457	Accounting for reciprocal host–microbiome interactions in experimental science. Nature, 2016, 534, 191-199.	13.7	205
458	Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways. Cell Reports, 2016, 15, 2809-2824.	2.9	489
459	Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors. Immunity, 2016, 44, 1255-1269.	6.6	797
460	The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions. Nature Reviews Rheumatology, 2016, 12, 446-455.	3.5	112
461	Microbial Regulation of Gastrointestinal Immunity in Health and Disease. , 2016, , 39-52.		3
462	Translational aspects of the microbiome—to be exploited. Cell Biology and Toxicology, 2016, 32, 153-156.	2.4	23
463	Butyrate enhances antibacterial effects while suppressing other features of alternative activation in IL-4-induced macrophages. American Journal of Physiology - Renal Physiology, 2016, 310, C822-C831.	1.6	44

ARTICLE IF CITATIONS Environmental risk factors for type 1 diabetes. Lancet, The, 2016, 387, 2340-2348. 6.3 501 464 The Colonic Crypt Protects Stem Cells from Microbiota-Derived Metabolites. Cell, 2016, 165, 1708-1720. 13.5 484 From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 2016, 466 13.5 3,962 165, 1332-1345. Tissue adaptation of regulatory and intraepithelial CD4 ⁺ T cells controls gut inflammation. Science, 2016, 352, 1581-1586. Chemokine (C-C Motif) Receptor 2 Mediates Dendritic CellÂRecruitment to the Human Colon but Is Not ResponsibleÂforÂDifferences Observed in Dendritic CellÂSubsets,ÂPhenotype, and Function Between the 468 2.3 27 ProximalÂandÂDistal Colon. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 22-39.e5. Skin microbiota of first cousins affected by psoriasis and atopic dermatitis. Clinical and Molecular Allergy, 2016, 14, 2. 0.8 56 Host parasite communicationsâ€"Messages from helminths for the immune system. Molecular and 470 0.5 104 Biochemical Parasitology, 2016, 208, 33-40. An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut 471 2.1 106 microbiota and suppression of intestinal carcinogenesis. Oncogenesis, 2016, 5, e238-e238. Periodontal disease and risk of all cancers among male never smokers: an updated analysis of the 472 0.6 104 Health Professionals Follow-up Study. Annals of Oncology, 2016, 27, 941-947. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science, 6.0 408 2016, 351, 858-863. Control of Klebsiella pneumoniae pulmonary infection and immunomodulation by oral treatment 474 1.0 111 with the commensal probiotic Bifidobacterium longum 51A. Microbes and Infection, 2016, 18, 180-189. Mediterranean Diet, Inflammatory Bowel Diseases, and Colon Cancer., 2016, , 181-201. Lymphoid-Tissue-Resident Commensal Bacteria Promote Members of the IL-10 Cytokine Family to 476 6.6 126 Establish Mutualism. Immunity, 2016, 44, 634-646. An Intestinal Inflammasome – The ILC3–Cytokine Tango. Trends in Molecular Medicine, 2016, 22, 269-271. 3.5 Ranitidine modifies myeloid cell populations and inhibits breast tumor development and spread in 478 29 2.1mice. Oncolmmunology, 2016, 5, e1151591. Gut microbiome–derived metabolites modulate intestinal epithelial cell damage and mitigate 479 536 graft-versus-host disease. Nature Immunology, 2016, 17, 505-513. Microbiota and lifestyle interactions through the lifespan. Trends in Food Science and Technology, 480 7.8 24 2016, 57, 265-272. The diet-microbiota-metabolite axis regulates the host physiology. Journal of Biochemistry, 2016, 160, 1-10.

#	Article	IF	CITATIONS
482	The maternal microbiota drives early postnatal innate immune development. Science, 2016, 351, 1296-1302.	6.0	871
483	Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1306-15.	3.3	442
484	Butyrate production from high-fiber diet protects against lymphoma tumor. Leukemia and Lymphoma, 2016, 57, 2401-2408.	0.6	70
485	Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nature Reviews Immunology, 2016, 16, 149-163.	10.6	409
486	Dysbiosis in gastrointestinal disorders. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 3-15.	1.0	86
487	Apoptotic epithelial cells control the abundance of Treg cells at barrier surfaces. Nature Immunology, 2016, 17, 441-450.	7.0	60
488	Probiotics and prebiotics in Crohn's disease therapies. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 81-88.	1.0	45
489	Microbial transmission from mothers with obesity or diabetes to infants: an innovative opportunity to interrupt a vicious cycle. Diabetologia, 2016, 59, 895-906.	2.9	64
490	Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell–Mediated Ureteritis and Hydronephrosis. Journal of Immunology, 2016, 196, 2388-2400.	0.4	135
491	Gut Microbiome, Obesity, and Metabolic Syndrome. , 2016, , 447-459.		4
492	Immune recognition and response to the intestinal microbiome in type 1 diabetes. Journal of Autoimmunity, 2016, 71, 10-18.	3.0	52
493	Chili Peppers, Curcumins, and Prebiotics in Gastrointestinal Health and Disease. Current Gastroenterology Reports, 2016, 18, 19.	1.1	26
494	Hallmarks of Tissue-Resident Lymphocytes. Cell, 2016, 164, 1198-1211.	13.5	312
495	Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 2016, 7, 189-200.	4.3	2,214
496	Roles of transcription factors and epigenetic modifications in differentiation and maintenance of regulatory T cells. Microbes and Infection, 2016, 18, 378-386.	1.0	35
497	Induction of regulatory T cells: A role for probiotics and prebiotics to suppress autoimmunity. Autoimmunity Reviews, 2016, 15, 379-392.	2.5	107
498	Endo-glucanase digestion of oat β-Glucan enhances Dectin-1 activation in human dendritic cells. Journal of Functional Foods, 2016, 21, 104-112.	1.6	38
499	The challenge of metaproteomic analysis in human samples. Expert Review of Proteomics, 2016, 13, 135-138.	1.3	20

#	Article	IF	CITATIONS
500	Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME Journal, 2016, 10, 1456-1470.	4.4	149
501	Functions of innate immune cells and commensal bacteria in gut homeostasis. Journal of Biochemistry, 2016, 159, 141-149.	0.9	45
502	CD4 T cells are required for both development and maintenance of disease in a new mouse model of reversible colitis. Mucosal Immunology, 2016, 9, 689-701.	2.7	23
503	<i>Lactobacillus rhamnosus</i> GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. ISME Journal, 2016, 10, 742-750.	4.4	407
504	Butyrate suppresses murine mast cell proliferation and cytokine production through inhibiting histone deacetylase. Journal of Nutritional Biochemistry, 2016, 27, 299-306.	1.9	58
505	Gut biogeography of the bacterial microbiota. Nature Reviews Microbiology, 2016, 14, 20-32.	13.6	1,772
506	In vivo induction of regulatory T cells for immune tolerance in hemophilia. Cellular Immunology, 2016, 301, 18-29.	1.4	34
507	The microbiome and its potential as a cancer preventive intervention. Seminars in Oncology, 2016, 43, 97-106.	0.8	102
508	The gut microbiota and host health: a new clinical frontier. Gut, 2016, 65, 330-339.	6.1	1,719
509	Microorganisms linked to inflammatory bowel disease-associated dysbiosis differentially impact host physiology in gnotobiotic mice. ISME Journal, 2016, 10, 460-477.	4.4	100
510	Mucosal Immunology. , 2016, , 365-370.e2.		1
511	Papel de la microbiota intestinal en el desarrollo de la esclerosis múltiple. NeurologÃa, 2017, 32, 175-184.	0.3	27
512	Preventive rather than therapeutic treatment with high fiber diet attenuates clinical and inflammatory markers of acute and chronic DSS-induced colitis in mice. European Journal of Nutrition, 2017, 56, 179-191.	4.6	57
513	The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease. Molecular Neurobiology, 2017, 54, 4432-4451.	1.9	191
514	Gut microbiota and hematopoietic stem cell transplantation: where do we stand?. Bone Marrow Transplantation, 2017, 52, 7-14.	1.3	44
515	Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Molecular Nutrition and Food Research, 2017, 61, 1500902.	1.5	194
516	Effect of prebiotics of <i>Agave salmiana</i> fed to healthy Wistar rats. Journal of the Science of Food and Agriculture, 2017, 97, 556-563.	1.7	20
517	Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells. Journal of Immunology, 2017, 198, 2172-2181.	0.4	172

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
518	Host–microbiota interactions: epigenomic regulation. Current Opinion in Immunology, 2017, 44, 52-60.	2.4	80
519	Burn injury influences the T cell homeostasis in a butyrate-acid sphingomyelinase dependent manner. Cellular Immunology, 2017, 313, 25-31.	1.4	13
520	Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunology, 2017, 18, 2.	0.9	492
521	Microbiome-Modulated Metabolites at the Interface of Host Immunity. Journal of Immunology, 2017, 198, 572-580.	0.4	282
522	The Influence of the Microbiome on Allergic Sensitization to Food. Journal of Immunology, 2017, 198, 581-589.	0.4	92
523	Host-Microbiota Interactions Shape Local and Systemic Inflammatory Diseases. Journal of Immunology, 2017, 198, 564-571.	0.4	99
524	An expanding stage for commensal microbes in host immune regulation. Cellular and Molecular Immunology, 2017, 14, 339-348.	4.8	35
525	Immunity to Commensal Fungi: Detente and Disease. Annual Review of Pathology: Mechanisms of Disease, 2017, 12, 359-385.	9.6	88
526	Bacterial short-chain fatty acid metabolites modulate the inflammatory response against infectious bacteria. Cellular Microbiology, 2017, 19, e12720.	1.1	59
527	Asthma and the microbiome: defining the critical window in early life. Allergy, Asthma and Clinical Immunology, 2017, 13, 3.	0.9	131
528	Helicobacter pylori infection is associated with an altered gastric microbiota in children. Mucosal Immunology, 2017, 10, 1169-1177.	2.7	80
529	The Potential Role of Gut-Derived Inflammation in Multiple System Atrophy. Journal of Parkinson's Disease, 2017, 7, 331-346.	1.5	68
530	The microbiome and systemic lupus erythematosus. Immunologic Research, 2017, 65, 432-437.	1.3	53
531	Regulation of Innate and Adaptive Immunity by TGFÎ ² . Advances in Immunology, 2017, 134, 137-233.	1.1	105
532	Role of the Intestinal Immune System in Health. , 2017, , 23-56.		2
533	The gut microbiome and microbial translocation in multiple sclerosis. Clinical Immunology, 2017, 183, 213-224.	1.4	64
534	Reactivation of dormant anti-tumor immunity – a clinical perspective of therapeutic immune checkpoint modulation. Cell Communication and Signaling, 2017, 15, 5.	2.7	34
535	Resistant starch can improve insulin sensitivity independently of the gut microbiota. Microbiome, 2017, 5, 12.	4.9	113

#	Article	IF	CITATIONS
536	Dysbiosis and the immune system. Nature Reviews Immunology, 2017, 17, 219-232.	10.6	1,102
537	Roles of the intestinal microbiota in pathogen protection. Clinical and Translational Immunology, 2017, 6, e128.	1.7	142
538	Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 2017, 15, 73.	1.8	1,714
539	Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutrition Reviews, 2017, 75, 286-305.	2.6	245
540	Transforming growth factor β: a master regulator of the gut microbiota and immune cell interactions. Clinical and Translational Immunology, 2017, 6, e136.	1.7	89
541	Pathogenic mechanisms following ischemic stroke. Neurological Sciences, 2017, 38, 1167-1186.	0.9	449
542	Hypercholesterolemia Induces Differentiation of Regulatory T Cells in the Liver. Circulation Research, 2017, 120, 1740-1753.	2.0	55
543	Regionalized Development and Maintenance of the Intestinal Adaptive Immune Landscape. Immunity, 2017, 46, 532-548.	6.6	147
544	Homeostatic Immunity and the Microbiota. Immunity, 2017, 46, 562-576.	6.6	840
545	Early life factors that affect allergy development. Nature Reviews Immunology, 2017, 17, 518-528.	10.6	113
546	Metabolic and Epigenetic Coordination of T Cell and Macrophage Immunity. Immunity, 2017, 46, 714-729.	6.6	234
547	The role of the microbiome in cancer development and therapy. Ca-A Cancer Journal for Clinicians, 2017, 67, 326-344.	157.7	447
548	Innate Control of Adaptive Immunity: Beyond the Three-Signal Paradigm. Journal of Immunology, 2017, 198, 3791-3800.	0.4	145
549	Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals. Nutrition Reviews, 2017, 75, 374-389.	2.6	165
550	Metabolic Instruction of Immunity. Cell, 2017, 169, 570-586.	13.5	871
551	Metabolite-Sensing G Protein–Coupled Receptors—Facilitators of Diet-Related Immune Regulation. Annual Review of Immunology, 2017, 35, 371-402.	9.5	235
552	Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metabolism, 2017, 26, 110-130.	7.2	572
553	Intestinal Metabolites Are Profoundly Altered in the Context of HLA–B27 Expression and Functionally Modulate Disease in a Rat Model of Spondyloarthritis. Arthritis and Rheumatology, 2017, 69, 1984-1995.	2.9	75

		CITATION REPORT		
#	Article		IF	CITATIONS
554	Gut Microbiome and Bone: to Build, Destroy, or Both?. Current Osteoporosis Reports,	2017, 15, 376-384.	1.5	69
555	Unique aspects of the perinatal immune system. Nature Reviews Immunology, 2017, 1	7, 495-507.	10.6	178
556	Introduction to the human gut microbiota. Biochemical Journal, 2017, 474, 1823-1836	5.	1.7	1,988
557	Anticancer effects of the microbiome and its products. Nature Reviews Microbiology, 2	2017, 15, 465-478.	13.6	399
558	The multiple pathways to autoimmunity. Nature Immunology, 2017, 18, 716-724.		7.0	429
559	Brain Autoimmunity and Intestinal Microbiota: 100 Trillion Game Changers. Trends in I 2017, 38, 483-497.	mmunology,	2.9	85
560	Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nature Communications, 2017, 8, 15393.	:	5.8	216
561	CE. American Journal of Nursing, 2017, 117, 24-30.		0.2	6
562	Butyrate and retinoic acid imprint mucosal-like dendritic cell development synergistica marrow cells. Clinical and Experimental Immunology, 2017, 189, 290-297.	lly from bone	1.1	18
563	The microbiome and hepatobiliary-pancreatic cancers. Cancer Letters, 2017, 402, 9-15		3.2	105
564	Selective Induction of Homeostatic Th17 Cells in the Murine Intestine by Cholera Toxir with the Microbiota. Journal of Immunology, 2017, 199, 312-322.	ı Interacting	0.4	18
565	Mechanisms of tolerance and potential therapeutic interventions in Alopecia Areata. , 2	2017, 179, 102-110.		12
566	Microbiota in T-cell homeostasis and inflammatory diseases. Experimental and Molecul 2017, 49, e340-e340.	ar Medicine,	3.2	143
567	Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology, 2	.017, 152, 1-12.	2.0	243
568	Gut microbiota and acute graft-versus-host disease. Pharmacological Research, 2017,	122, 90-95.	3.1	15
569	Supplementation of Low- and High-fat Diets with Fermentable Fiber Exacerbates Sever DSS-induced Acute Colitis. Inflammatory Bowel Diseases, 2017, 23, 1133-1143.	ity of	0.9	80
570	Induction of Colonic Regulatory T Cells by Mesalamine by Activating the Aryl Hydrocar Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 135-151.	bon Receptor.	2.3	37
571	Influences of environmental bacteria and their metabolites on allergies, asthma, and he Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1859-1867.	ost microbiota.	2.7	64

#	Article	IF	CITATIONS
572	How nutrition and the maternal microbiota shape the neonatal immune system. Nature Reviews Immunology, 2017, 17, 508-517.	10.6	270
573	Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. Journal of Nutrition, 2017, 147, 1468S-1475S.	1.3	268
574	Starving for survival—how catabolic metabolism fuels immune function. Current Opinion in Immunology, 2017, 46, 8-13.	2.4	13
575	Enteric Helminths Promote Salmonella Coinfection by Altering the Intestinal Metabolome. Journal of Infectious Diseases, 2017, 215, 1245-1254.	1.9	53
576	MYC and HIF in shaping immune response and immune metabolism. Cytokine and Growth Factor Reviews, 2017, 35, 63-70.	3.2	69
577	Epigenetics and allergy: from basic mechanisms to clinical applications. Epigenomics, 2017, 9, 539-571.	1.0	201
578	Influences of the Gut Microbiota on DNA Methylation and Histone Modification. Digestive Diseases and Sciences, 2017, 62, 1155-1164.	1.1	57
579	Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases. Journal of Autoimmunity, 2017, 83, 31-42.	3.0	120
580	Role of intestinal microbiota in the development of multiple sclerosis. NeurologÃa (English Edition), 2017, 32, 175-184.	0.2	12
581	Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nature Immunology, 2017, 18, 552-562.	7.0	551
582	CD8 Tâ€cell regulation by T regulatory cells and the programmed cell death protein 1 pathway. Immunology, 2017, 151, 146-153.	2.0	12
583	Gut microbiota and renal transplant outcome. Biomedicine and Pharmacotherapy, 2017, 90, 229-236.	2.5	35
584	NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nature Immunology, 2017, 18, 541-551.	7.0	225
585	The intestinal microenvironment in sepsis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2574-2583.	1.8	108
586	Lactobacillus johnsonii supplementation attenuates respiratory viral infection via metabolic reprogramming and immune cell modulation. Mucosal Immunology, 2017, 10, 1569-1580.	2.7	75
587	Can Consideration of the Microbiome Improve Antimicrobial Utilization and Treatment Outcomes in the Oncology Patient?. Clinical Cancer Research, 2017, 23, 3263-3268.	3.2	30
588	Novel Indications for Fecal Microbial Transplantation: Update and Review of the Literature. Digestive Diseases and Sciences, 2017, 62, 1131-1145.	1.1	50
589	Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: A review. Fish and Shellfish Immunology, 2017, 64, 367-382.	1.6	133

#	Article	IF	CITATIONS
590	Metabolites: deciphering the molecular language between DCs and their environment. Seminars in Immunopathology, 2017, 39, 177-198.	2.8	10
591	Microbial Dysbiosis in Common Variable Immune Deficiencies: Evidence, Causes, and Consequences. Trends in Immunology, 2017, 38, 206-216.	2.9	47
592	Planting the seed: Origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Critical Reviews in Microbiology, 2017, 43, 352-369.	2.7	124
593	Biology of the Microbiome 1. Gastroenterology Clinics of North America, 2017, 46, 19-35.	1.0	33
594	Resetting microbiota by <i>Lactobacillus reuteri</i> inhibits T reg deficiency–induced autoimmunity via adenosine A2A receptors. Journal of Experimental Medicine, 2017, 214, 107-123.	4.2	136
595	The Functional Stability of FOXP3 and RORÎ ³ t in Treg and Th17 and Their Therapeutic Applications. Advances in Protein Chemistry and Structural Biology, 2017, 107, 155-189.	1.0	48
596	The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunology, 2017, 10, 299-306.	2.7	338
597	Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunology, 2017, 10, 946-956.	2.7	323
598	Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers, 2017, 5, e1373208.	1.6	501
599	A gut feeling about multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10528-10529.	3.3	5
600	Bifidobacterium animalis subsp. lactis 420 mitigates the pathological impact of myocardial infarction in the mouse. Beneficial Microbes, 2017, 8, 257-269.	1.0	28
601	Maternal High Fiber Diet during Pregnancy and Lactation Influences Regulatory T Cell Differentiation in Offspring in Mice. Journal of Immunology, 2017, 199, 3516-3524.	0.4	93
602	Update on the Therapeutic Efficacy of Tregs in IBD. Inflammatory Bowel Diseases, 2017, 23, 1682-1688.	0.9	20
603	Functional Changes in the Gut Microbiome Contribute to Transforming Growth Factor β-Deficient Colon Cancer. MSystems, 2017, 2, .	1.7	48
604	Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence. MBio, 2017, 8, .	1.8	121
605	Short-chain fatty acids: a link between prebiotics and microbiota in chronic kidney disease. Future Microbiology, 2017, 12, 1413-1425.	1.0	48
606	Functional evaluation of yuzu (Citrus junos) extracts containing limonoids and polyamine for life extension. Journal of Functional Foods, 2017, 38, 591-600.	1.6	9
607	Metabolic pressure and the breach of immunological self-tolerance. Nature Immunology, 2017, 18, 1190-1196.	7.0	45

#	Article	IF	CITATIONS
608	The maternal microbiome during pregnancy and allergic disease in the offspring. Seminars in Immunopathology, 2017, 39, 669-675.	2.8	80
609	Microbiota in digestive cancers: our new partner?. Carcinogenesis, 2017, 38, 1157-1166.	1.3	14
610	Immune effects of $\hat{1}^2$ -glucan are determined by combined effects on Dectin-1, TLR2, 4 and 5. Journal of Functional Foods, 2017, 37, 433-440.	1.6	44
611	<i>Helicobacter</i> species are potent drivers of colonic T cell responses in homeostasis and inflammation. Science Immunology, 2017, 2, .	5.6	100
612	Butyrate Supplementation at High Concentrations Alters Enteric Bacterial Communities and Reduces Intestinal Inflammation in Mice Infected with Citrobacter rodentium. MSphere, 2017, 2, .	1.3	87
613	Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunological Reviews, 2017, 279, 70-89.	2.8	1,015
614	Building conventions for unconventional lymphocytes. Immunological Reviews, 2017, 279, 52-62.	2.8	17
615	Deciphering interactions between the gut microbiota and the immune system via microbial cultivation and minimal microbiomes. Immunological Reviews, 2017, 279, 8-22.	2.8	101
616	Foundations of Immunometabolism and Implications for Metabolic Health and Disease. Immunity, 2017, 47, 406-420.	6.6	340
617	Biochemical Mechanisms of Pathogen Restriction by Intestinal Bacteria. Trends in Biochemical Sciences, 2017, 42, 887-898.	3.7	39
618	The immunology of the allergy epidemic and the hygiene hypothesis. Nature Immunology, 2017, 18, 1076-1083.	7.0	282
619	Antibiotic treatment for Tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Scientific Reports, 2017, 7, 10767.	1.6	148
620	Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10713-10718.	3.3	709
621	The potential of the microbiota to influence vaccine responses. Journal of Leukocyte Biology, 2018, 103, 225-231.	1.5	72
622	The Impact of the Microbiome on Outcomes of Stem Cell Transplant. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, S47-S49.	0.2	0
623	The intricate connection between diet, microbiota, and cancer: A jigsaw puzzle. Seminars in Immunology, 2017, 32, 35-42.	2.7	19
624	Age and dietary xylanase supplementation affects ileal sugar residues and short chain fatty acid concentration in the ileum and caecum of broiler chickens. Animal Feed Science and Technology, 2017, 234, 29-42.	1.1	68
625	Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer's disease. Scientific Reports, 2017, 7, 10411.	1.6	206

#	Article	IF	CITATIONS
626	Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Scientific Reports, 2017, 7, 9523.	1.6	298
627	Metabolism in Immune Cell Differentiation and Function. Advances in Experimental Medicine and Biology, 2017, 1011, 1-85.	0.8	14
628	Fatty is not that bad: feeding short-chain fatty acids to restrain autoimmunity. Cellular and Molecular Immunology, 2017, 14, 878-880.	4.8	8
629	Human monocytes downregulate innate response receptors following exposure to the microbial metabolite nâ€butyrate. Immunity, Inflammation and Disease, 2017, 5, 480-492.	1.3	18
630	Infection and Immunity Welcomes the New Microbiology. Infection and Immunity, 2017, 85, .	1.0	3
631	Impact of the Microbiota on Bacterial Infections during Cancer Treatment. Trends in Microbiology, 2017, 25, 992-1004.	3.5	36
632	Empirical modeling of T cell activation predicts interplay of host cytokines and bacterial indole. Biotechnology and Bioengineering, 2017, 114, 2660-2667.	1.7	13
633	Heterogeneity and Stability in Foxp3+ Regulatory T Cells. Journal of Interferon and Cytokine Research, 2017, 37, 386-397.	0.5	19
634	Update on intestinal microbiota in Crohn's disease 2017: Mechanisms, clinical application, adverse reactions, and outlook. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 1804-1812.	1.4	20
635	Induction and maintenance of regulatory T cells by transcription factors and epigenetic modifications. Journal of Autoimmunity, 2017, 83, 113-121.	3.0	55
636	Differences and similarities between sublingual immunotherapy of allergy and oral tolerance. Seminars in Immunology, 2017, 30, 52-60.	2.7	6
637	The regulation of immune tolerance by FOXP3. Nature Reviews Immunology, 2017, 17, 703-717.	10.6	398
638	Antigen-specific regulatory T-cell responses to intestinal microbiota. Mucosal Immunology, 2017, 10, 1375-1386.	2.7	87
639	Impact of Childhood Malnutrition on Host Defense and Infection. Clinical Microbiology Reviews, 2017, 30, 919-971.	5.7	203
640	Brain–Heart Interaction. Circulation Research, 2017, 121, 451-468.	2.0	331
641	<i>Lactobacillus reuteri</i> induces gut intraepithelial CD4 ⁺ CD8î±î± ⁺ T cells. Science, 2017, 357, 806-810.	6.0	543
642	The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science, 2017, 357, 498-502.	6.0	391
643	New therapeutic perspectives in Type 1 Diabetes: dietary interventions prevent β cell-autoimmunity by modifying the gut metabolic environment. Cellular and Molecular Immunology, 2017, 14, 951-953.	4.8	4
#	Article	IF	CITATIONS
-----	--	-----	-----------
644	Butyrate protects against disruption of the bloodâ€milk barrier and moderates inflammatory responses in a model of mastitis induced by lipopolysaccharide. British Journal of Pharmacology, 2017, 174, 3811-3822.	2.7	66
645	Microbiota-activated PPAR-Î ³ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science, 2017, 357, 570-575.	6.0	796
646	Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Science Immunology, 2017, 2, .	5.6	167
647	Intestinal Microbiota Composition in Sudden Infant Death Syndrome and Age-Matched Controls. Journal of Pediatrics, 2017, 191, 63-68.e1.	0.9	8
648	Dietary Fructo-Oligosaccharides Attenuate Early Activation of CD4 ⁺ T Cells Which Produce both Th1 and Th2 Cytokines in the Intestinal Lymphoid Tissues of a Murine Food Allergy Model. International Archives of Allergy and Immunology, 2017, 174, 121-132.	0.9	25
649	The Aryl Hydrocarbon Receptor Preferentially Marks and Promotes Gut Regulatory T Cells. Cell Reports, 2017, 21, 2277-2290.	2.9	130
650	Diet, Gut Microbiota, and Colorectal Cancer Prevention: a Review of Potential Mechanisms and Promising Targets for Future Research. Current Colorectal Cancer Reports, 2017, 13, 429-439.	1.0	32
651	Bone Mechanical Function and the Gut Microbiota. Advances in Experimental Medicine and Biology, 2017, 1033, 249-270.	0.8	11
652	Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells. Scientific Reports, 2017, 7, 14516.	1.6	77
653	Epithelial Barrier Function in Gut-Bone Signaling. Advances in Experimental Medicine and Biology, 2017, 1033, 151-183.	0.8	36
654	Obesity and microbiota: an example of an intricate relationship. Genes and Nutrition, 2017, 12, 18.	1.2	86
655	Mucosal biopsy shows immunologic changes of the colon in patients with early MS. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e362.	3.1	7
656	The influence of the commensal microbiota on distal tumor-promoting inflammation. Seminars in Immunology, 2017, 32, 62-73.	2.7	24
657	Human Secretory IgM Emerges from Plasma Cells Clonally Related to Gut Memory B Cells and Targets Highly Diverse Commensals. Immunity, 2017, 47, 118-134.e8.	6.6	151
658	Eicosapentaenoic acid and 5-HEPE enhance macrophage-mediated Treg induction in mice. Scientific Reports, 2017, 7, 4560.	1.6	44
659	Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors. Cell Metabolism, 2017, 26, 49-70.	7.2	268
660	Fighting Fire with Fiber: Preventing T Cell Infiltration in Diabetes. Cell Metabolism, 2017, 26, 8-10.	7.2	0
661	The microbiota and autoimmunity: Their role in thyroid autoimmune diseases. Clinical Immunology, 2017, 183, 63-74.	1.4	91

#	Article	IF	CITATIONS
662	Sodium butyrate regulates Th17/Treg cell balance to ameliorate uveitis via the Nrf2/HO-1 pathway. Biochemical Pharmacology, 2017, 142, 111-119.	2.0	69
663	Epigenetic regulation of Tâ€helper cell differentiation, memory, and plasticity in allergic asthma. Immunological Reviews, 2017, 278, 8-19.	2.8	70
664	Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells. Epigenetics and Chromatin, 2017, 10, 24.	1.8	98
665	An exposome perspective: Early-life events and immune development in a changing world. Journal of Allergy and Clinical Immunology, 2017, 140, 24-40.	1.5	149
666	The Microbiome in Visceral Medicine: Inflammatory Bowel Disease, Obesity and Beyond. Visceral Medicine, 2017, 33, 153-162.	0.5	6
667	Cooperation between the bacterialâ€derived shortâ€chain fatty acid butyrate and interleukinâ€22 detected in human Caco2 colon epithelial/carcinoma cells. BioFactors, 2017, 43, 283-292.	2.6	11
668	Prebiotic potential of L-sorbose and xylitol in promoting the growth and metabolic activity of specific butyrate-producing bacteria in human fecal culture. FEMS Microbiology Ecology, 2017, 93, fiw227.	1.3	34
669	Gut microbiota modulate host immune cells in cancer development and growth. Free Radical Biology and Medicine, 2017, 105, 28-34.	1.3	24
670	Enteral High Fat-Polyunsaturated Fatty Acid Blend Alters the Pathogen Composition of the Intestinal Microbiome in Premature Infants with an Enterostomy. Journal of Pediatrics, 2017, 181, 93-101.e6.	0.9	46
671	Pathophysiology, Evaluation, and Management of Chronic Watery Diarrhea. Gastroenterology, 2017, 152, 515-532.e2.	0.6	102
672	Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Translational Research, 2017, 179, 223-244.	2.2	351
673	H9N2-specific IgG and CD4+ CD25+ T cells in broilers fed a diet supplemented with organic acids. Poultry Science, 2017, 96, 1063-1070.	1.5	16
674	α-Defensin 5 gene expression is regulated by gut microbial metabolites. Bioscience, Biotechnology and Biochemistry, 2017, 81, 242-248.	0.6	22
675	The long and winding road to IgA deficiency: causes and consequences. Expert Review of Clinical Immunology, 2017, 13, 371-382.	1.3	15
676	Antibiotic-mediated modification of the intestinal microbiome in allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplantation, 2017, 52, 183-190.	1.3	50
677	Regulatory T Cells: Central Concepts from Ontogeny to Therapy. Transfusion Medicine Reviews, 2017, 31, 36-44.	0.9	13
678	Toward revision of antimicrobial therapies in hematopoietic stem cell transplantation: target the pathogens, but protect the indigenous microbiota. Translational Research, 2017, 179, 116-125.	2.2	16
679	Dietary fiber and the short-chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice. Journal of Leukocyte Biology, 2017, 101, 275-284.	1.5	104

#	Article	IF	CITATIONS
680	The Origins of Allergic Disease. , 2017, , 29-50.		3
681	On the pathogenesis of insulin-dependent diabetes mellitus: the role of microbiota. Immunologic Research, 2017, 65, 242-256.	1.3	23
682	Maternal dietary intake in pregnancy and lactation and allergic disease outcomes in offspring. Pediatric Allergy and Immunology, 2017, 28, 135-143.	1.1	47
683	Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis. ISME Journal, 2017, 11, 15-30.	4.4	68
684	The Xenobiotic Transporter Mdr1 Enforces T Cell Homeostasis in the Presence of Intestinal Bile Acids. Immunity, 2017, 47, 1182-1196.e10.	6.6	73
685	Complementary and Alternative Medicine Strategies for Therapeutic Gut Microbiota Modulation in Inflammatory Bowel Disease and their Next-Generation Approaches. Gastroenterology Clinics of North America, 2017, 46, 689-729.	1.0	27
686	Shift of hindgut microbiota and microbial short chain fatty acids profiles in dairy calves from birth to pre-weaning. FEMS Microbiology Ecology, 2018, 94, .	1.3	61
687	Functional heterogeneity of gutâ€resident regulatory T cells. Clinical and Translational Immunology, 2017, 6, e156.	1.7	58
688	Short Chain Fatty Acid Acetate Protects against Ethanol-Induced Acute Gastric Mucosal Lesion in Mice. Biological and Pharmaceutical Bulletin, 2017, 40, 1439-1446.	0.6	38
689	Expression of soluble programmed death-1 protein in peripheral blood regulatory T cells and its effects on rheumatoid arthritis progression. Molecular Medicine Reports, 2017, 15, 460-466.	1.1	5
690	Empiric antibiotic use in allogeneic hematopoietic cell transplantation: should we avoid anaerobe coverage?. Blood Advances, 2017, 1, 2325-2328.	2.5	11
691	Diet and microbiota in inflammatory bowel disease: The gut in disharmony. World Journal of Gastroenterology, 2017, 23, 2124.	1.4	123
693	Metabolic Regulation of Immunity. , 2017, , 318-326.		1
694	Alterations in Gut Microbiota and Immunity by Dietary Fat. Yonsei Medical Journal, 2017, 58, 1083.	0.9	44
695	Probiotics in Asthma and Allergy Prevention. Frontiers in Pediatrics, 2017, 5, 165.	0.9	55
696	Gut microbiota–derived short-chain fatty acids and kidney diseases. Drug Design, Development and Therapy, 2017, Volume 11, 3531-3542.	2.0	108
697	Dysbiosis. , 2017, , 227-232.		13
698	The Gut Microbiota Influence on Human Epigenetics, Health, and Disease. , 2017, , 495-510.		17

#	Article	IF	CITATIONS
699	Digestive-Absorption Functions in Fetuses, Infants, and Children. , 2017, , 897-905.e2.		1
700	The Interactive Roles of Lipopolysaccharides and dsRNA/Viruses on Respiratory Epithelial Cells and Dendritic Cells in Allergic Respiratory Disorders: The Hygiene Hypothesis. International Journal of Molecular Sciences, 2017, 18, 2219.	1.8	17
701	Diet Hypotheses in Light of the Microbiota Revolution: New Perspectives. Nutrients, 2017, 9, 537.	1.7	25
702	Gut Microbiota as a Target for Preventive and Therapeutic Intervention against Food Allergy. Nutrients, 2017, 9, 672.	1.7	81
703	Cell-Surface and Nuclear Receptors in the Colon as Targets for Bacterial Metabolites and Its Relevance to Colon Health. Nutrients, 2017, 9, 856.	1.7	52
704	Benefits of Nut Consumption on Insulin Resistance and Cardiovascular Risk Factors: Multiple Potential Mechanisms of Actions. Nutrients, 2017, 9, 1271.	1.7	100
705	Impact of the Respiratory Microbiome on Host Responses to Respiratory Viral Infection. Vaccines, 2017, 5, 40.	2.1	31
706	Microbiota, Inflammation and Colorectal Cancer. International Journal of Molecular Sciences, 2017, 18, 1310.	1.8	237
707	Gut–CNS-Axis as Possibility to Modulate Inflammatory Disease Activity—Implications for Multiple Sclerosis. International Journal of Molecular Sciences, 2017, 18, 1526.	1.8	37
708	The Influence of the Microbiome on Early-Life Severe Viral Lower Respiratory Infections and Asthma—Food for Thought?. Frontiers in Immunology, 2017, 8, 156.	2.2	40
709	Nutrient and Metabolic Sensing in T Cell Responses. Frontiers in Immunology, 2017, 8, 247.	2.2	82
710	Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8+ T Cell Receptor Signaling. Frontiers in Immunology, 2017, 8, 265.	2.2	30
711	The Maternal Diet, Gut Bacteria, and Bacterial Metabolites during Pregnancy Influence Offspring Asthma. Frontiers in Immunology, 2017, 8, 365.	2.2	74
712	The Microbiota and Epigenetic Regulation of T Helper 17/Regulatory T Cells: In Search of a Balanced Immune System. Frontiers in Immunology, 2017, 8, 417.	2.2	103
713	Towards an Integrative Understanding of Diet–Host–Gut Microbiome Interactions. Frontiers in Immunology, 2017, 8, 538.	2.2	45
714	Detrimental Impact of Microbiota-Accessible Carbohydrate-Deprived Diet on Gut and Immune Homeostasis: An Overview. Frontiers in Immunology, 2017, 8, 548.	2.2	114
715	Regulatory T Cell and Forkhead Box Protein 3 as Modulators of Immune Homeostasis. Frontiers in Immunology, 2017, 8, 605.	2.2	78
716	Patterns of Early-Life Gut Microbial Colonization during Human Immune Development: An Ecological Perspective. Frontiers in Immunology, 2017, 8, 788.	2.2	144

#	Article	IF	CITATIONS
717	The Impact of Western Diet and Nutrients on the Microbiota and Immune Response at Mucosal Interfaces. Frontiers in Immunology, 2017, 8, 838.	2.2	349
718	The Microbial Metabolite Butyrate Induces Expression of Th1-Associated Factors in CD4+ T Cells. Frontiers in Immunology, 2017, 8, 1036.	2.2	193
719	Improved Efficacy of Oral Immunotherapy Using Non-Digestible Oligosaccharides in a Murine Cow's Milk Allergy Model: A Potential Role for Foxp3+ Regulatory T Cells. Frontiers in Immunology, 2017, 8, 1230.	2.2	33
720	Group 3 Innate Lymphoid Cells: Communications Hubs of the Intestinal Immune System. Frontiers in Immunology, 2017, 8, 1298.	2.2	72
721	Dietary Intervention with Î ² -Lactoglobulin-Derived Peptides and a Specific Mixture of Fructo-Oligosaccharides and Bifidobacterium breve M-16V Facilitates the Prevention of Whey-Induced Allergy in Mice by Supporting a Tolerance-Prone Immune Environment. Frontiers in Immunology, 2017, 8, 1303.	2.2	17
722	Butyrate Conditions Human Dendritic Cells to Prime Type 1 Regulatory T Cells via both Histone Deacetylase Inhibition and G Protein-Coupled Receptor 109A Signaling. Frontiers in Immunology, 2017, 8, 1429.	2.2	120
723	Adenosine A2A Receptor Deletion Blocks the Beneficial Effects of Lactobacillus reuteri in Regulatory T-Deficient Scurfy Mice. Frontiers in Immunology, 2017, 8, 1680.	2.2	23
724	Gut Microbiota Co-microevolution with Selection for Host Humoral Immunity. Frontiers in Microbiology, 2017, 8, 1243.	1.5	39
725	Bifidobacteria and Their Molecular Communication with the Immune System. Frontiers in Microbiology, 2017, 8, 2345.	1.5	221
726	A Review of the Oesophageal Microbiome in Health and Disease. Methods in Microbiology, 2017, , 19-35.	0.4	2
728	The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models. PLoS ONE, 2017, 12, e0173032.	1.1	172
729	Recent urbanization in China is correlated with a Westernized microbiome encoding increased virulence and antibiotic resistance genes. Microbiome, 2017, 5, 121.	4.9	70
730	Are Short Chain Fatty Acids in Gut Microbiota Defensive Players for Inflammation and Atherosclerosis?. Journal of Atherosclerosis and Thrombosis, 2017, 24, 660-672.	0.9	366
731	Short Chain Fatty Acids Enhance Aryl Hydrocarbon (Ah) Responsiveness in Mouse Colonocytes and Caco-2 Human Colon Cancer Cells. Scientific Reports, 2017, 7, 10163.	1.6	103
732	Physiology and Pathology of Immune Dysregulation: Regulatory T Cells and Anergy. , 2017, , .		1
733	Effects of Short-Term Intake of Wheat Bran with Different Particle Sizes on the Murine Intestinal Environment. Food Science and Technology Research, 2017, 23, 733-742.	0.3	4
734	IL-17A-Producing Foxp3 ⁺ Regulatory T Cells and Human Diseases. Immune Network, 2017, 17, 276.	1.6	77
735	Impact of Nutrition on Healthy Aging. , 2017, , 3-10.		1

	CITATION R	EPORT	
# 736	ARTICLE Impact of Glycosidic Bond Configuration on Short Chain Fatty Acid Production from Model Fermentable Carbohydrates by the Human Gut Microbiota, Nutrients, 2017, 9, 26,	IF 1.7	Citations 38
737	Diet and Microbes in the Pathogenesis of Lupus. , 2017, , .		2
738	Human Gut Microbiota and Gastrointestinal Cancer. Genomics, Proteomics and Bioinformatics, 2018, 16, 33-49.	3.0	260
739	A Cross-Talk Between Microbiota-Derived Short-Chain Fatty Acids and the Host Mucosal Immune System Regulates Intestinal Homeostasis and Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2018, 24, 558-572.	0.9	276
740	Gut Microbiota Signature in Heart Failure Defined FromÂProfiling of 2ÂIndependent Cohorts. Journal of the American College of Cardiology, 2018, 71, 1184-1186.	1.2	137
741	<i>Cha</i> - <i>Koji</i> , comprising green tea leaves fermented with <i>Aspergillus luchuensis var kawachii kitahara</i> , increases regulatory T cell production in mice and humans. Bioscience, Biotechnology and Biochemistry, 2018, 82, 885-892.	0.6	12
742	The Gastrointestinal Microbiome: A Review. Journal of Veterinary Internal Medicine, 2018, 32, 9-25.	0.6	433
743	Fast quantification of short chain fatty acids and ketone bodies by liquid chromatography-tandem mass spectrometry after facile derivatization coupled with liquid-liquid extraction. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1083, 137-145.	1.2	93
744	Transcriptional regulation and development of regulatory T cells. Experimental and Molecular Medicine, 2018, 50, e456-e456.	3.2	95
745	Gut microbiomes and their metabolites shape human and animal health. Journal of Microbiology, 2018, 56, 151-153.	1.3	45
746	Mechanisms of Oral Tolerance. Clinical Reviews in Allergy and Immunology, 2018, 55, 107-117.	2.9	178
747	Type 3 regulatory T cells at the interface of symbiosis. Journal of Microbiology, 2018, 56, 163-171.	1.3	22
748	Unravelling the molecular basis for regulatory Tâ€cell plasticity and loss of function in disease. Clinical and Translational Immunology, 2018, 7, e1011.	1.7	23
749	Immunization with intestinal microbiota-derived Staphylococcus aureus and Escherichia coli reduces bacteria-specific recolonization of the intestinal tract. Immunology Letters, 2018, 196, 149-154.	1.1	3
751	Subclinical Cytomegalovirus Infection Is Associated with Altered Host Immunity, Gut Microbiota, and Vaccine Responses. Journal of Virology, 2018, 92, .	1.5	33
752	Impact of gut colonization with butyrate producing microbiota on respiratory viral infection following allo-HCT. Blood, 2018, 131, blood-2018-01-828996.	0.6	155
753	Fatty acid metabolism in <scp>CD</scp> 8 ⁺ T cell memory: Challenging current concepts. Immunological Reviews, 2018, 283, 213-231.	2.8	103
754	Beyond Host Defense: Emerging Functions of the Immune System in Regulating Complex Tissue Physiology. Cell, 2018, 173, 554-567.	13.5	192

#	Article	IF	CITATIONS
755	Immune regulation by microbiome metabolites. Immunology, 2018, 154, 220-229.	2.0	223
756	Peripherally induced regulatory T cells contribute to the control of autoimmune diabetes in the NOD mouse model. European Journal of Immunology, 2018, 48, 1211-1216.	1.6	24
757	Fecal microbiome signatures are different in foodâ€allergic children compared to siblings and healthy children. Pediatric Allergy and Immunology, 2018, 29, 545-554.	1.1	62
758	High fiber dietary and sodium butyrate attenuate experimental autoimmune hepatitis through regulation of immune regulatory cells and intestinal barrier. Cellular Immunology, 2018, 328, 24-32.	1.4	67
759	Antibiotics as Instigators of Microbial Dysbiosis: Implications for Asthma and Allergy. Trends in Immunology, 2018, 39, 697-711.	2.9	75
760	Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology, 2018, 154, 230-238.	2.0	185
761	Profile of Alexander Y. Rudensky, winner of the 2018 Vilcek Prize in Biomedical Science. Proceedings of the United States of America, 2018, 115, 4301-4304.	3.3	0
762	The therapeutic prospect of crosstalk between prokaryotic and eukaryotic organisms in the human gut. FEMS Microbiology Ecology, 2018, 94, .	1.3	1
763	Gut microbiota injury in allogeneic haematopoietic stem cell transplantation. Nature Reviews Cancer, 2018, 18, 283-295.	12.8	204
764	The impact of a helminth-modified microbiome on host immunity. Mucosal Immunology, 2018, 11, 1039-1046.	2.7	106
765	The role of gut microbiome and associated metabolome in the regulation of neuroinflammation in multiple sclerosis and its implications in attenuating chronic inflammation in other inflammatory and autoimmune disorders. Immunology, 2018, 154, 178-185.	2.0	69
766	Effects of a vinegar-based multi-micronutrient supplement in rats: A multi-pronged assessment of dietary impact. Journal of Functional Foods, 2018, 42, 371-379.	1.6	3
767	Rat strain differences in peritoneal immune cell response to selected gut microbiota: A crossroad between tolerance and autoimmunity?. Life Sciences, 2018, 197, 147-157.	2.0	6
768	Clinical Metabolomics. Methods in Molecular Biology, 2018, , .	0.4	5
769	Different milk diets have substantial effects on the jejunal mucosal immune system of pre-weaning calves, as demonstrated by whole transcriptome sequencing. Scientific Reports, 2018, 8, 1693.	1.6	17
770	Microbiome: Allergic Diseases of Childhood. , 2018, , 35-53.		0
771	Regional Control of Regulatory Immune Cells in the Intestine. Current Pathobiology Reports, 2018, 6, 29-34.	1.6	6
772	Adaptive immune education by gut microbiota antigens. Immunology, 2018, 154, 28-37.	2.0	203

# 773	ARTICLE Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans. Endocrine Reviews, 2018, 39, 133-153.	IF 8.9	CITATIONS 207
774	GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunology, 2018, 11, 752-762.	2.7	322
775	Probiotic treatment during neonatal age provides optimal protection against experimental asthma through the modulation of microbiota and T cells. International Immunology, 2018, 30, 155-169.	1.8	16
776	Essential immunologic orchestrators of intestinal homeostasis. Science Immunology, 2018, 3, .	5.6	56
777	NF-κB, inflammation, immunity and cancer: coming of age. Nature Reviews Immunology, 2018, 18, 309-324.	10.6	1,796
778	Metabolomics in Immunology Research. Methods in Molecular Biology, 2018, 1730, 29-42.	0.4	29
779	The role of the gut microbiome in systemic inflammatory disease. BMJ: British Medical Journal, 2018, 360, j5145.	2.4	367
780	Gut Microbiota and IGF-1. Calcified Tissue International, 2018, 102, 406-414.	1.5	84
781	Gut Microbiota-Derived Short Chain Fatty Acids Induce Circadian Clock Entrainment in Mouse Peripheral Tissue. Scientific Reports, 2018, 8, 1395.	1.6	190
782	The regulation of host cellular and gut microbial metabolism in the development and prevention of colorectal cancer. Critical Reviews in Microbiology, 2018, 44, 436-454.	2.7	22
783	Plasmacytoid dendritic cells protect from viral bronchiolitis and asthma through semaphorin 4a–mediated T reg expansion. Journal of Experimental Medicine, 2018, 215, 537-557.	4.2	65
784	Th17 plasticity and its relevance to inflammatory bowel disease. Journal of Autoimmunity, 2018, 87, 38-49.	3.0	214
785	The Impact of the Intestinal Microbiota in Therapeutic Responses Against Cancer. , 2018, , 447-462.		2
786	Colonization with multidrug-resistant bacteria increases the risk of complications and a fatal outcome after allogeneic hematopoietic cell transplantation. Annals of Hematology, 2018, 97, 509-517.	0.8	31
787	Interactions Between Diet and the Intestinal Microbiota Alter Intestinal Permeability and Colitis Severity in Mice. Gastroenterology, 2018, 154, 1037-1046.e2.	0.6	273
788	Proton Pump Inhibitors Increase the Susceptibility of Mice to Oral Infection with Enteropathogenic Bacteria. Digestive Diseases and Sciences, 2018, 63, 881-889.	1.1	15
789	Arachidonic acid in health and disease with focus on hypertension and diabetes mellitus: A review. Journal of Advanced Research, 2018, 11, 43-55.	4.4	84
790	The germ-organ theory of non-communicable diseases. Nature Reviews Microbiology, 2018, 16, 103-110.	13.6	117

	СПАПОМ	REPORT	
#	Article	IF	CITATIONS
791	Dietary fatty acids and susceptibility to multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 12-16.	1.4	32
792	Immunosuppressive effect of the gut microbiome altered by high-dose tacrolimus in mice. American Journal of Transplantation, 2018, 18, 1646-1656.	2.6	71
793	Discovery of human cell selective effector molecules using single cell multiplexed activity metabolomics. Nature Communications, 2018, 9, 39.	5.8	32
794	Characteristics of Faecal Microbiota in Paediatric Crohn's Disease and Their Dynamic Changes During Infliximab Therapy. Journal of Crohn's and Colitis, 2018, 12, 337-346.	0.6	129
795	Food allergy. Nature Reviews Disease Primers, 2018, 4, 17098.	18.1	244
796	Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nature Communications, 2018, 9, 55.	5.8	393
797	Exposure to the gut microbiota drives distinct methylome and transcriptome changes in intestinal epithelial cells during postnatal development. Genome Medicine, 2018, 10, 27.	3.6	117
798	Horizons of Systems Biocatalysis and Renaissance of Metabolite Synthesis. Biotechnology Journal, 2018, 13, 1700620.	1.8	19
799	Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Alimentary Pharmacology and Therapeutics, 2018, 48, 15-34.	1.9	339
800	Role of probiotics and prebiotics in immunomodulation. Current Opinion in Food Science, 2018, 20, 82-91.	4.1	83
801	The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends in Immunology, 2018, 39, 677-696.	2.9	569
802	Regulation of type 2 innate lymphoid cell–dependent airway hyperreactivity by butyrate. Journal of Allergy and Clinical Immunology, 2018, 142, 1867-1883.e12.	1.5	132
803	Multiple hit infection and autoimmunity: the dysbiotic microbiota–ACPA connection in rheumatoid arthritis. Current Opinion in Rheumatology, 2018, 30, 403-409.	2.0	12
804	Disruption of the Gut Microbiota With Antibiotics Exacerbates Acute Vascular Rejection. Transplantation, 2018, 102, 1085-1095.	0.5	24
805	High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome, 2018, 6, 57.	4.9	176
806	A Common Mechanism Links Activities of Butyrate in the Colon. ACS Chemical Biology, 2018, 13, 1291-1298.	1.6	19
807	Gut microbiota and mTOR signaling: Insight on a new pathophysiological interaction. Microbial Pathogenesis, 2018, 118, 98-104.	1.3	67
808	Host-Microbe Interactions in Airway Disease: toward Disease Mechanisms and Novel Therapeutic Strategies. MSystems, 2018, 3, .	1.7	3

#	Article	IF	CITATIONS
809	Prebiotic Potential of Herbal Medicines Used in Digestive Health and Disease. Journal of Alternative and Complementary Medicine, 2018, 24, 656-665.	2.1	59
810	Bacterial growth, flow, and mixing shape human gut microbiota density and composition. Gut Microbes, 2018, 9, 1-8.	4.3	39
811	Diet, the intestinal microbiota, and immune health in aging. Critical Reviews in Food Science and Nutrition, 2018, 58, 651-661.	5.4	84
812	Microbiota–Host Transgenomic Metabolism, Bioactive Molecules from the Inside. Journal of Medicinal Chemistry, 2018, 61, 47-61.	2.9	91
813	Determinants of Reduced Genetic Capacity for Butyrate Synthesis by the Gut Microbiome in Crohn's Disease and Ulcerative Colitis. Journal of Crohn's and Colitis, 2018, 12, 204-216.	0.6	93
814	Whole cereal grains and potential health effects: Involvement of the gut microbiota. Food Research International, 2018, 103, 84-102.	2.9	136
815	Indoxyl 3-sulfate inhibits maturation and activation of human monocyte-derived dendritic cells. Immunobiology, 2018, 223, 239-245.	0.8	19
816	Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunology, 2018, 11, 785-795.	2.7	247
817	Gut Microbiota, Immune System, and Bone. Calcified Tissue International, 2018, 102, 415-425.	1.5	160
818	A T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis. Journal of Autoimmunity, 2018, 86, 51-61.	3.0	39
819	Lactobacillus gasseri attenuates allergic airway inflammation through PPARÎ ³ activation in dendritic cells. Journal of Molecular Medicine, 2018, 96, 39-51.	1.7	22
820	The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nature Reviews Immunology, 2018, 18, 105-120.	10.6	322
821	Chemoreceptors in the Gut. Annual Review of Physiology, 2018, 80, 117-141.	5.6	50
822	HIV and aging. Current Opinion in HIV and AIDS, 2018, 13, 22-27.	1.5	30
823	Epigenetic regulation in bacterial infections: targeting histone deacetylases. Critical Reviews in Microbiology, 2018, 44, 336-350.	2.7	99
824	Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology. Microbiology Spectrum, 2017, 5, .	1.2	69
825	Host–microbiota interplay in mediating immune disorders. Annals of the New York Academy of Sciences, 2018, 1417, 57-70.	1.8	46
826	Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health. Microbiology Spectrum, 2017, 5, .	1.2	125

		Report	
#	Article	IF	CITATIONS
827	Intestinal microbiota in infants at high risk for allergy: Effects of prebiotics and role in eczema development. Journal of Allergy and Clinical Immunology, 2018, 141, 1334-1342.e5.	1.5	128
828	Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice. Gut Microbes, 2018, 9, 115-130.	4.3	103
829	Bone Remodeling and the Microbiome. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031203.	2.9	58
830	The role of gut microbiota in the pathogenesis of rheumatic diseases. Clinical Rheumatology, 2018, 37, 25-34.	1.0	83
831	Fiber Intake and Survival After Colorectal Cancer Diagnosis. JAMA Oncology, 2018, 4, 71.	3.4	127
832	Combined therapies to treat complex diseases: The role of the gut microbiota in multiple sclerosis. Autoimmunity Reviews, 2018, 17, 165-174.	2.5	82
833	Removal of the cecum affects intestinal fermentation, enteric bacterial community structure, and acute colitis in mice. Gut Microbes, 2018, 9, 218-235.	4.3	63
834	Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. Journal of Allergy and Clinical Immunology, 2018, 142, 424-434.e10.	1.5	181
835	Interplay between the lung microbiome and lung cancer. Cancer Letters, 2018, 415, 40-48.	3.2	188
836	New Insights into Graft-Versus-Host Disease and Graft Rejection. Annual Review of Pathology: Mechanisms of Disease, 2018, 13, 219-245.	9.6	55
837	Dietary and metabolic modulators of hepatic immunity. Seminars in Immunopathology, 2018, 40, 175-188.	2.8	16
838	Faecal microbiota in dogs with multicentric lymphoma. Veterinary and Comparative Oncology, 2018, 16, E169-E175.	0.8	39
839	Harnessing the power of regulatory Tâ€cells to control autoimmune diabetes: overview and perspective. Immunology, 2018, 153, 161-170.	2.0	51
840	Sea Cucumber Lipid-Soluble Extra Fraction Prevents Ovalbumin-Induced Allergic Airway Inflammation. Journal of Medicinal Food, 2018, 21, 21-29.	0.8	7
841	Recipe for IBD: can we use food to control inflammatory bowel disease?. Seminars in Immunopathology, 2018, 40, 145-156.	2.8	26
842	Gut Brain Axis and Its Microbiota Regulation in Mammals and Birds. Veterinary Clinics of North America - Exotic Animal Practice, 2018, 21, 159-167.	0.4	3
843	Effects of xylo-oligosaccharide and flavomycin on the immune function of broiler chickens. PeerJ, 2018, 6, e4435.	0.9	35
844	Xenobiotic and endobiotic handling by the mucosal immune system. Current Opinion in Gastroenterology, 2018, 34, 404-412.	1.0	6

#	Article	IF	CITATIONS
845	The role of the gut microbiome during host ageing. F1000Research, 2018, 7, 1086.	0.8	28
846	Role of diet and gut microbiota on colorectal cancer immunomodulation. World Journal of Gastroenterology, 2018, 25, 151-162.	1.4	103
847	Microbiota-accessible pectic poly- and oligosaccharides in gut health. Food and Function, 2018, 9, 5059-5073.	2.1	64
848	Gut-brain Axis: Role of Lipids in the Regulation of Inflammation, Pain and CNS Diseases. Current Medicinal Chemistry, 2018, 25, 3930-3952.	1.2	145
849	The Microbial Metabolite Butyrate Stimulates Bone Formation via T Regulatory Cell-Mediated Regulation of WNT10B Expression. Immunity, 2018, 49, 1116-1131.e7.	6.6	288
850	Multiple Sclerosis-Associated Changes in the Composition and Immune Functions of Spore-Forming Bacteria. MSystems, 2018, 3, .	1.7	56
851	Perinatal antibiotic exposure alters composition of murine gut microbiota and may influence later responses to peanut antigen. Allergy, Asthma and Clinical Immunology, 2018, 14, 42.	0.9	10
852	IL-17A expression in the adenoid tissue from children with sleep disordered breathing and its association with pneumococcal carriage. Scientific Reports, 2018, 8, 16770.	1.6	10
853	An Insight Into the Intestinal Web of Mucosal Immunity, Microbiota, and Diet in Inflammation. Frontiers in Immunology, 2018, 9, 2617.	2.2	70
854	Gut microbiome profiling and colorectal cancer in African Americans and Caucasian Americans. World Journal of Gastrointestinal Pathophysiology, 2018, 9, 47-58.	0.5	42
855	Make (No) Bones about Butyrate. Immunity, 2018, 49, 994-996.	6.6	5
856	Administration of bifidobacterium and lactobacillus strains modulates experimental myasthenia gravis and experimental encephalomyelitis in Lewis rats. Oncotarget, 2018, 9, 22269-22287.	0.8	38
857	Regulatory T Cells Restrict Permeability to Bacterial Antigen Translocation and Preserve Shortâ€Chain Fatty Acids in Experimental Cirrhosis. Hepatology Communications, 2018, 2, 1610-1623.	2.0	15
858	Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nature Communications, 2018, 9, 5184.	5.8	190
859	Microbial dysbiosis and mortality during mechanical ventilation: a prospective observational study. Respiratory Research, 2018, 19, 245.	1.4	64
860	Respiratory Viral Infection-Induced Microbiome Alterations and Secondary Bacterial Pneumonia. Frontiers in Immunology, 2018, 9, 2640.	2.2	343
861	Colonocyte metabolism shapes the gut microbiota. Science, 2018, 362, .	6.0	411
863	Therapeutic Potential of the Gut Microbiota in the Prevention and Treatment of Sepsis. Frontiers in Immunology, 2018, 9, 2042.	2.2	103

#	Article	IF	CITATIONS
864	Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Current Nutrition Reports, 2018, 7, 198-206.	2.1	425
865	Propionate-producing bacteria in the intestine may associate with skewed responses of IL10-producing regulatory T cells in patients with relapsing polychondritis. PLoS ONE, 2018, 13, e0203657.	1.1	57
866	The "Gut Feeling― Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics, 2018, 15, 109-125.	2.1	117
867	Gastrointestinal Development. Gastroenterology Clinics of North America, 2018, 47, 773-791.	1.0	22
868	A Metabolomic-Based Evaluation of the Role of Commensal Microbiota throughout the Gastrointestinal Tract in Mice. Microorganisms, 2018, 6, 101.	1.6	24
869	Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes. Nature Communications, 2018, 9, 3903.	5.8	69
870	The Gut Microbiota and Dysbiosis in Autism Spectrum Disorders. Current Neurology and Neuroscience Reports, 2018, 18, 81.	2.0	155
871	Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate. Scientific Reports, 2018, 8, 14430.	1.6	181
872	Short-term and long-term effects of caesarean section on the health of women and children. Lancet, The, 2018, 392, 1349-1357.	6.3	682
873	The Suppressive Effect of Butyrate and Bromopyruvate on Inflammatory Cytokine Production and Short Chain Fatty Acid Receptor Expression by Blood Mononuclear Cells in Patients with Behçet's Disease. Annals of Dermatology, 2018, 30, 566.	0.3	3
874	The transcription factor Foxp1 preserves integrity of an active Foxp3 locus in extrathymic Treg cells. Nature Communications, 2018, 9, 4473.	5.8	29
875	Antibiotics and autoimmune and allergy diseases: Causative factor or treatment?. International Immunopharmacology, 2018, 65, 328-341.	1.7	30
876	Altered Gut Microbiota in Myasthenia Gravis. Frontiers in Microbiology, 2018, 9, 2627.	1.5	61
877	Probiotics as a Potential Immunomodulating Pharmabiotics in Allergic Diseases: Current Status and Future Prospects. Allergy, Asthma and Immunology Research, 2018, 10, 575.	1.1	61
878	Dysregulated Microbial Fermentation of Soluble Fiber Induces Cholestatic Liver Cancer. Cell, 2018, 175, 679-694.e22.	13.5	344
879	Anti-Inflammatory Activities of Pentaherbs formula and Its Influence on Gut Microbiota in Allergic Asthma. Molecules, 2018, 23, 2776.	1.7	31
880	Cell surface polysaccharides of <i>Bifidobacterium bifidum</i> induce the generation of Foxp3 ⁺ regulatory T cells. Science Immunology, 2018, 3, .	5.6	145
881	Evaluation of different mucosal microbiota leads to gut microbiota-based prediction of type 1 diabetes in NOD mice. Scientific Reports, 2018, 8, 15451.	1.6	59

		CITATION RE	PORT	
#	Article		IF	CITATIONS
882	Glycans for good. Science Immunology, 2018, 3, .		5.6	2
883	Application of 2-Picolylamine Derivatized Ultra-high Performance Liquid Chromatograph Mass Spectrometry for the Determination of Short-chain Fatty Acids in Feces Samples. Sciences, 2018, 34, 1031-1036.	ıy Tandem Analytical	0.8	31
884	Environmental Factors and Their Influence on Intestinal Fibrosis. , 2018, , 111-126.			0
885	Role of Microbiome in Carcinogenesis Process and Epigenetic Regulation of Colorectal (Methods in Molecular Biology, 2018, 1856, 35-55.	Cancer.	0.4	26
886	Antibodies Set Boundaries Limiting Microbial Metabolite Penetration and the Resultant Host Response. Immunity, 2018, 49, 545-559.e5.	Mammalian	6.6	121
887	Epigenetic mechanisms regulating T-cell responses. Journal of Allergy and Clinical Immu 142, 728-743.	nology, 2018,	1.5	100
888	Sox12 promotes T reg differentiation in the periphery during colitis. Journal of Experime 2018, 215, 2509-2519.	ntal Medicine,	4.2	7
889	Fecal microbiota transplantation: a promising strategy in preventing the progression of non-alcoholic steatohepatitis and improving the anti-cancer immune response. Expert C Biological Therapy, 2018, 18, 1061-1071.	Dpinion on	1.4	27
890	The Microbiome and Tuberculosis: Early Evidence for Cross Talk. MBio, 2018, 9, .		1.8	71
891	Genome wide transcriptome analysis provides bases on colonic mucosal immune syster affected by colostrum feeding strategies in neonatal calves. BMC Genomics, 2018, 19,	n development 635.	1.2	7
892	Role of Short Chain Fatty Acids in Controlling Tregs and Immunopathology During Muc Frontiers in Microbiology, 2018, 9, 1995.	osal Infection.	1.5	104
893	Metabolic Dysfunction and Peroxisome Proliferator-Activated Receptors (PPAR) in Multi International Journal of Molecular Sciences, 2018, 19, 1639.	ple Sclerosis.	1.8	17
894	NLRP3 inflammasome in colitis and colitis-associated colorectal cancer. Mammalian Ger 817-830.	ıome, 2018, 29,	1.0	41
895	Wolves Trapped in the NETs–The Pathogenesis of Lupus Nephritis. Journal of Rheuma 25, 81.	tic Diseases, 2018,	0.4	3
896	Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintai homeostasis. Nature Communications, 2018, 9, 3555.	n intestinal	5.8	380
897	Modulation of the immune system by the gut microbiota in the development of type 1 Vaccines and Immunotherapeutics, 2018, 14, 1-17.	diabetes. Human	1.4	11
898	Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carboh Improve Human Health. , 0, , 453-483.	ydrates To		8
900	Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology	, 2018, , 1-47.		0

#	Article	IF	Citations
901	Extrathymically Generated Regulatory T Cells Establish a Niche for Intestinal Border-Dwelling Bacteria and Affect Physiologic Metabolite Balance. Immunity, 2018, 48, 1245-1257.e9.	6.6	100
902	Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 671-682.	8.2	257
903	Alopecia areata and the gut—the link opens up for novel therapeutic interventions. Expert Opinion on Therapeutic Targets, 2018, 22, 503-511.	1.5	43
904	Supplementation of fructooligosaccharides to suckling piglets affects intestinal microbiota colonization and immune development1. Journal of Animal Science, 2018, 96, 2139-2153.	0.2	49
905	Metabolic regulation of chromatin modifications and gene expression. Journal of Cell Biology, 2018, 217, 2247-2259.	2.3	163
906	A causal mechanism for childhood acute lymphoblastic leukaemia. Nature Reviews Cancer, 2018, 18, 471-484.	12.8	342
907	Influence of gut microbiome on mucosal immune activation and SHIV viral transmission in naive macaques. Mucosal Immunology, 2018, 11, 1219-1229.	2.7	33
908	Microbiota and Type 2 immune responses. Current Opinion in Immunology, 2018, 54, 20-27.	2.4	29
909	Gut Microbiota in Health and Disease. , 2018, , 57-90.		0
910	Dietary Fiber Confers Protection against Flu by Shaping Ly6câ^' Patrolling Monocyte Hematopoiesis and CD8+ T Cell Metabolism. Immunity, 2018, 48, 992-1005.e8.	6.6	441
911	Faecalibacterium prausnitzii Produces Butyrate to Maintain Th17/Treg Balance and to Ameliorate Colorectal Colitis by Inhibiting Histone Deacetylase 1. Inflammatory Bowel Diseases, 2018, 24, 1926-1940.	0.9	245
912	Microbiota Composition and the Integration of Exogenous and Endogenous Signals in Reactive Nasal Inflammation. Journal of Immunology Research, 2018, 2018, 1-17.	0.9	28
913	Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives. Mediators of Inflammation, 2018, 2018, 1-17.	1.4	107
914	Update on the Gastrointestinal Microbiome in Systemic Sclerosis. Current Rheumatology Reports, 2018, 20, 49.	2.1	42
915	Butyrate produced by gut commensal bacteria activates TGF-beta1 expression through the transcription factor SP1 in human intestinal epithelial cells. Scientific Reports, 2018, 8, 9742.	1.6	142
916	Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6546-E6555.	3.3	234
917	Antibiotics in early life: dysbiosis and the damage done. FEMS Microbiology Reviews, 2018, 42, 489-499.	3.9	152
918	Transgenic Eimeria tenella Expressing Profilin of Eimeria maxima Elicits Enhanced Protective Immunity and Alters Gut Microbiome of Chickens. Infection and Immunity, 2018, 86, .	1.0	36

# 919	ARTICLE Gut microbiome in type 1 diabetes: A comprehensive review. Diabetes/Metabolism Research and Reviews, 2018, 34, e3043.	IF 1.7	CITATIONS
920	Helminth–Bacterial Interactions: Cause and Consequence. Trends in Immunology, 2018, 39, 724-733.	2.9	79
921	Communication Between the Microbiota and Mammalian Immunity. Annual Review of Microbiology, 2018, 72, 399-422.	2.9	59
922	Alterations in the gut bacterial microbiome in fungal Keratitis patients. PLoS ONE, 2018, 13, e0199640.	1.1	65
923	Microbiome and Gut Immunity: T Cells. , 2018, , 119-140.		4
924	Fecal markers in the management of inflammatory bowel disease. Postgraduate Medicine, 2018, 130, 597-606.	0.9	12
925	Sodium Butyrate Mitigates iE-DAP Induced Inflammation Caused by High-Concentrate Feeding in Liver of Dairy Goats. Journal of Agricultural and Food Chemistry, 2018, 66, 8999-9009.	2.4	21
926	Genetic and microbiome influence on lipid metabolism and dyslipidemia. Physiological Genomics, 2018, 50, 117-126.	1.0	84
927	The Promise of Personalized Medicine. , 2018, , 465-474.		0
928	Improved glucose metabolism by Eragrostis tef potentially through beige adipocyte formation and attenuating adipose tissue inflammation. PLoS ONE, 2018, 13, e0201661.	1.1	6
929	Regulatory T Cell Metabolism in the Hepatic Microenvironment. Frontiers in Immunology, 2017, 8, 1889.	2.2	32
930	The Role of Lipid Metabolism in T Lymphocyte Differentiation and Survival. Frontiers in Immunology, 2017, 8, 1949.	2.2	127
931	T-Cell Metabolism in Hematopoietic Cell Transplantation. Frontiers in Immunology, 2018, 9, 176.	2.2	29
932	Intestinal Microbiota at Engraftment Influence Acute Graft-Versus-Host Disease via the Treg/Th17 Balance in Allo-HSCT Recipients. Frontiers in Immunology, 2018, 9, 669.	2.2	57
933	Emerging Functions of Regulatory T Cells in Tissue Homeostasis. Frontiers in Immunology, 2018, 9, 883.	2.2	201
934	Impact of a 3-Months Vegetarian Diet on the Gut Microbiota and Immune Repertoire. Frontiers in Immunology, 2018, 9, 908.	2.2	56
935	Concepts Collide: Genomic, Immune, and Microbial Influences on the Tumor Microenvironment and Response to Cancer Therapy. Frontiers in Immunology, 2018, 9, 946.	2.2	19
936	Microbiome and Allergic Diseases. Frontiers in Immunology, 2018, 9, 1584.	2.2	211

#	Article	IF	CITATIONS
937	Intestinal Microbiome Shifts, Dysbiosis, Inflammation, and Non-alcoholic Fatty Liver Disease. Frontiers in Microbiology, 2018, 9, 61.	1.5	141
938	Impaired Autophagy in Intestinal Epithelial Cells Alters Gut Microbiota and Host Immune Responses. Applied and Environmental Microbiology, 2018, 84, .	1.4	72
939	Beyond Bacteria: Bacteriophage-Eukaryotic Host Interactions Reveal Emerging Paradigms of Health and Disease. Frontiers in Microbiology, 2018, 9, 1394.	1.5	39
940	Role of Short Chain Fatty Acid Receptors in Intestinal Physiology and Pathophysiology. , 2018, 8, 1091-1115.		141
941	The Balance of Th17 versus Treg Cells in Autoimmunity. International Journal of Molecular Sciences, 2018, 19, 730.	1.8	481
942	The Role of Gut Microbiota in Obesity and Type 2 and Type 1 Diabetes Mellitus: New Insights into "Old― Diseases. Medical Sciences (Basel, Switzerland), 2018, 6, 32.	1.3	103
943	Microbiome in the Gut-Skin Axis in Atopic Dermatitis. Allergy, Asthma and Immunology Research, 2018, 10, 354.	1.1	182
944	Paraclostridium bifermentans exacerbates pathosis in a mouse model of ulcerative colitis. PLoS ONE, 2018, 13, e0197668.	1.1	14
945	Acetate moderately attenuates the generation of neutrophil extracellular traps. Blood Research, 2018, 53, 177.	0.5	8
946	Histone deacetylase function in CD4+ T cells. Nature Reviews Immunology, 2018, 18, 617-634.	10.6	106
947	Dietary non-fermentable fiber prevents autoimmune neurological disease by changing gut metabolic and immune status. Scientific Reports, 2018, 8, 10431.	1.6	63
948	Nature versus nurture in the spectrum of rheumatic diseases: Classification of spondyloarthritis as autoimmune or autoinflammatory. Autoimmunity Reviews, 2018, 17, 935-941.	2.5	51
949	γδT Cells: Crosstalk Between Microbiota, Chronic Inflammation, and Colorectal Cancer. Frontiers in Immunology, 2018, 9, 1483.	2.2	33
950	Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. Frontiers in Microbiology, 2018, 9, 432.	1.5	137
951	Time-resolved transcriptome and proteome landscape of human regulatory T cell (Treg) differentiation reveals novel regulators of FOXP3. BMC Biology, 2018, 16, 47.	1.7	23
952	Roseburia intestinalis inhibits interleukin‑17 excretion and promotes regulatory T cells differentiation in colitis. Molecular Medicine Reports, 2018, 17, 7567-7574.	1.1	83
953	Gut microbiota profiling in Han Chinese with type 1 diabetes. Diabetes Research and Clinical Practice, 2018, 141, 256-263.	1.1	68
954	Healthy hosts rule within: ecological forces shaping the gut microbiota. Mucosal Immunology, 2018, 11, 1299-1305.	2.7	75

#	Article	IF	CITATIONS
955	Necrotizing enterocolitis: The intestinal microbiome, metabolome and inflammatory mediators. Seminars in Fetal and Neonatal Medicine, 2018, 23, 400-405.	1.1	70
956	Intestinal Dysbiosis in Autoimmune Diabetes Is Correlated With Poor Glycemic Control and Increased Interleukin-6: A Pilot Study. Frontiers in Immunology, 2018, 9, 1689.	2.2	51
957	Metabolites as regulators of insulin sensitivity and metabolism. Nature Reviews Molecular Cell Biology, 2018, 19, 654-672.	16.1	369
958	Gut microbiota composition and butyrate production in children affected by non-IgE-mediated cow's milk allergy. Scientific Reports, 2018, 8, 12500.	1.6	80
959	Role of gut microbiota in chronic lowâ€grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obesity Reviews, 2018, 19, 1719-1734.	3.1	169
960	Perspective: Fundamental Limitations of the Randomized Controlled Trial Method in Nutritional Research: The Example of Probiotics. Advances in Nutrition, 2018, 9, 561-571.	2.9	51
961	Exposure to Arsenite in CD-1 Mice during Juvenile and Adult Stages: Effects on Intestinal Microbiota and Gut-Associated Immune Status. MBio, 2018, 9, .	1.8	52
962	Using bioreactors to study the effects of drugs on the human microbiota. Methods, 2018, 149, 31-41.	1.9	34
963	Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. Journal of Autoimmunity, 2018, 92, 12-34.	3.0	232
964	Regulation of CD4+CD8â^'CD25+ and CD4+CD8+CD25+ T cells by gut microbiota in chicken. Scientific Reports, 2018, 8, 8627.	1.6	31
965	Oral administration of Bifidobacterium bifidum TMC3115 to neonatal mice may alleviate IgE-mediated allergic risk in adulthood. Beneficial Microbes, 2018, 9, 815-828.	1.0	22
966	The causes and consequences of variation in human cytokine production in health. Current Opinion in Immunology, 2018, 54, 50-58.	2.4	40
967	Effects of a homogeneous polysaccharide from Sijunzi decoction on human intestinal microbes and short chain fatty acids in vitro. Journal of Ethnopharmacology, 2018, 224, 465-473.	2.0	69
968	Exosome-mediated amplification of endogenous brain repair mechanisms and brain and systemic organ interaction in modulating neurological outcome after stroke. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 2165-2178.	2.4	51
969	Good or bad: gut bacteria in human health and diseases. Biotechnology and Biotechnological Equipment, 2018, 32, 1075-1080.	0.5	55
970	Holy Immune Tolerance, Batman!. Immunity, 2018, 48, 1074-1076.	6.6	13
971	What Came First: The Microbiota or the Tr(egg) Cells?. Immunity, 2018, 48, 1072-1074.	6.6	8
972	Role of nutrition, infection, and the microbiota in the efficacy of oral vaccines. Clinical Science, 2018, 132, 1169-1177.	1.8	16

#	Article	IF	CITATIONS
973	Gut environmental factors and multiple sclerosis. Journal of Neuroimmunology, 2019, 329, 20-23.	1.1	29
974	Interplay between food and gut microbiota in health and disease. Food Research International, 2019, 115, 23-31.	2.9	168
975	Gastrointestinal Disorders Associated with Primary Immunodeficiency Diseases. Clinical Reviews in Allergy and Immunology, 2019, 57, 145-165.	2.9	30
976	Sodium chloride triggers Th17 mediated autoimmunity. Journal of Neuroimmunology, 2019, 329, 9-13.	1.1	29
977	Detrimental Effect of Broad-spectrum Antibiotics on Intestinal Microbiome Diversity in Patients After Allogeneic Stem Cell Transplantation: Lack of Commensal Sparing Antibiotics. Clinical Infectious Diseases, 2019, 68, 1303-1310.	2.9	69
978	Loss of HDAC6 alters gut microbiota and worsens obesity. FASEB Journal, 2019, 33, 1098-1109.	0.2	36
979	Intraperitoneal Injection of Acetate Protects Mice Against Lipopolysaccharide (LPS)‑Induced Acute Lung Injury Through Its Anti-Inï¬,ammatory and Anti-Oxidative Ability. Medical Science Monitor, 2019, 25, 2278-2288.	0.5	11
980	Reduced genetic potential for butyrate fermentation in the gut microbiome of infants who develop allergic sensitization. Journal of Allergy and Clinical Immunology, 2019, 144, 1638-1647.e3.	1.5	95
981	Early E. casseliflavus gut colonization and outcomes of allogeneic hematopoietic cell transplantation. PLoS ONE, 2019, 14, e0220850.	1.1	4
982	Xylitol's Health Benefits beyond Dental Health: A Comprehensive Review. Nutrients, 2019, 11, 1813.	1.7	54
983	Butyrate suppresses demyelination and enhances remyelination. Journal of Neuroinflammation, 2019, 16, 165.	3.1	124
984	Role of TGFβ3-Smads-Sp1 axis in DcR3-mediated immune escape of hepatocellular carcinoma. Oncogenesis, 2019, 8, 43.	2.1	14
985	Vitamin D Regulates the Microbiota to Control the Numbers of RORÎ ³ t/FoxP3+ Regulatory T Cells in the Colon. Frontiers in Immunology, 2019, 10, 1772.	2.2	44
986	Microbiology and immunology: An ideal partnership for a tango at the gut surface—A tribute toPhilippe Sansonetti. Cellular Microbiology, 2019, 21, e13097.	1.1	2
987	Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens, 2019, 8, 126.	1.2	464
988	Gut Bacterial Metabolite Urolithin A (UA) Mitigates Ca2+ Entry in T Cells by Regulating miR-10a-5p. Frontiers in Immunology, 2019, 10, 1737.	2.2	32
989	Low Methoxyl Pectin Protects against Autoimmune Diabetes and Associated Caecal Dysfunction. Molecular Nutrition and Food Research, 2019, 63, e1900307.	1.5	19
990	Dietâ€derived microbial metabolites in health and disease. Nutrition Bulletin, 2019, 44, 216-227	0.8	36

#	Article	IF	CITATIONS
991	Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiological Reviews, 2019, 99, 1819-1875.	13.1	516
992	Lyso-Gb3 modulates the gut microbiota and decreases butyrate production. Scientific Reports, 2019, 9, 12010.	1.6	21
993	The role for the microbiome in the regulation of the circadian clock and metabolism. , 2019, , 231-248.		2
994	Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic―and GPR109aâ€mediated mechanisms. FASEB Journal, 2019, 33, 11894-11908.	0.2	70
995	Gut dysbiosis and its epigenomic impact on disease. , 2019, , 409-422.		1
996	Circulating levels of butyrate are inversely related to portal hypertension, endotoxemia, and systemic inflammation in patients with cirrhosis. FASEB Journal, 2019, 33, 11595-11605.	0.2	68
997	Immunomodulatory Effects of Flavonoids: Possible Induction of T CD4+ Regulatory Cells Through Suppression of mTOR Pathway Signaling Activity. , 2019, , 437-452.		1
998	Modulation of Gut Microbiota by Low Methoxyl Pectin Attenuates Type 1 Diabetes in Non-obese Diabetic Mice. Frontiers in Immunology, 2019, 10, 1733.	2.2	47
999	The interaction between the gut Microbiota and herbal medicines. Biomedicine and Pharmacotherapy, 2019, 118, 109252.	2.5	98
1000	Roseburia�intestinalis supernatant ameliorates colitis induced in mice by regulating the immune response. Molecular Medicine Reports, 2019, 20, 1007-1016.	1.1	24
1001	A single bacterium restores the microbiome dysbiosis to protect bones from destruction in a rat model of rheumatoid arthritis. Microbiome, 2019, 7, 107.	4.9	101
1002	Multi-Faceted Notch in Allergic Airway Inflammation. International Journal of Molecular Sciences, 2019, 20, 3508.	1.8	14
1003	Gut microbiota metabolite regulation of host defenses at mucosal surfaces: implication in precision medicine. Precision Clinical Medicine, 2019, 2, 110-119.	1.3	81
1004	Severe burn injury alters intestinal microbiota composition and impairs intestinal barrier in mice. Burns and Trauma, 2019, 7, 20.	2.3	32
1005	Supplementation of diet with non-digestible oligosaccharides alters the intestinal microbiota, but not arthritis development, in IL-1 receptor antagonist deficient mice. PLoS ONE, 2019, 14, e0219366.	1.1	9
1006	Regulation of oral immune tolerance by the microbiome in food allergy. Current Opinion in Immunology, 2019, 60, 141-147.	2.4	44
1007	Pas de Deux: Control of Anti-tumor Immunity by Cancer-Associated Inflammation. Immunity, 2019, 51, 15-26.	6.6	143
1008	Vendor-specific microbiome controls both acute and chronic murine lung allograft rejection by altering CD4+Foxp3+ regulatory T cell levels. American Journal of Transplantation, 2019, 19, 2705-2718.	2.6	25

\sim	T A T I	ON	DEDO	DT
			REDU	
<u> </u>	/		ILLI U	- C - L

#	Article	IF	CITATIONS
1009	Decreased maternal serum acetate and impaired fetal thymic and regulatory T cell development in preeclampsia. Nature Communications, 2019, 10, 3031.	5.8	91
1010	Potential Role of the Microbiome in Acne: A Comprehensive Review. Journal of Clinical Medicine, 2019, 8, 987.	1.0	143
1011	Inflammatory and immunometabolic consequences of gut dysfunction in HIV: Parallels with IBD and implications for reservoir persistence and non-AIDS comorbidities. EBioMedicine, 2019, 46, 522-531.	2.7	57
1012	Butyrate ameliorates caeruleinâ€induced acute pancreatitis and associated intestinal injury by tissueâ€specific mechanisms. British Journal of Pharmacology, 2019, 176, 4446-4461.	2.7	87
1013	Microenvironmental Metabolism Regulates Antitumor Immunity. Cancer Research, 2019, 79, 4003-4008.	0.4	91
1014	Metabolic Signaling and Spatial Interactions in the Oral Polymicrobial Community. Journal of Dental Research, 2019, 98, 1308-1314.	2.5	25
1016	Effects of Fish n-3 PUFAs on Intestinal Microbiota and Immune System. Marine Drugs, 2019, 17, 374.	2.2	105
1017	Implications of Diet and The Gut Microbiome in Neuroinflammatory and Neurodegenerative Diseases. International Journal of Molecular Sciences, 2019, 20, 3109.	1.8	75
1018	Bridging intestinal immunity and gut microbiota by metabolites. Cellular and Molecular Life Sciences, 2019, 76, 3917-3937.	2.4	176
1019	BOARD INVITED REVIEW: The pig microbiota and the potential for harnessing the power of the microbiome to improve growth and health1. Journal of Animal Science, 2019, 97, 3741-3757.	0.2	39
1020	Microbiota in Non-alcoholic Liver Disease. , 2019, , 103-111.		0
1021	Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8+ T Cells. Immunity, 2019, 51, 285-297.e5.	6.6	378
1022	Nicotinamide as Independent Variable for Intelligence, Fertility, and Health: Origin of Human Creative Explosions?. International Journal of Tryptophan Research, 2019, 12, 117864691985594.	1.0	3
1023	A rapid derivatization based LC–MS/MS method for quantitation of short chain fatty acids in human plasma and urine. Bioanalysis, 2019, 11, 741-753.	0.6	32
1024	Alleviation of Intestinal Inflammation by Oral Supplementation With 2-Fucosyllactose in Mice. Frontiers in Microbiology, 2019, 10, 1385.	1.5	49
1025	Gut Vibes in Parkinson's Disease: The Microbiotaâ€Gutâ€Brain Axis. Movement Disorders Clinical Practice, 2019, 6, 639-651.	0.8	65
1026	Health Challenges of the Pacific Region: Insights From History, Geography, Social Determinants, Genetics, and the Microbiome. Frontiers in Immunology, 2019, 10, 2184.	2.2	31
1027	Metabolite-Sensing Receptor Ffar2 Regulates Colonic Group 3 Innate Lymphoid Cells and Gut Immunity. Immunity, 2019, 51, 871-884.e6.	6.6	203

# 1028	ARTICLE Maturation of Gut Microbiota and Circulating Regulatory T Cells and Development of IgE Sensitization in Early Life. Frontiers in Immunology, 2019, 10, 2494.	IF 2.2	Citations
1029	Death and the Miser: microbiota regulate the outcome of checkpoint inhibition immunotherapy. Expert Review of Anticancer Therapy, 2019, 19, 831-834.	1.1	3
1030	Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduction and Targeted Therapy, 2019, 4, 41.	7.1	150
1031	Regulatory T Cell Development in the Thymus. Journal of Immunology, 2019, 203, 2031-2041.	0.4	64
1032	Exploiting the Zonulin Mouse Model to Establish the Role of Primary Impaired Gut Barrier Function on Microbiota Composition and Immune Profiles. Frontiers in Immunology, 2019, 10, 2233.	2.2	41
1033	Optimization analysis of giant spiral case with combined embedding method. IOP Conference Series: Earth and Environmental Science, 2019, 304, 032064.	0.2	1
1034	Hepatitis B Virus Infection Alters Gut Microbiota Composition in Mice. Frontiers in Cellular and Infection Microbiology, 2019, 9, 377.	1.8	30
1035	Early Life Respiratory Syncytial Virus Infection and Asthmatic Responses. Immunology and Allergy Clinics of North America, 2019, 39, 309-319.	0.7	5
1036	Coarse Grained Heat-Affected Zone Microstructure and Brittleness of Ti-Nb-B Microalloyed High Toughness and Wear Resistant Steel. Metals, 2019, 9, 289.	1.0	3
1037	Alternating consumption of βâ€glucan and quercetin reduces mortality in mice with colorectal cancer. Food Science and Nutrition, 2019, 7, 3273-3285.	1.5	23
1038	Gut microbiota mediated allostasis prevents stress-induced neuroinflammatory risk factors of Alzheimer's disease. Progress in Molecular Biology and Translational Science, 2019, 168, 147-181.	0.9	21
1039	Microbiome, Autoimmune Diseases and HIV Infection: Friends or Foes?. Nutrients, 2019, 11, 2629.	1.7	5
1040	Protective Effects of Probiotic Consumption in Cardiovascular Disease in Systemic Lupus Erythematosus. Nutrients, 2019, 11, 2676.	1.7	24
1041	Thymically-derived Foxp3+ regulatory T cells are the primary regulators of type 1 diabetes in the non-obese diabetic mouse model. PLoS ONE, 2019, 14, e0217728.	1.1	19
1042	Transgenerational epigenetic inheritance: from phenomena to molecular mechanisms. Current Opinion in Neurobiology, 2019, 59, 189-206.	2.0	57
1043	Bifidobacteria: A probable missing puzzle piece in the pathogenesis of multiple sclerosis. Multiple Sclerosis and Related Disorders, 2019, 36, 101378.	0.9	5
1044	Is there any association between gut microbiota and type 1 diabetes? A systematic review. Gut Pathogens, 2019, 11, 49.	1.6	63
1045	Perinatal Interactions between the Microbiome, Immunity, and Neurodevelopment. Immunity, 2019, 50, 18-36.	6.6	103

#	Article	IF	CITATIONS
1046	Intestinal epithelial cells: at the interface of the microbiota and mucosal immunity. Immunology, 2019, 158, 267-280.	2.0	150
1047	Infectious Threats, the Intestinal Barrier, and Its Trojan Horse: Dysbiosis. Frontiers in Microbiology, 2019, 10, 1676.	1.5	92
1048	Early-life factors contributing to type 1 diabetes. Diabetologia, 2019, 62, 1823-1834.	2.9	62
1049	Effects of Land Transport Stress on Variations in Ruminal Microbe Diversity and Immune Functions in Different Breeds of Cattle. Animals, 2019, 9, 599.	1.0	26
1050	Microbiota-Nourishing Immunity: A Guide to Understanding Our Microbial Self. Immunity, 2019, 51, 214-224.	6.6	24
1051	Sweet Memories of 8 Empowered by Butyrate. Immunity, 2019, 51, 201-203.	6.6	3
1052	Pursuing Human-Relevant Gut Microbiota-Immune Interactions. Immunity, 2019, 51, 225-239.	6.6	105
1053	The influence of the microbiome on respiratory health. Nature Immunology, 2019, 20, 1279-1290.	7.0	299
1054	Dysbiosis: from fiction to function. American Journal of Physiology - Renal Physiology, 2019, 317, G602-G608.	1.6	70
1055	The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. European Cardiology Review, 2019, 14, 50-59.	0.7	692
1056	Complex interactions between the microbiome and cancer immune therapy. Critical Reviews in Clinical Laboratory Sciences, 2019, 56, 567-585.	2.7	28
1057	Nonpharmacological Modulation of Chronic Inflammation in Parkinson's Disease: Role of Diet Interventions. Parkinson's Disease, 2019, 2019, 1-12.	0.6	13
1058	The Impact of Gut Microbiota on Host Obesity. , 2019, 09, .		3
1059	Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities. Scientific Reports, 2019, 9, 13424.	1.6	235
1060	The Gut Microbiota in Multiple Sclerosis: An Overview of Clinical Trials. Cell Transplantation, 2019, 28, 1507-1527.	1.2	122
1061	Manipulating Gut Microbiota Composition to Enhance the Therapeutic Effect of Cancer Immunotherapy. Integrative Cancer Therapies, 2019, 18, 153473541987635.	0.8	38
1062	Dry Eye Disease: Emerging Approaches to Disease Analysis and Therapy. Journal of Clinical Medicine, 2019, 8, 1439.	1.0	45
1063	TGF-β signaling controls <i>Foxp3</i> methylation and T reg cell differentiation by modulating Uhrf1 activity. Journal of Experimental Medicine, 2019, 216, 2819-2837.	4.2	45

\sim		<u> </u>	
			ЪΤ
\sim	ITAL	KLPU	IN I

#	Article	IF	CITATIONS
1064	Mucin O-glycans facilitate symbiosynthesis to maintain gut immune homeostasis. EBioMedicine, 2019, 48, 513-525.	2.7	66
1065	The role of vitamin D in increasing circulating T regulatory cell numbers and modulating T regulatory cell phenotypes in patients with inflammatory disease or in healthy volunteers: A systematic review. PLoS ONE, 2019, 14, e0222313.	1.1	104
1066	The Potential Impact of Probiotics on the Gut Microbiome of Athletes. Nutrients, 2019, 11, 2270.	1.7	55
1067	The Microbial Pecking Order: Utilization of Intestinal Microbiota for Poultry Health. Microorganisms, 2019, 7, 376.	1.6	51
1068	Saponins from Clematis mandshurica Rupr. regulates gut microbiota and its metabolites during alleviation of collagen-induced arthritis in rats. Pharmacological Research, 2019, 149, 104459.	3.1	31
1069	2- <i>O</i> -Î ² - <scp>d</scp> -Glucopyranosyl- <scp>l</scp> -ascorbic Acid, an Ascorbic Acid Derivative Isolated from the Fruits of <i>Lycium Barbarum</i> L., Modulates Gut Microbiota and Palliates Colitis in Dextran Sodium Sulfate-Induced Colitis in Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 11408-11419.	2.4	70
1070	In-Vitro Prebiotic Analysis of Microbiota Accessible Pectic Polysaccharides. Current Microbiology, 2019, 76, 1452-1460.	1.0	29
1071	Bacteriophages: Uncharacterized and Dynamic Regulators of the Immune System. Mediators of Inflammation, 2019, 2019, 1-14.	1.4	30
1072	Prenatal and postnatal contributions of the maternal microbiome on offspring programming. Frontiers in Neuroendocrinology, 2019, 55, 100797.	2.5	77
1073	The Role of Dietary Fiber in Rheumatoid Arthritis Patients: A Feasibility Study. Nutrients, 2019, 11, 2392.	1.7	75
1073 1074	The Role of Dietary Fiber in Rheumatoid Arthritis Patients: A Feasibility Study. Nutrients, 2019, 11, 2392. Connect between gut microbiome and diseases of the human eye. Journal of Biosciences, 2019, 44, 1.	1.7 0.5	75 27
1073 1074 1075	The Role of Dietary Fiber in Rheumatoid Arthritis Patients: A Feasibility Study. Nutrients, 2019, 11, 2392. Connect between gut microbiome and diseases of the human eye. Journal of Biosciences, 2019, 44, 1. Impact of the gut microbiota on immune checkpoint inhibitor-associated toxicities. Therapeutic Advances in Gastroenterology, 2019, 12, 175628481987091.	1.7 0.5 1.4	75 27 35
1073 1074 1075 1076	The Role of Dietary Fiber in Rheumatoid Arthritis Patients: A Feasibility Study. Nutrients, 2019, 11, 2392. Connect between gut microbiome and diseases of the human eye. Journal of Biosciences, 2019, 44, 1. Impact of the gut microbiota on immune checkpoint inhibitor-associated toxicities. Therapeutic Advances in Gastroenterology, 2019, 12, 175628481987091. Gut microbiota composition and bone mineral lossâ€"epidemiologic evidence from individuals in Wuhan, China. Osteoporosis International, 2019, 30, 1003-1013.	1.7 0.5 1.4 1.3	75 27 35 99
1073 1074 1075 1076	The Role of Dietary Fiber in Rheumatoid Arthritis Patients: A Feasibility Study. Nutrients, 2019, 11, 2392. Connect between gut microbiome and diseases of the human eye. Journal of Biosciences, 2019, 44, 1. Impact of the gut microbiota on immune checkpoint inhibitor-associated toxicities. Therapeutic Advances in Gastroenterology, 2019, 12, 175628481987091. Gut microbiota composition and bone mineral lossâ€"epidemiologic evidence from individuals in Wuhan, China. Osteoporosis International, 2019, 30, 1003-1013. Microbiome and Allogeneic Hematopoietic Stem Cell Transplantation., 2019, , 141-154.	1.7 0.5 1.4 1.3	75 27 35 99
1073 1074 1075 1076 1077	The Role of Dietary Fiber in Rheumatoid Arthritis Patients: A Feasibility Study. Nutrients, 2019, 11, 2392. Connect between gut microbiome and diseases of the human eye. Journal of Biosciences, 2019, 44, 1. Impact of the gut microbiota on immune checkpoint inhibitor-associated toxicities. Therapeutic Advances in Gastroenterology, 2019, 12, 175628481987091. Gut microbiota composition and bone mineral lossâ€"epidemiologic evidence from individuals in Wuhan, China. Osteoporosis International, 2019, 30, 1003-1013. Microbiome and Allogeneic Hematopoietic Stem Cell Transplantation. , 2019, , 141-154. Butyrate inhibit collagen-induced arthritis via Treg/IL-10/Th17 axis. International Immunopharmacology, 2019, 68, 226-233.	1.7 0.5 1.4 1.3	75 27 35 99 0 82
1073 1074 1075 1076 1077 1078	The Role of Dietary Fiber in Rheumatoid Arthritis Patients: A Feasibility Study. Nutrients, 2019, 11, 2392. Connect between gut microbiome and diseases of the human eye. Journal of Biosciences, 2019, 44, 1. Impact of the gut microbiota on immune checkpoint inhibitor-associated toxicities. Therapeutic Advances in Gastroenterology, 2019, 12, 175628481987091. Gut microbiota composition and bone mineral lossâ€"epidemiologic evidence from individuals in Wuhan, China. Osteoporosis International, 2019, 30, 1003-1013. Microbiome and Allogeneic Hematopoietic Stem Cell Transplantation., 2019, , 141-154. Butyrate inhibit collagen-induced arthritis via Treg/IL-10/Th17 axis. International Immunopharmacology, 2019, 68, 226-233. Microbial network disturbances in relapsing refractory Crohn's disease. Nature Medicine, 2019, 25, 323-336.	1.7 0.5 1.4 1.3 1.7 15.2	 75 27 35 99 0 82 277
1073 1074 1075 1076 1077 1078 1079	The Role of Dietary Fiber in Rheumatoid Arthritis Patients: A Feasibility Study. Nutrients, 2019, 11, 2392. Connect between gut microbiome and diseases of the human eye. Journal of Biosciences, 2019, 44, 1. Impact of the gut microbiota on immune checkpoint inhibitor-associated toxicities. Therapeutic Advances in Castroenterology, 2019, 12, 175628481987091. Gut microbiota composition and bone mineral lossâ€"epidemiologic evidence from individuals in Wuhan, China. Osteoporosis International, 2019, 30, 1003-1013. Microbiome and Allogeneic Hematopoietic Stem Cell Transplantation., 2019, , 141-154. Butyrate inhibit collagen-induced arthritis via Treg/IL-10/Th17 axis. International Immunopharmacology, 2019, 68, 226-233. Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation. Cut, 2019, 68, 1801-1812.	1.7 0.5 1.4 1.3 1.7 15.2 6.1	 75 27 35 99 0 82 277 157

#	Article	IF	CITATIONS
1082	The Interplay between Immunity and Microbiota at Intestinal Immunological Niche: The Case of Cancer. International Journal of Molecular Sciences, 2019, 20, 501.	1.8	39
1083	Inflammatory profiles revealed the dysregulation of cytokines in adult patients of HFMD. International Journal of Infectious Diseases, 2019, 79, 12-20.	1.5	8
1084	Non-coding DNA in IBD: from sequence variation in DNA regulatory elements to novel therapeutic potential. Gut, 2019, 68, 928-941.	6.1	22
1085	Butyrate Attenuates Lung Inflammation by Negatively Modulating Th9 Cells. Frontiers in Immunology, 2019, 10, 67.	2.2	53
1086	Dietary Habits and Intestinal Immunity: From Food Intake to CD4+ TH Cells. Frontiers in Immunology, 2018, 9, 3177.	2.2	33
1087	Structural elucidation of a glucan from Crataegus pinnatifida and its bioactivity on intestinal bacteria strains. International Journal of Biological Macromolecules, 2019, 128, 435-443.	3.6	32
1088	<i>Bifidobacterium</i> Abundance in Early Infancy and Vaccine Response at 2 Years of Age. Pediatrics, 2019, 143, .	1.0	99
1089	Gut Microbiome as Target for Innovative Strategies Against Food Allergy. Frontiers in Immunology, 2019, 10, 191.	2.2	75
1090	The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages. Immunity, 2019, 50, 432-445.e7.	6.6	612
1091	Bifidobacterium with the role of 5-hydroxytryptophan synthesis regulation alleviates the symptom of depression and related microbiota dysbiosis. Journal of Nutritional Biochemistry, 2019, 66, 43-51.	1.9	169
1092	Role of the microbiome in human development. Gut, 2019, 68, 1108-1114.	6.1	496
1093	Targeting Food Allergy with Probiotics. Advances in Experimental Medicine and Biology, 2019, 1125, 57-68.	0.8	18
1094	Microbiome control of innate reactivity. Current Opinion in Immunology, 2019, 56, 107-113.	2.4	35
1095	T-Cell-Driven Inflammation as a Mediator of the Gut-Brain Axis Involved in Parkinson's Disease. Frontiers in Immunology, 2019, 10, 239.	2.2	90
1096	Immunomodulatory Effects of Flavonoids: Possible Induction of T CD4+ Regulatory Cells Through Suppression of mTOR Pathway Signaling Activity. Frontiers in Immunology, 2019, 10, 51.	2.2	99
1097	Carbohydrate Monotony as Protection and Treatment for Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2019, 13, 942-948.	0.6	18
1098	Interactions between gut microbiota and non-alcoholic liver disease: The role of microbiota-derived metabolites. Pharmacological Research, 2019, 141, 521-529.	3.1	78
1099	Influence of maternal microbiota during pregnancy on infant immunity. Clinical and Experimental Immunology, 2019, 198, 47-56.	1.1	72

#	Article	IF	CITATIONS
1100	Role for diet in normal gut barrier function: developing guidance within the framework of food-labeling regulations. American Journal of Physiology - Renal Physiology, 2019, 317, G17-G39.	1.6	60
1101	Effects of BARLEYmax and high- $\hat{1}^2$ -glucan barley line on short-chain fatty acids production and microbiota from the cecum to the distal colon in rats. PLoS ONE, 2019, 14, e0218118.	1.1	24
1102	The path toward using microbial metabolites as therapies. EBioMedicine, 2019, 44, 747-754.	2.7	67
1103	Save your gut save your age: The role of the microbiome in stem cell ageing. Journal of Cellular and Molecular Medicine, 2019, 23, 4866-4875.	1.6	22
1104	The Role of the Microbiota in the Diabetic Peripheral Artery Disease. Mediators of Inflammation, 2019, 2019, 1-16.	1.4	15
1105	Modulatory effect of <i>Lactobacillus acidophilus</i> KLDS 1.0738 on intestinal short hain fatty acids metabolism and GPR41/43 expression in Î²â€łactoglobulin–sensitized mice. Microbiology and Immunology, 2019, 63, 303-315.	0.7	24
1106	Bidirectional regulatory potentials of short-chain fatty acids and their G-protein-coupled receptors in autoimmune neuroinflammation. Scientific Reports, 2019, 9, 8837.	1.6	104
1107	Microbiota therapy acts via a regulatory T cell MyD88/RORγt pathway to suppress food allergy. Nature Medicine, 2019, 25, 1164-1174.	15.2	259
1108	The role of sodium in modulating immune cell function. Nature Reviews Nephrology, 2019, 15, 546-558.	4.1	74
1109	Intestinal microbiome and fitness in kidney disease. Nature Reviews Nephrology, 2019, 15, 531-545.	4.1	140
1110	Infection History Determines Susceptibility to Unrelated Diseases. BioEssays, 2019, 41, 1800191.	1.2	6
1111	Daphnetin ameliorates experimental colitis by modulating microbiota composition and T _{reg} /T _h 17 balance. FASEB Journal, 2019, 33, 9308-9322.	0.2	45
1112	Review article: emerging role of the gut microbiome in the progression of nonalcoholic fatty liver disease and potential therapeutic implications. Alimentary Pharmacology and Therapeutics, 2019, 50, 144-158.	1.9	50
1113	Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15140-15149.	3.3	134
1114	The gut microbiota $\hat{a} \in $ a modulator of endothelial cell function and a contributing environmental factor to arterial thrombosis. Expert Review of Hematology, 2019, 12, 541-549.	1.0	7
1115	ACC1 (Acetyl Coenzyme A Carboxylase 1) Is a Potential Immune Modulatory Target of Cerebral Ischemic Stroke. Stroke, 2019, 50, 1869-1878.	1.0	29
1116	Host-microbe interactions in the pathogenesis and clinical course of sarcoidosis. Journal of Biomedical Science, 2019, 26, 45.	2.6	27
1117	Alcoholic/Non-Alcoholic Digestive Diseases. , 2019, , .		0

#	Article	IF	Citations
1118	Regulatory T cells as therapeutic targets and mediators. International Reviews of Immunology, 2019, 38, 183-203.	1.5	10
1119	Gut microbiota: a new angle for traditional herbal medicine research. RSC Advances, 2019, 9, 17457-17472.	1.7	31
1120	Gut dysbiosis and lack of short chain fatty acids in a Chinese cohort of patients with multiple sclerosis. Neurochemistry International, 2019, 129, 104468.	1.9	96
1121	Dysbiosis Disrupts Gut Immune Homeostasis and Promotes Gastric Diseases. International Journal of Molecular Sciences, 2019, 20, 2432.	1.8	85
1122	Simultaneous determination of shortâ€chain fatty acids in human feces by HPLC with ultraviolet detection following chemical derivatization and solidâ€phase extraction segmental elution. Journal of Separation Science, 2019, 42, 2500-2509.	1.3	20
1123	The role of short-chain fatty acids in microbiota–gut–brain communication. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 461-478.	8.2	1,519
1124	Deciphering the Chemical Lexicon of Host–Gut Microbiota Interactions. Trends in Pharmacological Sciences, 2019, 40, 430-445.	4.0	100
1125	Nutritional Modulation of Immune and Central Nervous System Homeostasis: The Role of Diet in Development of Neuroinflammation and Neurological Disease. Nutrients, 2019, 11, 1076.	1.7	35
1126	Metabolic Profiling in IBD. , 2019, , 303-312.		0
1127	Microbiota-Dependent Regulation of Antimicrobial Immunity in the Lung. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 284-289.	1.4	14
1128	The ancestral and industrialized gut microbiota and implications for human health. Nature Reviews Microbiology, 2019, 17, 383-390.	13.6	255
1129	Effects of Intestinal Microbial–Elaborated Butyrate on Oncogenic Signaling Pathways. Nutrients, 2019, 11, 1026.	1.7	102
1130	The microbiome: toward preventing allergies and asthma by nutritional intervention. Current Opinion in Immunology, 2019, 60, 10-18.	2.4	14
1131	Role of Gut Microbiota in Hepatocarcinogenesis. Microorganisms, 2019, 7, 121.	1.6	85
1132	Metabolite-Sensing G Protein-Coupled Receptors Connect the Diet-Microbiota-Metabolites Axis to Inflammatory Bowel Disease. Cells, 2019, 8, 450.	1.8	53
1133	Butyrate Protects Mice from Clostridium difficile-Induced Colitis through an HIF-1-Dependent Mechanism. Cell Reports, 2019, 27, 750-761.e7.	2.9	212
1134	Orally Administered Crocin Protects Against Cerebral Ischemia/Reperfusion Injury Through the Metabolic Transformation of Crocetin by Gut Microbiota. Frontiers in Pharmacology, 2019, 10, 440.	1.6	26
1135	Exploring the emerging role of the microbiome in cancer immunotherapy. , 2019, 7, 108.		217

#	Article	IF	CITATIONS
1136	Shortâ€chain fatty acids: Bacterial messengers modulating the immunometabolism of T cells. European Journal of Immunology, 2019, 49, 842-848.	1.6	116
1137	Inverse Association Between the Skin and Oral Microbiota in Atopic Dermatitis. Journal of Investigative Dermatology, 2019, 139, 1779-1787.e12.	0.3	31
1138	Mucosal tolerance therapy in humans: Past and future. Clinical and Experimental Neuroimmunology, 2019, 10, 20-31.	0.5	7
1139	Diet Rich in Animal Protein Promotes Pro-inflammatory Macrophage Response and Exacerbates Colitis in Mice. Frontiers in Immunology, 2019, 10, 919.	2.2	73
1140	Dietary Factors in Sulfur Metabolism and Pathogenesis of Ulcerative Colitis. Nutrients, 2019, 11, 931.	1.7	35
1141	Lactobacillus plantarum KLDS1.0318 Ameliorates Impaired Intestinal Immunity and Metabolic Disorders in Cyclophosphamide-Treated Mice. Frontiers in Microbiology, 2019, 10, 731.	1.5	28
1142	Gut microbiome interventions in human health and diseases. Medicinal Research Reviews, 2019, 39, 2286-2313.	5.0	52
1143	Impact of the microbiome on cancer progression and response to anti-cancer therapies. Advances in Cancer Research, 2019, 143, 255-294.	1.9	23
1144	ls colonic propionate delivery a novel solution to improve metabolism and inflammation in overweight or obese subjects?. Gut, 2019, 68, 1352-1353.	6.1	13
1145	The Microbiome and Food Allergy. Annual Review of Immunology, 2019, 37, 377-403.	9.5	102
1146	Gut Microbiota Regulation of T Cells During Inflammation and Autoimmunity. Annual Review of Immunology, 2019, 37, 599-624.	9.5	214
1147	Genomic Analyses of Bifidobacterium moukalabense Reveal Adaptations to Frugivore/Folivore Feeding Behavior. Microorganisms, 2019, 7, 99.	1.6	6
1148	Cross talk between neutrophils and the microbiota. Blood, 2019, 133, 2168-2177.	0.6	87
1149	The Microbiota and Ovarian Cancer. Current Cancer Research, 2019, , 205-245.	0.2	0
1150	The gut microbiota promotes the pathogenesis of schizophrenia via multiple pathways. Biochemical and Biophysical Research Communications, 2019, 512, 373-380.	1.0	51
1151	Regulatory T cell adaptation in the intestine and skin. Nature Immunology, 2019, 20, 386-396.	7.0	128
1152	Impacts of Duck-Origin Parvovirus Infection on Cherry Valley Ducklings From the Perspective of Gut Microbiota. Frontiers in Microbiology, 2019, 10, 624.	1.5	10
1153	Microbiota Depletion Impairs Thermogenesis of Brown Adipose Tissue and Browning of White Adipose Tissue. Cell Reports, 2019, 26, 2720-2737.e5.	2.9	173

#	Article	IF	Citations
1154	Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Frontiers in Immunology, 2019, 10, 277.	2.2	1,956
1155	Microbe-metabolite-host axis, two-way action in the pathogenesis and treatment of human autoimmunity. Autoimmunity Reviews, 2019, 18, 455-475.	2.5	37
1156	Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science, 2019, 363, .	6.0	121
1157	Cross-Talk Between Antigen Presenting Cells and T Cells Impacts Intestinal Homeostasis, Bacterial Infections, and Tumorigenesis. Frontiers in Immunology, 2019, 10, 360.	2.2	200
1158	Histone Acetylation of Immune Regulatory Genes in Human Placenta in Association with Maternal Intake of Olive Oil and Fish Consumption. International Journal of Molecular Sciences, 2019, 20, 1060.	1.8	41
1160	The human microbiome in health and disease: hype or hope. Acta Clinica Belgica, 2019, 74, 53-64.	0.5	34
1161	<i>Faecalibacterium prausnitzii</i> produces butyrate to decrease c-Myc-related metabolism and Th17 differentiation by inhibiting histone deacetylase 3. International Immunology, 2019, 31, 499-514.	1.8	51
1162	Differential Effects of Breed and Nursing on Early-Life Colonic Microbiota and Immune Status as Revealed in a Cross-Fostering Piglet Model. Applied and Environmental Microbiology, 2019, 85, .	1.4	16
1163	Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. Journal of Neuroinflammation, 2019, 16, 53.	3.1	446
1164	Achievement of Tolerance Induction to Prevent Acute Graft-vsHost Disease. Frontiers in Immunology, 2019, 10, 309.	2.2	28
1165	Microbial Adjuncts for Food Allergen Immunotherapy. Current Allergy and Asthma Reports, 2019, 19, 25.	2.4	14
1166	Gut microbiota: implications for radiotherapy response and radiotherapy-induced mucositis. Expert Review of Gastroenterology and Hepatology, 2019, 13, 485-496.	1.4	51
1167	Precarious Symbiosis Between Host and Microbiome in Cardiovascular Health. Hypertension, 2019, 73, 926-935.	1.3	10
1168	The Synergistic Role of Diet and Exercise in the Prevention, Pathogenesis, and Management of Ulcerative Colitis: An Underlying Metabolic Mechanism. Nutrition and Metabolic Insights, 2019, 12, 117863881983452.	0.8	10
1169	Microbiota Metabolite Butyrate Differentially Regulates Th1 and Th17 Cells' Differentiation and Function in Induction of Colitis. Inflammatory Bowel Diseases, 2019, 25, 1450-1461.	0.9	112
1170	Methods to manufacture regulatory T cells for cell therapy. Clinical and Experimental Immunology, 2019, 197, 52-63.	1.1	76
1171	Role of diet, gut microbiota, and metabolism in multiple sclerosis and neuromyelitis optica. Clinical and Experimental Neuroimmunology, 2019, 10, 12-19.	0.5	5
1172	Mining the microbiota for microbial and metabolite-based immunotherapies. Nature Reviews Immunology, 2019, 19, 305-323.	10.6	211

#	Article	IF	CITATIONS
1173	Alterations in bacterial communities, SCFA and biomarkers in an elderly HIV-positive and HIV-negative population in western Mexico. BMC Infectious Diseases, 2019, 19, 234.	1.3	27
1174	Variations in early gut microbiome are associated with childhood eczema. FEMS Microbiology Letters, 2019, 366, .	0.7	16
1175	Secondary Bile Acids and Short Chain Fatty Acids in the Colon: A Focus on Colonic Microbiome, Cell Proliferation, Inflammation, and Cancer. International Journal of Molecular Sciences, 2019, 20, 1214.	1.8	270
1176	Three types of gut bacteria collaborating to improve Kui Jie'an enema treat DSS-induced colitis in mice. Biomedicine and Pharmacotherapy, 2019, 113, 108751.	2.5	29
1177	Sensing between reactions–Âhow the metabolic microenvironment shapes immunity. Clinical and Experimental Immunology, 2019, 197, 161-169.	1.1	9
1178	Malassezia Is Associated with Crohn's Disease and Exacerbates Colitis in Mouse Models. Cell Host and Microbe, 2019, 25, 377-388.e6.	5.1	283
1179	Overuse of antianaerobic drug is associated with poor postchemotherapy prognosis of patients with hepatocellular carcinoma. International Journal of Cancer, 2019, 145, 2701-2711.	2.3	25
1180	Antibiotics exacerbated colitis by affecting the microbiota, Treg cells and SCFAs in IL10-deficient mice. Biomedicine and Pharmacotherapy, 2019, 114, 108849.	2.5	18
1181	Microbes, metabolites, and the gut–lung axis. Mucosal Immunology, 2019, 12, 843-850.	2.7	540
1183	Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: a randomised cross-over trial. Gut, 2019, 68, 1430-1438.	6.1	235
1184	Anti-inflammatory Gut Microbial Pathways Are Decreased During Crohn's Disease Exacerbations. Journal of Crohn's and Colitis, 2019, 13, 1439-1449.	0.6	39
1185	The Resolution of Intestinal Inflammation: The Peace-Keeper's Perspective. Cells, 2019, 8, 344.	1.8	11
1186	The Role of the Microbiome in Immunologic Development and its Implication For Pancreatic Cancer Immunotherapy. Gastroenterology, 2019, 156, 2097-2115.e2.	0.6	73
1187	Microbiome—Microbial Metabolome—Cancer Cell Interactions in Breast Cancer—Familiar, but Unexplored. Cells, 2019, 8, 293.	1.8	123
1188	The Effect of Butyrate-Supplemented Parenteral Nutrition on Intestinal Defence Mechanisms and the Parenteral Nutrition-Induced Shift in the Gut Microbiota in the Rat Model. BioMed Research International, 2019, 2019, 1-14.	0.9	29
1189	The parasitic worm product ES-62 normalises the gut microbiota bone marrow axis in inflammatory arthritis. Nature Communications, 2019, 10, 1554.	5.8	62
1190	Immunity, microbiota and kidney disease. Nature Reviews Nephrology, 2019, 15, 263-274.	4.1	80
1191	The Differential Roles of T Cells in Non-alcoholic Fatty Liver Disease and Obesity. Frontiers in Immunology, 2019, 10, 82.	2.2	157

#	Article	IF	CITATIONS
1192	Construction of a Model Culture System of Human Colonic Microbiota to Detect Decreased <i>Lachnospiraceae</i> Abundance and Butyrogenesis in the Feces of Ulcerative Colitis Patients. Biotechnology Journal, 2019, 14, e1800555.	1.8	43
1193	Microbiome Dependent Regulation of Tregs and Th17 Cells in Mucosa. Frontiers in Immunology, 2019, 10, 426.	2.2	163
1194	Elevated Gut Microbiome-Derived Propionate Levels Are Associated With Reduced Sterile Lung Inflammation and Bacterial Immunity in Mice. Frontiers in Microbiology, 2019, 10, 159.	1.5	51
1195	Germ-Free Mouse Technology in Cardiovascular Research. , 2019, , 13-25.		1
1196	The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nature Communications, 2019, 10, 760.	5.8	275
1197	Western diet regulates immune status and the response to LPS-driven sepsis independent of diet-associated microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3688-3694.	3.3	62
1198	Randomized controlled trial on the influence of dietary intervention on epigenetic mechanisms in children with cow's milk allergy: the EPICMA study. Scientific Reports, 2019, 9, 2828.	1.6	30
1199	Dietary Short Chain Fatty Acids: How the Gut Microbiota Fight Against Autoimmune and Inflammatory Diseases. , 2019, , 139-159.		5
1200	Regulation of Immune Cell Function by Short Chain Fatty Acids and Their Impact on Arthritis. , 2019, , 175-188.		3
1201	Butyrate Makes Macrophages "Go Nuclear―against Bacterial Pathogens. Immunity, 2019, 50, 275-278.	6.6	8
1202	Intestinal microbes direct CX ₃ CR1 ⁺ cells to balance intestinal immunity. Gut Microbes, 2019, 10, 540-546.	4.3	4
1203	T lymphocytes in the intestinal mucosa: defense and tolerance. Cellular and Molecular Immunology, 2019, 16, 216-224.	4.8	79
1204	Mechanisms and immunomodulatory properties of pre- and probiotics. Beneficial Microbes, 2019, 10, 225-236.	1.0	38
1205	Impacto de la microbiota intestinal en los pacientes con insuficiencia cardÃaca: revisión sistemática. Medicina ClÃnica, 2019, 153, 402-409.	0.3	0
1206	Microbiota-mediated mucosal inflammation in arthritis. Best Practice and Research in Clinical Rheumatology, 2019, 33, 101492.	1.4	18
1207	<i>Vibrio cholerae</i> at the Intersection of Immunity and the Microbiome. MSphere, 2019, 4, .	1.3	42
1208	Minimal residual disease negativity in multiple myeloma is associated with intestinal microbiota composition. Blood Advances, 2019, 3, 2040-2044.	2.5	50
1209	Methods in microbiome research: Past, present, and future. Best Practice and Research in Clinical Rheumatology, 2019, 33, 101498.	1.4	12

#	Article	IF	CITATIONS
1210	Invariant NKT Cells Functionally Link Microbiota-Induced Butyrate Production and Joint Inflammation. Journal of Immunology, 2019, 203, 3199-3208.	0.4	18
1211	Role and Effective Therapeutic Target of Gut Microbiota in Heart Failure. Cardiovascular Therapeutics, 2019, 2019, 1-10.	1.1	65
1212	Impact of intestinal microbiota in patients with heart failure: A systematic review. Medicina ClÃnica (English Edition), 2019, 153, 402-409.	0.1	0
1213	Butyrate attenuated fat gain through gut microbiota modulation in db/db mice following dapagliflozin treatment. Scientific Reports, 2019, 9, 20300.	1.6	27
1214	Lung Microbiome in Asthma: Current Perspectives. Journal of Clinical Medicine, 2019, 8, 1967.	1.0	51
1215	Extracellular Membrane Vesicles from Lactobacilli Dampen IFN-γ Responses in a Monocyte-Dependent Manner. Scientific Reports, 2019, 9, 17109.	1.6	37
1216	The Th17/Treg Cell Balance: A Gut Microbiota-Modulated Story. Microorganisms, 2019, 7, 583.	1.6	80
1217	Role of Probiotics in Non-alcoholic Fatty Liver Disease: Does Gut Microbiota Matter?. Nutrients, 2019, 11, 2837.	1.7	64
1218	Food allergy and the microbiome: Current understandings and future directions. Journal of Allergy and Clinical Immunology, 2019, 144, 1468-1477.	1.5	118
1219	Interplay between the Adaptive Immune System and Insulin Resistance in Weight Loss Induced by Bariatric Surgery. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-14.	1.9	39
1220	Gut Microbiota Dysbiosis and Increased Plasma LPS and TMAO Levels in Patients With Preeclampsia. Frontiers in Cellular and Infection Microbiology, 2019, 9, 409.	1.8	93
1221	Metabolic Pathways Involved in Regulatory T Cell Functionality. Frontiers in Immunology, 2019, 10, 2839.	2.2	104
1222	One, No One, and One Hundred Thousand: T Regulatory Cells' Multiple Identities in Neuroimmunity. Frontiers in Immunology, 2019, 10, 2947.	2.2	18
1223	Unaccounted risk of cardiovascular disease: the role of the microbiome in lipid metabolism. Current Opinion in Lipidology, 2019, 30, 125-133.	1.2	2
1224	CRISPRa-mediated FOXP3 gene upregulation in mammalian cells. Cell and Bioscience, 2019, 9, 93.	2.1	20
1225	Interactions between Intestinal Microflora/Probiotics and the Immune System. BioMed Research International, 2019, 2019, 1-8.	0.9	58
1226	Immunomodulating Activity and Therapeutic Effects of Short Chain Fatty Acids and Tryptophan Post-biotics in Inflammatory Bowel Disease. Frontiers in Immunology, 2019, 10, 2754.	2.2	125
1227	Bile acid metabolites control TH17 and Treg cell differentiation. Nature, 2019, 576, 143-148.	13.7	695

#	Article	IF	CITATIONS
1228	Arsenic Bioaccessibility of Realgar Influenced by the Other Traditional Chinese Medicines in Niuhuang Jiedu Tablet and the Roles of Gut Microbiota. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-8.	0.5	2
1229	Rhubarb Peony Decoction ameliorates ulcerative colitis in mice by regulating gut microbiota to restoring Th17/Treg balance. Journal of Ethnopharmacology, 2019, 231, 39-49.	2.0	113
1230	Sodium Butyrate Exerts Neuroprotective Effects in Spinal Cord Injury. Molecular Neurobiology, 2019, 56, 3937-3947.	1.9	43
1231	Dietary Nondigestible Polysaccharides Ameliorate Colitis by Improving Gut Microbiota and CD4 ⁺ Differentiation, as Well as Facilitating M2 Macrophage Polarization. Journal of Parenteral and Enteral Nutrition, 2019, 43, 401-411.	1.3	6
1232	Mechanisms by which gut microorganisms influence food sensitivities. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 7-18.	8.2	75
1233	Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Reviews in the Neurosciences, 2019, 30, 179-201.	1.4	76
1234	The gut microbiome in food allergy. Annals of Allergy, Asthma and Immunology, 2019, 122, 276-282.	0.5	99
1235	Short-Chain Fatty Acid Propionate Protects From Hypertensive Cardiovascular Damage. Circulation, 2019, 139, 1407-1421.	1.6	452
1236	Coupled dynamics of intestinal microbiome and immune system—A mathematical study. Journal of Theoretical Biology, 2019, 464, 9-20.	0.8	5
1237	Influence of the microbiota on epigenetics in colorectal cancer. National Science Review, 2019, 6, 1138-1148.	4.6	25
1238	Effect of Resistant Starch on the Gut Microbiota and Its Metabolites in Patients with Coronary Artery Disease. Journal of Atherosclerosis and Thrombosis, 2019, 26, 705-719.	0.9	24
1239	Heart Failure and Liver Disease. JACC: Heart Failure, 2019, 7, 87-97.	1.9	162
1240	A Diet-Sensitive Commensal Lactobacillus Strain Mediates TLR7-Dependent Systemic Autoimmunity. Cell Host and Microbe, 2019, 25, 113-127.e6.	5.1	210
1241	The clinical role of the TME in solid cancer. British Journal of Cancer, 2019, 120, 45-53.	2.9	380
1243	Cancer and Infection. , 2019, , 97-114.		0
1244	Fatty Acids, Gut Bacteria, and Immune Cell Function. , 2019, , 151-164.		8
1245	The Human Microbiota and Asthma. Clinical Reviews in Allergy and Immunology, 2019, 57, 350-363.	2.9	92
1246	Immune Basis of Allergic Reactions to Food. Journal of Investigational Allergology and Clinical Immunology, 2019, 29, 1-14.	0.6	21

#	ARTICLE AllergoOncology: Microbiota in allergy and cancerâ€"A European Academy for Allergy and Clinical	IF	CITATIONS
1247	Recent Advances on Microbiota Involvement in the Pathogenesis of Autoimmunity. International	1.8	52
1249	Past, Present, and Future of Regulatory T Cell Therapy in Transplantation and Autoimmunity. Frontiers	2.2	371
1250	Cross-Domain and Viral Interactions in the Microbiome. Microbiology and Molecular Biology Reviews, 2019, 83, .	2.9	95
1251	Epigenetics and the Microbiome. , 2019, , 79-103.		0
1252	Gut microbiota in neurodegenerative disorders. Journal of Neuroimmunology, 2019, 328, 98-104.	1.1	220
1253	Role of colonic microbiota in the pathogenesis of ulcerative colitis. BMC Gastroenterology, 2019, 19, 10.	0.8	52
1254	Role of the intestinal microbiome in autoimmune diseases and its use in treatments. Cellular Immunology, 2019, 339, 50-58.	1.4	33
1255	Innate Myeloid Cell Subset-Specific Gene Expression Patterns in the Human Colon are Altered in Crohn's Disease Patients. Digestion, 2019, 99, 194-204.	1.2	1
1256	Opportunistic bacteria confer the ability to ferment prebiotic starch in the adult cystic fibrosis gut. Gut Microbes, 2019, 10, 367-381.	4.3	39
1257	Old Friends, immunoregulation, and stress resilience. Pflugers Archiv European Journal of Physiology, 2019, 471, 237-269.	1.3	45
1258	Dysregulation of Mucosal Membrane Transporters and Drug-Metabolizing Enzymes in Ulcerative Colitis. Journal of Pharmaceutical Sciences, 2019, 108, 1035-1046.	1.6	41
1259	Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 799-809.	2.7	327
1260	Medicine, 2019, 216, 10-19. Colostrum feeding shapes the hindgut microbiota of dairy calves during the first 12 h of life. FEMS	4.2	51
1261	Microbiology Ecology, 2019, 95, . Subcellular antigen localization in commensal E. coli is critical for T cell activation and induction of	2.7	7
1263	Microbial monotherapy with <i>Prevotella histicola</i> for patients with multiple sclerosis. Expert Review of Neurotherapeutics, 2019, 19, 45-53.	1.4	15
1264	Lycium ruthenicum diet alters the gut microbiota and partially enhances gut barrier function in male C57BL/6 mice. Journal of Functional Foods, 2019, 52, 516-528.	1.6	38

#	Article	IF	CITATIONS
1265	The microgenderome revealed: sex differences in bidirectional interactions between the microbiota, hormones, immunity and disease susceptibility. Seminars in Immunopathology, 2019, 41, 265-275.	2.8	160
1266	You are what you eat: diet, health and the gut microbiota. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 35-56.	8.2	980
1267	Systemic Treatment with the Enteric Bacterial Fermentation Product, Propionic Acid, Reduces Acoustic Startle Response Magnitude in Rats in a Dose-Dependent Fashion: Contribution to a Rodent Model of ASD. Neurotoxicity Research, 2019, 35, 353-359.	1.3	15
1268	Intestinal <i>in vitro</i> cell culture models and their potential to study the effect of food components on intestinal inflammation. Critical Reviews in Food Science and Nutrition, 2019, 59, 3648-3666.	5.4	66
1269	Targeting the gut microbiota by dietary nutrients: A new avenue for human health. Critical Reviews in Food Science and Nutrition, 2019, 59, 181-195.	5.4	38
1270	Enteric α-defensins on the verge of intestinal immune tolerance and inflammation. Seminars in Cell and Developmental Biology, 2019, 88, 138-146.	2.3	17
1271	Does microbiome contribute to HLA-B52-positive Takayasu arteritis?. Modern Rheumatology, 2020, 30, 213-217.	0.9	6
1272	Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes, 2020, 11, 285-304.	4.3	148
1273	Roles of Regulatory T Cells in Tissue Pathophysiology and Metabolism. Cell Metabolism, 2020, 31, 18-25.	7.2	90
1274	Diet, the Gut Microbiome, and Autoimmune Diseases. , 2020, , 331-342.		3
1275	The gut-eye-lacrimal gland-microbiome axis in Sjögren Syndrome. Ocular Surface, 2020, 18, 335-344.	2.2	55
1276	Starving the Gut: A Deficit of Butyrate in the Intestinal Ecosystem of Children With Intestinal Failure. Journal of Parenteral and Enteral Nutrition, 2020, 44, 1112-1123.	1.3	12
1277	FoxP3 in Treg cell biology: a molecular and structural perspective. Clinical and Experimental Immunology, 2020, 199, 255-262.	1.1	25
1278	Metabolic coordination of T cell quiescence and activation. Nature Reviews Immunology, 2020, 20, 55-70.	10.6	393
1279	Each Additional Day of Antibiotics Is Associated With Lower Gut Anaerobes in Neonatal Intensive Care Unit Patients. Clinical Infectious Diseases, 2020, 70, 2553-2560.	2.9	27
1280	Free Fatty Acid Receptors in Health and Disease. Physiological Reviews, 2020, 100, 171-210.	13.1	502
1281	The gut microbiome in tuberculosis susceptibility and treatment response: guilty or not guilty?. Cellular and Molecular Life Sciences, 2020, 77, 1497-1509.	2.4	48
1282	Abnormal Eating Patterns Cause Circadian Disruption and Promote Alcohol-Associated Colon Carcinogenesis. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 219-237.	2.3	43

#	Article	IF	CITATIONS
1283	Shotgun metagenomics reveals an enrichment of potentially cross-reactive bacterial epitopes in ankylosing spondylitis patients, as well as the effects of TNFi therapy upon microbiome composition. Annals of the Rheumatic Diseases, 2020, 79, 132-140.	0.5	82
1284	Drugging the gut microbiota: towardÂrational modulation of bacterial composition in the gut. Current Opinion in Chemical Biology, 2020, 56, 10-15.	2.8	11
1285	Successful elevation of circulating acetate and propionate by dietary modulation does not alter T-regulatory cell or cytokine profiles in healthy humans: a pilot study. European Journal of Nutrition, 2020, 59, 2651-2661.	1.8	20
1286	Immunological Tolerance—T Cells. , 2020, , 65-90.		1
1287	Epicutaneous sensitization to food allergens in atopic dermatitis: What do we know?. Pediatric Allergy and Immunology, 2020, 31, 7-18.	1.1	37
1288	Mucosal Vaccines for Allergy and Tolerance. , 2020, , 855-868.		0
1289	The role of innate immunity in asthma development and protection: Lessons from the environment. Clinical and Experimental Allergy, 2020, 50, 282-290.	1.4	18
1290	Oral Supplementation of Lead-Intolerant Intestinal Microbes Protects Against Lead (Pb) Toxicity in Microbiology, 2019, 10, 3161.	1.5	44
1291	Oral butyrate does not affect innate immunity and islet autoimmunity in individuals with longstanding type 1 diabetes: a randomised controlled trial. Diabetologia, 2020, 63, 597-610.	2.9	60
1292	Modulation of microbially derived short-chain fatty acids on intestinal homeostasis, metabolism, and neuropsychiatric disorder. Applied Microbiology and Biotechnology, 2020, 104, 589-601.	1.7	51
1293	Hepatic dysfunction after spinal cord injury: A vicious cycle of central and peripheral pathology?. Experimental Neurology, 2020, 325, 113160.	2.0	23
1294	Commensal-bacteria-derived butyrate promotes the T-cell-independent IgA response in the colon. International Immunology, 2020, 32, 243-258.	1.8	49
1295	Short-Chain Fatty Acids Improve Poststroke Recovery via Immunological Mechanisms. Journal of Neuroscience, 2020, 40, 1162-1173.	1.7	199
1296	CXCR3+ T cells in multiple sclerosis correlate with reduced diversity of the gut microbiome. Journal of Translational Autoimmunity, 2020, 3, 100032.	2.0	32
1297	CARsomes inhibit airway allergic inflammation in mice by inducing antigenâ€specific Th2 cell apoptosis. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1205-1216.	2.7	6
1298	Roseburia spp. Abundance Associates with Alcohol Consumption in Humans and Its Administration Ameliorates Alcoholic Fatty Liver in Mice. Cell Host and Microbe, 2020, 27, 25-40.e6.	5.1	131
1299	Host–microbiota interactions in inflammatory bowel disease. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 76-77.	8.2	73
1300	Neuroimmune circuits in inter-organ communication. Nature Reviews Immunology, 2020, 20, 217-228.	10.6	132
	Сітатіо	CITATION REPORT	
------	---	-----------------	-----------
#	Article	IF	CITATIONS
1301	Organoids in immunological research. Nature Reviews Immunology, 2020, 20, 279-293.	10.6	200
1302	Site-specific acylation of a bacterial virulence regulator attenuates infection. Nature Chemical Biology, 2020, 16, 95-103.	3.9	52
1303	Epigenetics of Autoimmune Diseases. , 2020, , 429-466.		1
1304	Multiple sclerosis, the microbiome, TLR2, and the hygiene hypothesis. Autoimmunity Reviews, 2020, 19, 102430.	2.5	38
1305	Immunometabolic approaches to prevent, detect, and treat neonatal sepsis. Pediatric Research, 2020, 87, 399-405.	1.1	28
1306	Volatile organic compounds fingerprinting in faeces and urine of Alzheimer's disease model SAMP8 mice by headspace-gas chromatography-ion mobility spectrometry and headspace-solid phase microextraction-gas chromatography-mass spectrometry. Journal of Chromatography A, 2020, 1614, 460717.	1.8	13
1307	Chemical Mechanisms of Colonization Resistance by the Gut Microbial Metabolome. ACS Chemical Biology, 2020, 15, 1119-1126.	1.6	15
1308	Distant Immune and Microbiome Regulation. , 2020, , 599-611.		0
1309	Beneficial Effects of Dietary Polyphenols on High-Fat Diet-Induced Obesity Linking with Modulation of Gut Microbiota. Journal of Agricultural and Food Chemistry, 2020, 68, 33-47.	2.4	123
1310	The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiology of Disease, 2020, 136, 104714.	2.1	110
1311	The role of the microbiome in precision medicine. , 2020, , 13-18.		0
1312	Goblet cell associated antigen passages support the induction and maintenance of oral tolerance. Mucosal Immunology, 2020, 13, 271-282.	2.7	89
1313	â€~Layered immunity' and the â€~neonatal window of opportunity' – timed succession of nonâ€re phases to establish mucosal host–microbial homeostasis after birth. Immunology, 2020, 159, 15-25.	edundant 2.0	72
1314	Protective effects of grape seed procyanidin extract on intestinal barrier dysfunction induced by a long-term high-fat diet. Journal of Functional Foods, 2020, 64, 103663.	1.6	25
1315	Understanding immune–microbiota interactions in the intestine. Immunology, 2020, 159, 4-14.	2.0	62
1316	Depletion of Foxp3 ⁺ regulatory T cells is accompanied by an increase in the relative abundance of Firmicutes in the murine gut microbiome. Immunology, 2020, 159, 344-353.	2.0	24
1317	The Role of Bacteria and Its Derived Metabolites in Chronic Pain and Depression: Recent Findings and Research Progress. International Journal of Neuropsychopharmacology, 2020, 23, 26-41.	1.0	58
1318	The Anti-inflammatory Immune Regulation Induced by Butyrate Is Impaired in Inflamed Intestinal Mucosa from Patients with Ulcerative Colitis. Inflammation, 2020, 43, 507-517.	1.7	38

#	Article	IF	CITATIONS
1319	Distinct Regulatory and Effector T Cell Metabolic Demands during Graft-Versus-Host Disease. Trends in Immunology, 2020, 41, 77-91.	2.9	31
1320	An orally administered butyrate-releasing xylan derivative reduces inflammation in dextran sulphate sodium-induced murine colitis. International Journal of Biological Macromolecules, 2020, 156, 1217-1233.	3.6	60
1321	Potential Determinants of Gastrointestinal Dysfunction in Autism Spectrum Disorders. Review Journal of Autism and Developmental Disorders, 2020, 7, 182-196.	2.2	2
1322	Fecal short-chain fatty acids in pregnancy and offspring asthma and allergic outcomes. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 1100-1102.e13.	2.0	21
1323	Distinct patterns of short-chain fatty acids during flare in patients with ulcerative colitis under treatment with mesalamine or a herbal combination of myrrh, chamomile flowers, and coffee charcoal: secondary analysis of a randomized controlled trial. European Journal of Gastroenterology and Hepatology, 2020, 32, 175-180.	0.8	6
1324	Harnessing the microbiota for therapeutic purposes. American Journal of Transplantation, 2020, 20, 1482-1488.	2.6	14
1325	Relationships Between Vitamin D, Gut Microbiome, and Systemic Autoimmunity. Frontiers in Immunology, 2019, 10, 3141.	2.2	121
1326	Host- and Microbiota-Derived Extracellular Vesicles, Immune Function, and Disease Development. International Journal of Molecular Sciences, 2020, 21, 107.	1.8	142
1327	B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nature Communications, 2020, 11, 60.	5.8	190
1328	Metabolism of shortâ€chain fatty acid propionate induces surface expression of NKG2D ligands on cancer cells. FASEB Journal, 2020, 34, 15531-15546.	0.2	25
1329	Gut Microbiome and Space Travelers' Health: State of the Art and Possible Pro/Prebiotic Strategies for Long-Term Space Missions. Frontiers in Physiology, 2020, 11, 553929.	1.3	56
1330	The Intestinal Microbiome in Canine Chronic Enteropathy and Implications for Extraintestinal Disorders. Advances in Small Animal Care, 2020, 1, 101-110.	0.3	0
1331	Conserved anti-inflammatory effects and sensing of butyrate in zebrafish. Gut Microbes, 2020, 12, 1824563.	4.3	41
1332	Characterization of the intestinal microbiota during <i>Citrobacter rodentium</i> infection in a mouse model of infection-triggered Parkinson's disease. Gut Microbes, 2020, 12, 1830694.	4.3	14
1333	Nutritional and Immunological Interactions. , 2020, , 427-427.		0
1334	Treg Enhancing Therapies to Treat Autoimmune Diseases. International Journal of Molecular Sciences, 2020, 21, 7015.	1.8	116
1335	The role of TH17 cells in multiple sclerosis: Therapeutic implications. Autoimmunity Reviews, 2020, 19, 102647.	2.5	144
1336	Deconstructing Mechanisms of Diet-Microbiome-Immune Interactions. Immunity, 2020, 53, 264-276.	6.6	77

#	Article	IF	CITATIONS
1337	Epigenome-metabolome-microbiome axis in health and IBD. Current Opinion in Microbiology, 2020, 56, 97-108.	2.3	23
1338	Rhubarb Supplementation Prevents Diet-Induced Obesity and Diabetes in Association with Increased Akkermansia muciniphila in Mice. Nutrients, 2020, 12, 2932.	1.7	45
1339	Phytochemicals affect T helper 17 and T regulatory cells and gut integrity: implications on the gut-bone axis. Nutrition Research, 2020, 83, 30-48.	1.3	6
1340	Nutrition and the Gut Microbiota in 10- to 18-Month-Old Children Living in Urban Slums of Mumbai, India. MSphere, 2020, 5, .	1.3	20
1341	Fecal microbiota transplantation from warthog to pig confirms the influence of the gut microbiota on African swine fever susceptibility. Scientific Reports, 2020, 10, 17605.	1.6	15
1342	Short-Chain Fatty Acids and Lipopolysaccharide as Mediators Between Gut Dysbiosis and Amyloid Pathology in Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 78, 683-697.	1.2	183
1343	Disruptions of Anaerobic Gut Bacteria Are Associated with Stroke and Post-stroke Infection: a Prospective Case–Control Study. Translational Stroke Research, 2021, 12, 581-592.	2.3	75
1344	Regulation of wheat germ polysaccharides in the immune response of mice from newborn to adulthood associated with intestinal microbiota. Food and Function, 2020, 11, 9662-9674.	2.1	9
1345	Health-promoting role of dietary bioactive compounds through epigenetic modulations: a novel prophylactic and therapeutic approach. Critical Reviews in Food Science and Nutrition, 2022, 62, 619-639.	5.4	19
1346	Gut Microbiota and Immune System Interactions. Microorganisms, 2020, 8, 1587.	1.6	309
1346 1347	Gut Microbiota and Immune System Interactions. Microorganisms, 2020, 8, 1587. A Distinct Microbiome Signature in Posttreatment Lyme Disease Patients. MBio, 2020, 11, .	1.6 1.8	309 19
1346 1347 1348	Gut Microbiota and Immune System Interactions. Microorganisms, 2020, 8, 1587. A Distinct Microbiome Signature in Posttreatment Lyme Disease Patients. MBio, 2020, 11, . Mechanistic insight into the gut microbiome and its interaction with host immunity and inflammation. Animal Nutrition, 2020, 6, 421-428.	1.6 1.8 2.1	309 19 26
1346 1347 1348 1349	Gut Microbiota and Immune System Interactions. Microorganisms, 2020, 8, 1587. A Distinct Microbiome Signature in Posttreatment Lyme Disease Patients. MBio, 2020, 11, . Mechanistic insight into the gut microbiome and its interaction with host immunity and inflammation. Animal Nutrition, 2020, 6, 421-428. Epigenetic Regulations of AhR in the Aspect of Immunomodulation. International Journal of Molecular Sciences, 2020, 21, 6404.	1.6 1.8 2.1 1.8	309 19 26 10
1346 1347 1348 1349 1350	Gut Microbiota and Immune System Interactions. Microorganisms, 2020, 8, 1587. A Distinct Microbiome Signature in Posttreatment Lyme Disease Patients. MBio, 2020, 11, . Mechanistic insight into the gut microbiome and its interaction with host immunity and inflammation. Animal Nutrition, 2020, 6, 421-428. Epigenetic Regulations of AhR in the Aspect of Immunomodulation. International Journal of Molecular Sciences, 2020, 21, 6404. Involvement of Gut Microbiota, Microbial Metabolites and Interaction with Polyphenol in Host Immunometabolism. Nutrients, 2020, 12, 3054.	1.6 1.8 2.1 1.8 1.7	 309 19 26 10 68
1346 1347 1348 1349 1350 1351	Gut Microbiota and Immune System Interactions. Microorganisms, 2020, 8, 1587. A Distinct Microbiome Signature in Posttreatment Lyme Disease Patients. MBio, 2020, 11, . Mechanistic insight into the gut microbiome and its interaction with host immunity and inflammation. Animal Nutrition, 2020, 6, 421-428. Epigenetic Regulations of AhR in the Aspect of Immunomodulation. International Journal of Molecular Sciences, 2020, 21, 6404. Involvement of Gut Microbiota, Microbial Metabolites and Interaction with Polyphenol in Host Immunometabolism. Nutrients, 2020, 12, 3054. Can Microbes Boost Tregs to Suppress Food Sensitivities?. Trends in Immunology, 2020, 41, 967-971.	1.6 1.8 2.1 1.8 1.7 2.9	 309 19 26 10 68 3
1346 1347 1348 1349 1350 1351 1352	Gut Microbiota and Immune System Interactions. Microorganisms, 2020, 8, 1587. A Distinct Microbiome Signature in Posttreatment Lyme Disease Patients. MBio, 2020, 11, . Mechanistic insight into the gut microbiome and its interaction with host immunity and inflammation. Animal Nutrition, 2020, 6, 421-428. Epigenetic Regulations of AhR in the Aspect of Immunomodulation. International Journal of Molecular Sciences, 2020, 21, 6404. Involvement of Gut Microbiota, Microbial Metabolites and Interaction with Polyphenol in Host Immunometabolism. Nutrients, 2020, 12, 3054. Can Microbes Boost Tregs to Suppress Food Sensitivities?. Trends in Immunology, 2020, 41, 967-971. Crosstalk between circadian rhythms and the microbiota. Immunology, 2020, 161, 278-290.	1.6 1.8 2.1 1.8 1.7 2.9 2.0	 309 19 26 3 26
1346 1347 1348 1349 1350 1351 1352 1353	Gut Microbiota and Immune System Interactions. Microorganisms, 2020, 8, 1587. A Distinct Microbiome Signature in Posttreatment Lyme Disease Patients. MBio, 2020, 11, . Mechanistic Insight into the gut microbiome and its interaction with host immunity and inflammation. Animal Nutrition, 2020, 6, 421-428. Epigenetic Regulations of AhR in the Aspect of Immunomodulation. International Journal of Molecular Sciences, 2020, 21, 6404. Involvement of Gut Microbiota, Microbial Metabolites and Interaction with Polyphenol in Host Immunometabolism. Nutrients, 2020, 12, 3054. Can Microbes Boost Tregs to Suppress Food Sensitivities?. Trends in Immunology, 2020, 41, 967-971. Crosstalk between circadian rhythms and the microbiota. Immunology, 2020, 161, 278-290. Regulation of gut microbiota substantially contributes to the induction of intestinal Treg cells and consequent anti-arthritis effect of madecassoside. International Immunopharmacology, 2020, 89, 107047.	1.6 1.8 2.1 1.8 1.7 2.9 2.0 1.7	 309 19 26 10 68 3 26 15

#	Article	IF	CITATIONS
1355	Cutting Edge: Tissue Antigen Expression Levels Fine-Tune T Cell Differentiation Decisions In Vivo. Journal of Immunology, 2020, 205, 2577-2582.	0.4	1
1357	Dietary and Microbial Determinants in Food Allergy. Immunity, 2020, 53, 277-289.	6.6	49
1358	Fecal transplantation and butyrate improve neuropathic pain, modify immune cell profile, and gene expression in the PNS of obese mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26482-26493.	3.3	57
1359	Circadian Host-Microbiome Interactions in Immunity. Frontiers in Immunology, 2020, 11, 1783.	2.2	36
1360	Application of Metagenomics to Chilean Aquaculture. , 0, , .		6
1361	Effect of probiotic supplementation on growth performance, intestinal morphology, barrier integrity, and inflammatory response in broilers subjected to cyclic heat stress. Animal Science Journal, 2020, 91, e13433.	0.6	25
1362	Sex-Specific Differences in the Gut Microbiome in Response to Dietary Fiber Supplementation in IL-10-Deficient Mice. Nutrients, 2020, 12, 2088.	1.7	20
1363	Anti-fungal T cell responses in the lung and modulation by the gut-lung axis. Current Opinion in Microbiology, 2020, 56, 67-73.	2.3	11
1364	Polyphenols in the Fermentation Liquid of Dendrobium candidum Relieve Intestinal Inflammation in Zebrafish Through the Intestinal Microbiome-Mediated Immune Response. Frontiers in Immunology, 2020, 11, 1542.	2.2	29
1365	A 4-strain probiotic supplement influences gut microbiota composition and gut wall function in patients with ulcerative colitis. International Journal of Pharmaceutics, 2020, 587, 119648.	2.6	51
1366	Inflammation in Parkinson's Disease: Mechanisms and Therapeutic Implications. Cells, 2020, 9, 1687.	1.8	334
1367	Preterm birth and sustained inflammation: consequences for the neonate. Seminars in Immunopathology, 2020, 42, 451-468.	2.8	123
1368	Role of the gut microbiota in the pathogenesis of coeliac disease and potential therapeutic implications. European Journal of Nutrition, 2020, 59, 3369-3390.	1.8	42
1369	The Gut Microbiota: How Does It Influence the Development and Progression of Liver Diseases. Biomedicines, 2020, 8, 501.	1.4	25
1370	Aberrant expression of USF2 in refractory rheumatoid arthritis and its regulation of proinflammatory cytokines in Th17 cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30639-30648.	3.3	25
1371	Live Bacterial Prophylactics in Modern Poultry. Frontiers in Veterinary Science, 2020, 7, 592312.	0.9	17
1372	What connection is there between intestinal microbiota and heart disease?. European Heart Journal Supplements, 2020, 22, L117-L120.	0.0	3
1373	Precision Nutrition in Chronic Inflammation. Frontiers in Immunology, 2020, 11, 587895.	2.2	13

#	Article	IF	CITATIONS
1374	Saponin-Rich Extracts and Their Acid Hydrolysates Differentially Target Colorectal Cancer Metabolism in the Frame of Precision Nutrition. Cancers, 2020, 12, 3399.	1.7	6
1375	Microbial metabolites and immune regulation: New targets for major depressive disorder. Brain, Behavior, & Immunity - Health, 2020, 9, 100169.	1.3	14
1376	Determinants of Tissue-Specific Metabolic Adaptation of T Cells. Cell Metabolism, 2020, 32, 908-919.	7.2	27
1377	Delivery mode and gut microbial changes correlate with an increased risk of childhood asthma. Science Translational Medicine, 2020, 12, .	5.8	92
1379	MAIT Cells in Barrier Tissues: Lessons from Immediate Neighbors. Frontiers in Immunology, 2020, 11, 584521.	2.2	27
1380	Multi-modal Single-Cell Analysis Reveals Brain Immune Landscape Plasticity during Aging and Gut Microbiota Dysbiosis. Cell Reports, 2020, 33, 108438.	2.9	46
1381	Designing bugs as drugs: exploiting the gut microbiome. American Journal of Physiology - Renal Physiology, 2021, 320, G295-G303.	1.6	8
1382	Lactobacillus sakei ADM14 Induces Anti-Obesity Effects and Changes in Gut Microbiome in High-Fat Diet-Induced Obese Mice. Nutrients, 2020, 12, 3703.	1.7	24
1383	The Gut Microbiome and the Big Eight. Nutrients, 2020, 12, 3728.	1.7	19
1384	Innovative Animal Model of DSS-Induced Ulcerative Colitis in Pseudo Germ-Free Mice. Cells, 2020, 9, 2571.	1.8	28
1385	Biomarkers of Activation and Inflammation to Track Disparity in Chronological and Physiological Age of People Living With HIV on Combination Antiretroviral Therapy. Frontiers in Immunology, 2020, 11, 583934.	2.2	17
1386	The role of the gut microbiota and microbial metabolites in neuroinflammation. European Journal of Immunology, 2020, 50, 1863-1870.	1.6	32
1387	Regulation of Gut Microbiota on Immune Reconstitution in Patients With Acquired Immunodeficiency Syndrome. Frontiers in Microbiology, 2020, 11, 594820.	1.5	26
1388	Inter-individual differences in immune profiles of outbred rats screened for an emotional reactivity phenotype. Journal of Neuroimmunology, 2020, 347, 577349.	1.1	0
1389	Microbiome and food allergy. , 2020, , 145-156.		0
1390	Go With Your Gut: The Shaping of T-Cell Response by Gut Microbiota in Allergic Asthma. Frontiers in Immunology, 2020, 11, 1485.	2.2	19
1391	Microbiota-derived butyrate limits the autoimmune response by promoting the differentiation of follicular regulatory T cells. EBioMedicine, 2020, 58, 102913.	2.7	74
1392	Long-Term Consumption of 2- <i>O</i> -β- <scp>d</scp> -Glucopyranosyl- <scp>l</scp> -ascorbic Acid from the Fruits of <i>Lycium barbarum</i> Modulates Gut Microbiota in C57BL/6 Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 8863-8874.	2.4	18

#	Article	IF	CITATIONS
1393	Our Evolving Understanding of Kawasaki Disease Pathogenesis: Role of the Gut Microbiota. Frontiers in Immunology, 2020, 11, 1616.	2.2	24
1394	Gut Microbiome Modulation for Preventing and Treating Pediatric Food Allergies. International Journal of Molecular Sciences, 2020, 21, 5275.	1.8	22
1395	Retinoid-Related Orphan Receptor RORγt in CD4+ T-Cell–Mediated Intestinal Homeostasis and Inflammation. American Journal of Pathology, 2020, 190, 1984-1999.	1.9	38
1396	Consumption of a Western-Style Diet Modulates the Response of the Murine Gut Microbiome to Ciprofloxacin. MSystems, 2020, 5, .	1.7	23
1397	Postbiotics—A Step Beyond Pre- and Probiotics. Nutrients, 2020, 12, 2189.	1.7	331
1398	Microbial modulation of intestinal T helper cell responses and implications for disease and therapy. Mucosal Immunology, 2020, 13, 855-866.	2.7	23
1399	Probiotic <i>Bifidobacterium breve</i> prevents DOCAâ€salt hypertension. FASEB Journal, 2020, 34, 13626-13640.	0.2	45
1400	How the AHR Became Important in Intestinal Homeostasis—A Diurnal FICZ/AHR/CYP1A1 Feedback Controls Both Immunity and Immunopathology. International Journal of Molecular Sciences, 2020, 21, 5681.	1.8	39
1401	Dietary Short-Term Fiber Interventions in Arthritis Patients Increase Systemic SCFA Levels and Regulate Inflammation. Nutrients, 2020, 12, 3207.	1.7	40
1402	The Influence of Microbial Metabolites in the Gastrointestinal Microenvironment on Anticancer Immunity. , 2020, , .		3
1403	Histone deacetylases as targets in autoimmune and autoinflammatory diseases. Advances in Immunology, 2020, 147, 1-59.	1.1	21
1405	<p>The Impact of Gut Microbiota Disorders on the Blood–Brain Barrier</p> . Infection and Drug Resistance, 2020, Volume 13, 3351-3363.	1.1	56
1406	Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science, 2020, 370, .	6.0	260
1407	The Impact of Milk and Its Components on Epigenetic Programming of Immune Function in Early Life and Beyond: Implications for Allergy and Asthma. Frontiers in Immunology, 2020, 11, 2141.	2.2	57
1408	Taming the Sentinels: Microbiome-Derived Metabolites and Polarization of T Cells. International Journal of Molecular Sciences, 2020, 21, 7740.	1.8	12
1409	Importance of "muscle―and "intestine―training before major HPB surgery: A review. Journal of Hepato-Biliary-Pancreatic Sciences, 2020, 28, 545-555.	1.4	7
1410	Short chain fatty acids in human gut and metabolic health. Beneficial Microbes, 2020, 11, 411-455.	1.0	435
1411	Tributyrin Attenuates Metabolic and Inflammatory Changes Associated with Obesity through a GPR109A-Dependent Mechanism. Cells, 2020, 9, 2007.	1.8	25

#	Article	IF	CITATIONS
1412	The Microbiome as a Therapeutic Target for Multiple Sclerosis: Can Genetically Engineered Probiotics Treat the Disease?. Diseases (Basel, Switzerland), 2020, 8, 33.	1.0	15
1413	Ascorbic Acid Derivative 2- <i>O</i> -Î ² - <scp>d</scp> -Glucopyranosyl- <scp>l</scp> -Ascorbic Acid from the Fruit of <i>Lycium barbarum</i> Modulates Microbiota in the Small Intestine and Colon and Exerts an Immunomodulatory Effect on Cyclophosphamide-Treated BALB/c Mice. Journal of Agricultural and Food Chemistry. 2020. 68. 11128-11143.	2.4	44
1414	Communications Between Peripheral and the Brain-Resident Immune System in Neuronal Regeneration After Stroke. Frontiers in Immunology, 2020, 11, 1931.	2.2	18
1416	Metabolomic Profiling in Neuromyelitis Optica Spectrum Disorder Biomarker Discovery. Metabolites, 2020, 10, 374.	1.3	7
1417	Sources of Dietary Fiber Are Differently Associated with Prevalence of Depression. Nutrients, 2020, 12, 2813.	1.7	23
1418	Molecular Insights Into Regulatory T-Cell Adaptation to Self, Environment, and Host Tissues: Plasticity or Loss of Function in Autoimmune Disease. Frontiers in Immunology, 2020, 11, 1269.	2.2	14
1419	Effect of a novel animal milk oligosaccharide biosimilar on the gut microbial communities and metabolites of in vitro incubations using feline and canine fecal inocula. Journal of Animal Science, 2020, 98, .	0.2	7
1421	Therapeutic Potential of the Intestinal Microbiota for Immunomodulation of Food Allergies. Frontiers in Immunology, 2020, 11, 1853.	2.2	22
1422	Multi-omics analysis reveals the influence of genetic and environmental risk factors on developing gut microbiota in infants at risk of celiac disease. Microbiome, 2020, 8, 130.	4.9	66
1423	The prophylactic effects of BIFICO on the antibiotic-induced gut dysbiosis and gut microbiota. Gut Pathogens, 2020, 12, 41.	1.6	11
1424	Catching a glimpse of the bacterial gut community of companion animals: a canine and feline perspective. Microbial Biotechnology, 2020, 13, 1708-1732.	2.0	38
1425	Circulation of gut-preactivated naÃ⁻ve CD8 ⁺ T cells enhances antitumor immunity in B cell-defective mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23674-23683.	3.3	22
1426	Microbiota Modulates the Immunomodulatory Effects of Filifolinone on Atlantic Salmon. Microorganisms, 2020, 8, 1320.	1.6	9
1427	Systemic Immunometabolism: Challenges and Opportunities. Immunity, 2020, 53, 496-509.	6.6	73
1428	Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Experimental and Molecular Medicine, 2020, 52, 1383-1396.	3.2	87
1429	Enhancing mucosal immunity by transient microbiota depletion. Nature Communications, 2020, 11, 4475.	5.8	12
1430	Nutritional Modulation of the Microbiome and Immune Response. Journal of Immunology, 2020, 205, 1479-1487.	0.4	24
1431	The Dark Side of Antibiotics: Adverse Effects on the Infant Immune Defense Against Infection. Frontiers in Pediatrics, 2020, 8, 544460.	0.9	36

#	Article	IF	CITATIONS
1432	Gut Microbiota: A Key Factor in the Host Health Effects Induced by Pesticide Exposure?. Journal of Agricultural and Food Chemistry, 2020, 68, 10517-10531.	2.4	42
1433	Flaxseed oligosaccharides alleviate DSS-induced colitis through modulation of gut microbiota and repair of the intestinal barrier in mice. Food and Function, 2020, 11, 8077-8088.	2.1	57
1434	Probiotics in Health and Immunity: A First Step toward Understanding the Importance of Microbiota System in Translational Medicine. , 0, , .		2
1435	New insights into the basic biology of acute graft-versus-host-disease. Haematologica, 2020, 105, 2540-2549.	1.7	8
1436	Immune System Modulations by Products of the Gut Microbiota. Vaccines, 2020, 8, 461.	2.1	19
1437	Sepsis and the Microbiome: A Vicious Cycle. Journal of Infectious Diseases, 2021, 223, S264-S269.	1.9	40
1438	The Metabolomics of Childhood Atopic Diseases: A Comprehensive Pathway-Specific Review. Metabolites, 2020, 10, 511.	1.3	19
1439	Role of the Intestinal Epithelium and Its Interaction With the Microbiota in Food Allergy. Frontiers in Immunology, 2020, 11, 604054.	2.2	70
1440	A Probiotic Mixture Induces Anxiolytic- and Antidepressive-Like Effects in Fischer and Maternally Deprived Long Evans Rats. Frontiers in Behavioral Neuroscience, 2020, 14, 581296.	1.0	6
1441	AhR Activation Leads to Alterations in the Gut Microbiome with Consequent Effect on Induction of Myeloid Derived Suppressor Cells in a CXCR2-Dependent Manner. International Journal of Molecular Sciences, 2020, 21, 9613.	1.8	27
1442	Intestinal Microbes in Autoimmune and Inflammatory Disease. Frontiers in Immunology, 2020, 11, 597966.	2.2	28
1443	Gut Microbiota Composition Modulates the Magnitude and Quality of Germinal Centers during Plasmodium Infections. Cell Reports, 2020, 33, 108503.	2.9	16
1444	Secretory IgA in Intestinal Mucosal Secretions as an Adaptive Barrier against Microbial Cells. International Journal of Molecular Sciences, 2020, 21, 9254.	1.8	106
1445	Butyrate induced Tregs are capable of migration from the GALT to the pancreas to restore immunological tolerance during type-1 diabetes. Scientific Reports, 2020, 10, 19120.	1.6	32
1446	Mucosal microbiota and gene expression are associated with long-term remission after discontinuation of adalimumab in ulcerative colitis. Scientific Reports, 2020, 10, 19186.	1.6	10
1447	The microbiota-gut-brain axis: Focus on the fundamental communication pathways. Progress in Molecular Biology and Translational Science, 2020, 176, 43-110.	0.9	35
1448	Antiâ€inflammatory and immuneâ€modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation. Journal of Cellular and Molecular Medicine, 2020, 24, 13573-13588.	1.6	63
1449	Higher-Order Interactions Dampen Pairwise Competition in the Zebrafish Gut Microbiome. MBio, 2020, 11, .	1.8	32

#	Article	IF	CITATIONS
1450	Pediatrics Consequences of Caesarean Section—A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 2020, 17, 8031.	1.2	53
1451	The Role of Gut Microbiome-Targeted Therapy in Nonalcoholic Fatty Liver Disease. Current Hepatology Reports, 2020, 19, 420-428.	0.4	Ο
1452	Stool microbiome, pH and short/branched chain fatty acids in infants receiving extensively hydrolyzed formula, amino acid formula, or human milk through two months of age. BMC Microbiology, 2020, 20, 337.	1.3	17
1453	The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms, 2020, 8, 1715.	1.6	713
1454	The Many Functions of Foxp3+ Regulatory T Cells in the Intestine. Frontiers in Immunology, 2020, 11, 600973.	2.2	52
1455	Gut Biofactory—Neurocompetent Metabolites within the Gastrointestinal Tract. A Scoping Review. Nutrients, 2020, 12, 3369.	1.7	22
1456	Distinct metabolic pathways mediate regulatory T cell differentiation and function. Immunology Letters, 2020, 223, 53-61.	1.1	7
1457	The gut microbiome and frailty. Translational Research, 2020, 221, 23-43.	2.2	22
1458	<i>Pediococcus pentosaceus</i> LI05 alleviates DSSâ€induced colitis by modulating immunological profiles, the gut microbiota and shortâ€chain fatty acid levels in a mouse model. Microbial Biotechnology, 2020, 13, 1228-1244.	2.0	53
1459	Bi-Directional interactions between microbiota and ionizing radiation in head and neck and pelvic radiotherapy – clinical relevance. International Journal of Radiation Biology, 2020, 96, 961-971.	1.0	10
1460	Early Signs of Gut Microbiome Aging: Biomarkers of Inflammation, Metabolism, and Macromolecular Damage in Young Adulthood. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1258-1266.	1.7	19
1461	Dietary Habits and Nutrition in Rheumatoid Arthritis: Can Diet Influence Disease Development and Clinical Manifestations?. Nutrients, 2020, 12, 1456.	1.7	137
1462	Intestinal microbiota in the pathogenesis of chronic heart failure. Italian Journal of Medicine, 2020, 14, 1-8.	0.2	2
1463	The role of inflammation and genetics in periodontal disease. Periodontology 2000, 2020, 83, 26-39.	6.3	242
1464	The Antioxidants Glutathione, Ascorbic Acid and Uric Acid Maintain Butyrate Production by Human Gut Clostridia in The Presence of Oxygen In Vitro. Scientific Reports, 2020, 10, 7705.	1.6	26
1465	Dietary galactosyl and mannosyl carbohydrates: In-vitro assessment of prebiotic effects. Food Chemistry, 2020, 329, 127179.	4.2	26
1466	Novel Forms of Immunomodulation for Cancer Therapy. Trends in Cancer, 2020, 6, 518-532.	3.8	17
1467	Gut Microbiota in Acute Ischemic Stroke: From Pathophysiology to Therapeutic Implications. Frontiers in Neurology, 2020, 11, 598.	1.1	62

#	Article	IF	CITATIONS
1468	Calcific Aortic Valve Disease-Natural History and Future Therapeutic Strategies. Frontiers in Pharmacology, 2020, 11, 685.	1.6	50
1469	Functional and Genomic Variation between Human-Derived Isolates of Lachnospiraceae Reveals Inter- and Intra-Species Diversity. Cell Host and Microbe, 2020, 28, 134-146.e4.	5.1	210
1470	Microbiota and cardiovascular disease risk: A scoping review. Pharmacological Research, 2020, 159, 104952.	3.1	17
1471	Gut Microbial Metabolites Induce Donor-Specific Tolerance of Kidney Allografts through Induction of T Regulatory Cells by Short-Chain Fatty Acids. Journal of the American Society of Nephrology: JASN, 2020, 31, 1445-1461.	3.0	50
1472	An Immunologic Mode of Multigenerational Transmission Governs a Gut Treg Setpoint. Cell, 2020, 181, 1276-1290.e13.	13.5	110
1473	Gut Microbiota Metabolism and Interaction with Food Components. International Journal of Molecular Sciences, 2020, 21, 3688.	1.8	88
1474	Interaction between microbiota and immunity in health and disease. Cell Research, 2020, 30, 492-506.	5.7	1,724
1475	Nutrition Regulates Innate Immunity in Health and Disease. Annual Review of Nutrition, 2020, 40, 189-219.	4.3	41
1476	Intestinal microbiota: a new force in cancer immunotherapy. Cell Communication and Signaling, 2020, 18, 90.	2.7	56
1477	Alterations in the Gut Microbiome and Suppression of Histone Deacetylases by Resveratrol Are Associated with Attenuation of Colonic Inflammation and Protection Against Colorectal Cancer. Journal of Clinical Medicine, 2020, 9, 1796.	1.0	47
1478	Comparative Study of Immunomodulatory Agents to Induce Human T Regulatory (Treg) Cells: Preferential Treg-Stimulatory Effect of Prednisolone and Rapamycin. Archivum Immunologiae Et Therapiae Experimentalis, 2020, 68, 20.	1.0	7
1479	Changes in the human gut microbiota composition caused by <i>Helicobacter pylori</i> eradication therapy: A systematic review and metaâ€analysis. Helicobacter, 2020, 25, e12713.	1.6	33
1480	Chronic Inflammation in the Context of Everyday Life: Dietary Changes as Mitigating Factors. International Journal of Environmental Research and Public Health, 2020, 17, 4135.	1.2	67
1481	Mahuang Fuzi Xixin Decoction Ameliorates Allergic Rhinitis in Rats by Regulating the Gut Microbiota and Th17/Treg Balance. Journal of Immunology Research, 2020, 2020, 1-11.	0.9	10
1482	The impact of metabolites derived from the gut microbiota on immune regulation and diseases. International Immunology, 2020, 32, 629-636.	1.8	19
1483	Can the Cecal Ligation and Puncture Model Be Repurposed To Better Inform Therapy in Human Sepsis?. Infection and Immunity, 2020, 88, .	1.0	32
1484	In Vitro Fermentation of Sheep and Cow Milk Using Infant Fecal Bacteria. Nutrients, 2020, 12, 1802.	1.7	9
1485	HDAC6-specific inhibitor suppresses Th17 cell function via the HIF-11± pathway in acute lung allograft rejection in mice. Theranostics, 2020, 10, 6790-6805.	4.6	11

#	Article	IF	CITATIONS
1486	Wheat Bran Intake Enhances the Secretion of Bacteria-Binding IgA in a Lumen of the Intestinal Tract by Incrementing Short Chain Fatty Acid Production Through Modulation of Gut Microbiota. Natural Product Communications, 2020, 15, 1934578X2091779.	0.2	5
1487	Alterations in Circulating Fatty Acid Are Associated With Gut Microbiota Dysbiosis and Inflammation in Multiple Sclerosis. Frontiers in Immunology, 2020, 11, 1390.	2.2	101
1488	The association among enterobacterial flora, dietary factors, and prognosis in patients with ulcerative colitis. Journal of Clinical Biochemistry and Nutrition, 2020, 66, 152-157.	0.6	2
1489	Host dysbiosis negatively impacts IL-9-producing T-cell differentiation and antitumour immunity. British Journal of Cancer, 2020, 123, 534-541.	2.9	14
1490	Microbiome in health and disease. Journal of Paediatrics and Child Health, 2020, 56, 1735-1738.	0.4	11
1491	Exploring the Molecular Mechanisms Underlying the Protective Effects of Microbial SCFAs on Intestinal Tolerance and Food Allergy. Frontiers in Immunology, 2020, 11, 1225.	2.2	64
1492	Role of the Microbiome in Allergic Disease Development. Current Allergy and Asthma Reports, 2020, 20, 44.	2.4	21
1493	Lactobacilli Supplemented with Larch Arabinogalactan and Colostrum Stimulates an Immune Response towards Peripheral NK Activation and Gut Tolerance. Nutrients, 2020, 12, 1706.	1.7	9
1494	Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders. Molecular Neurodegeneration, 2020, 15, 32.	4.4	57
1495	Manipulation of epithelial integrity and mucosal immunity by host and microbiotaâ€derived metabolites. European Journal of Immunology, 2020, 50, 921-931.	1.6	31
1496	The Migratory Properties and Numbers of T Regulatory Cell Subsets in Circulation Are Differentially Influenced by Season and Are Associated With Vitamin D Status. Frontiers in Immunology, 2020, 11, 685.	2.2	3
1497	Microbiota in the context of epigenetics of the immune system. , 2020, , 139-159.		0
1498	Gut dysbiosis modulates the immune response to factor VIII in murine hemophilia A. Blood Advances, 2020, 4, 2644-2655.	2.5	1
1499	Antibiotics-Induced Dysbiosis of Intestinal Microbiota Aggravates Atopic Dermatitis in Mice by Altered Short-Chain Fatty Acids. Allergy, Asthma and Immunology Research, 2020, 12, 137.	1.1	42
1500	Metabolic adaptation orchestrates tissue contextâ€dependent behavior in regulatory T cells. Immunological Reviews, 2020, 295, 126-139.	2.8	5
1501	Propionic Acid Shapes the Multiple Sclerosis Disease Course by an Immunomodulatory Mechanism. Cell, 2020, 180, 1067-1080.e16.	13.5	367
1502	Considering the Immune System during Fecal Microbiota Transplantation for Clostridioides difficile Infection. Trends in Molecular Medicine, 2020, 26, 496-507.	3.5	25
1503	Gut Microbial-Derived Metabolomics of Asthma. Metabolites, 2020, 10, 97.	1.3	31

#	Article	IF	Citations
1504	Recent advances in potential targets for eosinophilic esophagitis treatments. Expert Review of Clinical Immunology, 2020, 16, 421-428.	1.3	3
1505	Protective Effect of Tong-Qiao-Huo-Xue Decoction on Inflammatory Injury Caused by Intestinal Microbial Disorders in Stroke Rats. Biological and Pharmaceutical Bulletin, 2020, 43, 788-800.	0.6	33
1506	Signaling networks in immunometabolism. Cell Research, 2020, 30, 328-342.	5.7	120
1507	Long-term dietary intervention reveals resilience of the gut microbiota despite changes in diet and weight. American Journal of Clinical Nutrition, 2020, 111, 1127-1136.	2.2	84
1508	Microbiome and cancer immunotherapy. Current Opinion in Biotechnology, 2020, 65, 114-117.	3.3	13
1509	Natural agents inhibit colon cancer cell proliferation and alter microbial diversity in mice. PLoS ONE, 2020, 15, e0229823.	1.1	18
1510	Autoimmune responses and inflammation in type 2 diabetes. Journal of Leukocyte Biology, 2020, 107, 739-748.	1.5	41
1511	Microbiota-Derived Metabolites Suppress Arthritis by Amplifying Aryl-Hydrocarbon Receptor Activation in Regulatory B Cells. Cell Metabolism, 2020, 31, 837-851.e10.	7.2	290
1512	Loricrin: Past, Present, and Future. International Journal of Molecular Sciences, 2020, 21, 2271.	1.8	35
1513	Gut Microbiome and Osteoporosis. , 2020, 11, 438.		61
1514	Role of diet in regulating the gut microbiota and multiple sclerosis. Clinical Immunology, 2022, 235, 108379.	1.4	19
1515	Gut dysbiosis and multiple sclerosis. Clinical Immunology, 2022, 235, 108380.	1.4	28
1516	Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome, 2020, 8, 36.	4.9	213
1517	Alpha-Glucosidase Inhibitors Alter Gut Microbiota and Ameliorate Collagen-Induced Arthritis. Frontiers in Pharmacology, 2019, 10, 1684.	1.6	22
1518	Gut Dysbiosis during Influenza Contributes to Pulmonary Pneumococcal Superinfection through Altered Short-Chain Fatty Acid Production. Cell Reports, 2020, 30, 2934-2947.e6.	2.9	221
1519	Biomarker development for axial spondyloarthritis. Nature Reviews Rheumatology, 2020, 16, 448-463.	3.5	34
1520	Behçet's Disease Under Microbiotic Surveillance? A Combined Analysis of Two Cohorts of Behçet's Disease Patients. Frontiers in Immunology, 2020, 11, 1192.	2.2	28
1521	Maternal microbiome regulation prevents early allergic airway diseases in mouse offspring. Pediatric Allergy and Immunology, 2020, 31, 962-973.	1.1	4

	CHATION R	EPUKI	
#	Article	IF	CITATIONS
1522	Dietary Regulation of Memory T Cells. International Journal of Molecular Sciences, 2020, 21, 4363.	1.8	13
1523	The use of fecal microbiota transplant in sepsis. Translational Research, 2020, 226, 12-25.	2.2	25
1524	Microbial management. Science, 2020, 369, 153-153.	6.0	4
1525	Exploring Epigenetic Drugs in the Regulation of Inflammatory Autoimmune Diseases. , 0, , .		1
1526	Epigenetics of Bronchopulmonary Dysplasia. , 2020, , 61-69.		0
1527	The roles and potential of lentil prebiotic carbohydrates in human and plant health. Plants People Planet, 2020, 2, 310-319.	1.6	32
1528	Molecular Mechanisms Controlling Foxp3 Expression in Health and Autoimmunity: From Epigenetic to Post-translational Regulation. Frontiers in Immunology, 2019, 10, 3136.	2.2	74
1529	The perinatal period, the developing intestinal microbiome and inflammatory bowel diseases: What links early life events with later life disease?. Journal of the Royal Society of New Zealand, 2020, 50, 371-383.	1.0	2
1530	Anticancer effect of bacteria on cervical cancer: Molecular aspects and therapeutic implications. Life Sciences, 2020, 246, 117413.	2.0	18
1531	Using Precisely Defined in vivo Microbiotas to Understand Microbial Regulation of IgE. Frontiers in Immunology, 2019, 10, 3107.	2.2	25
1532	Structural basis of mammalian high-mannose N-glycan processing by human gut Bacteroides. Nature Communications, 2020, 11, 899.	5.8	22
1533	Advances in knowledge of inhibitor formation in severe haemophilia A. British Journal of Haematology, 2020, 189, 39-53.	1.2	25
1534	Changes in Intestinal Microbiota Are Associated with Islet Function in a Mouse Model of Dietary Vitamin A Deficiency. Journal of Diabetes Research, 2020, 2020, 1-10.	1.0	5
1535	The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity, 2020, 52, 241-255.	6.6	329
1536	Dendritic Cell Subsets in Intestinal Immunity and Inflammation. Journal of Immunology, 2020, 204, 1075-1083.	0.4	64
1537	Dysbiosis of the gut and lung microbiome has a role in asthma. Seminars in Immunopathology, 2020, 42, 75-93.	2.8	205
1538	Xenosiderophore Utilization Promotes Bacteroides thetaiotaomicron Resilience during Colitis. Cell Host and Microbe, 2020, 27, 376-388.e8.	5.1	61
1540	Microbes: Friends or Foes?. Pediatric and Adolescent Medicine, 2020, , 112-122.	0.4	0

#		IF	CITATIONS
1541	autoimmune uveitis. International Immunopharmacology, 2020, 81, 106270.	1.7	14
1542	Regulation of immune-driven pathogenesis in Parkinson's disease by gut microbiota. Brain, Behavior, and Immunity, 2020, 87, 890-897.	2.0	28
1543	<i>Camellia sinensis</i> and <i>Litsea coreana</i> Ameliorate Intestinal Inflammation and Modulate Gut Microbiota in Dextran Sulfate Sodiumâ€Induced Colitis Mice. Molecular Nutrition and Food Research, 2020, 64, e1900943.	1.5	93
1544	Probiotics Prevent Dysbiosis and the Rise in Blood Pressure in Genetic Hypertension: Role of Shortâ€Chain Fatty Acids. Molecular Nutrition and Food Research, 2020, 64, e1900616.	1.5	113
1545	Epithelial dysfunction in chronic respiratory diseases, a shared endotype?. Current Opinion in Pulmonary Medicine, 2020, 26, 20-26.	1.2	11
1546	The Impact of Dietary Components on Regulatory T Cells and Disease. Frontiers in Immunology, 2020, 11, 253.	2.2	38
1547	Precision Microbiome Modulation with Discrete Dietary Fiber Structures Directs Short-Chain Fatty Acid Production. Cell Host and Microbe, 2020, 27, 389-404.e6.	5.1	298
1548	Signatures of oral microbiome in HIV-infected individuals with oral Kaposi's sarcoma and cell-associated KSHV DNA. PLoS Pathogens, 2020, 16, e1008114.	2.1	31
1549	Prebiotics metabolism by gut-isolated probiotics. Journal of Food Science and Technology, 2020, 57, 2786-2799.	1.4	27
1550	Intestinal microbes derived butyrate is related to the immunomodulatory activities of Dendrobium officinale polysaccharide. International Journal of Biological Macromolecules, 2020, 149, 717-723.	3.6	76
1551	Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nature Reviews Immunology, 2020, 20, 427-441.	10.6	165
1552	Gut Microbiome as a Potential Factor for Modulating Resistance to Cancer Immunotherapy. Frontiers in Immunology, 2019, 10, 2989.	2.2	86
1553	Computational Modeling of the Human Microbiome. Microorganisms, 2020, 8, 197.	1.6	22
1554	Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine. Annual Review of Immunology, 2020, 38, 23-48.	9.5	294
1555	Regulatory T cells in multiple sclerosis. Clinical and Experimental Neuroimmunology, 2020, 11, 148-155.	0.5	19
1556	Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nature Communications, 2020, 11, 2168.	5.8	231
1557	Modulation of Pectin on Mucosal Innate Immune Function in Pigs Mediated by Gut Microbiota. Microorganisms, 2020, 8, 535.	1.6	22
1558	The Aryl Hydrocarbon Receptor (AHR) as a Potential Target for the Control of Intestinal Inflammation: Insights from an Immune and Bacteria Sensor Receptor. Clinical Reviews in Allergy and Immunology, 2020, 59, 382-390.	2.9	114

#	Article	IF	CITATIONS
1559	Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain, Behavior, and Immunity, 2020, 88, 308-324.	2.0	115
1560	Challenges, Progress, and Prospects of Developing Therapies to Treat Autoimmune Diseases. Cell, 2020, 181, 63-80.	13.5	159
1561	Toward Understanding Microbiome-Neuronal Signaling. Molecular Cell, 2020, 78, 577-583.	4.5	73
1562	Antibacterial Monoclonal Antibodies Do Not Disrupt the Intestinal Microbiome or Its Function. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	9
1563	Regulatory T Cells Beyond Autoimmunity: From Pregnancy to Cancer and Cardiovascular Disease. Frontiers in Immunology, 2020, 11, 509.	2.2	7
1564	Processing Method Altered Mouse Intestinal Morphology and Microbial Composition by Affecting Digestion of Meat Proteins. Frontiers in Microbiology, 2020, 11, 511.	1.5	20
1565	The Controversial Role of Human Gut Lachnospiraceae. Microorganisms, 2020, 8, 573.	1.6	777
1566	Neonatal diet alters fecal microbiota and metabolome profiles at different ages in infants fed breast milk or formula. American Journal of Clinical Nutrition, 2020, 111, 1190-1202.	2.2	67
1567	Bile acids mediate signaling between microbiome and the immune system. Immunology and Cell Biology, 2020, 98, 349-350.	1.0	6
1568	Impact of maternal dietary gut microbial metabolites on an offspring's systemic immune response in mouse models. Bioscience of Microbiota, Food and Health, 2020, 39, 33-38.	0.8	7
1569	Gastrointestinal host-pathogen interaction in the age of microbiome research. Current Opinion in Microbiology, 2020, 53, 78-89.	2.3	27
1570	Microbiota Metabolites in Health and Disease. Annual Review of Immunology, 2020, 38, 147-170.	9.5	138
1571	Beneficial and detrimental effects of processed dietary fibers on intestinal and liver health: health benefits of refined dietary fibers need to be redefined!. Gastroenterology Report, 2020, 8, 85-89.	0.6	15
1572	Role of Microbiome and Antibiotics in Autoimmune Diseases. Nutrition in Clinical Practice, 2020, 35, 406-416.	1.1	35
1573	Association of Short-Chain Fatty Acids in the Gut Microbiome With Clinical Response to Treatment With Nivolumab or Pembrolizumab in Patients With Solid Cancer Tumors. JAMA Network Open, 2020, 3, e202895.	2.8	192
1574	Gut Microbiota and Pathogenesis of Organ Injury. Advances in Experimental Medicine and Biology, 2020, , .	0.8	7
1575	Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature, 2020, 581, 475-479.	13.7	440
1576	Can the microbiota predict response to systemic cancer therapy, surgical outcomes, and survival? The answer is in the gut. Expert Review of Clinical Pharmacology, 2020, 13, 403-421.	1.3	7

#	Article	IF	CITATIONS
1577	Mucin-Derived O-Glycans Act as Endogenous Fiber and Sustain Mucosal Immune Homeostasis via Short-Chain Fatty Acid Production in Rat Cecum. Journal of Nutrition, 2020, 150, 2656-2665.	1.3	20
1578	Commensal epitopes drive differentiation of colonic T _{regs} . Science Advances, 2020, 6, eaaz3186.	4.7	44
1579	Gut Epithelial Metabolism as a Key Driver of Intestinal Dysbiosis Associated with Noncommunicable Diseases. Infection and Immunity, 2020, 88, .	1.0	24
1580	Small molecules, big effects: microbial metabolites in intestinal immunity. American Journal of Physiology - Renal Physiology, 2020, 318, G907-G911.	1.6	4
1581	Unraveling the drivers and consequences of gut microbiota disruption in Fabry disease: the lyso-Gb3 link. Future Microbiology, 2020, 15, 227-231.	1.0	7
1582	Brain–Heart Axis and Biomarkers of Cardiac Damage and Dysfunction after Stroke: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 2020, 21, 2347.	1.8	13
1583	SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, 2021, 80, 37-49.	0.4	498
1584	Maternal Nutritional Status and Development of Atopic Dermatitis in Their Offspring. Clinical Reviews in Allergy and Immunology, 2021, 61, 128-155.	2.9	20
1585	Regulating T-cell differentiation through the polyamine spermidine. Journal of Allergy and Clinical Immunology, 2021, 147, 335-348.e11.	1.5	94
1586	Intestinal microbiota and juvenile idiopathic arthritis: current understanding and future prospective. World Journal of Pediatrics, 2021, 17, 40-51.	0.8	11
1587	Dietary fiber metabolites regulate innate lymphoid cell responses. Mucosal Immunology, 2021, 14, 317-330.	2.7	76
1588	Induction of Regulatory T Cells and Correction of Cytokine Disbalance by Short-Chain Fatty Acids: Implications for Psoriasis Therapy. Journal of Investigative Dermatology, 2021, 141, 95-104.e2.	0.3	49
1589	Gut microbiome: A possible common therapeutic target for treatment of atherosclerosis and cancer. Seminars in Cancer Biology, 2021, 70, 85-97.	4.3	21
1590	Bioactive lipids in inflammatory bowel diseases – From pathophysiological alterations to therapeutic opportunities. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158854.	1.2	19
1591	Impact of Changes in Gastrointestinal Microbiota in Canine and Feline Digestive Diseases. Veterinary Clinics of North America - Small Animal Practice, 2021, 51, 155-169.	0.5	38
1592	Molecular mechanisms of neurodegeneration in neurotraumatic diseases. , 2021, , 81-116.		0
1593	Troublesome friends within us: the role of gut microbiota on rheumatoid arthritis etiopathogenesis and its clinical and therapeutic relevance. Clinical and Experimental Medicine, 2021, 21, 1-13.	1.9	30
1594	Microbiota-immune system interactions and enteric virus infection. Current Opinion in Virology, 2021, 46, 15-19.	2.6	8

#	Article	IF	CITATIONS
1595	High-throughput sequencing provides insights into oral microbiota dysbiosis in association with inflammatory bowel disease. Genomics, 2021, 113, 664-676.	1.3	38
1596	Mechanisms linking the human gut microbiome to prophylactic and treatment strategies for COVID-19. British Journal of Nutrition, 2021, 126, 219-227.	1.2	50
1597	How Microbial Food Fermentation Supports a Tolerant Gut. Molecular Nutrition and Food Research, 2021, 65, 2000036.	1.5	3
1598	Microbiota metabolites modulate the T helper 17 to regulatory T cell (Th17/Treg) imbalance promoting resilience to stress-induced anxiety- and depressive-like behaviors. Brain, Behavior, and Immunity, 2021, 91, 350-368.	2.0	64
1599	Butyrate as a bioactive human milk protective component against food allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1398-1415.	2.7	68
1600	Targeting the tumor immune microenvironment with "nutraceuticalsâ€ŧ From bench to clinical trials. , 2021, 219, 107700.		14
1601	The interplay between gut microbiota and autism spectrum disorders: A focus on immunological pathways. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 106, 110091.	2.5	14
1602	Role of Gut Microbiota in the Skeletal Response to PTH. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 636-645.	1.8	20
1603	MiR-21 Is Remotely Governed by the Commensal Bacteria and Impairs Anti-TB Immunity by Down-Regulating IFN-Î ³ . Frontiers in Microbiology, 2020, 11, 512581.	1.5	6
1604	Childhood Development and the Microbiome—The Intestinal Microbiota in Maintenance of Health and Development of Disease During Childhood Development. Gastroenterology, 2021, 160, 495-506.	0.6	84
1605	Immunometabolic Pathways and Its Therapeutic Implication in Autoimmune Diseases. Clinical Reviews in Allergy and Immunology, 2021, 60, 55-67.	2.9	30
1606	Oral butyrate modulates the gut microbiota in patients with inflammatory bowel disease, most likely by reversing proinflammatory metabolic reprogramming of colonocytes. Neurogastroenterology and Motility, 2021, 33, e14038.	1.6	10
1607	Supplementing the Diet with Sodium Propionate Suppresses the Severity of Viral Immuno-inflammatory Lesions. Journal of Virology, 2021, 95, .	1.5	22
1608	The impact of the microbiota-gut-brain axis on Alzheimer's disease pathophysiology. Pharmacological Research, 2021, 164, 105314.	3.1	144
1609	Cancer and the Microbiome—Influence of the Commensal Microbiota on Cancer, Immune Responses, and Immunotherapy. Gastroenterology, 2021, 160, 600-613.	0.6	167
1610	Gut Microbiota in Intestinal and Liver Disease. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 251-275.	9.6	64
1611	Atypical immunometabolism and metabolic reprogramming in liver cancer: Deciphering the role of gut microbiome. Advances in Cancer Research, 2021, 149, 171-255.	1.9	13
1612	Inter-trophic Interaction of Gut Microbiota in a Tripartite System. Microbial Ecology, 2021, 81, 1075-1087.	1.4	5

#	Article	IF	CITATIONS
1613	Resistant starch intake alleviates collagen-induced arthritis in mice by modulating gut microbiota and promoting concomitant propionate production. Journal of Autoimmunity, 2021, 116, 102564.	3.0	45
1614	Pinto beans modulate the gut microbiome, augment MHC II protein, and antimicrobial peptide gene expression in mice fed a normal or western-style diet. Journal of Nutritional Biochemistry, 2021, 88, 108543.	1.9	13
1615	Lactobacillus reuteri CCFM1072 and CCFM1040 with the role of Treg cells regulation alleviate airway inflammation through modulating gut microbiota in allergic asthma mice. Journal of Functional Foods, 2021, 76, 104286.	1.6	11
1616	Exploring the effects of anthocyanins on volatile organic metabolites of alzheimer's disease model mice based on HS-GC-IMS and HS-SPME-GC–MS. Microchemical Journal, 2021, 162, 105848.	2.3	6
1617	Konjac glucomannan with probiotics acts as a combination laxative to relieve constipation in mice by increasing short-chain fatty acid metabolism and 5-hydroxytryptamine hormone release. Nutrition, 2021, 84, 111112.	1.1	19
1618	Fecal microbiota diversity disruption and clinical outcomes after auto-HCT: a multicenter observational study. Blood, 2021, 137, 1527-1537.	0.6	42
1619	Probiotics-derived metabolite ameliorates skin allergy by promoting differentiation of FOXP3+ regulatory T cells. Journal of Allergy and Clinical Immunology, 2021, 147, 1517-1521.	1.5	8
1620	Hallmarks of Health. Cell, 2021, 184, 33-63.	13.5	256
1621	Microbiome: A Supportive or a Leading Actor in Lung Cancer?. Pathobiology, 2021, 88, 198-207.	1.9	15
1622	Reduced alpha diversity of the oral microbiome correlates with short progressionâ€free survival in patients with relapsed/refractory multiple myeloma treated with ixazomibâ€based therapy (AGMT MM 1,) Tj ETQ	q10140.784	43 1 4 rgBT /O
1623	Effect of a novel animal milk oligosaccharide biosimilar on macronutrient digestibility and gastrointestinal tolerance, fecal metabolites, and fecal microbiota of healthy adult cats. Journal of Animal Science, 2021, 99, .	0.2	1
1624	Diversity analysis of gut microbiota between healthy controls and those with atopic dermatitis in a Chinese population. Journal of Dermatology, 2021, 48, 158-167.	0.6	22
1625	The role of the gut microbiome in graft fibrosis after pediatric liver transplantation. Human Genetics, 2021, 140, 709-724.	1.8	8
1626	Changes of intestinal microflora of breast cancer in premenopausal women. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 503-513.	1.3	30
1627	Type I interferons induce peripheral T regulatory cell differentiation under tolerogenic conditions. International Immunology, 2021, 33, 59-77.	1.8	6
1628	Angiogenin maintains gut microbe homeostasis by balancing α-Proteobacteria and Lachnospiraceae. Gut, 2021, 70, 666-676.	6.1	87
1629	Gut Microbiota Profiles and Microbial-Based Therapies in Post-operative Crohn's Disease: A Systematic Review. Frontiers in Medicine, 2020, 7, 615858.	1.2	12
1630	Interactions Between <i>IL-17</i> Variants and <i>Streptococcus</i> in the Gut Contribute to the Development of Atopic Dermatitis in Infancy. Allergy, Asthma and Immunology Research, 202 <u>1</u> , 13, 404.	1.1	13

#	Article	IF	CITATIONS
1631	Research Progress of Pancreas-Related Microorganisms and Pancreatic Cancer. Frontiers in Oncology, 2020, 10, 604531.	1.3	11
1632	The Microbiome as a Therapeutic Target in Preterm Nutrition. World Review of Nutrition and Dietetics, 2021, 122, 180-190.	0.1	0
1633	Short chain fatty acids (SCFAs) improves TNBS-induced colitis in zebrafish. Current Research in Immunology, 2021, 2, 142-154.	1.2	15
1634	Gastroenterocardiology: Or what do the gut and the heart have in common?. Timocki Medicinski Glasnik, 2021, 46, 11-22.	0.0	0
1635	Role of the Microbiome in Pancreatic Cancer. , 2021, , 267-285.		0
1636	The role of gut-immune-brain signaling in substance use disorders. International Review of Neurobiology, 2021, 157, 311-370.	0.9	7
1637	Gut Microbiota and Related Metabolites Were Disturbed in Ulcerative Colitis and Partly Restored After Mesalamine Treatment. Frontiers in Pharmacology, 2020, 11, 620724.	1.6	21
1638	Microbiota fermentation characteristics of acylated starches and the regulation mechanism of short-chain fatty acids on hepatic steatosis. Food and Function, 2021, 12, 8659-8668.	2.1	14
1639	Epigenomics of intestinal disease. , 2021, , 213-230.		0
1640	Bacterial infections in lupus: Roles in promoting immune activation and in pathogenesis of the disease. Journal of Translational Autoimmunity, 2021, 4, 100078.	2.0	21
1641	Gut Microbiota, the Immune System, and Cytotoxic T Lymphocytes. Methods in Molecular Biology, 2021, 2325, 229-241.	0.4	10
1642	Gut microbiota of animals living in polluted environments are a potential resource of anticancer molecules. Journal of Applied Microbiology, 2021, 131, 1039-1055.	1.4	2
1643	Probiotics for Atopic Dermatitis. , 2021, , 335-362.		0
1644	Gut Microbiota-Immune System Interactions during Acute Kidney Injury. Kidney360, 2021, 2, 528-531.	0.9	6
1645	The contribution of microbiota, cerebral blood flow, and sleep deprivation in the pathogenesis of Alzheimer's disease. , 2021, , 143-158.		1
1646	Nutrition and atopic dermatitis. Journal of Nippon Medical School, 2021, 88, 171-177.	0.3	11
1647	Integrative analysis of microbiome and metabolome in rats with Gest-Aid Plus Oral Liquid supplementation reveals mechanism of its healthcare function. Food Quality and Safety, 2021, 5, .	0.6	2
1648	The gut microbiome: a key player in the complexity of amyotrophic lateral sclerosis (ALS). BMC Medicine, 2021, 19, 13.	2.3	52

#	Article	IF	CITATIONS
1649	Butyrate-producing human gut symbiont, <i>Clostridium butyricum</i> , and its role in health and disease. Gut Microbes, 2021, 13, 1-28.	4.3	157
1650	Gut microbiota as the key controllers of "healthy―aging of elderly people. Immunity and Ageing, 2021, 18, 2.	1.8	161
1651	Breastfeeding promotes early neonatal regulatory Tâ€cell expansion and immune tolerance of nonâ€inherited maternal antigens. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2447-2460.	2.7	40
1652	The intestinal microbiome of preterm infants. , 2021, , 155-173.		0
1653	Intermittent fasting - a potential approach to modulate the gut microbiota in humans? A systematic review. Nutrition and Healthy Aging, 2021, , 1-8.	0.5	3
1654	Probiotics for Allergic Airway Infection and Inflammations. , 2021, , 295-313.		0
1655	Integration with epigenetics. , 2021, , 127-135.		0
1656	Metabolic Choice Tunes Foxp3+ Regulatory T Cell Function. Advances in Experimental Medicine and Biology, 2021, 1278, 81-94.	0.8	3
1657	Prebiotic Enriched Exclusive Enteral Nutrition Suppresses Colitis via Gut Microbiome Modulation and Expansion of Anti-inflammatory T Cells in a Mouse Model of Colitis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1251-1266.	2.3	16
1658	Treg Cells and Epigenetic Regulation. Advances in Experimental Medicine and Biology, 2021, 1278, 95-114.	0.8	9
1659	Intestinal Regulatory T Cells. Advances in Experimental Medicine and Biology, 2021, 1278, 141-190.	0.8	7
1660	Anemarrhena asphodeloides modulates gut microbiota and restores pancreatic function in diabetic rats. Biomedicine and Pharmacotherapy, 2021, 133, 110954.	2.5	19
1661	From taxonomy to metabolic output: what factors define gut microbiome health?. Gut Microbes, 2021, 13, 1-20.	4.3	19
1662	Regulation of Gastrointestinal Immunity by Metabolites. Nutrients, 2021, 13, 167.	1.7	26
1664	Probiotics to Prebiotics and Their Clinical Use. , 2021, , .		0
1665	Priming for Life: Early Life Nutrition and the Microbiota-Gut-Brain Axis. Nutrients, 2021, 13, 423.	1.7	83
1666	The lung–gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunology, 2021, 14, 296-304.	2.7	160
1667	Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. European Heart Journal, 2022, 43, 518-533.	1.0	113

# 1668	ARTICLE Contribution of microbiota in the pathogenesis of ischemic stroke. , 2021, , 221-233.	IF	CITATIONS
1669	Microbial therapies in the perinatal and neonatal period. , 2021, , 107-115.		Ο
1670	Bone and the microbiome. , 2021, , 969-988.		0
1671	The Association of Gut Microbiota and Treg Dysfunction in Autoimmune Diseases. Advances in Experimental Medicine and Biology, 2021, 1278, 191-203.	0.8	11
1672	Gut Microbiota Influence in Hematological Malignancies: From Genesis to Cure. International Journal of Molecular Sciences, 2021, 22, 1026.	1.8	31
1673	The Gut-Bone Axis: Role of Gut Microbiota in Osteoporosis. , 2021, , .		0
1674	Studies of xenobiotic-induced gut microbiota dysbiosis: from correlation to mechanisms. Gut Microbes, 2021, 13, 1921912.	4.3	19
1675	The Effect of Lipid Metabolism on CD4+ T Cells. Mediators of Inflammation, 2021, 2021, 1-8.	1.4	16
1676	Altered gut microbial metabolites could mediate the effects of risk factors in Covidâ€19. Reviews in Medical Virology, 2021, 31, 1-13.	3.9	40
1677	Preventive Effects of Probiotics and Prebiotics in Food Allergy: Potentials and Promise. Microorganisms for Sustainability, 2021, , 85-100.	0.4	0
1678	Dysbiotic microbiota interactions in Crohn's disease. Gut Microbes, 2021, 13, 1949096.	4.3	38
1679	Sodium Butyrate Supplementation Inhibits Hepatic Steatosis by Stimulating Liver Kinase B1 and Insulin-Induced Gene. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 857-871.	2.3	36
1680	Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes, 2021, 13, 1968257.	4.3	138
1681	Metformin: Targeting the Metabolo-Epigenetic Link in Cancer Biology. Frontiers in Oncology, 2020, 10, 620641.	1.3	5
1682	Immunological Impact of Intestinal T Cells on Metabolic Diseases. Frontiers in Immunology, 2021, 12, 639902.	2.2	8
1683	Gastrointestinal Helminth Infection Improves Insulin Sensitivity, Decreases Systemic Inflammation, and Alters the Composition of Gut Microbiota in Distinct Mouse Models of Type 2 Diabetes. Frontiers in Endocrinology, 2020, 11, 606530.	1.5	17
1684	Phenotype, Susceptibility, Autoimmunity, and Immunotherapy Between Kawasaki Disease and Coronavirus Disease-19 Associated Multisystem Inflammatory Syndrome in Children. Frontiers in Immunology, 2021, 12, 632890.	2.2	53
1685	Microbiota Modulation of the Gut-Lung Axis in COVID-19. Frontiers in Immunology, 2021, 12, 635471.	2.2	138

#	Article	IF	CITATIONS
1686	Impact of Microbial Metabolites on Microbiota–Gut–Brain Axis in Inflammatory Bowel Disease. International Journal of Molecular Sciences, 2021, 22, 1623.	1.8	56
1687	Gut Microbiota Profile in Pediatric Patients With Inflammatory Bowel Disease: A Systematic Review. Frontiers in Pediatrics, 2021, 9, 626232.	0.9	27
1688	Gastrointestinal microbiota composition predicts peripheral inflammatory state during treatment of human tuberculosis. Nature Communications, 2021, 12, 1141.	5.8	28
1689	An Antibiotic-Impacted Microbiota Compromises the Development of Colonic Regulatory T Cells and Predisposes to Dysregulated Immune Responses. MBio, 2021, 12, .	1.8	29
1690	Modulating gut microbiota in a mouse model of Graves' orbitopathy and its impact on induced disease. Microbiome, 2021, 9, 45.	4.9	41
1691	New Insights Into the Cancer–Microbiome–Immune Axis: Decrypting a Decade of Discoveries. Frontiers in Immunology, 2021, 12, 622064.	2.2	91
1692	Intestinal Bacteria Encapsulated by Biomaterials Enhance Immunotherapy. Frontiers in Immunology, 2020, 11, 620170.	2.2	3
1693	Microbial-derived antigens and metabolites in spondyloarthritis. Seminars in Immunopathology, 2021, 43, 163-172.	2.8	10
1694	A single strain of Bacteroides fragilis protects gut integrity and reduces GVHD. JCI Insight, 2021, 6, .	2.3	43
1695	MicroRNAs overexpressed in Crohn's disease and their interactions with mechanisms of epigenetic regulation explain novel aspects of Crohn's disease pathogenesis. Clinical Epigenetics, 2021, 13, 39.	1.8	6
1696	Progress in understanding of mechanism of dietary therapy for ulcerative colitis with regard to intestinal microbiota. World Chinese Journal of Digestology, 2021, 29, 146-151.	0.0	0
1697	Intestinal bacteria are potential biomarkers and therapeutic targets for gastric cancer. Microbial Pathogenesis, 2021, 151, 104747.	1.3	25
1698	Butyrate Shapes Immune Cell Fate and Function in Allergic Asthma. Frontiers in Immunology, 2021, 12, 628453.	2.2	80
1699	Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients, 2021, 13, 724.	1.7	82
1700	Antimicrobial Prophylaxis and Modifications of the Gut Microbiota in Children with Cancer. Antibiotics, 2021, 10, 152.	1.5	4
1701	Role of Probiotics and Their Metabolites in Inflammatory Bowel Diseases (IBDs). Gastroenterology Insights, 2021, 12, 56-66.	0.7	22
1702	Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature, 2021, 591, 645-651.	13.7	492
1703	Consumption of Dietary Fiber from Different Sources during Pregnancy Alters Sow Gut Microbiota and Improves Performance and Reduces Inflammation in Sows and Piglets. MSystems, 2021, 6, .	1.7	43

#	Article	IF	Citations
1705	Act Locally, Act Globally—Microbiota, Barriers, and Cytokines in Atherosclerosis. Cells, 2021, 10, 348.	1.8	11
1706	The role of the intestinal microbiota in allogeneic HCT: clinical associations and preclinical mechanisms. Current Opinion in Genetics and Development, 2021, 66, 25-35.	1.5	11
1707	Regulation of Intestinal Inflammation by Dietary Fats. Frontiers in Immunology, 2020, 11, 604989.	2.2	36
1708	Tumor-Associated Microbiome: Where Do We Stand?. International Journal of Molecular Sciences, 2021, 22, 1446.	1.8	31
1709	Therapeutic interventions and mechanisms associated with gut microbiota-mediated modulation of immune checkpoint inhibitor responses. Microbes and Infection, 2021, 23, 104804.	1.0	5
1710	Prostaglandin E ₂ promotes intestinal inflammation via inhibiting microbiota-dependent regulatory T cells. Science Advances, 2021, 7, .	4.7	44
1711	The autoimmune response as a potential target for tolerance induction before the development of rheumatoid arthritis. Lancet Rheumatology, The, 2021, 3, e214-e223.	2.2	1
1712	The Nerves to Conduct a Multiple Sclerosis Crime Investigation. International Journal of Molecular Sciences, 2021, 22, 2498.	1.8	1
1713	The gut microbiota metabolite urolithin A inhibits NF-κB activation in LPS stimulated BMDMs. Scientific Reports, 2021, 11, 7117.	1.6	32
1714	Interleukin-6 produced by enteric neurons regulates the number and phenotype of microbe-responsive regulatory TAcells in the gut. Immunity, 2021, 54, 499-513.e5.	6.6	63
1716	Treg-associated monogenic autoimmune disorders and gut microbial dysbiosis. Pediatric Research, 2022, 91, 35-43.	1.1	9
1717	Understanding intestinal health in nursery pigs and the relevant nutritional strategies. Animal Bioscience, 2021, 34, 338-344.	0.8	30
1718	Polymicrobial communities in periodontal disease: Their quasiâ€organismal nature and dialogue with the host. Periodontology 2000, 2021, 86, 210-230.	6.3	126
1719	The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacological Research, 2021, 165, 105420.	3.1	245
1720	Key bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in early life. ISME Journal, 2021, 15, 2574-2590.	4.4	131
1721	Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cellular and Molecular Immunology, 2021, 18, 866-877.	4.8	175
1722	The Effects of Helicobacter pylori Infection on Microbiota Associated With Gastric Mucosa and Immune Factors in Children. Frontiers in Immunology, 2021, 12, 625586.	2.2	13
1723	Regulation of Intestinal Stem Cell Stemness by the Aryl Hydrocarbon Receptor and Its Ligands. Frontiers in Immunology, 2021, 12, 638725.	2.2	9

#	Article	IF	CITATIONS
1724	The microbiota is dispensable for the early stages of peripheral regulatory T cell induction within mesenteric lymph nodes. Cellular and Molecular Immunology, 2021, 18, 1211-1221.	4.8	17
1725	Separating the wheat from the chaff: Making sense of Treg heterogeneity for better adoptive cellular therapy. Immunology Letters, 2021, 239, 96-112.	1.1	4
1726	Immunosuppressive effect of mesenchymal stem cells on lung and gut CD8 ⁺ T cells in lipopolysaccharideâ€induced acute lung injury in mice. Cell Proliferation, 2021, 54, e13028.	2.4	31
1727	Microbiota in Gut, Oral Cavity, and Mitral Valves Are Associated With Rheumatic Heart Disease. Frontiers in Cellular and Infection Microbiology, 2021, 11, 643092.	1.8	19
1728	Microbial Metabolites in Colorectal Cancer: Basic and Clinical Implications. Metabolites, 2021, 11, 159.	1.3	23
1729	The Gut/Lung Microbiome Axis in Obesity, Asthma, and Bariatric Surgery: A Literature Review. Obesity, 2021, 29, 636-644.	1.5	29
1730	Predictive Metagenomic Analysis of Autoimmune Disease Identifies Robust Autoimmunity and Disease Specific Microbial Signatures. Frontiers in Microbiology, 2021, 12, 621310.	1.5	21
1731	Gut Microbiome over a Lifetime and the Association with Hypertension. Current Hypertension Reports, 2021, 23, 15.	1.5	10
1732	The Role of Intestinal Flora in the Regulation of Bone Homeostasis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 579323.	1.8	20
1733	Associations of serum short-chain fatty acids with circulating immune cells and serum biomarkers in patients with multiple sclerosis. Scientific Reports, 2021, 11, 5244.	1.6	41
1734	Interplay Between the Intestinal Microbiota and Acute Graft-Versus-Host Disease: Experimental Evidence and Clinical Significance. Frontiers in Immunology, 2021, 12, 644982.	2.2	15
1735	Intestinal Mucosal Wound Healing and Barrier Integrity in IBD–Crosstalk and Trafficking of Cellular Players. Frontiers in Medicine, 2021, 8, 643973.	1.2	52
1736	Effect of Yuzu (Citrus junos) Seed Limonoids and Spermine on Intestinal Microbiota and Hypothalamic Tissue in the Sandhoff Disease Mouse Model. Medical Sciences (Basel, Switzerland), 2021, 9, 17.	1.3	3
1737	The Interplay between the Gut Microbiome and the Immune System in the Context of Infectious Diseases throughout Life and the Role of Nutrition in Optimizing Treatment Strategies. Nutrients, 2021, 13, 886.	1.7	100
1738	A literature survey on antimicrobial and immune-modulatory effects of butyrate revealing non-antibiotic approaches to tackle bacterial infections. European Journal of Microbiology and Immunology, 2021, 11, 1-9.	1.5	13
1739	Rapid transcriptional and metabolic adaptation of intestinal microbes to host immune activation. Cell Host and Microbe, 2021, 29, 378-393.e5.	5.1	52
1740	Impaired Butyrate Induced Regulation of T Cell Surface Expression of CTLA-4 in Patients with Ulcerative Colitis. International Journal of Molecular Sciences, 2021, 22, 3084.	1.8	6
1741	T Cell Subsets During Early Life and Their Implication in the Treatment of Childhood Acute Lymphoblastic Leukemia. Frontiers in Immunology, 2021, 12, 582539.	2.2	3

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1742	Intestinal Dysbiosis and Autoimmune Pancreatitis. Frontiers in Immunology, 2021, 12, 62	1532.	2.2	10
1743	The microbiome links between aging and lupus. Autoimmunity Reviews, 2021, 20, 10276.	5.	2.5	6
1744	Dysbiosis in the Development of Type I Diabetes and Associated Complications: From Med Targeted Gut Microbes Manipulation Therapies. International Journal of Molecular Science 2763.	:hanisms to s, 2021, 22,	1.8	10
1745	Immunological and genetic features of pathogenetic association between psoriasis and co dysbiosis. Russian Journal of Infection and Immunity, 2021, 11, 237-248.	blonic	0.2	2
1746	Genetic Approaches Using Zebrafish to Study the Microbiota–Gut–Brain Axis in Neuro Disorders. Cells, 2021, 10, 566.	ological	1.8	26
1747	Effect of fecal microbiota transplantation on neurological restoration in a spinal cord injur model: involvement of brain-gut axis. Microbiome, 2021, 9, 59.	y mouse	4.9	97
1748	Immune System, Microbiota, and Microbial Metabolites: The Unresolved Triad in Colorecta Microenvironment. Frontiers in Immunology, 2021, 12, 612826.	ıl Cancer	2.2	70
1749	Impact of Dietary Flavanols on Microbiota, Immunity and Inflammation in Metabolic Disea Nutrients, 2021, 13, 850.	ses.	1.7	35
1750	Relating Gut Microbiome and Its Modulating Factors to Immunotherapy in Solid Tumors: A Review. Frontiers in Oncology, 2021, 11, 642110.	Systematic	1.3	32
1751	Microbiome-immune interactions in tuberculosis. PLoS Pathogens, 2021, 17, e1009377.		2.1	28
1752	Vitamin D and Microbiota: Is There a Link with Allergies?. International Journal of Molecula 2021, 22, 4288.	r Sciences,	1.8	42
1753	B lymphocytes, the gastrointestinal tract and autoimmunity. Autoimmunity Reviews, 202	1, 20, 102777.	2.5	10
1754	Interrogating the Impact of Intestinal Parasite-Microbiome on Pathogenesis of COVID-19 i Sub-Saharan Africa. Frontiers in Microbiology, 2021, 12, 614522.	n	1.5	19
1755	Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cellula Molecular Immunology, 2021, 18, 1161-1171.	r and	4.8	160
1756	Connecting the dots: Targeting the microbiome in drug toxicity. Medicinal Research Revie 83-111.	ws, 2022, 42,	5.0	8
1757	The role of gut dysbiosis in Parkinson's disease: mechanistic insights and therapeutic 2021, 144, 2571-2593.	options. Brain,	3.7	119
1758	Immunosuppressive Mechanisms of Regulatory B Cells. Frontiers in Immunology, 2021, 12	2, 611795.	2.2	131
1759	The Gut Microbiome in Hypertension. Circulation Research, 2021, 128, 934-950.		2.0	86

#	Article	IF	CITATIONS
1760	Changes in Gut Microbiota Correlates with Response to Treatment with Probiotics in Patients with Atopic Dermatitis. A Post Hoc Analysis of a Clinical Trial. Microorganisms, 2021, 9, 854.	1.6	20
1761	Production and Function of Immunoglobulin A. Annual Review of Immunology, 2021, 39, 695-718.	9.5	41
1762	Asthma in the Precision Medicine Era: Biologics and Probiotics. International Journal of Molecular Sciences, 2021, 22, 4528.	1.8	35
1763	Short-Chain Fatty Acids, Maternal Microbiota and Metabolism in Pregnancy. Nutrients, 2021, 13, 1244.	1.7	81
1764	Bacteroidetes Species Are Correlated with Disease Activity in Ulcerative Colitis. Journal of Clinical Medicine, 2021, 10, 1749.	1.0	67
1765	Innate Mechanisms in Selective IgA Deficiency. Frontiers in Immunology, 2021, 12, 649112.	2.2	14
1766	Tumor resident regulatory T cells. Seminars in Immunology, 2021, 52, 101476.	2.7	18
1767	Defence and adaptation mechanisms of the intestinal epithelium upon infection. International Journal of Medical Microbiology, 2021, 311, 151486.	1.5	11
1768	Detection of Dysbiosis and Increased Intestinal Permeability in Brazilian Patients with Relapsing–Remitting Multiple Sclerosis. International Journal of Environmental Research and Public Health, 2021, 18, 4621.	1.2	22
1769	Selected Clostridia Strains from The Human Microbiota and their Metabolite, Butyrate, Improve Experimental Autoimmune Encephalomyelitis. Neurotherapeutics, 2021, 18, 920-937.	2.1	18
1770	Single-Cell Atlas Reveals Fatty Acid Metabolites Regulate the Functional Heterogeneity of Mesenchymal Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 653308.	1.8	7
1771	Gut Microbiota in Lupus: a Butterfly Effect?. Current Rheumatology Reports, 2021, 23, 27.	2.1	19
1772	The Habitat Filters of Microbiota-Nourishing Immunity. Annual Review of Immunology, 2021, 39, 1-18.	9.5	21
1773	Gut-derived acetate promotes B10 cells with antiinflammatory effects. JCI Insight, 2021, 6, .	2.3	47
1774	Bacterial–fungal interactions in the neonatal gut influence asthma outcomes later in life. ELife, 2021, 10, .	2.8	22
1775	Butyrate: A Link between Early Life Nutrition and Gut Microbiome in the Development of Food Allergy. Life, 2021, 11, 384.	1.1	16
1776	Single-Cell Transcriptional Survey of Ileal-Anal Pouch Immune Cells From Ulcerative Colitis Patients. Gastroenterology, 2021, 160, 1679-1693.	0.6	40
1777	Short chain fatty acids and its producing organisms: An overlooked therapy for IBD?. EBioMedicine, 2021, 66, 103293.	2.7	281

#	Article	IF	CITATIONS
1778	Infant gut microbiome is enriched with <i>Bifidobacterium longumssp. infantis</i> in Old Order Mennonites with traditional farming lifestyle. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3489-3503.	2.7	30
1779	The effect of partially hydrolyzed guar gum on preventing influenza infection. Clinical Nutrition ESPEN, 2021, 42, 148-152.	0.5	10
1780	Participation of Short-Chain Fatty Acids and Their Receptors in Gut Inflammation and Colon Cancer. Frontiers in Physiology, 2021, 12, 662739.	1.3	75
1781	Control of Immunity by the Microbiota. Annual Review of Immunology, 2021, 39, 449-479.	9.5	129
1782	Potential role of indolelactate and butyrate in multiple sclerosis revealed by integrated microbiome-metabolome analysis. Cell Reports Medicine, 2021, 2, 100246.	3.3	37
1783	Artificial intelligence and metagenomics in intestinal diseases. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 841-847.	1.4	9
1784	The gut microbiota is associated with the small intestinal paracellular permeability and the development of the immune system in healthy children during the first two years of life. Journal of Translational Medicine, 2021, 19, 177.	1.8	34
1785	Can we prevent childhood Leukaemia?. Leukemia, 2021, 35, 1258-1264.	3.3	17
1786	Crosstalk between gut microbiome and immunology in the management of ischemic brain injury. Journal of Neuroimmunology, 2021, 353, 577498.	1.1	17
1787	Ovalbumin-Induced Airway Inflammation Is Ameliorated in Dectin-1–Deficient Mice, in Which Pulmonary Regulatory T Cells Are Expanded through Modification of Intestinal Commensal Bacteria. Journal of Immunology, 2021, 206, 1991-2000.	0.4	9
1789	The aging gut microbiome and its impact on host immunity. Genes and Immunity, 2021, 22, 289-303.	2.2	164
1790	Tissue Nutrient Environments and Their Effect on Regulatory T Cell Biology. Frontiers in Immunology, 2021, 12, 637960.	2.2	10
1791	Microbiota-mediated protection against antibiotic-resistant pathogens. Genes and Immunity, 2021, 22, 255-267.	2.2	19
1792	PREBIOTICS FOR ACUTE ISCHEMIC STROKE. International Journal of Pharmacy and Pharmaceutical Sciences, 0, , 1-10.	0.3	1
1793	POS0787â€BERBERINE MODULATE LUPUS SYNDROME VIA THE REGULATION OF GUT MICROBIOTA IN MRL/LPR MICE. Annals of the Rheumatic Diseases, 2021, 80, 646.2-646.	0.5	0
1794	Microbiota and immunoregulation: A focus on regulatory B lymphocytes and transplantation. American Journal of Transplantation, 2021, 21, 2341-2347.	2.6	8
1795	Immunomodulation by the Commensal Microbiome During Immune-Targeted Interventions: Focus on Cancer Immune Checkpoint Inhibitor Therapy and Vaccination. Frontiers in Immunology, 2021, 12, 643255.	2.2	6
1796	Dietary Supplementation with Fermented Brassica rapa L. Stimulates Defecation Accompanying Change in Colonic Bacterial Community Structure. Nutrients, 2021, 13, 1847.	1.7	3

#	Article	IF	CITATIONS
1797	Rationally designed bacterial consortia to treat chronic immune-mediated colitis and restore intestinal homeostasis. Nature Communications, 2021, 12, 3105.	5.8	82
1798	Acetyl-CoA and Metabolite Fluxes Regulate White Adipose Tissue Expansion. Trends in Endocrinology and Metabolism, 2021, 32, 320-332.	3.1	16
1799	The impact of Opisthorchis felineus infection and praziquantel treatment on the intestinal microbiota in children. Acta Tropica, 2021, 217, 105835.	0.9	5
1800	Effects of short chain fatty acids on metabolic and inflammatory processes in human health. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158900.	1.2	54
1801	Mechanisms of exTreg induction. European Journal of Immunology, 2021, 51, 1956-1967.	1.6	21
1802	Gut microbiota characterization in Chinese patients with alopecia areata. Journal of Dermatological Science, 2021, 102, 109-115.	1.0	19
1803	Gut microbial metabolite TMAO portends prognosis in acute ischemic stroke. Journal of Neuroimmunology, 2021, 354, 577526.	1.1	19
1804	The gut microbiota as a versatile immunomodulator in obesity and associated metabolic disorders. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101542.	2.2	21
1805	Cutaneous innate immune tolerance is mediated by epigenetic control of MAP2K3 by HDAC8/9. Science Immunology, 2021, 6, .	5.6	33
1808	Transferrable protection by gut microbes against STING-associated lung disease. Cell Reports, 2021, 35, 109113.	2.9	10
1809	Physiological Functions Mediated by Yuzu (Citrus junos) Seed-Derived Nutrients. , 0, , .		0
1810	Intestinal microbiota and diabetic kidney diseases: the Role of microbiota and derived metabolites inmodulation of renal inflammation and disease progression. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101484.	2.2	42
1811	Anaerobe-enriched gut microbiota predicts pro-inflammatory responses in pulmonary tuberculosis. EBioMedicine, 2021, 67, 103374.	2.7	22
1812	Gut Microbiota Changes and Their Correlation with Cognitive and Neuropsychiatric Symptoms in Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 81, 583-595.	1.2	59
1813	Fecal Stream Diversion Changes Intestinal Environment, Modulates Mucosal Barrier, and Attenuates Inflammatory Cells in Crohn's Disease. Digestive Diseases and Sciences, 2022, 67, 2143-2157.	1.1	9
1814	Navigating in Deep Waters: How Tissue Damage and Inflammation Shape Effector and Memory CD8+ T Cell Responses. ImmunoHorizons, 2021, 5, 338-348.	0.8	3
1815	Respiratory syncytial virus and airway microbiota – A complex interplay and its reflection on morbidity. Pediatric Allergy and Immunology, 2021, 32, 1141-1151.	1.1	2
1816	Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ TÂcell immunity. Cell Metabolism, 2021, 33, 988-1000.e7.	7.2	264

		CITATION REP	ORT	
#	Article		IF	Citations
1817	Food Allergy and Intolerance: A Narrative Review on Nutritional Concerns. Nutrients, 2021	13, 1638.	1.7	52
1818	Conjunctival Commensal Isolation and Identification in Mice. Journal of Visualized Experime	ents, 2021, ,	0.2	0
1819	"Goâ€; "No Go,―or "Where to Goâ€; does microbiota dictate T cell exhaustion persistence?. Current Opinion in HIV and AIDS, 2021, 16, 215-222.	, programming, and HIV	1.5	9
1820	Butyrate enhances CPT1A activity to promote fatty acid oxidation and iTreg differentiation Proceedings of the National Academy of Sciences of the United States of America, 2021, 1	18, .	3.3	54
1821	The fermentation characteristics of Sparassis crispa polysaccharides and their effects on th intestinal microbes in mice. Chemical and Biological Technologies in Agriculture, 2021, 8, .	e	1.9	3
1822	Short-chain fatty acids-producing probiotics: A novel source of psychobiotics. Critical Revie Food Science and Nutrition, 2022, 62, 7929-7959.	ws in	5.4	41
1823	Maternal Vegetable and Fruit Consumption during Pregnancy and Its Effects on Infant Gut Microbiome. Nutrients, 2021, 13, 1559.		1.7	19
1824	A Role for Folate in Microbiome-Linked Control of Autoimmunity. Journal of Immunology Ro 2021, 2021, 1-14.	esearch,	0.9	12
1825	Modeling the Th17 and Tregs Paradigm: Implications for Cancer Immunotherapy. Frontiers Developmental Biology, 2021, 9, 675099.	in Cell and	1.8	6
1826	Inflammationâ€driven brain and gut barrier dysfunction in stress and mood disorders. Euro Journal of Neuroscience, 2022, 55, 2851-2894.	pean	1.2	54
1827	The Potential Role of the Intestinal Micromilieu and Individual Microbes in the Immunobiolo Chimeric Antigen Receptor T-Cell Therapy. Frontiers in Immunology, 2021, 12, 670286.	ogy of	2.2	16
1828	Inflammatory adaptation in barrier tissues. Cell, 2021, 184, 3361-3375.		13.5	42
1829	Gut Microbiota Perturbation in IgA Deficiency Is Influenced by IgA-Autoantibody Status. Gastroenterology, 2021, 160, 2423-2434.e5.		0.6	34
1830	Metabolic regulation in the immune response to cancer. Cancer Communications, 2021, 4	1, 661-694.	3.7	23
1831	Dissecting the Interplay Mechanism between Epigenetics and Gut Microbiota: Health Main Disease Prevention. International Journal of Molecular Sciences, 2021, 22, 6933.	tenance and	1.8	30
1832	Beverages containing Lactobacillus paracasei LC-37 improved functional dyspepsia throug of the intestinal microbiota and their metabolites. Journal of Dairy Science, 2021, 104, 638	n regulation 9-6398.	1.4	18
1833	The Comprehensive "Omics―Approach from Metabolomics to Advanced Omics for De Immune Checkpoint Inhibitors: Potential Strategies for Next Generation of Cancer Immunc International Journal of Molecular Sciences, 2021, 22, 6932.	velopment of otherapy.	1.8	9
1834	Gut Microbiota and Inflammatory Disorders. Current Drug Targets, 2022, 23, 156-169.		1.0	2

ARTICLE IF CITATIONS # Intestinal microbiota and its interaction to intestinal health in nursery pigs. Animal Nutrition, 2022, 8, 1835 2.1 49 169-184. Non-invasive plasma glycomic and metabolic biomarkers of post-treatment control of HIV. Nature Communications, 2021, 12, 3922. 5.8 Propionic Acid Rescues High-Fat Diet Enhanced Immunopathology in Autoimmunity via Effects on Th17 1837 2.2 26 Responses. Frontiers in Immunology, 2021, 12, 701626. Gut microbiota and bone metabolism. FASEB Journal, 2021, 35, e21740. 1838 0.2 39 Gut microbiota contributes to the development of hypertension in a genetic mouse model of systemic 1839 2.7 21 lupus erythematosus. British Journal of Pharmacology, 2021, 178, 3708-3729. What We Know So Far about the Metabolite-Mediated Microbiota-Intestinal Immunity Dialogue and How to Hear the Sound of This Crosstalk. Metabolites, 2021, 11, 406. 1840 1.3 Altered IgA Response to Gut Bacteria Is Associated with Childhood Asthma in Peru. Journal of 1841 0.4 5 Immunology, 2021, 207, 398-407. Highlighting the Relevance of Gut Microbiota Manipulation in Inflammatory Bowel Disease. 1842 1.3 Diagnostics, 2021, 11, 1090. Gut health: The results of microbial and mucosal immune interactions in pigs. Animal Nutrition, 2021, 1843 2.1 31 7, 282-294. Exosome-Derived MicroRNAs of Human Milk and Their Effects on Infant Health and Development. 1844 1.8 Biomolecules, 2021, 11, 851. Modulation of jejunal mucosa-associated microbiota in relation to intestinal health and nutrient digestibility in pigs by supplementation of l²-glucanase to corna€"soybean meal-based diets with xylanase. 1845 0.2 15 Journal of Ánimal Science, 2021, 99, . The Gut Microbiota-Immunity Axis in ALS: A Role in Deciphering Disease Heterogeneity?. Biomedicines, 1846 1.4 2021, 9, 753. Modulation of Gut Microbiota to Enhance Effect of Checkpoint Inhibitor Immunotherapy. Frontiers in 1847 2.2 33 Immunology, 2021, 12, 669150. Probiotics ameliorate alveolar bone loss by regulating gut microbiota. Cell Proliferation, 2021, 54, 1848 2.4 e13075. Bioderived materials that disarm the gut mucosal immune system: Potential lessons from commensal 1849 4.1 4 microbiota. Acta Biomaterialia, 2021, 133, 187-207. First Encounters: Effects of the Microbiota on Neonatal Brain Development. Frontiers in Cellular 1.8 Neuroscience, 2021, 15, 682505. Tolerogenic Dendritic Cells Shape a Transmissible Gut Microbiota That Protects From Metabolic 1851 0.37 Diseases. Diabetes, 2021, 70, 2067-2080. The role of the microbiome in gastrointestinal inflammation. Bioscience Reports, 2021, 41, . 1.1

#	Article	IF	CITATIONS
1853	Immune activities of polysaccharides isolated from Lycium barbarum L. What do we know so far?. , 2022, 229, 107921.		51
1854	The Interplay between Nutrition, Innate Immunity, and the Commensal Microbiota in Adaptive Intestinal Morphogenesis. Nutrients, 2021, 13, 2198.	1.7	16
1855	Obesity-related gut hormones and cancer: novel insight into the pathophysiology. International Journal of Obesity, 2021, 45, 1886-1898.	1.6	8
1856	T Lymphocytes, Multi-Omic Interactions and Bronchopulmonary Dysplasia. Frontiers in Pediatrics, 2021, 9, 694034.	0.9	10
1857	Effects of short-chain fatty acids in inhibiting HDAC and activating p38 MAPK are critical for promoting B10 cell generation and function. Cell Death and Disease, 2021, 12, 582.	2.7	43
1858	The Natural History of T Cell Metabolism. International Journal of Molecular Sciences, 2021, 22, 6779.	1.8	9
1859	Double-Edged Metabolic Effects from Short-Term Feeding of Functionalized Wheat Bran to Mouse Revealed by Metabolomic Profiling. Journal of Agricultural and Food Chemistry, 2021, 69, 6543-6555.	2.4	2
1860	The Mammalian Metaorganism: A Holistic View on How Microbes of All Kingdoms and Niches Shape Local and Systemic Immunity. Frontiers in Immunology, 2021, 12, 702378.	2.2	14
1861	Foxo1 controls gut homeostasis and commensalism by regulating mucus secretion. Journal of Experimental Medicine, 2021, 218, .	4.2	30
1862	Butyrate and the Intestinal Epithelium: Modulation of Proliferation and Inflammation in Homeostasis and Disease. Cells, 2021, 10, 1775.	1.8	152
1863	Herbal Medicine, Gut Microbiota, and COVID-19. Frontiers in Pharmacology, 2021, 12, 646560.	1.6	15
1864	A comprehensive approach for microbiota and health monitoring in mouse colonies using metagenomic shotgun sequencing. Animal Microbiome, 2021, 3, 53.	1.5	8
1865	Bile Acids, Their Receptors, and the Gut Microbiota. Physiology, 2021, 36, 235-245.	1.6	31
1866	β-Carotene prevents weaning-induced intestinal inflammation by modulating gut microbiota in piglets. Animal Bioscience, 2021, 34, 1221-1234.	0.8	34
1867	The adaptability of regulatory T cells and Foxp3. International Immunology, 2021, 33, 803-807.	1.8	4
1868	Gut microbiota-mediated immunomodulation in tumor. Journal of Experimental and Clinical Cancer Research, 2021, 40, 221.	3.5	42
1869	Intestinal immune compartmentalization: implications of tissue specific determinants in health and disease. Mucosal Immunology, 2021, 14, 1259-1270.	2.7	26
1870	Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomedicine and Pharmacotherapy, 2021, 139, 111661.	2.5	106

#	Article	IF	Citations
1871	Gut Microbiota in Cancer Immune Response and Immunotherapy. Trends in Cancer, 2021, 7, 647-660.	3.8	136
1872	Impact of Dietary Lipids on the Reverse Cholesterol Transport: What We Learned from Animal Studies. Nutrients, 2021, 13, 2643.	1.7	14
1873	Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nature Communications, 2021, 12, 4077.	5.8	222
1874	The Alterations in and the Role of the Th17/Treg Balance in Metabolic Diseases. Frontiers in Immunology, 2021, 12, 678355.	2.2	65
1875	Direct and indirect effects of microbiota-derived metabolites on neuroinflammation in multiple sclerosis. Microbes and Infection, 2021, 23, 104814.	1.0	11
1876	The Microbiota-Gut-Brain Axis in Health and Disease and Its Implications for Translational Research. Frontiers in Cellular Neuroscience, 2021, 15, 698172.	1.8	50
1877	Gastric Microenvironment—A Partnership between Innate Immunity and Gastric Microbiota Tricks Helicobacter pylori. Journal of Clinical Medicine, 2021, 10, 3258.	1.0	10
1878	Effect of Dietary Amylose/Amylopectin Ratio on Intestinal Health and Cecal Microbes' Profiles of Weaned Pigs Undergoing Feed Transition or Challenged With Escherichia coli Lipopolysaccharide. Frontiers in Microbiology, 2021, 12, 693839.	1.5	6
1879	Review: The Nutritional Management of Multiple Sclerosis With Propionate. Frontiers in Immunology, 2021, 12, 676016.	2.2	11
1880	Hygiene hypothesis and autoimmune diseases: A narrative review of clinical evidences and mechanisms. Autoimmunity Reviews, 2021, 20, 102845.	2.5	24
1881	Hematopoietic Cell Transplantation Rescues Inflammatory Bowel Disease and Dysbiosis of Gut Microbiota in XIAP Deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3767-3780.	2.0	15
1882	Intestinal microbiota: A potential target for enhancing the antitumor efficacy and reducing the toxicity of immune checkpoint inhibitors. Cancer Letters, 2021, 509, 53-62.	3.2	13
1883	Alterations of gut microbiome and metabolite profiles in choledocholithiasis concurrent with cholangitis. Hepatology International, 2022, 16, 447-462.	1.9	5
1884	The role of CECR1 in the immune-modulatory effects of butyrate and correlation between ADA2 and M1/M2 chemokines in tuberculous pleural effusion. International Immunopharmacology, 2021, 96, 107635.	1.7	0
1885	Low Dietary Fiber Intake Links Development of Obesity and Lupus Pathogenesis. Frontiers in Immunology, 2021, 12, 696810.	2.2	31
1886	Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduction and Targeted Therapy, 2021, 6, 263.	7.1	739
1887	Influence of immunomodulatory drugs on the gut microbiota. Translational Research, 2021, 233, 144-161.	2.2	14
1888	Immunopathogenesis of Different Emerging Viral Infections: Evasion, Fatal Mechanism, and Prevention. Frontiers in Immunology, 2021, 12, 690976.	2.2	4

#	Article	IF	CITATIONS
1889	Nonâ€zeroâ€sum microbiome immune system interactions. European Journal of Immunology, 2021, 51, 2120-2136.	1.6	3
1890	Mesenteric Lymph Node Transplantation in Mice to Study Immune Responses of the Gastrointestinal Tract. Frontiers in Immunology, 2021, 12, 689896.	2.2	12
1891	Enhancing Checkpoint Inhibitor Therapy in Solid Tissue Cancers: The Role of Diet, the Microbiome & amp; Microbiome-Derived Metabolites. Frontiers in Immunology, 2021, 12, 624434.	2.2	12
1892	Perspective of Immunopathogenesis and Immunotherapies for Kawasaki Disease. Frontiers in Pediatrics, 2021, 9, 697632.	0.9	18
1894	The Role of Short-Chain Fatty Acids and Bile Acids in Intestinal and Liver Function, Inflammation, and Carcinogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 703218.	1.8	55
1896	Host factors facilitating SARSâ€CoVâ€2 virus infection and replication in the lungs. Cellular and Molecular Life Sciences, 2021, 78, 5953-5976.	2.4	19
1897	Tying Small Changes to Large Outcomes: The Cautious Promise in Incorporating the Microbiome into Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 7900.	1.8	3
1898	The Athlete and Gut Microbiome: Short-chain Fatty Acids as Potential Ergogenic Aids for Exercise and Training. International Journal of Sports Medicine, 2021, 42, 1143-1158.	0.8	13
1899	Dietary fiberâ€derived shortâ€chain fatty acids: A potential therapeutic target to alleviate obesityâ€related nonalcoholic fatty liver disease. Obesity Reviews, 2021, 22, e13316.	3.1	97
1900	Oleanolic acid reshapes the gut microbiota and alters immuneâ€related gene expression of intestinal epithelial cells. Journal of the Science of Food and Agriculture, 2022, 102, 764-773.	1.7	26
1901	Metabolic Controls on Epigenetic Reprogramming in Regulatory T Cells. Frontiers in Immunology, 2021, 12, 728783.	2.2	10
1902	Molecular and Pathophysiological Links between Metabolic Disorders and Inflammatory Bowel Diseases. International Journal of Molecular Sciences, 2021, 22, 9139.	1.8	18
1903	Microbiota-Associated Metabolites and Related Immunoregulation in Colorectal Cancer. Cancers, 2021, 13, 4054.	1.7	13
1904	Gut Microbiome and Common Variable Immunodeficiency: Few Certainties and Many Outstanding Questions. Frontiers in Immunology, 2021, 12, 712915.	2.2	26
1905	Tissue-specific Tregs in cancer metastasis: opportunities for precision immunotherapy. Cellular and Molecular Immunology, 2022, 19, 33-45.	4.8	47
1906	Sepsis-Induced Myopathy and Gut Microbiome Dysbiosis: Mechanistic Links and Therapeutic Targets. Shock, 2022, 57, 15-23.	1.0	8
1907	Effect of Acupoint Catgut Embedding on Intestinal Flora in Rats with Ovariectomized Osteoporosis. Acupuncture and Electro-Therapeutics Research, 2021, 46, 307-318.	0.0	1
1908	Potential Benefits of Probiotics and Prebiotics for Coronary Heart Disease and Stroke. Nutrients, 2021, 13, 2878.	1.7	57

#	Article	IF	CITATIONS
1909	A Central Role for Atg5 in Microbiota-Dependent Foxp3+ RORÎ ³ t+ Treg Cell Preservation to Maintain Intestinal Immune Homeostasis. Frontiers in Immunology, 2021, 12, 705436.	2.2	5
1910	Lymph Node Stromal Cell–Intrinsic MHC Class II Expression Promotes MHC Class l–Restricted CD8 T Cell Lineage Conversion to Regulatory CD4 T Cells. Journal of Immunology, 2021, 207, 1530-1544.	0.4	1
1911	Crosstalk Between Intestinal Microbiota Derived Metabolites and Tissues in Allogeneic Hematopoietic Cell Transplantation. Frontiers in Immunology, 2021, 12, 703298.	2.2	8
1913	Sulfation of Arabinogalactan Proteins Confers Privileged Nutrient Status to Bacteroides plebeius. MBio, 2021, 12, e0136821.	1.8	7
1914	Microbiome analysis, the immune response and transplantation in the era of next generation sequencing. Human Immunology, 2021, 82, 883-901.	1.2	7
1915	Cross Talk between Gut Microbiota and Intestinal Mucosal Immunity in the Development of Ulcerative Colitis. Infection and Immunity, 2021, 89, e0001421.	1.0	35
1916	Metabolic programming in dendritic cells tailors immune responses and homeostasis. Cellular and Molecular Immunology, 2022, 19, 370-383.	4.8	38
1917	Therapeutic Strategies for Diabetes: Immune Modulation in Pancreatic Î ² Cells. Frontiers in Endocrinology, 2021, 12, 716692.	1.5	10
1918	Intestinal Regulatory T Cells as Specialized Tissue-Restricted Immune Cells in Intestinal Immune Homeostasis and Disease. Frontiers in Immunology, 2021, 12, 716499.	2.2	34
1919	Lifelong dietary omega-3 fatty acid suppresses thrombotic potential through gut microbiota alteration in aged mice. IScience, 2021, 24, 102897.	1.9	15
1920	Identification of Key Functional Modules and Immunomodulatory Regulators of Hepatocellular Carcinoma. Journal of Immunology Research, 2021, 2021, 1-21.	0.9	2
1921	Gut Microbiota and Type 2 Diabetes Mellitus: Association, Mechanism, and Translational Applications. Mediators of Inflammation, 2021, 2021, 1-12.	1.4	41
1922	Intestinal flora differences between patients with ulcerative colitis of different ethnic groups in China. Medicine (United States), 2021, 100, e26932.	0.4	6
1923	Microbial Regulation of Host Physiology by Short-chain Fatty Acids. Trends in Microbiology, 2021, 29, 700-712.	3.5	396
1924	Whole blood resuscitation restores intestinal perfusion and influences gut microbiome diversity. Journal of Trauma and Acute Care Surgery, 2021, 91, 1002-1009.	1.1	9
1925	Tissue microbiota in nasopharyngeal adenoid and its association with pneumococcal carriage. Microbial Pathogenesis, 2021, 157, 104999.	1.3	4
1926	The Role of Butyric Acid in Treatment Response in Drug-NaÃ ⁻ ve First Episode Schizophrenia. Frontiers in Psychiatry, 2021, 12, 724664.	1.3	14
1927	The Role of Gut Microbiota in Hypertension Pathogenesis and the Efficacy of Antihypertensive Drugs. Current Hypertension Reports, 2021, 23, 40.	1.5	15

#	Article	IF	CITATIONS
1928	Lactobacillus paracasei S16 Alleviates Lumbar Disc Herniation by Modulating Inflammation Response and Gut Microbiota. Frontiers in Nutrition, 2021, 8, 701644.	1.6	14
1929	Small Intestinal Levels of the Branched Short-Chain Fatty Acid Isovalerate Are Elevated during Infection with Heligmosomoides polygyrus and Can Promote Helminth Fecundity. Infection and Immunity, 2021, 89, e0022521.	1.0	4
1931	Cellular and molecular mechanisms of allergic asthma. Molecular Aspects of Medicine, 2022, 85, 100995.	2.7	71
1932	Dynamic Colonization of Microbes and Their Functions after Fecal Microbiota Transplantation for Inflammatory Bowel Disease. MBio, 2021, 12, e0097521.	1.8	26
1933	Dysfunctions, Molecular Mechanisms, and Therapeutic Strategies of Regulatory T Cells in Rheumatoid Arthritis. Frontiers in Pharmacology, 2021, 12, 716081.	1.6	7
1934	Association of obstructive sleep apnea severity with the composition of the upper airway microbiome. Journal of Clinical Sleep Medicine, 2021, , .	1.4	3
1935	Harness the functions of gut microbiome in tumorigenesis for cancer treatment. Cancer Communications, 2021, 41, 937-967.	3.7	18
1936	Linking the gut microbiota to persistent symptoms in survivors of COVID-19 after discharge. Journal of Microbiology, 2021, 59, 941-948.	1.3	41
1937	Role of the Immune System Elements in Pulmonary Arterial Hypertension. Journal of Clinical Medicine, 2021, 10, 3757.	1.0	20
1938	The Challenge of ICIs Resistance in Solid Tumours: Could Microbiota and Its Diversity Be Our Secret Weapon?. Frontiers in Immunology, 2021, 12, 704942.	2.2	4
1939	Ingestion of Lactobacillus rhamnosus modulates chronic stress-induced feather pecking in chickens. Scientific Reports, 2021, 11, 17119.	1.6	11
1940	Next Generation Microbiome Research: Identification of Keystone Species in the Metabolic Regulation of Host-Gut Microbiota Interplay. Frontiers in Cell and Developmental Biology, 2021, 9, 719072.	1.8	21
1941	Mechanistic basis and preliminary practice of butyric acid and butyrate sodium to mitigate gut inflammatory diseases: a comprehensive review. Nutrition Research, 2021, 95, 1-18.	1.3	22
1942	Protection against allergies: Microbes, immunity, and the farming effect. European Journal of Immunology, 2021, 51, 2387-2398.	1.6	24
1943	Interactions between the intestinal microbiota and epigenome in individuals with autism spectrum disorder. Developmental Medicine and Child Neurology, 2022, 64, 296-304.	1.1	8
1944	The gut microbiota and its products: Establishing causal relationships with obesity related outcomes. Obesity Reviews, 2021, 22, e13341.	3.1	14
1945	Dietary fibre and the gut–brain axis: microbiota-dependent and independent mechanisms of action. Gut Microbiome, 2021, 2, .	0.8	12
1946	The Gut Microbiome and Sex Hormone-Related Diseases. Frontiers in Microbiology, 2021, 12, 711137.	1.5	58

#	Article	IF	Citations
1947	Align resistant starch structures from plant-based foods with human gut microbiome for personalized health promotion. Critical Reviews in Food Science and Nutrition, 2023, 63, 2509-2520.	5.4	10
1948	A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1. Cell Host and Microbe, 2021, 29, 1366-1377.e9.	5.1	111
1949	Procedures for Fecal Microbiota Transplantation in Murine Microbiome Studies. Frontiers in Cellular and Infection Microbiology, 2021, 11, 711055.	1.8	39
1950	Enteric Microbiota-Mediated Serotonergic Signaling in Pathogenesis of Irritable Bowel Syndrome. International Journal of Molecular Sciences, 2021, 22, 10235.	1.8	36
1951	Glycerol Monolaurate Ameliorated Intestinal Barrier and Immunity in Broilers by Regulating Intestinal Inflammation, Antioxidant Balance, and Intestinal Microbiota. Frontiers in Immunology, 2021, 12, 713485.	2.2	25
1952	Regulation of T Cell Responses by Ionic Salt Signals. Cells, 2021, 10, 2365.	1.8	5
1953	Diverse functions and mechanisms of regulatory T cell in ischemic stroke. Experimental Neurology, 2021, 343, 113782.	2.0	13
1954	Cross-Sectional Study on the Gut Microbiome of Parkinson's Disease Patients in Central China. Frontiers in Microbiology, 2021, 12, 728479.	1.5	13
1956	Butyrate directly decreases human gut lamina propria CD4 T cell function through histone deacetylase (HDAC) inhibition and GPR43 signaling. Immunobiology, 2021, 226, 152126.	0.8	31
1957	Analysis of the gut microbiome in dogs and cats. Veterinary Clinical Pathology, 2022, 50, 6-17.	0.3	29
1958	Bacterial Translocation as Inflammatory Driver in Crohn's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 703310.	1.8	25
1959	Biomarkers and Future Perspectives for Hepatocellular Carcinoma Immunotherapy. Frontiers in Oncology, 2021, 11, 716844.	1.3	12
1960	Small Molecule Metabolites at the Host–Microbiota Interface. Journal of Immunology, 2021, 207, 1725-1733.	0.4	14
1961	The Gut-Brain Axis in Multiple Sclerosis. Is Its Dysfunction a Pathological Trigger or a Consequence of the Disease?. Frontiers in Immunology, 2021, 12, 718220.	2.2	38
1962	The Effects of Prebiotics, Synbiotics, and Short-Chain Fatty Acids on Respiratory Tract Infections and Immune Function: A Systematic Review and Meta-Analysis. Advances in Nutrition, 2022, 13, 167-192.	2.9	5
1963	Controlled Complexity: Optimized Systems to Study the Role of the Gut Microbiome in Host Physiology. Frontiers in Microbiology, 2021, 12, 735562.	1.5	2
1964	The Role of Gut Microbiota and Gut–Brain Interplay in Selected Diseases of the Central Nervous System. International Journal of Molecular Sciences, 2021, 22, 10028.	1.8	41
1965	Interplay and cooperation of Helicobacter pylori and gut microbiota in gastric carcinogenesis. BMC Microbiology, 2021, 21, 258.	1.3	21
#	Article	IF	CITATIONS
------	--	-----	-----------
1966	Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. , 2022, 231, 107988.		59
1968	Gut microbiota-derived metabolites as key mucosal barrier modulators in obesity. World Journal of Gastroenterology, 2021, 27, 5555-5565.	1.4	14
1969	Immunomodulatory roles of microbiota-derived short-chain fatty acids in bacterial infections. Biomedicine and Pharmacotherapy, 2021, 141, 111817.	2.5	40
1970	Gut Microbiota as the Link between Elevated BCAA Serum Levels and Insulin Resistance. Biomolecules, 2021, 11, 1414.	1.8	60
1971	Isolated pectin (apple) and fruit pulp (mango) impact gastric emptying, passage rate and short chain fatty acid (SCFA) production differently along the pig gastrointestinal tract. Food Hydrocolloids, 2021, 118, 106723.	5.6	9
1972	The maternal gut microbiome during pregnancy and offspring allergy and asthma. Journal of Allergy and Clinical Immunology, 2021, 148, 669-678.	1.5	55
1973	Mining the Gut Microbiota for Microbial-Based Therapeutic Strategies in Cancer Immunotherapy. Frontiers in Oncology, 2021, 11, 721249.	1.3	3
1974	Autoimmunity in dry eye disease – An updated review of evidence on effector and memory Th17 cells in disease pathogenicity. Autoimmunity Reviews, 2021, 20, 102933.	2.5	30
1975	Rotundic acid ameliorates non-alcoholic steatohepatitis via SREBP-1c/ SCD1 signaling pathway and modulating gut microbiota. International Immunopharmacology, 2021, 99, 108065.	1.7	9
1976	Potential Biomarkers, Risk Factors, and Their Associations with IgE-Mediated Food Allergy in Early Life: A Narrative Review. Advances in Nutrition, 2022, 13, 633-651.	2.9	8
1977	Why is the Incidence of Type 1 Diabetes Increasing?. Current Diabetes Reviews, 2021, 17, e030521193110.	0.6	17
1978	Intestine-liver crosstalk in Type 2 Diabetes and non-alcoholic fatty liver disease. Metabolism: Clinical and Experimental, 2021, 123, 154844.	1.5	20
1979	Metabolic enzymes function as epigenetic modulators: A Trojan Horse for chromatin regulation and gene expression. Pharmacological Research, 2021, 173, 105834.	3.1	1
1980	Ischemic stroke and infection: A brief update on mechanisms and potential therapies. Biochemical Pharmacology, 2021, 193, 114768.	2.0	18
1981	Effects of rhizome of Atractylodes koreana (Nakai) Kitam on intestinal flora and metabolites in rats with rheumatoid arthritis. Journal of Ethnopharmacology, 2021, 281, 114026.	2.0	22
1982	Response to Bombyx mori nucleopolyhedrovirus infection in silkworm: Gut metabolites and microbiota. Developmental and Comparative Immunology, 2021, 125, 104227.	1.0	11
1983	Perturbations associated with hungry gut microbiome and postbiotic perspectives to strengthen the microbiome health. Future Foods, 2021, 4, 100043.	2.4	12
1984	Gut Microbiota: A New Marker of Cardiovascular Disease. , 2022, , .		0

# 1985	ARTICLE Metabolic reprogramming and immunity in cancer. , 2022, , 137-196.	IF	CITATIONS
1986	Epigenetics of Host–Human Gut Microbiome Interactions. , 2022, , .		0
1987	Potential Contribution of the Intestinal Microbiome to Phenethylamine-Induced Hyperthermia. Brain, Behavior and Evolution, 2020, 95, 256-271.	0.9	5
1988	Fecal microbiota transplantation as a new treatment for canine inflammatory bowel disease. Bioscience of Microbiota, Food and Health, 2021, 40, 98-104.	0.8	20
1989	The Oral Microbiome in Pediatric IBD: A Source of Pathobionts or Biomarkers?. Frontiers in Pediatrics, 2020, 8, 620254.	0.9	16
1990	The Impact of Gut Microbiota on the Immune Response to Vaccination. , 2022, , 145-160.		0
1991	Healthy Intestinal Function Relies on Coordinated Enteric Nervous System, Immune System, and Epithelium Responses. Gut Microbes, 2021, 13, 1-14.	4.3	13
1992	The role of microbiota in allogeneic hematopoietic stem cell transplantation. Expert Opinion on Biological Therapy, 2021, 21, 1121-1131.	1.4	5
1993	DsbA-L deficiency in T cells promotes diet-induced thermogenesis through suppressing IFN-Î ³ production. Nature Communications, 2021, 12, 326.	5.8	12
1994	Associations between the Gut Microbiota, Immune Reconstitution, and Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation. Immunometabolism, 2021, 3, .	0.7	10
1995	The Microbiome as an Endocrine Organ. , 2021, , .		0
1996	Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nature Communications, 2021, 12, 187.	5.8	209
1997	Regulation of Intestinal Barrier Function by Microbial Metabolites. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1463-1482.	2.3	235
1998	Immunity and Gut Microbiome: Role of Probiotics and Prebiotics. Microorganisms for Sustainability, 2021, , 61-83.	0.4	1
1999	INTESTINAL DYSBIOSIS AS A FACTOR IN THE DEVELOPMENT OF METABOLIC SYNDROME AND INSULIN RESISTANCE. Bulletin of Problems Biology and Medicine, 2021, 1, 257.	0.0	0
2000	Summary and perspective for future research on the contribution of microbiota in visceral and neurological disorders. , 2021, , 345-356.		0
2001	Gut microbiota and brain function and pathophysiology. , 2021, , 335-354.		0
2002	Preparation, structural characteristics and physiological property of resistant starch. Advances in Food and Nutrition Research, 2021, 95, 1-40.	1.5	3

		CITATION REPORT		
#	Article		IF	CITATIONS
2003	Gut Microbial Dysbiosis and Cardiovascular Diseases. , 2021, , .			0
2004	Functional hydrocolloids, gut microbiota and health: picking food additives for personaliz nutrition. FEMS Microbiology Reviews, 2021, 45, .	ed	3.9	13
2005	Effects of Transanal Irrigation on Gut Microbiota in Pediatric Patients with Spina Bifida. Jo Clinical Medicine, 2021, 10, 224.	urnal of	1.0	11
2006	Unraveling the Interconnection Patterns Across Lung Microbiome, Respiratory Diseases, a Frontiers in Cellular and Infection Microbiology, 2020, 10, 619075.	nd COVID-19.	1.8	16
2007	Immunopathogenesis: the role of mucosal and skin microbiota in SLE. , 2021, , 117-130.			0
2008	Gut Microbiota-Derived Metabolites in the Development of Diseases. Canadian Journal of Diseases and Medical Microbiology, 2021, 2021, 1-7.	Infectious	0.7	29
2009	Clinical effects and applications of the gut microbiome in hematologic malignancies. Can 679-687.	cer, 2021, 127,	2.0	17
2010	Microbiome as an Immunological Modifier. Methods in Molecular Biology, 2020, 2055, 59	95-638.	0.4	23
2011	The Intestinal Tumour Microenvironment. Advances in Experimental Medicine and Biology 1-22.	ı, 2020, 1226,	0.8	10
2012	Epigenetics and the Microbiome. , 2017, , 1-25.			1
2013	Cross Talk Between Bacteria and the Host Epigenetic Machinery. Epigenetics and Human 113-158.	Health, 2017, ,	0.2	14
2014	Gut Microbiota and Immune Responses. Advances in Experimental Medicine and Biology, 165-193.	2020, 1238,	0.8	14
2015	Gut Microbiota and Renal Injury. Advances in Experimental Medicine and Biology, 2020, 1	238, 93-106.	0.8	6
2016	Short-Chain Fatty Acid Production and Functional Aspects on Host Metabolism. , 2018, , 2	37-106.		15
2017	Targeting histone deacetylases for bacterial infections. , 2020, , 237-254.			2
2018	Mitochondria, the gut microbiome and ROS. Cellular Signalling, 2020, 75, 109737.		1.7	65
2019	Host–microbiota interactions in inflammatory bowel disease. Nature Reviews Immunolo 411-426.	ogy, 2020, 20,	10.6	407
2020	Host–microbiota interactions in immune-mediated diseases. Nature Reviews Microbiolo 521-538.	gy, 2020, 18,	13.6	254

#	Article	IF	CITATIONS
2021	Altered Mucosal Microbiome Diversity and Disease Severity in Sjögren Syndrome. Scientific Reports, 2016, 6, 23561.	1.6	268
2022	Gut microbiota and metabolites in the pathogenesis of endocrine disease. Biochemical Society Transactions, 2020, 48, 915-931.	1.6	31
2023	Probiotics and fecal microbiota transplantation in surgical disorders. Seminars in Colon and Rectal Surgery, 2018, 29, 37-43.	0.2	4
2024	Multidimensional Impact of Mediterranean Diet on IBD Patients. Inflammatory Bowel Diseases, 2021, 27, 1-9.	0.9	115
2025	Interkingdom Communication and Regulation of Mucosal Immunity by the Microbiome. Journal of Infectious Diseases, 2021, 223, S236-S240.	1.9	10
2026	Gut microbiota and systemic immunity in health and disease. International Immunology, 2021, 33, 197-209.	1.8	34
2027	The importance of the microbiome in pediatrics and pediatric infectious diseases. Current Opinion in Pediatrics, 2018, 30, 117-124.	1.0	45
2028	Merdimonas faecis gen. nov., sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 2430-2435.	0.8	18
2037	Impact of prebiotics on immune response: from the bench to the clinic. Immunology and Cell Biology, 2021, 99, 255-273.	1.0	65
2039	COVID-19: Proposing a Ketone-Based Metabolic Therapy as a Treatment to Blunt the Cytokine Storm. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-34.	1.9	43
2040	Mucosal-associated invariant and $\hat{I}^3\hat{I}$ T cell subsets respond to initial Mycobacterium tuberculosis infection. JCI Insight, 2018, 3, .	2.3	59
2041	Regulatory T cells use arginase 2 to enhance their metabolic fitness in tissues. JCI Insight, 2019, 4, .	2.3	60
2042	Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. Journal of Clinical Investigation, 2019, 130, 466-479.	3.9	159
2043	Mechanisms of gastrointestinal allergic disorders. Journal of Clinical Investigation, 2019, 129, 1419-1430.	3.9	22
2044	Newly identified T cell subsets in mechanistic studies of food immunotherapy. Journal of Clinical Investigation, 2019, 129, 1431-1440.	3.9	31
2045	Influences on allergic mechanisms through gut, lung, and skin microbiome exposures. Journal of Clinical Investigation, 2019, 129, 1483-1492.	3.9	50
2046	Immunometabolism of pro-repair cells. Journal of Clinical Investigation, 2019, 129, 2597-2607.	3.9	30
2047	The gut microbiota and graft-versus-host disease. Journal of Clinical Investigation, 2019, 129, 1808-1817.	3.9	67

#	Article	IF	CITATIONS
2048	Single-cell RNA sequencing identifies inflammatory tissue T cells in eosinophilic esophagitis. Journal of Clinical Investigation, 2019, 129, 2014-2028.	3.9	123
2049	The gut-bone axis: how bacterial metabolites bridge the distance. Journal of Clinical Investigation, 2019, 129, 3018-3028.	3.9	195
2050	Parathyroid hormone–dependent bone formation requires butyrate production by intestinal microbiota. Journal of Clinical Investigation, 2020, 130, 1767-1781.	3.9	97
2051	The DEL-1/β3 integrin axis promotes regulatory T cell responses during inflammation resolution. Journal of Clinical Investigation, 2020, 130, 6261-6277.	3.9	27
2052	Azathioprine therapy selectively ablates human VÎ′2+ T cells in Crohn's disease. Journal of Clinical Investigation, 2015, 125, 3215-3225.	3.9	40
2053	The composition of the microbiota modulates allograft rejection. Journal of Clinical Investigation, 2016, 126, 2736-2744.	3.9	86
2054	Recipient mucosal-associated invariant T cells control GVHD within the colon. Journal of Clinical Investigation, 2018, 128, 1919-1936.	3.9	78
2055	Gut Microbiota and Disorders of the Central Nervous System. Neuroscientist, 2020, 26, 487-502.	2.6	20
2056	Pancreatic Cancer: A Review of Risk Factors, Diagnosis, and Treatment. Technology in Cancer Research and Treatment, 2020, 19, 153303382096211.	0.8	107
2057	The microbe-derived short-chain fatty acids butyrate and propionate are associated with protection from chronic GVHD. Blood, 2020, 136, 130-136.	0.6	97
2058	Systemic instruction of cell-mediated immunity by the intestinal microbiome. F1000Research, 2018, 7, 1910.	0.8	12
2059	Recent advances in mechanisms of food allergy and anaphylaxis. F1000Research, 2020, 9, 863.	0.8	7
2060	The skin microbiome: potential for novel diagnostic and therapeutic approaches to cutaneous disease. Seminars in Cutaneous Medicine and Surgery, 2014, 33, 98-103.	1.6	193
2061	Complex influences of gut microbiome metabolism on various drug responses. Translational and Clinical Pharmacology, 2020, 28, 7.	0.3	4
2062	Polysaccharide from wild morels alters the spatial structure of gut microbiota and the production of short-chain fatty acids in mice. Bioscience of Microbiota, Food and Health, 2020, 39, 219-226.	0.8	10
2063	Fecal Transplants: What Is Being Transferred?. PLoS Biology, 2016, 14, e1002503.	2.6	128
2064	Long Term Development of Gut Microbiota Composition in Atopic Children: Impact of Probiotics. PLoS ONE, 2015, 10, e0137681.	1.1	46
2065	Intestinal Microbiota in Patients with Spinal Cord Injury. PLoS ONE, 2016, 11, e0145878.	1.1	124

#	Article	IF	CITATIONS
2066	Comparative Analysis of Protocols to Induce Human CD4+Foxp3+ Regulatory T Cells by Combinations of IL-2, TGF-beta, Retinoic Acid, Rapamycin and Butyrate. PLoS ONE, 2016, 11, e0148474.	1.1	89
2067	Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS ONE, 2016, 11, e0152126.	1.1	157
2068	Gut Microbiota Conversion of Dietary Ellagic Acid into Bioactive Phytoceutical Urolithin A Inhibits Heme Peroxidases. PLoS ONE, 2016, 11, e0156811.	1.1	99
2069	Enterococcus durans TN-3 Induces Regulatory T Cells and Suppresses the Development of Dextran Sulfate Sodium (DSS)-Induced Experimental Colitis. PLoS ONE, 2016, 11, e0159705.	1.1	26
2070	High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance. PLoS ONE, 2016, 11, e0160407.	1.1	22
2071	Diversity of Gut Microbiota Metabolic Pathways in 10 Pairs of Chinese Infant Twins. PLoS ONE, 2016, 11, e0161627.	1.1	27
2072	Effects of Early Intervention with Sodium Butyrate on Gut Microbiota and the Expression of Inflammatory Cytokines in Neonatal Piglets. PLoS ONE, 2016, 11, e0162461.	1.1	77
2073	Differing roles for short chain fatty acids and GPR43 agonism in the regulation of intestinal barrier function and immune responses. PLoS ONE, 2017, 12, e0180190.	1.1	92
2074	Immune-modulatory genomic properties differentiate gut microbiota of infants with and without eczema. PLoS ONE, 2017, 12, e0184955.	1.1	12
2075	High incidence of extensive chronic graft-versus-host disease in patients with the REG3A rs7588571 non-GG genotype. PLoS ONE, 2017, 12, e0185213.	1.1	6
2076	Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells. PLoS ONE, 2017, 12, e0185999.	1.1	147
2077	Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 327-378.	0.9	108
2078	The Impact of Diet on Immunity and Respiratory Diseases. Annals of the American Thoracic Society, 2017, 14, S339-S347.	1.5	62
2079	Osteoporosis: Pathophysiology and therapeutic options. EXCLI Journal, 2020, 19, 1017-1037.	0.5	78
2080	Gut-microbiome Taxonomic Profiling as Non-invasive Biomarkers for the Early Detection of Alcoholic Hepatocellular Carcinoma. Journal of Liver Cancer, 2020, 20, 32-40.	0.3	1
2081	The effect of immunoregulatory bacteria on the transcriptional activity of Foxp3 and RORyt genes in the gut-associated lymphoid tissue with Salmonella-induced inflammation in the presence of vancomycin and Ваcteroides fragilis. Iranian Journal of Microbiology, 0, , .	0.8	1
2082	Acetate attenuates perioperative neurocognitive disorders in aged mice. Aging, 2020, 12, 3862-3879.	1.4	20
2083	Structural and functional changes of gut microbiota in ovariectomized rats and their correlations with altered bone mass. Aging, 2020, 12, 10736-10753.	1.4	32

#	Article	IF	CITATIONS
2084	<i>Lactobacillus casei</i> Zhang and vitamin K2 prevent intestinal tumorigenesis in mice via adiponectin-elevated different signaling pathways. Oncotarget, 2017, 8, 24719-24727.	0.8	43
2085	Constructing personalized longitudinal holo'omes of colon cancer-prone humans and their modeling in flies and mice. Oncotarget, 2019, 10, 4224-4246.	0.8	9
2086	Gut microbiota: a new player in regulating immune- and chemo-therapy efficacy. , 2020, 3, 356-370.		15
2087	Understanding the microbiome: a primer on the role of the microbiome in colorectal neoplasia. Annals of Gastroenterology, 2020, 33, 223-236.	0.4	6
2088	Colonic crypts are natural gatekeepers of microbial metabolites to protect stem cells. Translational Cancer Research, 2016, 5, S536-S539.	0.4	3
2089	Feed your gut with caution!. Translational Cancer Research, 2016, 5, S507-S513.	0.4	10
2090	The Gut and Cervical Microbiome Promote Immune Activation and Response to Chemoradiation in Cervical Cancer. SSRN Electronic Journal, 0, , .	0.4	3
2091	Reciprocity in Microbiome and Immune System Interactions and its Implications in Disease and Health. Inflammation and Allergy: Drug Targets, 2014, 13, 94-104.	1.8	25
2092	Microbiome Regulation of Autoimmune, Gut and Liver Associated Diseases. Inflammation and Allergy: Drug Targets, 2016, 14, 84-93.	1.8	12
2093	The potential of CD4+ regulatory T cells for the therapy of autoimmune diseases. Bulletin of Russian State Medical University, 2019, , 66-69.	0.3	1
2094	Microbial Community of Kefir and its Impact on the Gastrointestinal Microbiome in Health and Disease. Proceedings of the Latvian Academy of Sciences, 2020, 74, 58-64.	0.0	2
2095	Interaction between gut microbiota and host immune cells. Inflammation and Regeneration, 2015, 35, 140-147.	1.5	1
2096	Role of intestinal microbiota in the formation of non-alcoholic fatty liver disease. Terapevticheskii Arkhiv, 2019, 91, 143-148.	0.2	8
2097	Probiotics as regulators of inflammation: A review. Functional Foods in Health and Disease, 2014, 4, 299.	0.3	39
2098	Antibiotics, cancer risk and oncologic treatment efficacy: a practical review of the literature. Ecancermedicalscience, 2020, 17, 1106.	0.6	8
2099	Understanding of type 1 diabetes mellitus: what we know and where we go. Korean Journal of Pediatrics, 2018, 61, 307-314.	1.9	3
2100	Marigold Supercritical Extract as Potential Co-adjuvant in Pancreatic Cancer: The Energetic Catastrophe Induced via BMP8B Ends Up With Autophagy-Induced Cell Death. Frontiers in Bioengineering and Biotechnology, 2019, 7, 455.	2.0	10
2101	Increasing Evidence That Irritable Bowel Syndrome and Functional Gastrointestinal Disorders Have a Microbial Pathogenesis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 468.	1.8	58

#	Article	IF	CITATIONS
2102	The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Frontiers in Endocrinology, 2020, 11, 25.	1.5	1,235
2103	Opioids Impair Intestinal Epithelial Repair in HIV-Infected Humanized Mice. Frontiers in Immunology, 2019, 10, 2999.	2.2	44
2104	Multiple Environmental Signaling Pathways Control the Differentiation of RORÎ ³ t-Expressing Regulatory T Cells. Frontiers in Immunology, 2019, 10, 3007.	2.2	9
2105	A Gut Feeling: The Importance of the Intestinal Microbiota in Psychiatric Disorders. Frontiers in Immunology, 2020, 11, 510113.	2.2	10
2106	The Lung Microbiome: A Central Mediator of Host Inflammation and Metabolism in Lung Cancer Patients?. Cancers, 2021, 13, 13.	1.7	21
2107	Exploring the Triple Interaction between the Host Genome, the Epigenome, and the Gut Microbiome in Type 1 Diabetes. International Journal of Molecular Sciences, 2021, 22, 125.	1.8	11
2108	Gut-Induced Inflammation during Development May Compromise the Blood-Brain Barrier and Predispose to Autism Spectrum Disorder. Journal of Clinical Medicine, 2021, 10, 27.	1.0	26
2109	The Role of Diet in the Pathogenesis and Management of Inflammatory Bowel Disease: A Review. Nutrients, 2021, 13, 135.	1.7	65
2110	Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology. World Journal of Gastroenterology, 2015, 21, 11862.	1.4	53
2111	Th17 plasticity and its changes associated with inflammatory bowel disease. World Journal of Gastroenterology, 2015, 21, 12283.	1.4	69
2112	Systemic inflammation in colorectal cancer: Underlying factors, effects, and prognostic significance. World Journal of Gastroenterology, 2019, 25, 4383-4404.	1.4	160
2113	<i>Clostridium butyricum</i> alleviates intestinal low-grade inflammation in TNBS-induced irritable bowel syndrome in mice by regulating functional status of lamina propria dendritic cells. World Journal of Gastroenterology, 2019, 25, 5469-5482.	1.4	41
2114	Procyanidin B2 protects against diet-induced obesity and non-alcoholic fatty liver disease <i>via</i> the modulation of the gut microbiota in rabbits. World Journal of Gastroenterology, 2019, 25, 955-966.	1.4	47
2115	Early exposure to food contaminants reshapes maturation of the human brain-gut-microbiota axis. World Journal of Gastroenterology, 2020, 26, 3145-3169.	1.4	12
2116	Diet, microbiota, and inflammatory bowel disease: lessons from Japanese foods. Korean Journal of Internal Medicine, 2014, 29, 409.	0.7	36
2117	Cross-talk between T-cells and gut-microbiota in neurodegenerative disorders. Neural Regeneration Research, 2019, 14, 2091.	1.6	5
2118	Mammalian gut immunity. Biomedical Journal, 2014, 37, 246.	1.4	104
2119	Beyond Hygiene: Commensal Microbiota and Allergic Diseases. Immune Network, 2017, 17, 48.	1.6	20

#	Article	IF	CITATIONS
2120	The Role of Butyrate in Attenuating Pathobiont-Induced Hyperinflammation. Immune Network, 2020, 20, e15.	1.6	84
2121	Metabiotics: The Functional Metabolic Signatures of Probiotics: Current State-of-Art and Future Research Priorities—Metabiotics: Probiotics Effector Molecules. Advances in Bioscience and Biotechnology (Print), 2018, 09, 147-189.	0.3	55
2122	Essential roles of four-carbon backbone chemicals in the control of metabolism. World Journal of Biological Chemistry, 2015, 6, 223.	1.7	10
2123	Genetics and epigenetics of inflammatory bowel disease. Swiss Medical Weekly, 2018, 148, w14671.	0.8	27
2124	The microbiome and its impact on food allergy and atopic dermatitis in children. Postepy Dermatologii I Alergologii, 2020, 37, 641-650.	0.4	10
2125	Computer-guided design of optimal microbial consortia for immune system modulation. ELife, 2018, 7, .	2.8	65
2126	Enterococcus faecium secreted antigen A generates muropeptides to enhance host immunity and limit bacterial pathogenesis. ELife, 2019, 8, .	2.8	59
2127	Factors affecting the composition of the gut microbiota, and its modulation. PeerJ, 2019, 7, e7502.	0.9	360
2128	Possible regulation of liver glycogen structure through the gut-liver axis by resistant starch: a review. Food and Function, 2021, 12, 11154-11164.	2.1	8
2129	Cancer Microbiome and Immunotherapy: Understanding the Complex Responses Between Microbes, Immunity, and Cancer. , 2021, , 83-99.		0
2130	Does Altered Cellular Metabolism Underpin the Normal Changes to the Maternal Immune System during Pregnancy?. Immunometabolism, 2021, 3, e210031.	0.7	7
2131	Immunological Tolerance. , 2021, , .		3
2132	Short Chain Fatty Acids Prevent Glyoxylate-Induced Calcium Oxalate Stones by GPR43-Dependent Immunomodulatory Mechanism. Frontiers in Immunology, 2021, 12, 729382.	2.2	11
2133	Analysis of incidence and risk factors of the multidrug resistant gastrointestinal tract infection in children and adolescents undergoing allogeneic and autologous hematopoietic cell transplantation: a nationwide study. Annals of Hematology, 2021, 101, 191.	0.8	1
2134	Intestinal dysbiosis in celiac disease: Decreased butyrate production may facilitate the onset of the disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
2135	Recent Metabolic Advances for Preventing and Treating Acute and Chronic Graft Versus Host Disease. Frontiers in Immunology, 2021, 12, 757836.	2.2	10
2136	Stigmasterol Restores the Balance of Treg/Th17 Cells by Activating the Butyrate-PPARÎ ³ Axis in Colitis. Frontiers in Immunology, 2021, 12, 741934.	2.2	52
2137	A Systematic Review of Metabolic Alterations Underlying IgEâ€Mediated Food Allergy in Children. Molecular Nutrition and Food Research, 2021, 65, e2100536.	1.5	7

#	Article	IF	CITATIONS
2138	Cross-talk between immune system and microbiota in COVID-19. Expert Review of Gastroenterology and Hepatology, 2021, 15, 1281-1294.	1.4	26
2139	Effects of Feeding a Hypoallergenic Diet with a Nutraceutical on Fecal Dysbiosis Index and Clinical Manifestations of Canine Atopic Dermatitis. Animals, 2021, 11, 2985.	1.0	5
2140	Virus Infection Is an Instigator of Intestinal Dysbiosis Leading to Type 1 Diabetes. Frontiers in Immunology, 2021, 12, 751337.	2.2	9
2141	Molecular Immune-Inflammatory Connections between Dietary Fats and Atherosclerotic Cardiovascular Disease: Which Translation into Clinics?. Nutrients, 2021, 13, 3768.	1.7	5
2142	Bacterial metabolites and cardiovascular risk in children with chronic kidney disease. Molecular and Cellular Pediatrics, 2021, 8, 17.	1.0	3
2143	The Microbiome in Autoimmune Liver Diseases: Metagenomic and Metabolomic Changes. Frontiers in Physiology, 2021, 12, 715852.	1.3	15
2144	Critical Role of Gut Microbiota and Epigenetic Factors in the Pathogenesis of Behçet's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 719235.	1.8	6
2145	A short chain fatty acid–centric view of Clostridioides difficile pathogenesis. PLoS Pathogens, 2021, 17, e1009959.	2.1	23
2146	Intestinal Microbiome in Hematopoietic Stem Cell Transplantation For Autoimmune Diseases: Considerations and Perspectives on Behalf of Autoimmune Diseases Working Party (ADWP) of the EBMT. Frontiers in Oncology, 2021, 11, 722436.	1.3	6
2147	Maternal gut microbiome regulates immunity to RSV infection in offspring. Journal of Experimental Medicine, 2021, 218, .	4.2	22
2150	Improving the Activity of Antimicrobial Peptides Against Aquatic Pathogen Bacteria by Amino Acid Substitutions and Changing the Ratio of Hydrophobic Residues. Frontiers in Microbiology, 2021, 12, 773076.	1.5	5
2151	Pharmacological Modulation of Immune Responses by Nutritional Components. Pharmacological Reviews, 2021, 73, 1369-1403.	7.1	11
2152	Plasma Short-Chain Fatty Acids and Their Derivatives in Women with Gestational Diabetes Mellitus. Separations, 2021, 8, 188.	1.1	2
2153	Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Frontiers in Immunology, 2021, 12, 747143.	2.2	3
2154	Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia. Microbiome, 2021, 9, 210.	4.9	108
2155	Neuro-immune-metabolism: The tripod system of homeostasis. Immunology Letters, 2021, 240, 77-97.	1.1	3
2156	Bacteriotherapy reintroduces "old friends―in IBD. Inflammation and Regeneration, 2015, 35, 122-128.	1.5	0
2157	Gut Commensal Microbes and the Gut Immune System. Microbiology Monographs, 2015, , 149-166.	0.3	0

#	Article	IF	CITATIONS
2158	Gut Microbiome, Obesity and Metabolic Syndrome. , 2015, , 1-14.		2
2159	Intestinal microbiota mining: a Th17/Treg cell perspective. European Journal of BioMedical Research, 2015, 1, 28.	0.2	3
2160	The Modulatory Effect of Dietary <i>Apostichopus japonicus</i> on Mice with Ulcerative Colitis Induced by Trinitrobenzene Sulfonic Acid. Journal of Biosciences and Medicines, 2016, 04, 15-27.	0.1	1
2161	Celiac Disease: A Short Overview about Immunological Aspects and Role of Microbiota. International Journal of Celiac Disease, 2016, 2, 144-149.	0.1	0
2162	The Role of the Gut in Type 2 Immunity. Birkhauser Advances in Infectious Diseases, 2017, , 145-165.	0.3	0
2164	Chapter 6 The intestinal microbiota and the childâ \in Ms immune system. , 2017, , 121-139.		3
2167	Gut Microbiota in Elderly's Health. , 2018, , 1-32.		0
2168	Dissecting Emerging Aspects of Regulatory Circuitry in Man and Mice: Regulatory T Cell Biology. Advances in Bioscience and Biotechnology (Print), 2018, 09, 443-468.	0.3	0
2170	Direct Physiological Effects on Local Gi and Indirect Systemic Effects of Prebiotic Fructan Treatment, and its Role in Disease Prevention and Therapy. , 2018, , 155-196.		0
2171	Overview of Prebiotics: Membership, Physiological Effects and their Health Attributes. , 2018, , 289-348.		3
2172	Unravelling the Functions of Regulatory T Cells during Infection. Open Journal of Medical Microbiology, 2018, 08, 118-131.	0.1	0
2173	Diabète et environnement. , 2018, , 11-19.		0
2174	Probiotic Lactobacilli, Infection, and Immunomodulation. , 2018, , 317-334.		0
2175	Propionic Acid Shapes the Course of Multiple Sclerosis by a Distinct Immunomodulatory and Neuroprotective Mechanism. SSRN Electronic Journal, 0, , .	0.4	1
2176	The role of gut microbiota in the development of type 1 diabetes. Gastroenterology & Hepatology (Bartlesville, Okla), 2018, 9, .	0.0	0
2181	Gut Microbiota in Elderly's Health. , 2019, , 2607-2638.		0
2183	Factors involved in balance of Th17/Treg cells: Clinical implications in inflammatory bowel disease. World Chinese Journal of Digestology, 2019, 27, 336-340.	0.0	0
2192	Microbiome and Immunity: A Critical Link for Long-Duration Space Exploration Missions. , 2020, , 617-635.		0

#	Article	IF	Citations
2193	Microbiota, mucosal immunity, and Colon cancer. , 2020, , 157-209.		1
2196	Gut Injury and the Microbiome in Neonates. Clinics in Perinatology, 2020, 47, 369-382.	0.8	6
2201	The Role of CD4+ T Cells and Microbiota in the Pathogenesis of Asthma. International Journal of Molecular Sciences, 2021, 22, 11822.	1.8	23
2202	Commensal Cryptosporidium colonization elicits a cDC1-dependent Th1 response that promotes intestinal homeostasis and limits other infections. Immunity, 2021, 54, 2547-2564.e7.	6.6	28
2203	Regulatory T cell function in autoimmune disease. Journal of Translational Autoimmunity, 2021, 4, 100130.	2.0	21
2204	Gut Microbiome as Potential Therapeutics in Multiple Sclerosis. Current Treatment Options in Neurology, 2021, 23, 1.	0.7	2
2205	GPR Expression in Intestinal Biopsies From SCT Patients Is Upregulated in GvHD and Is Suppressed by Broad-Spectrum Antibiotics. Frontiers in Immunology, 2021, 12, 753287.	2.2	6
2206	Profiling and Characterization of microRNAs Responding to Sodium Butyrate Treatment in Gastric Cancer Cells. Combinatorial Chemistry and High Throughput Screening, 2022, 25, 1875-1888.	0.6	2
2207	Short hain fatty acids during pregnancy in multiple sclerosis: A prospective cohort study. European Journal of Neurology, 2022, 29, 895-900.	1.7	5
2208	Butyric Acid Protects Against Renal Ischemia–Reperfusion Injury by Adjusting the Treg/Th17 Balance via HO-1/p-STAT3 Signaling. Frontiers in Cell and Developmental Biology, 2021, 9, 733308.	1.8	5
2211	Nutritional Recommendations for People with Type 1 Diabetes Mellitus. Experimental and Clinical Endocrinology and Diabetes, 2021, 129, S27-S43.	0.6	1
2212	The immune system and the microbiota: The two sides of mucosal tolerance. , 2022, , 297-315.		1
2213	Emerging clinical pharmacology topics in drug development and precision medicine. , 2022, , 691-708.		0
2214	Gut Microbiota and Risk for Atherosclerosis: Current Understanding of the Mechanisms. , 2020, , 167-186.		0
2215	Gut Microbiota and Health. , 2020, , 31-79.		0
2217	Atopobiosis and Dysbiosis in Ocular Diseases: Is Fecal Microbiota Transplant and Probiotics a Promising Solution?. Journal of Ophthalmic and Vision Research, 2021, 16, 631-643.	0.7	3
2218	Impact of Prebiotic β-glucan Treatment at Juvenile Age on the Gut Microbiota Composition and the Eventual Type 1 Diabetes Onset in Non-obese Diabetic Mice. Frontiers in Nutrition, 2021, 8, 769341.	1.6	9
2219	Utilizing a reductionist model to study host-microbe interactions in intestinal inflammation. Microbiome, 2021, 9, 215.	4.9	8

#	Article	IF	CITATIONS
2220	Hepatocellular Cancer and Gut Microbiome: Time to Untie Gordian's Knot. Journal of Gastrointestinal Cancer, 2021, 52, 1309-1313.	0.6	1
2221	DOK3 maintains intestinal homeostasis by suppressing JAK2/STAT3 signaling and S100a8/9 production in neutrophils. Cell Death and Disease, 2021, 12, 1054.	2.7	13
2222	Modified Gegen Qinlian Decoction Regulates Treg/Th17 Balance to Ameliorate DSS-Induced Acute Experimental Colitis in Mice by Altering the Gut Microbiota. Frontiers in Pharmacology, 2021, 12, 756978.	1.6	10
2223	How to Tackle the Relationship between Autoimmune Diseases and Diet: Well Begun Is Half-Done. Nutrients, 2021, 13, 3956.	1.7	14
2226	Salmonella-induced changes in the level of key immunoregulatory bacteria affect the transcriptional activity of the <i>Foxp3</i> and <i>RORgt</i> genes in the gut-associated lymphoid tissue of rats. Russian Journal of Infection and Immunity, 2020, 10, 671-685.	0.2	0
2228	Transmission routes of human immunodeficiency virus and affecting factors. World Chinese Journal of Digestology, 2020, 28, 873-883.	0.0	1
2229	Immunomodulatory effects of probiotics. Meditsinskiy Sovet, 2020, , 135-144.	0.1	0
2232	Gut Microbiome: The Third Musketeer in the Cancer-Immune System Cross-Talk. Journal of Pancreatology, 2020, 3, 181-187.	0.3	3
2234	Tumor-Induced Metabolism and T Cells Located in Tumor Environment. Current Cancer Drug Targets, 2020, 20, 741-756.	0.8	1
2236	The Influence of the Gut Microbiota on Host Physiology: In Pursuit of Mechanisms. Yale Journal of Biology and Medicine, 2016, 89, 285-297.	0.2	44
2237	Breathing Better Through Bugs: Asthma and the Microbiome. Yale Journal of Biology and Medicine, 2016, 89, 309-324.	0.2	14
2238	Striking a Balance with Help from our Little Friends - How the Gut Microbiota Contributes to Immune Homeostasis. Yale Journal of Biology and Medicine, 2016, 89, 389-395.	0.2	24
2239	Regional control of regulatory immune cells in the intestine. Current Pathobiology Reports, 2018, 6, 29-34.	1.6	2
2240	The small chain fatty acid butyrate antagonizes the TCR-stimulation-induced metabolic shift in murine epidermal gamma delta T cells. EXCLI Journal, 2020, 19, 334-350.	0.5	3
2241	The effect of immunoregulatory bacteria on the transcriptional activity of Foxp3 and RORyt genes in the gut-associated lymphoid tissue with -induced inflammation in the presence of vancomycin and. Iranian Journal of Microbiology, 2020, 12, 231-241.	0.8	2
2242	The protective role of short-chain fatty acids acting as signal molecules in chemotherapy- or radiation-induced intestinal inflammation. American Journal of Cancer Research, 2020, 10, 3508-3531.	1.4	4
2243	<i>Bacteroidota</i> and <i>Lachnospiraceae</i> integration into the gut microbiome at key time points in early life are linked to infant neurodevelopment. Gut Microbes, 2021, 13, 1997560.	4.3	39
2244	A new paradigm for a new simple chemical: butyrate & immune regulation. Food and Function, 2021, 12, 12181-12193.	2.1	15

#	Article	IF	CITATIONS
2245	Immunophysiology of the avian immune system. , 2022, , 591-610.		2
2246	Probiotics and prebiotics in the suppression of autoimmune diseases. , 2022, , 161-186.		4
2247	Epigenetics and precision medicine in allergic diseases. , 2022, , 407-448.		0
2248	Alloreactive T cells deficient of the short-chain fatty acid receptor GPR109A induce less graft-versus-host disease. Blood, 2022, 139, 2392-2405.	0.6	24
2249	Roseburia intestinalis: A Beneficial Gut Organism From the Discoveries in Genus and Species. Frontiers in Cellular and Infection Microbiology, 2021, 11, 757718.	1.8	139
2250	Cancer metabolism and tumor microenvironment: fostering each other?. Science China Life Sciences, 2022, 65, 236-279.	2.3	68
2251	Resistant starch: Implications of dietary inclusion on gut health and growth in pigs: a review. Journal of Animal Science and Biotechnology, 2021, 12, 124.	2.1	43
2252	Neuro-Immunity and Gut Dysbiosis Drive Parkinson's Disease-Induced Pain. Frontiers in Immunology, 2021, 12, 759679.	2.2	6
2253	Mucosal tissue regulatory T cells are integral in balancing immunity and tolerance at portals of antigen entry. Mucosal Immunology, 2022, 15, 398-407.	2.7	30
2254	Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules, 2021, 26, 6802.	1.7	81
2255	Attributes of intestinal microbiota composition and their correlation with clinical primary nonresponse to anti-TNF-α agents in inflammatory bowel disease patients. Bosnian Journal of Basic Medical Sciences, 2021, , .	0.6	10
2257	Dietary Fibers: Effects, Underlying Mechanisms and Possible Role in Allergic Asthma Management. Nutrients, 2021, 13, 4153.	1.7	17
2258	The interaction among gut microbes, the intestinal barrier and short chain fatty acids. Animal Nutrition, 2022, 9, 159-174.	2.1	59
2259	Effects of Bacterial Metabolites on the Immune System: Enemies and Friends. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2022, 22, 1167-1177.	0.6	1
2260	The Role of Gut and Lung Microbiota in Susceptibility to Tuberculosis. International Journal of Environmental Research and Public Health, 2021, 18, 12220.	1.2	16
2261	Lithium carbonate alleviates colon inflammation through modulating gut microbiota and Treg cells in a GPR43-dependent manner. Pharmacological Research, 2022, 175, 105992.	3.1	20
2262	The Emerging Role of the Gut Microbiome in the Cancer Response to Immune Checkpoint Inhibitors: A Narrative Review. Journal of Immunotherapy and Precision Oncology, 2022, 5, 13-25.	0.6	3
2263	The Relationship Between Osteoporosis and Intestinal Microbes in the Henan Province of China. Frontiers in Cell and Developmental Biology, 2021, 9, 752990.	1.8	17

#	Article	IF	CITATIONS
2264	Bornlisy Attenuates Colitis-Associated Colorectal Cancer via Inhibiting GPR43-Mediated Glycolysis. Frontiers in Nutrition, 2021, 8, 706382.	1.6	8
2265	A New Formulation of Probiotics Attenuates Calcipotriol-Induced Dermatitis by Inducing Regulatory Dendritic Cells. Frontiers in Immunology, 2021, 12, 775018.	2.2	4
2266	Effects of Salmonella enterica ser. Enteritidis and Heidelberg on host CD4+CD25+ regulatory T cell suppressive immune responses in chickens. PLoS ONE, 2021, 16, e0260280.	1.1	8
2267	Mathematical Modeling of the Gut–Bone Axis and Implications of Butyrate Treatment on Osteoimmunology. Industrial & Engineering Chemistry Research, 2021, 60, 17814-17825.	1.8	7
2268	Fatty acid metabolism in adaptive immunity. FEBS Journal, 2023, 290, 584-599.	2.2	13
2269	Evaluation of the Function of Probiotics, Emphasizing the Role of their Binding to the Intestinal Epithelium in the Stability and their Effects on the Immune System. Biological Procedures Online, 2021, 23, 23.	1.4	33
2270	Mikrobiom-Forschung: Kann die Darmflora Allergien verhindern?. , 0, , .		0
2271	Akkermansia muciniphila – obiecujący kandydat na probiotyk nowej generacji. Postepy Higieny I Medycyny Doswiadczalnej, 2021, 75, 724-748.	0.1	Ο
2272	Bacterial Gut Microbiota and Infections During Early Childhood. Frontiers in Microbiology, 2021, 12, 793050.	1.5	11
2273	Microbiome-based therapeutics. Nature Reviews Microbiology, 2022, 20, 365-380.	13.6	165
2273 2274	Microbiome-based therapeutics. Nature Reviews Microbiology, 2022, 20, 365-380. The Gut Microbiome as a Regulator of the Neuroimmune Landscape. Annual Review of Immunology, 2022, 40, 143-167.	13.6 9.5	165 24
2273 2274 2275	Microbiome-based therapeutics. Nature Reviews Microbiology, 2022, 20, 365-380. The Gut Microbiome as a Regulator of the Neuroimmune Landscape. Annual Review of Immunology, 2022, 40, 143-167. The Influence of the Western Diet on Microbiota and Gastrointestinal Immunity. Annual Review of Food Science and Technology, 2022, 13, 489-512.	13.6 9.5 5.1	165 24 11
2273 2274 2275 2276	Microbiome-based therapeutics. Nature Reviews Microbiology, 2022, 20, 365-380. The Gut Microbiome as a Regulator of the Neuroimmune Landscape. Annual Review of Immunology, 2022, 40, 143-167. The Influence of the Western Diet on Microbiota and Gastrointestinal Immunity. Annual Review of Food Science and Technology, 2022, 13, 489-512. Emerging targetome and signalome landscape of gut microbial metabolites. Cell Metabolism, 2022, 34, 35-58.	13.6 9.5 5.1 7.2	165 24 11 30
2273 2274 2275 2276 2277	Microbiome-based therapeutics. Nature Reviews Microbiology, 2022, 20, 365-380.The Gut Microbiome as a Regulator of the Neuroimmune Landscape. Annual Review of Immunology, 2022, 40, 143-167.The Influence of the Western Diet on Microbiota and Gastrointestinal Immunity. Annual Review of Food Science and Technology, 2022, 13, 489-512.Emerging targetome and signalome landscape of gut microbial metabolites. Cell Metabolism, 2022, 34, 35-58.The gut microbiota-brain axis, psychobiotics and its influence on brain and behaviour: A systematic review. Psychoneuroendocrinology, 2022, 137, 105640.	 13.6 9.5 5.1 7.2 1.3 	 165 24 11 30 39
2273 2274 2275 2276 2277 2278	Microbiome-based therapeutics. Nature Reviews Microbiology, 2022, 20, 365-380.The Cut Microbiome as a Regulator of the Neuroimmune Landscape. Annual Review of Immunology, 2022, 40, 143-167.The Influence of the Western Diet on Microbiota and Gastrointestinal Immunity. Annual Review of Food Science and Technology, 2022, 13, 489-512.Emerging targetome and signalome landscape of gut microbial metabolites. Cell Metabolism, 2022, 34, 35-58.The gut microbiota-brain axis, psychobiotics and its influence on brain and behaviour: A systematic review. Psychoneuroendocrinology, 2022, 137, 105640.Recent advances in the design and fabrication of probiotic delivery systems to target intestinal inflammation. Food Hydrocolloids, 2022, 125, 107438.	 13.6 9.5 5.1 7.2 1.3 5.6 	 165 24 11 30 39 28
2273 2274 2275 2276 2277 2278 2279	Microbiome-based therapeutics. Nature Reviews Microbiology, 2022, 20, 365-380. The Cut Microbiome as a Regulator of the Neuroimmune Landscape. Annual Review of Immunology, 2022, 40, 143-167. The Influence of the Western Diet on Microbiota and Gastrointestinal Immunity. Annual Review of Food Science and Technology, 2022, 13, 489-512. Emerging targetome and signalome landscape of gut microbial metabolites. Cell Metabolism, 2022, 34, 35-58. The gut microbiota-brain axis, psychobiotics and its influence on brain and behaviour: A systematic review. Psychoneuroendocrinology, 2022, 137, 105640. Recent advances in the design and fabrication of probiotic delivery systems to target intestinal inflammation. Food Hydrocolloids, 2022, 125, 107438. Cardiovascular risk factors in patients with NAFLD and its relationship with the gut microbiota.	 13.6 9.5 5.1 7.2 1.3 5.6 0.0 	 165 24 11 30 39 28 0
2273 2274 2275 2276 2277 2278 2279	Microbiome-based therapeutics. Nature Reviews Microbiology, 2022, 20, 365-380. The Gut Microbiome as a Regulator of the Neuroimmune Landscape. Annual Review of Immunology, 2022, 40, 143-167. The Influence of the Western Diet on Microbiota and Gastrointestinal Immunity. Annual Review of Food Science and Technology, 2022, 13, 489-512. Emerging targetome and signalome landscape of gut microbial metabolites. Cell Metabolism, 2022, 34, 35-58. The gut microbiota-brain axis, psychobiotics and its influence on brain and behaviour: A systematic review. Psychoneuroendocrinology, 2022, 137, 105640. Recent advances in the design and fabrication of probiotic delivery systems to target intestinal inflammation. Food Hydrocolloids, 2022, 125, 107438. Cardiovascular risk factors in patients with NAFLD and its relationship with the gut microbiota. Ukrainian Therapeutical Journal, 2020, . Why is it worth remembering the lung microbiome in ICU patients?. Anaesthesiology Intensive Therapy, 2021, 53, 466-474.	 13.6 9.5 5.1 7.2 1.3 5.6 0.0 0.4 	165 24 11 30 39 28 0 2

#	Article	IF	CITATIONS
2282	Mucosal microbiotas and their role in stem cell transplantation. Apmis, 2022, , .	0.9	3
2283	The Gut–Brain Axis and Its Relation to Parkinson's Disease: A Review. Frontiers in Aging Neuroscience, 2021, 13, 782082.	1.7	59
2284	Epigenetic regulation by gut microbiota. Gut Microbes, 2022, 14, 2022407.	4.3	90
2285	Variegated Outcomes of T Cell Activation by Dendritic Cells in the Steady State. Journal of Immunology, 2022, 208, 539-547.	0.4	8
2286	A randomized clinical trial to investigate the effect of dietary protein sources on periodontal health. Journal of Clinical Periodontology, 2022, 49, 388-400.	2.3	11
2288	Oyster (Crassostrea gigas) Extract Attenuates Dextran Sulfate Sodium-Induced Acute Experimental Colitis by Improving Gut Microbiota and Short-Chain Fatty Acids Compositions in Mice. Foods, 2022, 11, 373.	1.9	4
2289	Opioid Use, Gut Dysbiosis, Inflammation, and the Nervous System. Journal of Neurolmmune Pharmacology, 2022, 17, 76-93.	2.1	16
2291	Impact of antibiotics on the human microbiome and consequences for host health. MicrobiologyOpen, 2022, 11, e1260.	1.2	169
2292	The Human Gut Microbiota-Lymphocyte Crosstalk. , 2022, , 168-174.		0
2293	Chemoproteomic Analysis of Microbiota Metabolite–Protein Targets and Mechanisms. Biochemistry, 2022, 61, 2822-2834.	1.2	7
2294	A comprehensive update: gastrointestinal microflora, gastric cancer and gastric premalignant condition, and intervention by traditional Chinese medicine. Journal of Zhejiang University: Science B, 2022, 23, 1-18.	1.3	16
2295	Living Lab for Citizens' Wellness: A Case of Maintaining and Improving a Healthy Diet under the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 2022, 19, 1254.	1.2	1
2297	Role of Vitamin K in Intestinal Health. Frontiers in Immunology, 2021, 12, 791565.	2.2	30
2298	Dietary Alaska Pollock Protein Attenuates the Experimental Colitis Induced by Dextran Sulfate Sodium via Regulation of Gut Microbiota and Its Metabolites in Mice. Metabolites, 2022, 12, 44.	1.3	2
2299	Gallic Acid Alleviates Gut Dysfunction and Boosts Immune and Antioxidant Activities in Puppies Under Environmental Stress Based on Microbiome–Metabolomics Analysis. Frontiers in Immunology, 2021, 12, 813890.	2.2	27
2300	Regulatory Effects of Combined Dietary Supplementation With Essential Oils and Organic Acids on Microbial Communities of Cobb Broilers. Frontiers in Microbiology, 2021, 12, 814626.	1.5	6
2304	Mutual Links between the Endocannabinoidome and the Gut Microbiome, with Special Reference to Companion Animals: A Nutritional Viewpoint. Animals, 2022, 12, 348.	1.0	8
2305	Gut Dysbiosis and Immune System in Atherosclerotic Cardiovascular Disease (ACVD). Microorganisms, 2022, 10, 108.	1.6	25

#	Article	IF	CITATIONS
2306	Mining for Active Molecules in Probiotic Supernatant by Combining Non-Targeted Metabolomics and Immunoregulation Testing. Metabolites, 2022, 12, 35.	1.3	3
2307	Gut Microbiota Dysbiosis in Acute Ischemic Stroke Associated With 3-Month Unfavorable Outcome. Frontiers in Neurology, 2021, 12, 799222.	1.1	20
2308	New definition of resistant starch types from the gut microbiota perspectives – a review. Critical Reviews in Food Science and Nutrition, 2023, 63, 6412-6422.	5.4	8
2309	T Cell Responses to the Microbiota. Annual Review of Immunology, 2022, 40, 559-587.	9.5	42
2310	Akkermansia muciniphila Ameliorates Acetaminophen-Induced Liver Injury by Regulating Gut Microbial Composition and Metabolism. Microbiology Spectrum, 2022, 10, e0159621.	1.2	62
2311	Tumor microenvironment metabolites directing T cell differentiation and function. Trends in Immunology, 2022, 43, 132-147.	2.9	18
2312	Modulatory effects of polysaccharides from plants, marine algae and edible mushrooms on gut microbiota and related health benefits: A review. International Journal of Biological Macromolecules, 2022, 204, 169-192.	3.6	45
2313	Microbiote, immunité et diabète de type 1. Medecine Des Maladies Metaboliques, 2022, 16, 134-140.	0.1	1
2314	Effects of viremia and CD4 recovery on gut "microbiome-immunity―axis in treatment-naÃ⁻ve HIV-1-infected patients undergoing antiretroviral therapy. World Journal of Gastroenterology, 2022, 28, 635-652.	1.4	6
2315	Maternal microbiota-derived metabolic profile in fetal murine intestine, brain and placenta. BMC Microbiology, 2022, 22, 46.	1.3	36
2316	The Past, Present, and Future of Clinically Applied Chimeric Antigen Receptor-T-Cell Therapy. Pharmaceuticals, 2022, 15, 207.	1.7	5
2317	Colonization of fecal microbiota from patients with neonatal necrotizing enterocolitis exacerbates intestinal injury in germfree mice subjected to necrotizing enterocolitis-induction protocol via alterations in butyrate and regulatory T cells. Journal of Translational Medicine, 2021, 19, 510.	1.8	22
2318	Gut Microbiota as Regulators of Th17/Treg Balance in Patients With Myasthenia Gravis. Frontiers in Immunology, 2021, 12, 803101.	2.2	41
2319	Managing Gut Microbiota through In Ovo Nutrition Influences Early-Life Programming in Broiler Chickens. Animals, 2021, 11, 3491.	1.0	32
2320	Connect between gut microbiome and diseases of the human eye. Journal of Biosciences, 2019, 44, .	0.5	7
2321	Regulation of Host Immunity by the Gut Microbiota. , 2022, , 105-140.		1
2322	Protective role of bayberry extract: associations with gut microbiota modulation and key metabolites. Food and Function, 2022, 13, 5547-5558.	2.1	6
2323	Rewiring host–microbe interactions and barrier function during gastrointestinal inflammation. Gastroenterology Report, 2022, 10, goac008.	0.6	14

#	Article	IF	CITATIONS
2324	TGF-β Signaling, Senescence and Impaired Metabolism in Central Memory CD4 T Cells Promotes HIV Persistence. SSRN Electronic Journal, 0, , .	0.4	0
2325	Effects of Dietary Astragalus Polysaccharide Supplementation on the Th17/Treg Balance and the Gut Microbiota of Broiler Chickens Challenged With Necrotic Enteritis. Frontiers in Immunology, 2022, 13, 781934.	2.2	28
2326	Regulation of tissue-resident memory T cells by the Microbiota. Mucosal Immunology, 2022, 15, 408-417.	2.7	16
2327	Modifying the maternal microbiota alters the gut–brain metabolome and prevents emotional dysfunction in the adult offspring of obese dams. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	22
2328	Relationships Among Gut Microbiota, Ischemic Stroke and Its Risk Factors: Based on Research Evidence. International Journal of General Medicine, 0, Volume 15, 2003-2023.	0.8	1
2329	Rhubarb Alleviates Acute Lung Injury by Modulating Gut Microbiota Dysbiosis in Mice. Current Microbiology, 2022, 79, 116.	1.0	11
2330	Sarecycline Demonstrated Reduced Activity Compared to Minocycline against Microbial Species Representing Human Gastrointestinal Microbiota. Antibiotics, 2022, 11, 324.	1.5	7
2331	Effect of Probiotics on Respiratory Tract Allergic Disease and Gut Microbiota. Frontiers in Nutrition, 2022, 9, 821900.	1.6	23
2332	Effect of Clostridium butyricum on Gastrointestinal Infections. Biomedicines, 2022, 10, 483.	1.4	28
2333	Gut microbiota-drug interactions in cancer pharmacotherapies: implications for efficacy and adverse effects. Expert Opinion on Drug Metabolism and Toxicology, 2022, 18, 5-26.	1.5	4
2334	Metabolism Characteristics of Th17 and Regulatory T Cells in Autoimmune Diseases. Frontiers in Immunology, 2022, 13, 828191.	2.2	14
2335	A Randomized Placebo-Controlled Trial of Combination Therapy With Post-triple-antibiotic-therapy Fecal Microbiota Transplantation and Alginate for Ulcerative Colitis: Protocol. Frontiers in Medicine, 2022, 9, 779205.	1.2	4
2336	The underlying mechanism of Aâ€ŧype procyanidins from peanut skin on <scp>DSS</scp> â€induced ulcerative colitis mice by regulating gut microbiota and metabolism. Journal of Food Biochemistry, 2022, 46, e14103.	1.2	15
2337	Non-alcoholic fatty liver disease and intestinal immune status: a narrative review. Scandinavian Journal of Gastroenterology, 2022, , 1-8.	0.6	0
2338	Identification of gut microbiome and transcriptome changes in ulcerative colitis and pouchitis. Scandinavian Journal of Gastroenterology, 2022, 57, 942-952.	0.6	7
2339	Preliminary Observation of the Changes in the Intestinal Flora of Patients With Graves' Disease Before and After Methimazole Treatment. Frontiers in Cellular and Infection Microbiology, 2022, 12, 794711.	1.8	3
2340	Synthetic glycans control gut microbiome structure and mitigate colitis in mice. Nature Communications, 2022, 13, 1244.	5.8	25
2341	Effects of Gut Microbiota on Host Adaptive Immunity Under Immune Homeostasis and Tumor Pathology State. Frontiers in Immunology, 2022, 13, 844335.	2.2	12

#	Article	IF	CITATIONS
2342	Phytochemicals From Vicia faba Beans as Ligands of the Aryl Hydrocarbon Receptor to Regulate Autoimmune Diseases. Frontiers in Nutrition, 2022, 9, 790440.	1.6	2
2343	Short-Chain Fatty Acids Modulate Healthy Gut Microbiota Composition and Functional Potential. Current Microbiology, 2022, 79, 128.	1.0	26
2344	Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nature Medicine, 2022, 28, 713-723.	15.2	117
2345	Gut microbiota and allergic diseases in children. Allergology International, 2022, 71, 301-309.	1.4	20
2346	Preoperative fasting confers protection against intestinal ischaemia/reperfusion injury by modulating gut microbiota and their metabolites in a mouse model. British Journal of Anaesthesia, 2022, 128, 501-512.	1.5	13
2347	Gut microbiota–derived shortâ€chain fatty acids regulate group 3 innate lymphoid cells in HCC. Hepatology, 2023, 77, 48-64.	3.6	46
2348	Mucus sialylation determines intestinal host-commensal homeostasis. Cell, 2022, 185, 1172-1188.e28.	13.5	66
2349	Role of the Microbiome in the Pathogenesis of COVID-19. Frontiers in Cellular and Infection Microbiology, 2022, 12, 736397.	1.8	17
2350	The Immune Mechanisms of Severe Equine Asthma—Current Understanding and What Is Missing. Animals, 2022, 12, 744.	1.0	15
2352	Gut-derived butyrate suppresses ocular surface inflammation. Scientific Reports, 2022, 12, 4512.	1.6	19
2353	Gut Microbiota From Sjögren syndrome Patients Causes Decreased T Regulatory Cells in the Lymphoid Organs and Desiccation-Induced Corneal Barrier Disruption in Mice. Frontiers in Medicine, 2022, 9, 852918.	1.2	16
2354	Drug Metabolism for the Identification of Clinical Biomarkers in Breast Cancer. International Journal of Molecular Sciences, 2022, 23, 3181.	1.8	4
2355	Promising Antioxidative Effect of Berberine in Cardiovascular Diseases. Frontiers in Pharmacology, 2022, 13, 865353.	1.6	11
2356	Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life, 2022, 12, 495.	1.1	18
2357	Development of the Gastrointestinal Tract in Newborns as a Challenge for an Appropriate Nutrition: A Narrative Review. Nutrients, 2022, 14, 1405.	1.7	30
2358	Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host and Microbe, 2022, 30, 289-300.	5.1	208
2359	Dietary manipulation of the gut microbiome in inflammatory bowel disease patients: Pilot study. Gut Microbes, 2022, 14, 2046244.	4.3	29
2360	Multi-strain probiotics for extremely preterm infants: a randomized controlled trial. Pediatric Research, 2022, 92, 1663-1670.	1.1	7

#	Article	IF	CITATIONS
2361	Microbe-Immune Crosstalk: Evidence That T Cells Influence the Development of the Brain Metabolome. International Journal of Molecular Sciences, 2022, 23, 3259.	1.8	7
2362	Btla signaling in conventional and regulatory lymphocytes coordinately tempers humoral immunity in the intestinal mucosa. Cell Reports, 2022, 38, 110553.	2.9	9
2363	A Gut Instinct on Leukaemia: A New Mechanistic Hypothesis for Microbiota-Immune Crosstalk in Disease Progression and Relapse. Microorganisms, 2022, 10, 713.	1.6	2
2364	Microbial metabolite butyrate promotes induction of IL-10+IgM+ plasma cells. PLoS ONE, 2022, 17, e0266071.	1.1	18
2365	Association of the Microbiota and Pancreatic Cancer: Opportunities and Limitations. Frontiers in Immunology, 2022, 13, 844401.	2.2	15
2366	Short-Chain Carbon Sources. JACC Basic To Translational Science, 2022, 7, 730-742.	1.9	8
2367	lfnar gene variants influence gut microbial production of palmitoleic acid and host immune responses to tuberculosis. Nature Metabolism, 2022, 4, 359-373.	5.1	11
2368	Influence of dietary supplementation of shortâ€chain fatty acid sodium propionate in people living with HIV (PLHIV). Journal of the European Academy of Dermatology and Venereology, 2022, 36, 881-889.	1.3	6
2369	Gut microbiota-derived short chain fatty acids are potential mediators in gut inflammation. Animal Nutrition, 2022, 8, 350-360.	2.1	72
2370	Evaluation of Stool Short Chain Fatty Acids Profiles in the First Year of Life With Childhood Atopy-Related Outcomes. Frontiers in Allergy, 2022, 3, .	1.2	9
2371	Cellular Immune Signal Exchange From Ischemic Stroke to Intestinal Lesions Through Brain-Gut Axis. Frontiers in Immunology, 2022, 13, 688619.	2.2	10
2372	Early-Life Lung and Gut Microbiota Development and Respiratory Syncytial Virus Infection. Frontiers in Immunology, 2022, 13, 877771.	2.2	7
2373	RNA Editing in Glioma as a Sexually Dimorphic Prognostic Factor That Affects mRNA Abundance in Fatty Acid Metabolism and Inflammation Pathways. Cells, 2022, 11, 1231.	1.8	0
2374	Emerging pharmacotherapy for inflammatory bowel diseases. Pharmacological Research, 2022, 178, 106146.	3.1	31
2375	Microbiome Modulation as a Novel Strategy to Treat and Prevent Respiratory Infections. Antibiotics, 2022, 11, 474.	1.5	15
2377	The Influence of Gut Dysbiosis in the Pathogenesis and Management of Ischemic Stroke. Cells, 2022, 11, 1239.	1.8	55
2378	Impaired central tolerance induces changes in the gut microbiota that exacerbate autoimmune hepatitis. Journal of Autoimmunity, 2022, 128, 102808.	3.0	3
2379	Nutrition and Rheumatoid Arthritis Onset: A Prospective Analysis Using the UK Biobank. Nutrients, 2022, 14, 1554.	1.7	10

#	Article	IF	CITATIONS
2380	Isolated and fermented orange and grape wastes: Bromatological characterization and phytase, lipase and protease source. Innovative Food Science and Emerging Technologies, 2022, 77, 102978.	2.7	4
2381	Oral tolerance: an updated review. Immunology Letters, 2022, 245, 29-37.	1.1	12
2382	Microbiome in cancer: Role in carcinogenesis and impact in therapeutic strategies. Biomedicine and Pharmacotherapy, 2022, 149, 112898.	2.5	41
2383	The Immunomodulatory Functions of Butyrate. Journal of Inflammation Research, 2021, Volume 14, 6025-6041.	1.6	105
2384	The effect of short-chain fatty acids on M2 macrophages polarization <i>in vitro</i> and <i>in vivo</i> . Clinical and Experimental Immunology, 2022, 207, 53-64.	1.1	24
2385	The Interaction among Microbiota, Epigenetic Regulation, and Air Pollutants in Disease Prevention. Journal of Personalized Medicine, 2022, 12, 14.	1.1	10
2386	Characteristics of Fecal Microbiota and Machine Learning Strategy for Fecal Invasive Biomarkers in Pediatric Inflammatory Bowel Disease. Frontiers in Cellular and Infection Microbiology, 2021, 11, 711884.	1.8	12
2387	Control of Foxp3 induction and maintenance by sequential histone acetylation and DNA demethylation. Cell Reports, 2021, 37, 110124.	2.9	13
2388	The Gut-Liver Axis in Health and Disease: The Role of Gut Microbiota-Derived Signals in Liver Injury and Regeneration. Frontiers in Immunology, 2021, 12, 775526.	2.2	53
2389	The involvement of oncobiosis and bacterial metabolite signaling in metastasis formation in breast cancer. Cancer and Metastasis Reviews, 2021, 40, 1223-1249.	2.7	14
2390	Intestinal function and transit associate with gut microbiota dysbiosis in cystic fibrosis. Journal of Cystic Fibrosis, 2022, 21, 506-513.	0.3	16
2391	Gut Microbiota and SCFAs Play Key Roles in QingFei Yin Recipe Anti-Streptococcal Pneumonia Effects. Frontiers in Cellular and Infection Microbiology, 2021, 11, 791466.	1.8	10
2392	Nicotine Oral Administration Attenuates DSS-Induced Colitis Through Upregulation of Indole in the Distal Colon and Rectum in Mice. Frontiers in Medicine, 2021, 8, 789037.	1.2	2
2393	Dietary Supplementation throughout Life with Non-Digestible Oligosaccharides and/or n-3 Poly-Unsaturated Fatty Acids in Healthy Mice Modulates the Gut–Immune System–Brain Axis. Nutrients, 2022, 14, 173.	1.7	4
2394	Effects of mannan oligosaccharides and <i>Lactobacillus mucosae</i> on growth performance, immune response, and gut health of weanling pigs challenged with <i>Escherichia coli</i> lipopolysaccharides. Journal of Animal Science, 2021, 99, .	0.2	11
2395	Toward a Paradigm to Distinguish Distinct Functions of FOXP3+ Regulatory T Cells. ImmunoHorizons, 2021, 5, 944-952.	0.8	7
2396	Butyrate Inhibits Osteoclast Activity In Vitro and Regulates Systemic Inflammation and Bone Healing in a Murine Osteotomy Model Compared to Antibiotic-Treated Mice. Mediators of Inflammation, 2021, 2021, 1-17.	1.4	17
2397	CD4 ⁺ /IL‑4 ⁺ lymphocytes of the lamina propria and substance P promote colonic protection during acute stress. Molecular Medicine Reports, 2021, 25, .	1.1	3

#	Article	IF	CITATIONS
2398	Contribution of Gut Microbiota to Immune Tolerance in Infants. Journal of Immunology Research, 2021, 2021, 1-11.	0.9	10
2399	Relationship between mild traumatic brain injury and the gut microbiome: A scoping review. Journal of Neuroscience Research, 2022, 100, 827-834.	1.3	8
2400	Lipidâ \in based regulators of immunity. Bioengineering and Translational Medicine, 0, , .	3.9	6
2401	Oral and Gut Microbial Carbohydrate-Active Enzymes Landscape in Health and Disease. Frontiers in Microbiology, 2021, 12, 653448.	1.5	11
2402	Altered Plasma Metabolic Profiles in Chinese Patients With Multiple Sclerosis. Frontiers in Immunology, 2021, 12, 792711.	2.2	5
2403	Delivery Mode Shapes the Composition of the Lower Airways Microbiota in Newborns. Frontiers in Cellular and Infection Microbiology, 2021, 11, 808390.	1.8	3
2404	Characterization of Changes and Driver Microbes in Gut Microbiota During Healthy Aging Using A Captive Monkey Model. Genomics, Proteomics and Bioinformatics, 2022, 20, 350-365.	3.0	17
2405	From Pre- and Probiotics to Post-Biotics: A Narrative Review. International Journal of Environmental Research and Public Health, 2022, 19, 37.	1.2	35
2407	Microbiota in relation to cancer. , 2022, , 279-309.		0
2408	Co-interventions with <i>Clostridium butyricum</i> and soluble dietary fiber targeting the gut microbiota improve MAFLD <i>via</i> the Acly/Nrf2/NF-I®B signaling pathway. Food and Function, 2022, 13, 5807-5819.	2.1	7
2409	Enteric Nervous System: The Bridge Between the Gut Microbiota and Neurological Disorders. Frontiers in Aging Neuroscience, 2022, 14, 810483.	1.7	33
2410	Your Regulatory T Cells Are What You Eat: How Diet and Gut Microbiota Affect Regulatory T Cell Development. Frontiers in Nutrition, 2022, 9, 878382.	1.6	12
2411	Lactobacillus plantarum strains attenuated DSS-induced colitis in mice by modulating the gut microbiota and immune response. International Microbiology, 2022, 25, 587-603.	1.1	15
2412	Dioscin Alleviates Cisplatin-Induced Mucositis in Rats by Modulating Gut Microbiota, Enhancing Intestinal Barrier Function and Attenuating TLR4/NF-κB Signaling Cascade. International Journal of Molecular Sciences, 2022, 23, 4431.	1.8	8
2413	The Impact of Intestinal Microorganisms and Their Metabolites on Type 1 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2022, Volume 15, 1123-1139.	1.1	5
2414	Experimental colonization with Blastocystis ST4 is associated with protective immune responses and modulation of gut microbiome in a DSS-induced colitis mouse model. Cellular and Molecular Life Sciences, 2022, 79, 245.	2.4	25
2415	Molecular interactions between the intestinal microbiota and the host. Molecular Microbiology, 2022, 117, 1297-1307.	1.2	19
2416	<i>Clostridium butyricum</i> Inhibits Fat Deposition via Increasing the Frequency of Adipose Tissueâ€Resident Regulatory T Cells. Molecular Nutrition and Food Research, 2022, 66, e2100884.	1.5	11

ARTICLE IF CITATIONS TNF- $\hat{1}$ sculpts a maturation process inÂvivo by pruning tolerogenic dendritic cells. Cell Reports, 2022, 39, 2.9 13 2417 110657. Immunonutrition and SARS-CoV-2 Infection in Children with Obesity. Nutrients, 2022, 14, 1701. 2418 1.7 Ameliorative effect of tuna elastin peptides on AIA mice by regulating the composition of intestinal 2419 12 1.6 microorganisms and SCFAs. Journal of Functional Foods, 2022, 92, 105076. The critical role of short-chain fatty acids in health and disease: A subtle focus on cardiovascular 2420 disease-NLRP3 inflammasome-angiogenesis axis. Clinical Immunology, 2022, 238, 109013. Jiangu granule ameliorated OVX rats bone loss by modulating gut microbiota-SCFAs-Treg/Th17 axis. 2421 2.5 15 Biomedicine and Pharmacotherapy, 2022, 150, 112975. Cancer immunotherapy resistance: The impact of microbiome-derived short-chain fatty acids and other emerging metabolites. Life Sciences, 2022, 300, 120573. 2496 Microbiota in health and diseases. Signal Transduction and Targeted Therapy, 2022, 7, 135. 2497 7.1 494 Monitoring of inflammation using novel biosensor mouse model reveals tissue- and sex-specific 2498 1.2 responses to Western diet. DMM Disease Models and Mechanisms, 2022, 15, . Ameliorating the efficacy of galacto-oligosaccharides on ovalumin-induced allergic dermatitis 2501 symptoms in Balb/c mice by regulating Th2 immune response and the ecosystem of gut microbiota. Food 2.1 3 and Function, 2022, 13, 6271-6281. Pediococcus acidilactici Strain Alleviates Gluten-Induced Food Allergy and Regulates Gut Microbiota 1.8 in Mice. Frontiers in Cellular and Infection Microbiology, 2022, 12, 845142. Distal Consequences of Mucosal Infections in Intestinal and Lung Inflammation. Frontiers in 2504 2.2 8 Immunology, 2022, 13, 877533. White Matter Injury in Preterm Infants: Pathogenesis and Potential Therapy From the Aspect of the 1.4 Gut–Brain Axis. Frontiers in Neuroscience, 2022, 16, 849372. Nutrition during Pregnancy and Lactation: Epigenetic Effects on Infants' Immune System in Food 2506 1.7 12 Allergy. Nutrients, 2022, 14, 1766. Moving to the Outskirts: Interplay Between Regulatory T Cells and Peripheral Tissues. Frontiers in 2.2 Immunology, 2022, 13, 864628 A Review of Metabolomic Profiling in Rheumatoid Arthritis: Bringing New Insights in Disease 2508 1.3 8 Pathogenesis, Treatment and Comorbidities. Metabolites, 2022, 12, 394. Alterations in microbiota of patients with COVID-19: potential mechanisms and therapeutic 2509 83 interventions. Signal Transduction and Targeted Therapy, 2022, 7, 143. Messengers From the Gut: Gut Microbiota-Derived Metabolites on Host Regulation. Frontiers in 2510 1.520 Microbiology, 2022, 13, 863407. Crude Polysaccharide Extracted From Moringa oleifera Leaves Prevents Obesity in Association With 1.6 Modulating Gut Microbiota in High-Fat Diet-Fed Mice. Frontiers in Nutrition, 2022, 9, 861588.

#	Article	IF	CITATIONS
2513	Dysbiosis of the Female Murine Gut Microbiome Exacerbates Neutrophil-Mediated Vascular Allograft Injury by Affecting Immunoregulation by Acetate. Transplantation, 2022, Publish Ahead of Print, .	0.5	1
2514	A Promising Insight: The Potential Influence and Therapeutic Value of the Gut Microbiota in GI GVHD. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-13.	1.9	2
2515	Regulatory role of short-chain fatty acids in inflammatory bowel disease. Cell Communication and Signaling, 2022, 20, 64.	2.7	57
2516	Multiscale study of the oral and gut environments in children with high- and low-threshold peanut allergy. Journal of Allergy and Clinical Immunology, 2022, 150, 714-720.e2.	1.5	10
2517	From Tumor Cells to Endothelium and Gut Microbiome: A Complex Interaction Favoring the Metastasis Cascade. Frontiers in Oncology, 2022, 12, .	1.3	0
2518	Short-Chain Fatty Acids in Chronic Kidney Disease: Focus on Inflammation and Oxidative Stress Regulation. International Journal of Molecular Sciences, 2022, 23, 5354.	1.8	30
2520	Fecal Microbiota Transplantation Alters the Outcome of Hepatitis B Virus Infection in Mice. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	6
2521	Microbiota and the Response to Vaccines Against Respiratory Virus. Frontiers in Immunology, 2022, 13, .	2.2	10
2522	Butyrate administration is not sufficient to improve immune reconstitution in antiretroviral-treated SIV-infected macaques. Scientific Reports, 2022, 12, 7491.	1.6	5
2523	Novel Models of Crohn's Disease Pathogenesis Associated with the Occurrence of Mitochondrial Dysfunction in Intestinal Cells. International Journal of Molecular Sciences, 2022, 23, 5141.	1.8	1
2524	Impact of gut microenvironment on epigenetic signatures of intestinal T helper cell subsets. Immunology Letters, 2022, 246, 27-27.	1.1	2
2525	Role of T cells in ischemic acute kidney injury and repair. Korean Journal of Internal Medicine, 2022, 37, 534-550.	0.7	6
2526	The intestinal and biliary microbiome in autoimmune liver disease—current evidence and concepts. Seminars in Immunopathology, 2022, 44, 485-507.	2.8	22
2527	Resistant Maltodextrin Intake Reduces Virulent Metabolites in the Gut Environment: A Randomized Control Study in a Japanese Cohort. Frontiers in Microbiology, 2022, 13, .	1.5	4
2528	Oral Microbiome Research on Oral Lichen Planus: Current Findings and Perspectives. Biology, 2022, 11, 723.	1.3	14
2529	Any Future for Faecal Microbiota Transplantation as a Novel Strategy for Gut Microbiota Modulation in Human and Veterinary Medicine?. Life, 2022, 12, 723.	1.1	5
2530	Lipids and mental health. , 2022, , 51-73.		0
2531	Lipid metabolism in T cell signaling and function. Nature Chemical Biology, 2022, 18, 470-481.	3.9	46

ARTICLE IF CITATIONS Association of the gut microbiome with cancer immunotherapy. International Journal of Clinical 2532 1.0 0 Oncology, 2022, , 1. è...管ã¨è...,å†...å¾®å°ç"Ÿæ...‹ç³»ã®å‰åŒ–ãŒé‡ç—‡ç—...æ...‹ã«åŠã¼ã™å½¹å‰²(Crucial effects of an altered gyt and intestinal Kyukyu Igakukai Zasshi, 2017, 28, 827-834. Significance of Mucosa-Associated Microbiota and Its Impacts on Intestinal Health of Pigs Challenged 2534 1.2 16 with F18+ÂE. coli. Pathogens, 2022, 11, 589. Comprehensive Analysis of the Butyrate-Metabolism-Related Gene Signature in Tumor Microenvironment-Infiltrating Immune Cells in Clear Cell Renal Cell Carcinoma. Frontiers in Cell and Developmental Biology, 2022, 10, . 1.8 Involvement of Gut Microbial Metabolites Derived from Diet on Host Energy Homeostasis. 2536 1.8 4 International Journal of Molecular Sciences, 2022, 23, 5562. Differences in the gut microbiome and reduced fecal butyrate in elders with low skeletal muscle 2.3 mass. Clinical Nutrition, 2022, 41, 1491-1500. Crosstalk between gut microbiota and lung inflammation in murine toxicity models of respiratory 2539 exposure or co-exposure to carbon nanotube particles and cigarette smoke extract. Toxicology and 1.311 Applied Pharmacology, 2022, 447, 116066. Gram-selective antibacterial peptide hydrogels. Biomaterials Science, 2022, 10, 3831-3844. 2540 2.6 10 Parkinson's Disease Is Associated with Impaired <scp>Gutâ€"Blood</scp> Barrier for 2541 2.2 27 <scp>Shortâ€Chain</scp> Fatty Acids. Movement Disorders, 2022, 37, 1634-1643. Gut Microbiota Dysbiosis in BK Polyomavirus-Infected Renal Transplant Recipients: A Case-Control 2542 1.8 Study. Frontiers in Cellular and Infection Microbiology, 2022, 12, . The role of short-chain fatty acids in central nervous system diseases. Molecular and Cellular 2543 1.4 19 Biochemistry, 2022, 477, 2595-2607. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nature Reviews 2544 8.2 239 Gastroenterology and Hepatology, 2022, 19, 625-637. Gut Microbiota and Metabolite Changes in Patients With Ulcerative Colitis and Clostridioides 2545 1.5 10 difficile Infection. Frontiers in Microbiology, 2022, 13, . Abnormal Epigenetic Regulations in the Immunocytes of Sjögren's Syndrome Patients and Therapeutic Potentials. Cells, 2022, 11, 1767. 2546 1.8 Short-Chain Fatty Acids Augment Differentiation and Function of Human Induced Regulatory T Cells. 2547 1.8 18 International Journal of Molecular Sciences, 2022, 23, 5740. Seasonal-specific Variations of the Upper Airway Microbiome and Childhood Asthma: Friend or Foe?. 2548 Journal of Allergy and Clinical Immunology, 2022, , . Translating Microbiome Research From and To the Clinic. Annual Review of Microbiology, 2022, 76, 2549 2.9 12 435-460. Early life microbial exposures shape the Crassostrea gigas immune system for lifelong and 24 intergenerational disease protection. Microbiome, 2022, 10, .

#	Article	IF	CITATIONS
2551	Challenges and opportunities targeting mechanisms of epithelial injury and recovery in acute intestinal graft-versus-host disease. Mucosal Immunology, 2022, 15, 605-619.	2.7	8
2552	Regulation of Treg Cell Metabolism and Function in Non-Lymphoid Tissues. Frontiers in Immunology, 0, 13, .	2.2	8
2553	The Comparative Analysis of Genomic Diversity and Genes Involved in Carbohydrate Metabolism of Eighty-Eight Bifidobacterium pseudocatenulatum Isolates from Different Niches of China. Nutrients, 2022, 14, 2347.	1.7	4
2554	Oral short-chain fatty acids administration regulates innate anxiety in adult microbiome-depleted mice. Neuropharmacology, 2022, 214, 109140.	2.0	10
2555	Probiotics as Efficacious Therapeutic Option for Treating Gut-Related Diseases: Molecular and Immunobiological Perspectives. , 2022, , 69-93.		5
2556	Probiotics and human gut microbiota modulation. , 2022, , 199-230.		0
2557	The intestinal immune system and gut barrier function in obesity and ageing. FEBS Journal, 2023, 290, 4163-4186.	2.2	12
2558	The Role of Early Life Microbiota Composition in the Development of Allergic Diseases. Microorganisms, 2022, 10, 1190.	1.6	5
2559	Treatment with Distinct Antibiotic Classes Causes Different Pulmonary Outcomes on Allergic Airway Inflammation Associated with Modulation of Symbiotic Microbiota. Journal of Immunology Research, 2022, 2022, 1-13.	0.9	1
2561	Compositional changes in fecal microbiota associated with clinical phenotypes and prognosis in Korean patients with inflammatory bowel disease. Intestinal Research, 2023, 21, 148-160.	1.0	14
2562	Gut-derived short-chain fatty acids modulate skin barrier integrity by promoting keratinocyte metabolism and differentiation. Mucosal Immunology, 2022, 15, 908-926.	2.7	43
2563	The function of gut microbiota in immune-related neurological disorders: a review. Journal of Neuroinflammation, 2022, 19, .	3.1	32
2564	Effects of Dietary Fibers on Short-Chain Fatty Acids and Gut Microbiota Composition in Healthy Adults: A Systematic Review. Nutrients, 2022, 14, 2559.	1.7	31
2565	Genetic tracing reveals transcription factor Foxp3-dependent and Foxp3-independent functionality of peripherally induced Treg cells. Immunity, 2022, 55, 1173-1184.e7.	6.6	33
2566	Fatty Acids as a Tool to Boost Cancer Immunotherapy Efficacy. Frontiers in Nutrition, 0, 9, .	1.6	12
2567	Role of CNSs Conserved Distal Cis-Regulatory Elements in CD4 + T Cell Development and Differentiation. Frontiers in Immunology, 0, 13, .	2.2	2
2568	Fatty acids role in multiple sclerosis as "metabokines― Journal of Neuroinflammation, 2022, 19, .	3.1	20
2569	Effects of Poncirin, a Citrus Flavonoid and Its Aglycone, Isosakuranetin, on the Gut Microbial Diversity and Metabolomics in Mice. Molecules, 2022, 27, 3641.	1.7	2

#	Article	IF	CITATIONS
2570	The Microbiome as a Gateway to Prevention of Allergic Disease Development. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 2195-2204.	2.0	5
2571	Host control and the evolution of cooperation in host microbiomes. Nature Communications, 2022, 13, .	5.8	22
2572	Vegetarianism, microbiota, and cardiovascular health: looking back, and forward. European Journal of Preventive Cardiology, 2022, 29, 1895-1910.	0.8	11
2574	Respiratory and Intestinal Microbiota in Pediatric Lung Diseases—Current Evidence of the Gut–Lung Axis. International Journal of Molecular Sciences, 2022, 23, 6791.	1.8	11
2575	Oral immunization of recombinant Saccharomyces cerevisiae expressing fiber-2 of fowl adenovirus serotype 4 induces protective immunity against homologous infection. Veterinary Microbiology, 2022, 271, 109490.	0.8	7
2576	The gut-lung axis in severe acute Pancreatitis-associated lung injury: The protection by the gut microbiota through short-chain fatty acids. Pharmacological Research, 2022, 182, 106321.	3.1	25
2577	Gut microbiota mediates methamphetamine-induced hepatic inflammation via the impairment of bile acid homeostasis. Food and Chemical Toxicology, 2022, 166, 113208.	1.8	15
2578	Effects of oxidation-based tea processing on the characteristics of the derived polysaccharide conjugates and their regulation of intestinal homeostasis in DSS-induced colitis mice. International Journal of Biological Macromolecules, 2022, 214, 402-413.	3.6	11
2579	A probiotic mix partially protects against castration-induced bone loss in male mice. Journal of Endocrinology, 2022, 254, 91-101.	1.2	4
2580	The emerging role of microbiota-derived short-chain fatty acids in immunometabolism. International Immunopharmacology, 2022, 110, 108983.	1.7	19
2581	TREGking From Gut to Brain: The Control of Regulatory T Cells Along the Gut-Brain Axis. Frontiers in Immunology, 0, 13, .	2.2	10
2582	The immunology of Parkinson's disease. Seminars in Immunopathology, 2022, 44, 659-672.	2.8	30
2584	Gut Microbiota and Sex Hormones: Crosstalking Players in Cardiometabolic and Cardiovascular Disease. International Journal of Molecular Sciences, 2022, 23, 7154.	1.8	10
2585	The Gut Microbiome Composition Is Altered in Long-standing Type 1 Diabetes and Associates With Glycemic Control and Disease-Related Complications. Diabetes Care, 2022, 45, 2084-2094.	4.3	21
2586	Reciprocal Interactions Between Regulatory T Cells and Intestinal Epithelial Cells. Frontiers in Immunology, 0, 13, .	2.2	3
2587	GOS Ameliorates Nonalcoholic Fatty Liver Disease Induced by High Fat and High Sugar Diet through Lipid Metabolism and Intestinal Microbes. Nutrients, 2022, 14, 2749.	1.7	10
2588	Transplantation of bacteriophages from ulcerative colitis patients shifts the gut bacteriome and exacerbates the severity of DSS colitis. Microbiome, 2022, 10, .	4.9	23
2589	Suppressive effect of therapeutic antibiotic regimen on antipneumococcal Th1/Th17 responses in neonatal mice. Pediatric Research, 2023, 93, 818-826.	1.1	2

#	Article	IF	CITATIONS
2590	Polyphenols: Bioavailability, Microbiome Interactions and Cellular Effects on Health in Humans and Animals. Pathogens, 2022, 11, 770.	1.2	18
2591	Probiotics, prebiotics and postbiotics for better sleep quality: a narrative review. Beneficial Microbes, 2022, 13, 169-182.	1.0	16
2592	Moringa oleifera Lam. Peptide Remodels Intestinal Mucosal Barrier by Inhibiting JAK-STAT Activation and Modulating Gut Microbiota in Colitis. Frontiers in Immunology, 0, 13, .	2.2	6
2593	Role of dietary fiber in promoting immune health—An <scp>EAACI</scp> position paper. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3185-3198.	2.7	48
2594	Facts and Hopes for Gut Microbiota Interventions in Cancer Immunotherapy. Clinical Cancer Research, 2022, 28, 4370-4384.	3.2	15
2595	Antiâ€inflammatory effect a specific <i>Lactiplantibacillus plantarum</i> in an ovalbuminâ€induced asthma model. Microbiology and Immunology, 2022, 66, 442-452.	0.7	2
2596	Lactobacillus rhamnosus HN001 Ameliorates BEZ235-Induced Intestinal Dysbiosis and Prolongs Cardiac Transplant Survival. Microbiology Spectrum, 2022, 10, .	1.2	4
2597	Changes of intestinal microbiota and microbiota-based treatments in IBD. Archives of Microbiology, 2022, 204, .	1.0	3
2598	Circadian Rhythms Coordinated With Gut Microbiota Partially Account for Individual Differences in Hepatitis B-Related Cirrhosis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
2600	Gut Microbiota and Immunotherapy. Frontiers in Microbiology, 0, 13, .	1.5	8
2601	Impact of the Exposome on the Epigenome in Inflammatory Bowel Disease Patients and Animal Models. International Journal of Molecular Sciences, 2022, 23, 7611.	1.8	13
2602	Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Critical Reviews in Food Science and Nutrition, 2023, 63, 11880-11924.	5.4	8
2603	The Role of Gut and Airway Microbiota in Pulmonary Arterial Hypertension. Frontiers in Microbiology, 0, 13, .	1.5	2
2604	A Glimpse Into the Microbiome of Sjögren's Syndrome. Frontiers in Immunology, 0, 13, .	2.2	12
2605	IL-17A aggravates asthma-induced intestinal immune injury by promoting neutrophil trafficking. Journal of Leukocyte Biology, 2022, 112, 425-435.	1.5	6
2606	Strategies for the Identification and Assessment of Bacterial Strains with Specific Probiotic Traits. Microorganisms, 2022, 10, 1389.	1.6	6
2607	Fine-tuning of regulatory T cells is indispensable for the metabolic steatosis-related hepatocellular carcinoma: A review. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	12
2608	Effects of Oral Glucose-Lowering Agents on Gut Microbiota and Microbial Metabolites. Frontiers in Endocrinology, 0, 13, .	1.5	9

#	Article	IF	CITATIONS
2609	Gut Microbiota Structure and Metabolites, Before and After Treatment in Early Rheumatoid Arthritis Patients: A Pilot Study. Frontiers in Medicine, 0, 9, .	1.2	7
2610	Gut microbiome dysbiosis in the setting of solid organ transplantation: What we have gleaned from human and animal studies. World Journal of Transplantation, 2022, 12, 157-162.	0.6	0
2611	Health benefits of functional plant polysaccharides in metabolic syndrome: An overview. Journal of Functional Foods, 2022, 95, 105154.	1.6	9
2612	Spatial bacterial subpopulations of a human lung lobe and their potential impact on the progression of pulmonary tuberculosis. Microbial Pathogenesis, 2022, 169, 105656.	1.3	0
2613	Dietary modulation of gut microbiota in patients with colorectal cancer undergoing surgery: A review. International Journal of Surgery, 2022, 104, 106751.	1.1	2
2614	Gut microbiome in modulating immune checkpoint inhibitors. EBioMedicine, 2022, 82, 104163.	2.7	38
2615	Microbial mechanisms to improve immune checkpoint blockade responsiveness. Neoplasia, 2022, 31, 100818.	2.3	3
2616	Inflammation as a mediator of stress-related psychiatric disorders. , 2023, , 885-911.		2
2617	The Interplay Between Use of Biological Therapies, Psychological State, and the Microbiome in IBD. Frontiers in Medicine, 0, 9, .	1.2	0
2618	CD4+ T cell metabolism, gut microbiota, and autoimmune diseases: implication in precision medicine of autoimmune diseases . Precision Clinical Medicine, 2022, 5, .	1.3	12
2619	The molecular signaling of exercise and obesity in the microbiota-gut-brain axis. Frontiers in Endocrinology, 0, 13, .	1.5	5
2620	Regulation of CD4+ and CD8+ T Cell Biology by Short-Chain Fatty Acids and Its Relevance for Autoimmune Pathology. International Journal of Molecular Sciences, 2022, 23, 8272.	1.8	18
2621	Microbial short-chain fatty acids: a strategy to tune adoptive T cell therapy. , 2022, 10, e004147.		28
2622	Butyrate acts through HDAC inhibition to enhance aryl hydrocarbon receptor activation by gut microbiota-derived ligands. Gut Microbes, 2022, 14, .	4.3	37
2623	Mapping trends and hotspot regarding gut microbiota and host immune response: A bibliometric analysis of global research (2011–2021). Frontiers in Microbiology, 0, 13, .	1.5	7
2624	Dietary Component-Induced Inflammation and Its Amelioration by Prebiotics, Probiotics, and Synbiotics. Frontiers in Nutrition, 0, 9, .	1.6	15
2626	Microbiota-derived metabolites as drivers of gut–brain communication. Gut Microbes, 2022, 14, .	4.3	74
2627	Salt-Sensitive Ileal Microbiota Plays a Role in Atrial Natriuretic Peptide Deficiency-Induced Cardiac Injury. Nutrients, 2022, 14, 3129.	1.7	2

#	Article	IF	CITATIONS
2628	Interaction between microbiota and immunity and its implication in colorectal cancer. Frontiers in Immunology, 0, 13, .	2.2	10
2629	Proinflammatory mucosal-associated invariant CD8+ T cells react to gut flora yeasts and infiltrate multiple sclerosis brain. Frontiers in Immunology, 0, 13, .	2.2	13
2630	Interplay of Environmental, Individual and Genetic Factors in Rheumatoid Arthritis Provocation. International Journal of Molecular Sciences, 2022, 23, 8140.	1.8	7
2631	Tumor microbiome metabolism: A game changer in cancer development and therapy. Frontiers in Oncology, 0, 12, .	1.3	15
2632	Roseburia intestinalis and Its Metabolite Butyrate Inhibit Colitis and Upregulate TLR5 through the SP3 Signaling Pathway. Nutrients, 2022, 14, 3041.	1.7	11
2633	The female reproductive tract microbiotas, inflammation, and gynecological conditions. Frontiers in Reproductive Health, 0, 4, .	0.6	17
2635	Metabolic profiles of regulatory T cells and their adaptations to the tumor microenvironment: implications for antitumor immunity. Journal of Hematology and Oncology, 2022, 15, .	6.9	50
2636	Microbiota-derived short-chain fatty acids: Implications for cardiovascular and metabolic disease. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	24
2637	The abundance of <i>Ruminococcus bromii</i> is associated with faecal butyrate levels and atopic dermatitis in infancy. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3629-3640.	2.7	14
2638	The contribution of the intestinal microbiome to immune recovery after HCT. Frontiers in Immunology, 0, 13, .	2.2	3
2639	New insights into natural products that target the gut microbiota: Effects on the prevention and treatment of colorectal cancer. Frontiers in Pharmacology, 0, 13, .	1.6	22
2640	Correlation between altered gut microbiota and elevated inflammation markers in patients with Crohn's disease. Frontiers in Immunology, 0, 13, .	2.2	8
2641	Treatment effects of Radix ginseng-Schisandra chinensis herb pair on Alzheimer's disease: An investigation of MS-based metabolomics investigation. Journal of Pharmaceutical and Biomedical Analysis, 2022, 220, 115007.	1.4	3
2642	The relationships between the gut microbiota and its metabolites with thyroid diseases. Frontiers in Endocrinology, 0, 13, .	1.5	27
2643	Crosstalk between gut microbiota and COVID-19 impacts pancreatic cancer progression. World Journal of Gastrointestinal Oncology, 2022, 14, 1456-1468.	0.8	10
2644	Special Diets in Infants and Children and Impact on Gut Microbioma. Nutrients, 2022, 14, 3198.	1.7	16
2646	Sex-dependent Lupus Blautia (Ruminococcus) gnavus strain induction of zonulin-mediated intestinal permeability and autoimmunity. Frontiers in Immunology, 0, 13, .	2.2	18
2647	The central and biodynamic role of gut microbiota in critically ill patients. Critical Care, 2022, 26, .	2.5	29

#	Article	IF	CITATIONS
2648	Enterohepatic Shunt-Driven Cholemia Predisposes to Liver Cancer. Gastroenterology, 2022, 163, 1658-1671.e16.	0.6	7
2649	Disaggregation as an interaction mechanism among intestinal bacteria. Biophysical Journal, 2022, 121, 3458-3473.	0.2	2
2650	Bifico relieves irritable bowel syndrome by regulating gut microbiota dysbiosis and inflammatory cytokines. European Journal of Nutrition, 2023, 62, 139-155.	1.8	17
2651	Bile Salt Hydrolase-Competent Probiotics in the Management of IBD: Unlocking the "Bile Acid Codeâ€. Nutrients, 2022, 14, 3212.	1.7	17
2652	Dendrobium officinale Endophytes May Colonize the Intestinal Tract and Regulate Gut Microbiota in Mice. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-10.	0.5	0
2653	Cranberry polyphenols and agave agavins impact gut immune response and microbiota composition while improving gut barrier function, inflammation, and glucose metabolism in mice fed an obesogenic diet. Frontiers in Immunology, 0, 13, .	2.2	24
2654	The dark side of Tregs during aging. Frontiers in Immunology, 0, 13, .	2.2	8
2655	Histone Deacetylase Inhibition by Gut Microbe-Generated Short-Chain Fatty Acids Entrains Intestinal Epithelial Circadian Rhythms. Gastroenterology, 2022, 163, 1377-1390.e11.	0.6	24
2656	Gut microbiota supports male reproduction via nutrition, immunity, and signaling. Frontiers in Microbiology, 0, 13, .	1.5	11
2657	Effect of Electroacupuncture on Short-Chain Fatty Acids in Peripheral Blood after Middle Cerebral Artery Occlusion/Reperfusion in Rats Based on Gas Chromatography–Mass Spectrometry. Mediators of Inflammation, 2022, 2022, 1-14.	1.4	5
2658	Host-microbiota interactions shaping T-cell response and tolerance in type 1 diabetes. Frontiers in Immunology, 0, 13, .	2.2	4
2659	The potential for Treg-enhancing therapies in tissue, in particular skeletal muscle, regeneration. Clinical and Experimental Immunology, 2023, 211, 138-148.	1.1	2
2660	Genoprotective activity of the Pleurotus eryngii mushrooms following their in vitro and in vivo fermentation by fecal microbiota. Frontiers in Nutrition, 0, 9, .	1.6	2
2661	The interplay between Helicobacter pylori and the gut microbiota: An emerging driver influencing the immune system homeostasis and gastric carcinogenesis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	25
2662	Common themes in antimicrobial and anticancer drug resistance. Frontiers in Microbiology, 0, 13, .	1.5	7
2664	Nature vs. nurture: FOXP3, genetics, and tissue environment shape Treg function. Frontiers in Immunology, 0, 13, .	2.2	12
2665	Inflammation in Children with CKD Linked to Gut Dysbiosis and Metabolite Imbalance. Journal of the American Society of Nephrology: JASN, 2022, 33, 2259-2275.	3.0	18
2666	The role of the gut microbiota in multiple sclerosis. Nature Reviews Neurology, 2022, 18, 544-558.	4.9	44

#	Article	IF	CITATIONS
2667	Signaling networks controlling ID and E protein activity in T cell differentiation and function. Frontiers in Immunology, 0, 13, .	2.2	3
2668	An Update on the Mutual Impact between SARS-CoV-2 Infection and Gut Microbiota. Viruses, 2022, 14, 1774.	1.5	9
2669	Structural characteristics of locust bean gum hydrolysate and its alleviating effect on dextran sulfate sodium-induced colitis. Frontiers in Microbiology, 0, 13, .	1.5	1
2670	Biological roles of toll-like receptors and gut microbiota in colorectal cancer. Future Microbiology, 2022, 17, 1071-1089.	1.0	2
2671	Quantitative increase in T regulatory cells enhances bone remodeling in osteogenesis imperfecta. IScience, 2022, 25, 104818.	1.9	2
2672	Microbiota-driven mechanisms at different stages of cancer development. Neoplasia, 2022, 32, 100829.	2.3	11
2673	Gut microbiota in systemic lupus erythematosus: A fuse and a solution. Journal of Autoimmunity, 2022, 132, 102867.	3.0	22
2674	Short-chain fatty acid metabolism and multiple effects on cardiovascular diseases. Ageing Research Reviews, 2022, 81, 101706.	5.0	53
2675	Emerging Evidence on the Use of Probiotics and Prebiotics to Improve the Gut Microbiota of Older Adults with Frailty Syndrome: A Narrative Review. Journal of Nutrition, Health and Aging, 2022, 26, 926-935.	1.5	4
2676	Inborn errors of immunity and related microbiome. Frontiers in Immunology, 0, 13, .	2.2	1
2678	Bidirectional crosstalk between dysbiotic gut microbiota and systemic lupus erythematosus: What is new in therapeutic approaches?. Clinical Immunology, 2022, 244, 109109.	1.4	6
2679	Antimicrobial peptide production in response to gut microbiota imbalance. Peptides, 2022, 157, 170865.	1.2	7
2680	Evaluation of the changes in active substances and their effects on intestinal microflora during simulated digestion of Gastrodia elata. LWT - Food Science and Technology, 2022, 169, 113924.	2.5	4
2681	Gut Microbiome Influence on Human Epigenetics, Health, and Disease. , 2023, , 669-686.		1
2682	Immune Responses in Kawasaki Disease. , 2022, , 131-145.		0
2683	Gut Microbiota in Kawasaki Disease. , 2022, , 181-195.		0
2684	Potential Role of Probiotics on Gut Microbiota in Neurological Disease. , 2022, , 153-178.		0
2685	Relationship between gut microbiome and diabetes. , 2022, , 107-125.		0

#	Article	IF	CITATIONS
2686	Diarrheal disease and gut microbiome. Progress in Molecular Biology and Translational Science, 2022,	0.9	1
2687	Cross Talk Between Gut Microbiota and Host Immune Cells. , 2022, , 7-26.		1
2688	Short-Chain Fatty Acids-A Healthy Bus between Gut Microbiota and Organs beyond the Gut. Advances in Bioscience and Biotechnology (Print), 2022, 13, 362-387.	0.3	1
2689	Modulation of gut microbiota by probiotic interventions: A potential approach toward alleviating food allergy. , 2022, , 139-157.		0
2690	Immunological paradox for maintaining normal flora: it is all by design, not by chance. , 2022, , 39-73.		0
2691	Efecto de los probióticos en las enfermedades alérgicas del tracto respiratorio y la microbiota intestinal. Karger Kompass NeumologÃa, 2022, 4, 81-91.	0.0	0
2692	An overview of cancer and the human microbiome. Progress in Molecular Biology and Translational Science, 2022, , 83-139.	0.9	1
2693	Gut microbiota shed new light on the management of <scp>immuneâ€related</scp> adverse events. Thoracic Cancer, 2022, 13, 2681-2691.	0.8	10
2695	Local and systemic effects of microbiomeâ€derived metabolites. EMBO Reports, 2022, 23, .	2.0	15
2697	Octenyl Succinic Anhydride-Modified Starch Attenuates Body Weight Gain and Changes Intestinal Environment of High-Fat Diet-Fed Mice. Foods, 2022, 11, 2980.	1.9	2
2698	Sustained Minimal Residual Disease Negativity in Multiple Myeloma is Associated with Stool Butyrate and Healthier Plant-Based Diets. Clinical Cancer Research, 2022, 28, 5149-5155.	3.2	16
2699	Gut microbiota – a double-edged sword in cancer immunotherapy. Trends in Cancer, 2023, 9, 3-5.	3.8	5
2700	Canine chronic enteropathy—Current state-of-the-art and emerging concepts. Frontiers in Veterinary Science, 0, 9, .	0.9	20
2701	Exploiting dietary fibre and the gut microbiota in pelvic radiotherapy patients. British Journal of Cancer, 2022, 127, 2087-2098.	2.9	7
2702	A single-day mouse mesenteric lymph surgery in mice: an updated approach to study dietary lipid absorption, chylomicron secretion, and lymphocyte dynamics. Journal of Lipid Research, 2022, 63, 100284.	2.0	0
2703	A Novel Gene Alignment in <i>Dorea</i> sp. AM58-8 Produces 7-Dehydroxy-3β Bile Acids from Primary Bile Acids. Biochemistry, 2022, 61, 2870-2878.	1.2	4
2704	Antimicrobial drug use and the risk of glioma: A case–control study. Cancer Medicine, 0, , .	1.3	0
2705	Communication in non-communicable diseases (NCDs) and role of immunomodulatory nutraceuticals in their management. Frontiers in Nutrition, 0, 9, .	1.6	0

#	Article	IF	CITATIONS
2706	Commensal Fungus Candida albicans Maintains a Long-Term Mutualistic Relationship with the Host To Modulate Gut Microbiota and Metabolism. Microbiology Spectrum, 2022, 10, .	1.2	11
2707	Propionate Alleviates Abdominal AorticÂAneurysm by Modulating ColonicÂRegulatory T-Cell Expansion andÂRecirculation. JACC Basic To Translational Science, 2022, 7, 934-947.	1.9	5
2708	Gut microbiome and breast-feeding: Implications for early immune development. Journal of Allergy and Clinical Immunology, 2022, 150, 523-534.	1.5	26
2709	Traditional Chinese Medicine: A promising strategy to regulate inflammation, intestinal disorders and impaired immune function due to sepsis. Frontiers in Pharmacology, 0, 13, .	1.6	4
2710	How Microbiota-Derived Metabolites Link the Gut to the Brain during Neuroinflammation. International Journal of Molecular Sciences, 2022, 23, 10128.	1.8	8
2711	Gut and obesity/metabolic disease: Focus on microbiota metabolites. MedComm, 2022, 3, .	3.1	15
2712	A Cohort Study of the Effects of Daily-Diet Water-Soluble Dietary Fiber on Butyric Acid-Producing Gut Microbiota in Middle-Aged and Older Adults in a Rural Region. Microorganisms, 2022, 10, 1813.	1.6	1
2713	Mucus-degrading Bacteroides link carbapenems to aggravated graft-versus-host disease. Cell, 2022, 185, 3705-3719.e14.	13.5	37
2714	Microbiome-based interventions to modulate gut ecology and the immune system. Mucosal Immunology, 2022, 15, 1095-1113.	2.7	42
2715	Herbal medicine in the treatment of COVID-19 based on the gut–lung axis. , 2022, 2, 172-183.		3
2716	Gut microbiota and growth performance of offspring are influenced by wet nurse in pigs using crossâ€fostering trial. Journal of the Science of Food and Agriculture, 2023, 103, 865-876.	1.7	1
2717	Intestinal microbiota is modified in pediatric food protein–induced enterocolitis syndrome. , 2022, 1, 217-224.		0
2718	Gut Bacteria and Neurotransmitters. Microorganisms, 2022, 10, 1838.	1.6	63
2719	Microbial-Derived Tryptophan Catabolites, Kidney Disease and Gut Inflammation. Toxins, 2022, 14, 645.	1.5	13
2720	Gut microbiota mediates the inhibition of lymphopoiesis in dietary-restricted mice by suppressing glycolysis. Gut Microbes, 2022, 14, .	4.3	1
2721	Sequestration of gut pathobionts in intraluminal casts, a mechanism to avoid dysregulated T cell activation by pathobionts. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
2722	The Impact of Short-Chain Fatty Acids on Neonatal Regulatory T Cells. Nutrients, 2022, 14, 3670.	1.7	5
2723	The bridge of the gut–joint axis: Gut microbial metabolites in rheumatoid arthritis. Frontiers in Immunology, 0, 13, .	2.2	15

#	Article	IF	CITATIONS
2724	Myeloid-derived suppressor cells prevent disruption of the gut barrier, preserve microbiota composition, and potentiate immunoregulatory pathways in a rat model of experimental autoimmune encephalomyelitis. Gut Microbes, 2022, 14, .	4.3	6
2725	Metabolic and epigenetic orchestration of (CAR) T cell fate and function. Cancer Letters, 2022, 550, 215948.	3.2	5
2726	Analysis of Peripherally Derived Treg in the Intestine. Methods in Molecular Biology, 2023, , 41-49.	0.4	0
2727	Th17 cells in primary Sjögren's syndrome negatively correlate with increased Roseburia and Coprococcus. Frontiers in Immunology, 0, 13, .	2.2	12
2728	The relationship between major dietary patterns and disease activity of rheumatoid arthritis. Clinical Nutrition ESPEN, 2022, 51, 274-279.	0.5	1
2729	Crosstalk between the aging intestinal microflora and the brain in ischemic stroke. Frontiers in Aging Neuroscience, 0, 14, .	1.7	3
2730	Possible role of gut microbes and host's immune response in gut–lung homeostasis. Frontiers in Immunology, 0, 13, .	2.2	21
2731	Research Progress of Gut Microbiota's Function in Metabolic and Immunological Diseases. Open Journal of Natural Science, 2022, 10, 949-959.	0.1	0
2732	Microbiome Derived Metabolites in CKD and ESRD. , 2022, , 45-60.		0
2733	The role of gut microbiota in liver regeneration. Frontiers in Immunology, 0, 13, .	2.2	8
2735	Gut microbiota: A target for prebiotics and probiotics in the intervention and therapy of food allergy. Critical Reviews in Food Science and Nutrition, 0, , 1-15.	5.4	3
2737	Topic: Nutrition and the Gut-Liver-Brain Axis. Current Hepatology Reports, 2022, 21, 99-110.	0.4	1
2738	Role of the microbiome and its metabolites in ankylosing spondylitis. Frontiers in Immunology, 0, 13, .	2.2	17
2739	Butyrate: Connecting the gut-lung axis to the management of pulmonary disorders. Frontiers in Nutrition, 0, 9, .	1.6	14
2740	Diet Influences Immunotherapy Outcomes in Cancer Patients: A Literature Review. Nutrition and Cancer, 2023, 75, 415-429.	0.9	1
2741	Gut and Breast Microbiota as Endocrine Regulators of Hormone Receptor-positive Breast Cancer Risk and Therapy Response. Endocrinology, 2022, 164, .	1.4	5
2742	Gut microbiome and neurosurgery: Implications for treatment. Clinical and Translational Discovery,	0.3	9
	2022, 2, .	0.2	0

#	Article	IF	CITATIONS
2744	High-Density Lipoprotein Cholesterol as a Potential Medium between Depletion of <i>Lachnospiraceae</i> Genera and Hypertension under a High-Calorie Diet. Microbiology Spectrum, 2022, 10, .	1.2	4
2745	Helminths Derived Immune-Modulatory Molecules: Implications in Host-Parasite Interaction. , 0, , .		0
2746	N-glycosylation of cervicovaginal fluid reflects microbial community, immune activity, and pregnancy status. Scientific Reports, 2022, 12, .	1.6	4
2748	Efficacy of a Probiotic and Herbal Supplement in Models of Lung Inflammation. Microorganisms, 2022, 10, 2136.	1.6	3
2749	Interaction between gut microbiota and immune checkpoint inhibitor-related colitis. Frontiers in Immunology, 0, 13, .	2.2	6
2750	The Role of the Gut Microbiome in Cow's Milk Allergy: A Clinical Approach. Nutrients, 2022, 14, 4537.	1.7	3
2751	Choline and butyrate beneficially modulate the gut microbiome without affecting atherosclerosis in APOE*3-Leiden.CETP mice. Atherosclerosis, 2022, 362, 47-55.	0.4	2
2752	Nutritional modulation of the gut microbiome in allogeneic hematopoietic stem cell transplantation recipients. Frontiers in Nutrition, 0, 9, .	1.6	17
2753	Dietary supplementation of Macleaya cordata extract and Bacillus in combination improve laying performance by regulating reproductive hormones, intestinal microbiota and barrier function of laying hens. Journal of Animal Science and Biotechnology, 2022, 13, .	2.1	9
2754	Regulation of T cell repertoires by commensal microbiota. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	6
2755	Gut Microbiota in Ischemic Stroke: Role of Gut Bacteria-Derived Metabolites. Translational Stroke Research, 2023, 14, 811-828.	2.3	6
2756	Effect of low-dose radiation on thyroid function and the gut microbiota. World Journal of Gastroenterology, 0, 28, 5557-5572.	1.4	2
2757	Microbiome-metabolome analysis reveals alterations in the composition and metabolism of caecal microbiota and metabolites with dietary Enteromorpha polysaccharide and Yeast glycoprotein in chickens. Frontiers in Immunology, 0, 13, .	2.2	6
2758	Mining the microbiota to identify gut commensals modulating neuroinflammation in a mouse model of multiple sclerosis. Microbiome, 2022, 10, .	4.9	21
2759	An observational investigation of the faecal microbiota and metabonome of gastrostomy fed children, on blended and formula diets. Gut Microbes, 2022, 14, .	4.3	3
2760	Microbial dysbiosis in the gut drives systemic autoimmune diseases. Frontiers in Immunology, 0, 13, .	2.2	30
2761	Helminths and Bacterial Microbiota: The Interactions of Two of Humans' "Old Friendsâ€: International Journal of Molecular Sciences, 2022, 23, 13358.	1.8	9
2762	Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature, 2022, 611, 578-584.	13.7	50
#	Article	IF	CITATIONS
------	--	------	-----------
2763	Specific alterations of gut microbiota in patients with membranous nephropathy: A systematic review and meta-analysis. Frontiers in Physiology, 0, 13, .	1.3	3
2764	Metagenomic analysis provides bases on individualized shift of colon microbiome affected by delaying colostrum feeding in neonatal calves. Frontiers in Microbiology, 0, 13, .	1.5	1
2765	Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chemical Reviews, 2023, 123, 31-72.	23.0	54
2766	Immunomodulatory fecal metabolites are associated with mortality in COVID-19 patients with respiratory failure. Nature Communications, 2022, 13, .	5.8	24
2767	Gut microbiome and Parkinson's disease: Perspective on pathogenesis and treatment. Journal of Advanced Research, 2023, 50, 83-105.	4.4	9
2768	Adjuvant role of probiotics in allergen-specific immunotherapy. Clinical Immunology, 2022, 245, 109164.	1.4	0
2769	The role of probiotics in prevention and treatment of food allergy. Food Science and Human Wellness, 2023, 12, 681-690.	2.2	4
2770	The role of gut microbiota and its metabolites short-chain fatty acids in food allergy. Food Science and Human Wellness, 2023, 12, 702-710.	2.2	10
2772	Potential of Biobased Technologies in Nutraceuticals for the Prevention and Treatment of Cancer. RSC Polymer Chemistry Series, 2022, , 189-231.	0.1	0
2773	Il ruolo del microbiota intestinale nella modulazione immunitaria. Medico E Bambino Pagine Elettroniche, 2020, 23, 130-136.	0.0	0
2774	Ginsenoside Rg1 modulates intestinal microbiota and supports re-generation of immune cells in dexamethasone-treated mice. Acta Microbiologica Et Immunologica Hungarica, 2022, , .	0.4	4
2775	Salidroside alleviates ulcerative colitis via inhibiting macrophage pyroptosis and repairing the dysbacteriosisâ€associated Th17/Treg imbalance. Phytotherapy Research, 2023, 37, 367-382.	2.8	6
2776	Melatonin–Microbiome Two-Sided Interaction in Dysbiosis-Associated Conditions. Antioxidants, 2022, 11, 2244.	2.2	13
2777	The associations of maternal and children's gut microbiota with the development of atopic dermatitis for children aged 2 years. Frontiers in Immunology, 0, 13, .	2.2	4
2778	Dysbiosis of Gut Microbiota from the Perspective of the Gut–Brain Axis: Role in the Provocation of Neurological Disorders. Metabolites, 2022, 12, 1064.	1.3	21
2779	Regulatory TÂcells as metabolic sensors. Immunity, 2022, 55, 1981-1992.	6.6	17
2780	Advantages and limitations of experimental autoimmune encephalomyelitis in breaking down the role of the gut microbiome in multiple sclerosis. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	4
2781	Exploring the alterations and function of skin microbiome mediated by ionizing radiation injury. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	0

#	Article	IF	CITATIONS
2782	The impact of the microbiome in cancer: Targeting metabolism of cancer cells and host. Frontiers in Oncology, 0, 12, .	1.3	5
2783	Insights on the role of anti-inflammatory and immunosuppressive agents in the amelioration of diabetes. Diabetology International, 2023, 14, 134-144.	0.7	2
2784	Gut microbiome in type 1 diabetes: the immunological perspective. Expert Review of Clinical Immunology, 2023, 19, 93-109.	1.3	4
2785	<i>Chimonanthus salicifolius</i> S. Y. Hu Extract improve constipation symptoms and regulate intestinal microbiota in mice. Food Science and Technology Research, 2023, , .	0.3	0
2786	Structure-specific antitumor effects and potential gut microbiota-involved mechanisms of ginseng polysaccharides on B16F10 melanoma-bearing mice. Food and Function, 2023, 14, 796-809.	2.1	2
2787	Microbiota-immune-brain interactions: A lifespan perspective. Current Opinion in Neurobiology, 2023, 78, 102652.	2.0	19
2788	Xianglian pill modulates gut microbial production of succinate and induces regulatory T cells to alleviate ulcerative colitis in rats. Journal of Ethnopharmacology, 2023, 303, 116007.	2.0	4
2789	Gut microbiota and its roles in the pathogenesis and therapy of endocrine system diseases. Microbiological Research, 2023, 268, 127291.	2.5	10
2790	Identification of key bacterial taxa and metabolic pathways affecting gut organic acid profiles in early life. Japanese Journal of Lactic Acid Bacteria, 2021, 32, 107-118.	0.1	0
2791	Development of Adjuvants Based on Parasitic and Symbiotic Bacterial Lipid A. Trends in Glycoscience and Glycotechnology, 2022, 34, E101-E105.	0.0	0
2792	Development of Adjuvants Based on Parasitic and Symbiotic Bacterial Lipid A. Trends in Glycoscience and Glycotechnology, 2022, 34, J101-J105.	0.0	0
2793	The thin line between conventional dendritic cells (cDCs) and group 3 innate lymphoid cells (ILC3s) in the gut. International Immunology, 2023, 35, 107-121.	1.8	2
2794	Commensal Intestinal Protozoa—Underestimated Members of the Gut Microbial Community. Biology, 2022, 11, 1742.	1.3	5
2795	Modeling Inflammatory Bowel Disease by Intestinal Organoids. Recent Advances in Inflammation & Allergy Drug Discovery, 2023, 17, 39-53.	0.4	2
2796	Intratumoral microbiome and gastrointestinal cancers. Frontiers in Oncology, 0, 12, .	1.3	1
2797	Proteomics reveals unique identities of human TGF-β-induced and thymus-derived CD4+ regulatory T cells. Scientific Reports, 2022, 12, .	1.6	2
2798	Effects of Dietary Fiber on Growth Performance, Nutrient Digestibility and Intestinal Health in Different Pig Breeds. Animals, 2022, 12, 3298.	1.0	6
2800	Potential Biotics for Nutritional Improvement of Health via Microbiome-Gut-Brain Axis. , 2022, 2022, 1-16.		4

#	Article	IF	CITATIONS
2801	The immunomodulatory roles of the gut microbiome in autoimmune diseases of the central nervous system: Multiple sclerosis as a model. Journal of Autoimmunity, 2023, 137, 102957.	3.0	4
2802	Intestinal fungi and systemic autoimmune diseases. Autoimmunity Reviews, 2023, 22, 103234.	2.5	5
2803	Metabolites from specific intestinal bacteria in vivo fermenting Lycium barbarum polysaccharide improve collagenous arthritis in rats. International Journal of Biological Macromolecules, 2023, 226, 1455-1467.	3.6	5
2804	Bone loss is ameliorated by fecal microbiota transplantation through SCFA/GPR41/ IGF1 pathway in sickle cell disease mice. Scientific Reports, 2022, 12, .	1.6	5
2805	Maternal obesity and resistance to breast cancer treatments among offspring: Link to gut dysbiosis. Cancer Reports, 2022, 5, .	0.6	1
2806	Gut microbiota in ischemic stroke: Where we stand and challenges ahead. Frontiers in Nutrition, 0, 9, .	1.6	1
2807	Cardiac metabolism in HFpEF: from fuel to signalling. Cardiovascular Research, 2023, 118, 3556-3575.	1.8	20
2808	Dietary enrichment of resistant starches or fibers differentially alter the feline fecal microbiome and metabolite profile. Animal Microbiome, 2022, 4, .	1.5	3
2809	Treatment of peanut allergy and colitis in mice via the intestinal release of butyrate from polymeric micelles. Nature Biomedical Engineering, 2023, 7, 38-55.	11.6	36
2810	Gut microbiota modulates lung fibrosis severity following acute lung injury in mice. Communications Biology, 2022, 5, .	2.0	7
2811	Environmental influences on childhood asthma—The effect of diet and microbiome on asthma. Pediatric Allergy and Immunology, 2022, 33, .	1.1	9
2812	Effects of Lactobacillus plantarum and Pediococcus acidilactici co-fermented feed on growth performance and gut microbiota of nursery pigs. Frontiers in Veterinary Science, 0, 9, .	0.9	5
2813	Exposure to Antibiotics and Neurodevelopmental Disorders: Could Probiotics Modulate the Gut–Brain Axis?. Antibiotics, 2022, 11, 1767.	1.5	4
2814	Microbiota and environmental health monitoring of mouse colonies by metagenomic shotgun sequencing. World Journal of Microbiology and Biotechnology, 2023, 39, .	1.7	1
2815	Effects of Bifidobacterium with the Ability of 2′-Fucosyllactose Utilization on Intestinal Microecology of Mice. Nutrients, 2022, 14, 5392.	1.7	0
2816	Alterations of the gut microbiota in coronavirus disease 2019 and its therapeutic potential. World Journal of Gastroenterology, 0, 28, 6689-6701.	1.4	6
2817	The gut microbiome: linking dietary fiber to inflammatory diseases. Medicine in Microecology, 2022, 14, 100070.	0.7	11
2818	Effects of rearing system and antibiotic treatment on immune function, gut microbiota and metabolites of broiler chickens. Journal of Animal Science and Biotechnology, 2022, 13, .	2.1	4

ARTICLE IF CITATIONS Short-chain fatty acid-mediated epigenetic modulation of inflammatory T cells in vitro. Drug Delivery 2819 3.0 9 and Translational Research, 2023, 13, 1912-1924. Dietary fiber and SCFAs in the regulation of mucosal immunity. Journal of Allergy and Clinical 2820 1.5 Immunology, 2023, 151, 361-370. Gut microbiota: The key to the treatment of metabolic syndrome in traditional Chinese medicine $\hat{a} \in$ a 2821 2.2 2 case study of diabetes and nonalcoholic fatty liver disease. Frontiers in Immunology, 0, 13, . Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability. Nutrients, 24 2022, 14, 5361. Microbeâ€"Immuneâ€"Stress Interactions Impact Behaviour during Postnatal Development. International 2823 1.8 4 Journal of Molecular Sciences, 2022, 23, 15064. Phytochemicals as Chemo-Preventive Agents and Signaling Molecule Modulators: Current Role in 2824 1.8 Cancer Therapeutics and Inflammation. International Journal of Molecular Sciences, 2022, 23, 15765. The Mechanism of Important Components in Canine Fecal Microbiota Transplantation. Veterinary 2825 0.6 2 Sciences, 2022, 9, 695. New Insights into the Relationship between Gut Microbiota and Radiotherapy for Cancer. Nutrients, 2826 1.7 2023, 15, 48. Butyrate Ameliorates Intraocular Bacterial Infection by Promoting Autophagy and Attenuating the 2827 1.0 4 Inflammatory Response. Infection and Immunity, 2023, 91, . Stable isotope tracing inÂvivo reveals a metabolic bridge linking the microbiota to host histone acetylation. Cell Reports, 2022, 41, 111809. Gut microbial indicators of metabolic health underlie age-related differences in obesity and diabetes risk among Native Hawaiians and Pacific Islanders. Frontiers in Cellular and Infection Microbiology, 0, 2829 3 1.8 12. Plant-Derived Bioactive Compounds and Potential Health Benefits: Involvement of the Gut Microbiota 2830 1.8 and Its Metabolic Activity. Biomolecules, 2022, 12, 1871. Regulatory T cells as a therapeutic approach for inflammatory bowel disease. European Journal of 2831 1.6 10 Immunology, 2023, 53, . The Impact of Common Acne on the Well-Being of Young People Aged 15–35 Years and the Influence of 1.7 Nutrition Knowledge and Diet on Acne Development. Nutrients, 2022, 14, 5293. Immune mechanism of gut microbiota and its metabolites in the occurrence and development of 2833 1.5 3 cardiovascular diseases. Frontiers in Microbiology, 0, 13, . Butyrate and hexanoate-enriched triglycerides increase postprandrial systemic butyrate and hexanoate in men with overweight/obesity: A double-blind placebo-controlled randomized crossover trial. Frontiers in Nutrition, 0, 9, Treatment of Dyslipidemia through Targeted Therapy of Gut Microbiota. Nutrients, 2023, 15, 228. 2836 1.7 10 Immunometabolism and microbial metabolites at the gut barrier: Lessons for therapeutic intervention 2838 in inflammatory bowel disease. Mucosal Immunology, 2023, 16, 72-85.

		TON REPORT	
#	Article	IF	CITATIONS
2839	Immunological consequences of microbiome-based therapeutics. Frontiers in Immunology, 0, 13, .	2.2	7
2840	Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses, 2023, 15, 175.	1.5	33
2841	Association between microbiota and immune response to Sars-CoV-2 infection. Infectious Diseases Now, 2023, 53, 104646.	0.7	1
2842	Asthma, obesity, and microbiota: A complex immunological interaction. Immunology Letters, 2023, 255, 10-20.	1.1	6
2844	Gut Microbiome in Health and Gastrointestinal Cancer. , 2023, , 5-21.		1
2845	Clostridium butyricum Can Promote Bone Development by Regulating Lymphocyte Function in Layer Pullets. International Journal of Molecular Sciences, 2023, 24, 1457.	1.8	1
2846	Gut Microbiota and Breast Cancer: The Dual Role of Microbes. Cancers, 2023, 15, 443.	1.7	11
2847	Nutritional Recommendations for People with Type 1 Diabetes Mellitus. Experimental and Clinical Endocrinology and Diabetes, 2023, 131, 33-50.	0.6	0
2848	Advances in Lactobacillus Restoration for β-Lactam Antibiotic-Induced Dysbiosis: A System Review in Intestinal Microbiota and Immune Homeostasis. Microorganisms, 2023, 11, 179.	1.6	4
2849	Gut Microbial-Derived Metabolites as Immune Modulators of T Helper 17 and Regulatory T Cells. International Journal of Molecular Sciences, 2023, 24, 1806.	1.8	8
2850	Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease. Frontiers in Immunology, 0, 13, .	2.2	7
2851	Microbial Metabolite Dysbiosis and Colorectal Cancer. Gut and Liver, 2023, 17, 190-203.	1.4	7
2852	Ion-Exchange Chromatography Coupled to Mass Spectrometry in Life Science, Environmental, and Medical Research. Analytical Chemistry, 2023, 95, 152-166.	3.2	12
2853	Effects of periodontal pathogen-induced intestinal dysbiosis on transplant immunity in an allogenic skin graft model. Scientific Reports, 2023, 13, .	1.6	3
2854	Combating the Sustained Inflammation Involved in Aging and Neurodegenerative Diseases with Probiotics. Healthy Ageing and Longevity, 2023, , 193-213.	0.2	0
2855	Asse microbiota-intestino-cervello e neuroinfi ammazione nella patogenesi della malattia di Parkinson. Pnei Review, 2022, , 31-44.	0.1	0
2856	Synbiotic-IgY Therapy Modulates the Mucosal Microbiome and Inflammatory Indices in Dogs with Chronic Inflammatory Enteropathy: A Randomized, Double-Blind, Placebo-Controlled Study. Veterinary Sciences, 2023, 10, 25.	0.6	5
2858	Essential Minerals and Metabolic Adaptation of Immune Cells. Nutrients, 2023, 15, 123.	1.7	4

#	Article	IF	CITATIONS
2859	Intestinal dysbiosis, obesity and metabolic syndrome: how to quit this tricky triangle?. Modern Gastroenterology, 2019, , 45-56.	0.1	0
2860	Gut Microbiota Alterations and Primary Glomerulonephritis in Children: A Review. International Journal of Molecular Sciences, 2023, 24, 574.	1.8	2
2863	The potential role of short chain fatty acids improving ex vivo T and CAR-T cell fitness and expansion for cancer immunotherapies. Frontiers in Immunology, 0, 14, .	2.2	0
2864	Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature, 2023, 613, 639-649.	13.7	108
2865	Beyond allergic progression: From molecules to microbes as barrier modulators in the gut-lung axis functionality. Frontiers in Allergy, 0, 4, .	1.2	4
2866	Housing temperature plays a critical role in determining gut microbiome composition in research mice: Implications for experimental reproducibility. Biochimie, 2023, 210, 71-81.	1.3	2
2867	Gut–lung crosstalk during critical illness. Current Opinion in Critical Care, 2023, 29, 130-137.	1.6	6
2868	Assessment of the human placental microbiome in early pregnancy. Frontiers in Medicine, 0, 10, .	1.2	4
2869	Leveraging the microbiome in the treatment of sepsis: potential pitfalls and new perspectives. Current Opinion in Critical Care, 2023, 29, 123-129.	1.6	2
2870	Understanding the role of the gut microbiome in gastrointestinal cancer: A review. Frontiers in Pharmacology, 0, 14, .	1.6	55
2871	Gut microbiome interventions in regenerative medicine. , 2023, , 477-506.		0
2872	Do proton pump inhibitors alter the response to immune checkpoint inhibitors in cancer patients? A meta-analysis. Frontiers in Immunology, 0, 14, .	2.2	10
2874	Insights and strategies to promote immune tolerance in allogeneic hematopoietic stem cell transplantation recipients. , 2023, , 329-360.		0
2875	Inflammatory Response: A Crucial Way for Gut Microbes to Regulate Cardiovascular Diseases. Nutrients, 2023, 15, 607.	1.7	12
2876	Application of emerging technologies for gut microbiome research. Singapore Medical Journal, 2023, 64, 45.	0.3	7
2877	Epigenetics of T cell-mediated immunological responses. , 2023, , 149-179.		1
2878	Adding a polyphenol-rich fiber bundle to food impacts the gastrointestinal microbiome and metabolome in dogs. Frontiers in Veterinary Science, 0, 9, .	0.9	4
2879	Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines, 2023, 11, 294.	1.4	31

		CITATION REPORT		
#	Article		IF	Citations
2880	Immune-Related Adverse Events of the Gastrointestinal System. Cancers, 2023, 15, 69	1.	1.7	1
2881	Plasma Metabolic Analysis Reveals the Dysregulation of Short-Chain Fatty Acid Metabo Parkinson's Disease. Molecular Neurobiology, 2023, 60, 2619-2631.	blism in	1.9	3
2882	B.infantis enhances immunotherapy for Guillain-Barre syndrome through regulating PD Neurology, 2023, 23, .)-1. BMC	0.8	2
2883	Metabolic Contributions to Pathobiology of Asthma. Metabolites, 2023, 13, 212.		1.3	5
2884	Study on the effect of different concentrations of choline glycine ionic liquid-water miz debranched starch butyrylation reaction. Carbohydrate Polymers, 2023, 308, 120680.	tures on	5.1	4
2886	Gut Microbial Metabolites on Host Immune Responses in Health and Disease. Immune .	Network, 2023, 23,	1.6	8
2887	<i>Lactobacillus plantarum</i> ZJ316 alleviates ulcerative colitis by inhibiting inflamma regulating short-chain fatty acid levels and the gut microbiota in a mouse model. Food 2023, 14, 3982-3993.	ation and and Function,	2.1	7
2888	Medicinal herbs and teas. , 2023, , 265-285.			0
2889	Dietary tryptophan deficiency promotes gut RORÎ ³ t+ Treg cells at the expense of Gata alters commensal microbiota metabolism. Cell Reports, 2023, 42, 112135.	3+ Treg cells and	2.9	9
2890	Effects of a Synbiotic on Plasma Immune Activity Markers and Short-Chain Fatty Acids Adults with ADHD—A Randomized Controlled Trial. Nutrients, 2023, 15, 1293.	in Children and	1.7	5
2891	Autoimmunity in people with cystic fibrosis. Journal of Cystic Fibrosis, 2023, , .		0.3	0
2892	The Microbiome and Uveitis. American Journal of Pathology, 2023, 193, 1638-1647.		1.9	2
2893	Microbiota-derived short chain fatty acids: Their role and mechanisms in viral infection and Pharmacotherapy, 2023, 160, 114414.	s. Biomedicine	2.5	5
2894	Dietary glutamate enhances intestinal immunity by modulating microbiota and Th17/T balance-related immune signaling in piglets after lipopolysaccharide challenge. Food Re International, 2023, 166, 112597.	reg esearch	2.9	3
2895	Maternal Vitamin A deficiency during pregnancy and lactation induced damaged intest and intestinal flora homeostasis in offspring mice. Food Science and Nutrition, 0, , .	inal structure	1.5	0
2896	Meta-Analysis Reveals Compositional and Functional Microbial Changes Associated wir Osteoporosis. Microbiology Spectrum, 2023, 11, .	th	1.2	5
2897	The role of T cells in acute ischemic stroke. Brain Research Bulletin, 2023, 196, 20-33.		1.4	4
2898	Western diet influences on microbiome and carcinogenesis. Seminars in Immunology,	2023, 67, 101756.	2.7	2

		ATION REPORT	
#	Article	IF	CITATIONS
2899	The Microbiome and Central Nervous System Tumors. Advances in Oncology, 2023, 3, 97-105.	0.1	0
2900	Alterations of the intestinal mucus layer correlate with dysbiosis and immune dysregulation in human Type 1 Diabetes. EBioMedicine, 2023, 91, 104567.	2.7	6
2901	New insight into gut microbiota and their metabolites in ischemic stroke: A promising therapeutic target. Biomedicine and Pharmacotherapy, 2023, 162, 114559.	2.5	5
2902	Microbiota-derived short-chain fatty acids and modulation of host-derived peptides formation: Focused on host defense peptides. Biomedicine and Pharmacotherapy, 2023, 162, 114586.	2.5	9

2904	Microbial metabolites and immunotherapy: Basic rationale and clinical indications. Seminars in Immunology, 2023, 67, 101755.	2.7	4
2905	Dietary genistein increases microbiota-derived short chain fatty acid levels, modulates homeostasis of the aging gut, and extends healthspan and lifespan. Pharmacological Research, 2023, 188, 106676.	3.1	14
2906	Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers, 2023, 15, 866.	1.7	15
2907	The role of the gut microbiota and fecal microbiota transplantation in neuroimmune diseases. Frontiers in Neurology, 0, 14, .	1.1	5
2908	The direct correlation between microbiota and SARS-CoV-2 infectious disease. Inflammopharmacology, 0, , .	1.9	2
2909	The role of short-chain fatty acids in inflammatory skin diseases. Frontiers in Microbiology, 0, 13, .	1.5	9
2910	Is there a role for microbiome-based approach in common variable immunodeficiency?. Clinical and Experimental Medicine, 2023, 23, 1981-1998.	1.9	2
2911	The multifaceted virulence of adherent-invasive <i>Escherichia coli</i> . Gut Microbes, 2023, 15, .	4.3	10
2912	Subarachnoid hemorrhage: New insights on pathogenesis. , 0, 2, .		0
2913	The role of WNT10B in physiology and disease: A 10-year update. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	6
2914	Probiotics and Prebiotics: Any Role in Menopause-Related Diseases?. Current Nutrition Reports, 0, , .	2.1	6
2915	Effects of polysaccharides from <i>Gastrodia elata</i> on the immunomodulatory activity and gut microbiota regulation in cyclophosphamideâ€ŧreated mice. Journal of the Science of Food and Agriculture, 2023, 103, 3390-3401.	1.7	7
2916	Bacterial Metabolites: A Link between Gut Microbiota and Dermatological Diseases. International Journal of Molecular Sciences, 2023, 24, 3494.	1.8	13

#	Article	IF	CITATIONS
2917	Re-defining the Gut Heart Axis: A Systematic Review of the Literature on the Role of Gut Microbial Dysbiosis in Patients With Heart Failure. Cureus, 2023, , .	0.2	0
2918	Principles of regulatory TÂcell function. Immunity, 2023, 56, 240-255.	6.6	48
2919	A structure defined pectin SA02B from Semiaquilegia adoxoides is metabolized by human gut microbes. International Journal of Biological Macromolecules, 2023, 234, 123673.	3.6	2
2920	A Novel Synbiotic Alleviates Autoimmune Hepatitis by Modulating the Gut Microbiota-Liver Axis and Inhibiting the Hepatic TLR4/NF-κB/NLRP3 Signaling Pathway. MSystems, 2023, 8, .	1.7	16
2922	Two doses of Lactobacillus induced different microbiota profiles and serum immune indices in pigs. Journal of Functional Foods, 2023, 102, 105405.	1.6	3
2924	Mechanisms of Blood–Brain Barrier Protection by Microbiota-Derived Short-Chain Fatty Acids. Cells, 2023, 12, 657.	1.8	29
2925	Crosstalk between microbiome, regulatory T cells and HCA2 orchestrates the inflammatory response in a murine psoriasis model. Frontiers in Immunology, 0, 14, .	2.2	2
2927	Butyrate limits human natural killer cell effector function. Scientific Reports, 2023, 13, .	1.6	10
2928	Probiotics in atopic dermatitis: Where do we stand?. Apollo Medicine, 2023, 20, 71.	0.0	0
2929	Butyrate Properties in Immune-Related Diseases: Friend or Foe?. Fermentation, 2023, 9, 205.	1.4	6
2930	Caloric restriction for the immunometabolic control of human health. Cardiovascular Research, 2024, 119, 2787-2800.	1.8	6
2931	Interactions between microbiota and cervical epithelial, immune, and mucus barrier. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	9
2932	Seminars in immunology special issue: Nutrition, microbiota and immunity The unexplored microbes in health and disease. Seminars in Immunology, 2023, 66, 101735.	2.7	1
2933	A major mechanism for immunomodulation: Dietary fibres and acid metabolites. Seminars in Immunology, 2023, 66, 101737.	2.7	15
2934	Immunologic Regulation of Health and Inflammation in the Intestine. , 2023, , 15-32.		0
2935	Interplay between gut microbiota in immune homeostasis and inflammatory diseases. , 2023, , 143-154.		0
2936	Pain-resolving immune mechanisms in neuropathic pain. Nature Reviews Neurology, 0, , .	4.9	9
2937	Complex regulatoryÂeffects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. , 2023, 20, 341-350.		20

#	Article	IF	CITATIONS
2938	The Impact of Gut Microbiota-Derived Metabolites on the Tumor Immune Microenvironment. Cancers, 2023, 15, 1588.	1.7	7
2939	Microbial Components and Effector Molecules in T Helper Cell Differentiation and Function. Immune Network, 2023, 23, .	1.6	4
2940	Interaction of gut microbiota with the tumor microenvironment: A new strategy for antitumor treatment and traditional Chinese medicine in colorectal cancer. Frontiers in Molecular Biosciences, 0, 10, .	1.6	4
2941	Tissue-resident Lachnospiraceae family bacteria protect against colorectal carcinogenesis by promoting tumor immune surveillance. Cell Host and Microbe, 2023, 31, 418-432.e8.	5.1	44
2942	Pivotal Role of Intestinal Microbiota and Intraluminal Metabolites for the Maintenance of Gut–Bone Physiology. International Journal of Molecular Sciences, 2023, 24, 5161.	1.8	3
2943	Effect of Bifidobacterium on osteoclasts: TNF-α/NF-κB inflammatory signal pathway-mediated mechanism. Frontiers in Endocrinology, 0, 14, .	1.5	5
2944	The causality between intestinal flora and allergic diseases: Insights from a bi-directional two-sample Mendelian randomization analysis. Frontiers in Immunology, 0, 14, .	2.2	21
2945	Targeting regulatory T cell metabolism in disease: Novel therapeutic opportunities. European Journal of Immunology, 2023, 53, .	1.6	3
2946	Gut microbiota dysbiosis associated with different types of demyelinating optic neuritis in patients. Multiple Sclerosis and Related Disorders, 2023, 72, 104619.	0.9	0
2947	Role of the Gut Microbiome in the Development of Atherosclerotic Cardiovascular Disease. International Journal of Molecular Sciences, 2023, 24, 5420.	1.8	10
2948	Human Milk Lipids and Small Metabolites: Maternal and Microbial Origins. Metabolites, 2023, 13, 422.	1.3	5
2949	Programmed and environmental determinants driving neonatal mucosal immune development. Immunity, 2023, 56, 485-499.	6.6	10
2950	Role of prebiotic dietary fiber in periodontal disease: A systematic review of animal studies. Frontiers in Nutrition, 0, 10, .	1.6	0
2951	Breast milk microRNAs: Potential players in oral tolerance development. Frontiers in Immunology, 0, 14, .	2.2	8
2952	Cross-Talk Between Gut Microbiota and Immune Cells and Its Impact on Inflammatory Diseases. , 2023, , 139-162.		0
2953	Altered gut microbiota is associated with different immunologic responses to antiretroviral therapy in HIVâ€infected men who have sex with men. Journal of Medical Virology, 2023, 95, .	2.5	4
2954	Application of chitosan-coated foods, fruits and vegetables on inflammation in metabesity. , 2023, , 431-446.		0
2955	Development of a reproducible small intestinal microbiota model and its integration into the SHIMEÄ®-system, a dynamic in vitro gut model. Frontiers in Microbiology, 0, 13, .	1.5	2

	CITATION REPORT	
ARTICLE The impact of microbiome dysbiosis on T cell function within the tumor microenvironment (TME). Frontiers in Cell and Developmental Biology, 0, 11, .	IF 1.8	Citations
Antibiotic associated diarrhea in outpatient pediatric antibiotic therapy. BMC Pediatrics, 2023, 23, .	. 0.7	0
Immunotherapy for hepatocellular carcinoma: Recent advances and future targets. , 2023, 244, 108	8387.	12
Strain-Level Dynamics Reveal Regulatory Roles in Atopic Eczema by Gut Bacterial Phages. Microbiol Spectrum, 2023, 11, .	ogy 1.2	4
Radiation Therapy and the Microbiome; More Than a Gut Feeling. Cancer Journal (Sudbury, Mass), 2 29, 84-88.	2023, 1.0	1
Perspective Chapter: Epigenetic Therapy - The Future Treatment for Cancer. , 0, , .		0
Infant gut microbiome composition correlated with type 1 diabetes acquisition in the general population: the ABIS study. Diabetologia, 2023, 66, 1116-1128.	2.9	12
The Effect of In Utero Exposure to Maternal Inflammatory Bowel Disease and Immunomodulators o Infant Immune System Development and Function. Cellular and Molecular Gastroenterology and Hepatology, 2023, 16, 165-181.	n 2.3	0
Predictive short/long-term efficacy biomarkers and resistance mechanisms of CD19-directed CAR-T immunotherapy in relapsed/refractory B-cell lymphomas. Frontiers in Immunology, 0, 14, .	2.2	1
Bifidobacterium longum Administration Diminishes Parasitemia and Inflammation During Plasmodiu berghei Infection in Mice. Journal of Inflammation Research, 0, Volume 16, 1393-1404.	um 1.6	2
Role of gut microbiota in infectious and inflammatory diseases. Frontiers in Microbiology, 0, 14, .	1.5	12
Gut microbiota disruption during sepsis and the influence of innate metabolites on sepsis prognosis International Microbiology, 0, , .	s. 1.1	0
Short chain fatty acids: key regulators of the local and systemic immune response in inflammatory diseases and infections. Open Biology, 2023, 13, .	1.5	18
T Cell Subsets and the Expression of Related MicroRNAs in Patients with Recurrent Early Pregnancy Loss. Mediators of Inflammation, 2023, 2023, 1-8.	1.4	0
Alteration of Community Metabolism by Prebiotics and Medicinal Herbs. Microorganisms, 2023, 11	, 868. 1.6	1
Gut Failure: A Review of the Pathophysiology and Therapeutic Potentials in the Gut–Heart Axis. Journal of Clinical Medicine, 2023, 12, 2567.	1.0	5
Arresting microbiome development limits immune system maturation and resistance to infection in mice. Cell Host and Microbe, 2023, 31, 554-570.e7.	5.1	22

2974	Gut microbiota and hypertension: association, mechanisms and treatment. Clinical and Experimental Hypertension, 2023, 45, .	0.5	21
------	---	-----	----

#

#	Article	IF	CITATIONS
2975	Effect of Wheat-Derived Arabinoxylan on the Gut Microbiota Composition and Colonic Regulatory T Cells. Molecules, 2023, 28, 3079.	1.7	4
2976	Dietary and microbiome evidence in multiple myeloma and other plasma cell disorders. Leukemia, 2023, 37, 964-980.	3.3	7
2977	Maternal diet modulates the infant microbiome and intestinal Flt3L necessary for dendritic cell development and immunity to respiratory infection. Immunity, 2023, 56, 1098-1114.e10.	6.6	9
2978	Analysis of microbiota-host communication mediated by butyrate in Atlantic salmon. Computational and Structural Biotechnology Journal, 2023, 21, 2558-2578.	1.9	1
2979	Human Genes Involved in the Interaction between Host and Gut Microbiome: Regulation and Pathogenic Mechanisms. Genes, 2023, 14, 857.	1.0	3
2980	Effects of the loss of maternal gut microbiota before pregnancy on gut microbiota, food allergy susceptibility, and epigenetic modification on subsequent generations. Bioscience of Microbiota, Food and Health, 2023, , .	0.8	0
2981	Crosstalk between Gut Microbiota and Hepatocellular Carcinoma. Gastrointestinal Disorders, 2023, 5, 127-143.	0.4	1
2982	The Roles and Mechanisms of Gut Microbiota in Food Allergy. , 2023, 2023, 1-16.		4
2983	Deciphering Gut Microbiome Responses upon Microplastic Exposure via Integrating Metagenomics and Activity-Based Metabolomics. Metabolites, 2023, 13, 530.	1.3	2
2984	Early aging and premature vascular aging in chronic kidney disease. CKJ: Clinical Kidney Journal, 2023, 16, 1751-1765.	1.4	2
2985	New Approach to Improving the Prognosis of Ischemic Stroke by Regulating SCFAs with Acupuncture-Rehabilitation Therapy Based on Gut-Brain Axis. Rehabilitation Medicine, 2023, 33, 90-96.	0.1	1
2986	Genes and Microbiota Interaction in Monogenic Autoimmune Disorders. Biomedicines, 2023, 11, 1127.	1.4	2
2987	Protective Effect of Novel Lactobacillus plantarum KC3 Isolated from Fermented Kimchi on Gut and Respiratory Disorders. Microorganisms, 2023, 11, 967.	1.6	4
2988	Immunomodulatory Properties of Probiotics and Their Derived Bioactive Compounds. Applied Sciences (Switzerland), 2023, 13, 4726.	1.3	3
2990	Characterization of lymphocyte subsets and intestinal short-chain fatty acids in benzene-induced immunosuppressive mice. Environmental Science and Pollution Research, 0, , .	2.7	0
2991	Development of Type 1 Diabetes in Mice Is Associated with a Decrease in IL-2-Producing ILC3 and FoxP3+ Treg in the Small Intestine. Molecules, 2023, 28, 3366.	1.7	2
2992	Defining Interactions Between the Genome, Epigenome, and the Environment in Inflammatory Bowel Disease: Progress and Prospects. Gastroenterology, 2023, 165, 44-60.e2.	0.6	9
2993	Dietary Polyphenols, Microbiome, and Multiple Sclerosis: From Molecular Anti-Inflammatory and Neuroprotective Mechanisms to Clinical Evidence. International Journal of Molecular Sciences, 2023, 24, 7247.	1.8	9

#	Article	IF	Citations
2994	Prebiotic and Probiotic Modulation of the Microbiota–Gut–Brain Axis in Depression. Nutrients, 2023, 15, 1880.	1.7	10
2995	Probiotics for the treatment of depression and its comorbidities: A systemic review. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	5
2996	<i>Lactobacillus coryniformis</i> subsp <i>. torquens</i> inhibits bone loss in obese mice <i>via</i> modification of the gut microbiota. Food and Function, 0, , .	2.1	1
2997	Gut microbiota and ionizing radiation-induced damage: Is there a link?. Environmental Research, 2023, 229, 115947.	3.7	1
2998	Biomarkers of aging. Science China Life Sciences, 2023, 66, 893-1066.	2.3	60
2999	Specific host metabolite and gut microbiome alterations are associated with bone loss during spaceflight. Cell Reports, 2023, 42, 112299.	2.9	4
3000	Prognostic and Predictive Biomarkers in the Era of Immunotherapy for Lung Cancer. International Journal of Molecular Sciences, 2023, 24, 7577.	1.8	2
3002	Human immune and gut microbial parameters associated with inter-individual variations in COVID-19 mRNA vaccine-induced immunity. Communications Biology, 2023, 6, .	2.0	8
3003	Gut–liver axis: barriers and functional circuits. Nature Reviews Gastroenterology and Hepatology, 2023, 20, 447-461.	8.2	26
3026	Gut Microbiome–Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chemical Neuroscience, 2023, 14, 1717-1763.	1.7	24
3042	Microbiome therapeutics as an alternative to the antibiotics. , 2023, , 421-441.		0
3043	Microbiome-mediated TÂcell regulation, inflammation, and disease. , 2023, , 443-475.		0
3050	Gut microbiome immaturity and childhood acute lymphoblastic leukaemia. Nature Reviews Cancer, 2023, 23, 565-576.	12.8	5
3058	Gut microbiota bridges dietary nutrients and host immunity. Science China Life Sciences, 2023, 66, 2466-2514.	2.3	11
3065	Regulatory T cells in the face of the intestinal microbiota. Nature Reviews Immunology, 2023, 23, 749-762.	10.6	15
3068	Linking diet and gut microbiota in multiple sclerosis. , 2023, , 557-570.		0
3084	Gastrointestinal disorders in Parkinson's disease and other Lewy body diseases. Npj Parkinson's Disease, 2023, 9, .	2.5	3
3087	Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	20

#	Article	IF	CITATIONS
3103	Gut OncoMicrobiome Signatures (GOMS) as next-generation biomarkers for cancer immunotherapy. Nature Reviews Clinical Oncology, 2023, 20, 583-603.	12.5	16
3112	Bacteria in cancer initiation, promotion and progression. Nature Reviews Cancer, 2023, 23, 600-618.	12.8	21
3113	$\hat{I}^3\hat{I}$ T Cells and Allergic Diseases. Clinical Reviews in Allergy and Immunology, 0, , .	2.9	1
3114	Gut Microbiota Links With Disease. , 2023, , 105-145.		0
3120	The immunology of long COVID. Nature Reviews Immunology, 2023, 23, 618-634.	10.6	70
3131	Mechanisms of oral tolerance. , 2023, , .		0
3134	The gut microbiome: Closing the door to food allergens. , 2023, , .		0
3137	Towards modulating the gut microbiota to enhance the efficacy of immune-checkpoint inhibitors. Nature Reviews Clinical Oncology, 2023, 20, 697-715.	12.5	10
3145	Gut Microbiome, Obesity, and Metabolic Syndrome. , 2023, , 1-12.		0
3146	Potential effects of gut microbiota on host cancers: focus on immunity, DNA damage, cellular pathways, and anticancer therapy. ISME Journal, 2023, 17, 1535-1551.	4.4	6
3168	Gut microbiota and acute kidney injury: immunological crosstalk link. International Urology and Nephrology, 2024, 56, 1345-1358.	0.6	0
3175	Association between primary Sjögren's syndrome and gut microbiota disruption: a systematic review and meta-analysis. Clinical Rheumatology, 2024, 43, 603-619.	1.0	1
3188	Systemic Oncospheres: Host Inflammation and Cancer. , 2023, , 469-495.		0
3189	Microbiome and trauma. , 2024, , 682.e9-682.e15.		0
3190	An overview of the fundamental immune mechanisms of food allergy. , 2023, , .		0
3226	Nutrient intake, epigenetics, and asthma. , 2024, , 677-716.		Ο
3235	Immunometabolism of dendritic cells in health and disease. Advances in Immunology, 2023, , .	1.1	0
3246	Diet diversity and food allergy. , 2023, , .		0

ARTICLE IF CITATIONS The Microbiome, Metabolism, and Networks in Precision Nutrition., 2024, , 91-142. 3255 0 Microbiome-based approaches to food allergy treatment., 2023,,. 3264 Same yet different â€" how lymph node heterogeneity affects immune responses. Nature Reviews 3299 10.6 1 Immunology, 0, , . Neutrophils: from IBD to the gut microbiota. Nature Reviews Gastroenterology and Hepatology, 2024, 8.2 21, 184-197. Current understanding of the Alzheimer's disease-associated microbiome and therapeutic strategies. 3320 3.2 2 Experimental and Molecular Medicine, 2024, 56, 86-94. Microbial metabolites as modulators of host physiology. Advances in Microbial Physiology, 2024, , . 1.0 Targeting the Gut Microbiome to Treat Cardiometabolic Disease. Current Atherosclerosis Reports, 3330 2.0 0 2024, 26, 25-34. Gut Microbiome, Obesity, and Metabolic Syndrome., 2023, , 373-384. 3347 The gut microbiome in systemic lupus erythematosus: lessons from rheumatic fever. Nature Reviews 3355 3.5 0 Rheumatology, 2024, 20, 143-157. Systemic Inflammation as the Health-Related Communication Tool Between the Human Host and Gut 3359 Microbiota in the Framework of Predictive, Preventive, and Personalized Medicine. Advances in Predictive, Preventive and Personalised Medicine, 2024, , 203-241. The Effect of H. pylori Infection on the Gastric Microbiota., 2023, , 701-723. 3383 0 The Role of the Gut Microbiome in Neurological Diseases., 2024, , . 3387 Current perspective of gut-lung axis (GLA) in pulmonary tuberculosis (PTB). AIP Conference 3402 0.3 0 Proceedings, 2024, , . Probiotics: beneficial microbes for health and the food industry., 2024, , 47-86. 3408