The biophysics and cell biology of lipid droplets

Nature Reviews Molecular Cell Biology 14, 775-786 DOI: 10.1038/nrm3699

Citation Report

#	Article	IF	CITATIONS
2	Size and position matter. Nature Reviews Molecular Cell Biology, 2013, 14, 755-757.	16.1	0
3	Microorganism lipid droplets and biofuel development. BMB Reports, 2013, 46, 575-581.	1.1	16
4	Whole Genome Transcript Profiling of Drug Induced Steatosis in Rats Reveals a Gene Signature Predictive of Outcome. PLoS ONE, 2014, 9, e114085.	1.1	48
5	Network and Polymorphic Analysis of Obesity Candidate Gene-Plin1: A Bioinformatics Approach. International Journal of Human Genetics, 2014, 14, 119-129.	0.1	4
6	Environmental control of microtubule-based bidirectional cargo transport. Europhysics Letters, 2014, 107, 18004.	0.7	12
7	Interaction of a Dietary Fiber (Pectin) with Gastrointestinal Components (Bile Salts, Calcium, and) Tj ETQq1 Chemistry, 2014, 62, 12620-12630.	1 0.784314 rg 2.4	gBT /Overlock 69
8	How common is the lipid body-containing interstitial cell in the mammalian lung?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L386-L394.	1.3	47
9	Pathogenicity of Mycobacterium tuberculosis Is Expressed by Regulating Metabolic Thresholds of the Host Macrophage. PLoS Pathogens, 2014, 10, e1004265.	2.1	94
10	Mast Cell Mediators: Their Differential Release and the Secretory Pathways Involved. Frontiers in Immunology, 2014, 5, 569.	2.2	299
11	New Automated Single-Cell Technique for Segmentation and Quantitation of Lipid Droplets. Journal of Histochemistry and Cytochemistry, 2014, 62, 889-901.	1.3	16
12	Spatiotemporal dynamics of triglyceride storage in unilocular adipocytes. Molecular Biology of the Cell, 2014, 25, 4096-4105.	0.9	10
13	Nanofluidity of Fatty Acid Hydrocarbon Chains As Monitored by Benchtop Time-Domain Nuclear Magnetic Resonance. Biochemistry, 2014, 53, 7515-7522.	1.2	20
14	Fluctuation effects in bidirectional cargo transport. European Physical Journal: Special Topics, 2014, 223, 3215-3225.	1.2	7
15	Intestinal lipid absorption and lipoprotein formation. Current Opinion in Lipidology, 2014, 25, 200-206.	1.2	240
16	Phospholipase A2 regulation of lipid droplet formation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1661-1671.	1.2	73
17	Preparation of stable direct emulsions stabilized with a system of phospholipid emulsifiers. Russian Journal of Applied Chemistry, 2014, 87, 485-490.	0.1	2
18	FTIR spectroscopy reveals lipid droplets in drug resistant laryngeal carcinoma cells through detection of increased ester vibrational bands intensity. Analyst, The, 2014, 139, 3407-3415.	1.7	43
19	Elevated concentrate-to-forage ratio in dairy cow rations is associated with a shift in the diameter of milk fat globules and remodeling of their membranes. Journal of Dairy Science, 2014, 97, 6286-6295.	1.4	30

ATION REDO

	Сітатіс	CITATION REPORT	
#	Article	IF	Citations
20	Lipid Structure in Triolein Lipid Droplets. Journal of Physical Chemistry B, 2014, 118, 10335-10340.	1.2	22
21	Molecular speciation and dynamics of oxidized triacylglycerols in lipid droplets: Mass spectrometry and coarse-grained simulations. Free Radical Biology and Medicine, 2014, 76, 53-60.	1.3	26
22	Rab8a-AS160-MSS4 Regulatory Circuit Controls Lipid Droplet Fusion and Growth. Developmental Cell, 2014, 30, 378-393.	3.1	98
23	Memory CD8+ T Cells Use Cell-Intrinsic Lipolysis to Support the Metabolic Programming Necessary for Development. Immunity, 2014, 41, 75-88.	6.6	650
24	Comparative proteomic study reveals 17Î ² -HSD13 as a pathogenic protein in nonalcoholic fatty liver disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11437-11442.	3.3	159
25	Does Cell Mechanics in Adipogenesis Offer New Keys for the Prevention and Management of Obesity?. Biophysical Journal, 2014, 106, 1231-1232.	0.2	0
26	Obesity: A Gateway Disease with a Rising Prevalence. Obesity Facts, 2014, 7, 33-36.	1.6	21
27	Lipid droplet biogenesis. Current Opinion in Cell Biology, 2014, 29, 39-45.	2.6	347
28	Specialization of Oleosins in Oil Body Dynamics during Seed Development in Arabidopsis Seeds Â. Plant Physiology, 2014, 164, 1866-1878.	2.3	104
29	Assessment of lipidomic species in hepatocyte lipid droplets from stressed mouse models. Scientific Data, 2014, 1, 140051.	2.4	10
30	WIPI β-propellers at the crossroads of autophagosome and lipid droplet dynamics. Biochemical Society Transactions, 2014, 42, 1414-1417.	1.6	8
31	Lipid Droplets as Signaling Platforms Linking Metabolic and Cellular Functions. Lipid Insights, 2014, 7, LPI.S11128.	1.0	43
32	Lipid Self-Spreading on Solid Substrates. , 2015, , .		1
33	The lipid droplet—a well-connected organelle. Frontiers in Cell and Developmental Biology, 2015, 3, 49.	1.8	200
34	The Causative Gene in Chanarian Dorfman Syndrome Regulates Lipid Droplet Homeostasis in C. elegans. PLoS Genetics, 2015, 11, e1005284.	1.5	23
35	Phosphatidylcholine: Greasing the Cholesterol Transport Machinery. Lipid Insights, 2015, 8s1, LPI.S31746.	1.0	29
36	Proteolytic hydrolysis of cowpea proteins is able to release peptides with hypocholesterolemic activity. Food Research International, 2015, 77, 43-48.	2.9	44
37	Regulation of lipid droplet dynamics in <i>Saccharomyces cerevisiae</i> depends on the Rab7-like Ypt7p, HOPS complex and V1-ATPase. Biology Open, 2015, 4, 764-775.	0.6	45

ARTICLE IF CITATIONS # Expanding Roles for Lipid Droplets. Current Biology, 2015, 25, R470-R481. 1.8 422 38 Lipid droplet–organelle interactions: emerging roles in lipid metabolism. Current Opinion in Cell 2.6 Biology, 2015, 35, 91-97. Bergamot polyphenol fraction prevents nonalcoholic fatty liver disease via stimulation of lipophag 40 in cafeteria diet-induced rat model of metabolic syndrome. Journal of Nutritional Biochemistry, 2015, 1.9 87 26,938-948. The seipin complex Fld1/Ldb16 stabilizes ER–lipid droplet contact sites. Journal of Cell Biology, 2015, 211, 829-844. Adsorption Kinetics Dictate Monolayer Self-Assembly for Both Lipid-In and Lipid-Out Approaches to 42 1.6 58 Droplet Interface Bilayer Formation. Langmuir, 2015, 31, 12883-12893. Active illumination using a digital micromirror device for quantitative phase imaging. Optics Letters, 1.7 168 2015, 40, 5407. Perilipin 5 mediated lipid droplet remodelling revealed by coherent Raman imaging. Integrative Biology 44 0.6 27 (United Kingdom), 2015, 7, 467-476. Perilipin 5 Regulates Islet Lipid Metabolism and Insulin Secretion in a cAMP-Dependent Manner: 0.3 36 Implication of Its Role in the Postprandial Insulin Secretion. Diabetes, 2015, 64, 1299-1310. Coupled aminophilic reaction and directed metabolic channeling to red Monascus pigments by extractive fermentation in nonionic surfactant micelle aqueous solution. Process Biochemistry, 2015, 1.8 29 46 50, 180-187. Hepatitis C virus and lipid droplets: finding a niche. Trends in Molecular Medicine, 2015, 21, 34-42. 3.5 Cell-Autonomous Heterogeneity of Nutrient Uptake in White Adipose Tissue of Rhesus Macaques. 17 48 1.4 Endocrinology, 2015, 156, 80-89. Altered concentrate to forage ratio in cows ration enhanced bioproduction of specific size 49 4.2 subpopulation of milk fat globules. Food Chemistry, 2015, 179, 199-205. Mapping Live Cell Viscosity with an Aggregationâ€Induced Emission Fluorogen by Means of Twoâ€Photon 50 1.7 87 Fluorescence Lifetime Imaging. Chemistry - A European Journal, 2015, 21, 4315-4320. Discovery, Understanding, and Bioapplication of Organic Fluorophore: A Case Study with an Indolizine-Based Novel Fluorophore, Seoul-Fluor. Accounts of Chemical Research, 2015, 48, 538-547. The life cycle of lipid droplets. Current Opinion in Cell Biology, 2015, 33, 119-124. 52 147 2.6 Lipidomics in drug development. Drug Discovery Today: Technologies, 2015, 13, 33-38. 34 Biology and pathobiology of lipid droplets and their potential role in the protection of the organ of 54 0.9 12 Corti. Hearing Research, 2015, 330, 26-38. Protein Crowding Is a Determinant of Lipid Droplet Protein Composition. Developmental Cell, 2015, 34, 3.1 128 351-363.

#	Article	IF	CITATIONS
56	Beyond the borders — Biomedical applications of non-linear Raman microscopy. Advanced Drug Delivery Reviews, 2015, 89, 135-144.	6.6	20
57	Demonstrating microdroplet coalescence for tailored and biodegradable microgel fabrication. RSC Advances, 2015, 5, 56848-56854.	1.7	9
58	Understanding Dengue Virus Capsid Protein Interaction with Key Biological Targets. Scientific Reports, 2015, 5, 10592.	1.6	19
59	Dynamic polymer systems with self-regulated secretion for the control of surface properties andÂmaterial healing. Nature Materials, 2015, 14, 790-795.	13.3	237
60	As the fat flies: The dynamic lipid droplets of Drosophila embryos. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1156-1185.	1.2	43
61	Ubiquitin-Mediated Proteasomal Degradation of Oleosins is Involved in Oil Body Mobilization During Post-Germinative Seedling Growth in Arabidopsis. Plant and Cell Physiology, 2015, 56, 1374-1387.	1.5	68
62	Identification of a <i>Taraxacum brevicorniculatum</i> rubber elongation factor protein that is localized on rubber particles and promotes rubber biosynthesis. Plant Journal, 2015, 82, 609-620.	2.8	44
63	Lipid droplet dynamics in budding yeast. Cellular and Molecular Life Sciences, 2015, 72, 2677-2695.	2.4	64
64	The structural organization of seed oil bodies could explain the contrasted oil extractability observed in two rapeseed genotypes. Planta, 2015, 242, 53-68.	1.6	19
65	Role of Rab GTPases and their interacting proteins in mediating metabolic signalling and regulation. Cellular and Molecular Life Sciences, 2015, 72, 2289-2304.	2.4	24
66	Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Molecular Biology of the Cell, 2015, 26, 726-739.	0.9	141
67	The Lipid Droplet Protein Hypoxia-inducible Gene 2 Promotes Hepatic Triglyceride Deposition by Inhibiting Lipolysis. Journal of Biological Chemistry, 2015, 290, 15175-15184.	1.6	45
68	De novo lipogenesis in metabolic homeostasis: More friend than foe?. Molecular Metabolism, 2015, 4, 367-377.	3.0	144
69	The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue. Analyst, The, 2015, 140, 2224-2235.	1.7	168
70	Identification of Host Cell Factors Associated with Astrovirus Replication in Caco-2 Cells. Journal of Virology, 2015, 89, 10359-10370.	1.5	32
71	Investigation of relationship between lipid and Monascus pigment accumulation by extractive fermentation. Journal of Biotechnology, 2015, 212, 167-173.	1.9	25
72	Size fractionation and size characterization of nanoemulsions of lipid droplets and large unilamellar lipid vesicles by asymmetric-flow field-flow fractionation/multi-angle light scattering and dynamic light scattering. Journal of Chromatography A, 2015, 1418, 185-191.	1.8	26
73	How Brain Fat Conquers Stress. Cell, 2015, 163, 269-270.	13.5	14

	C	ITATION REPORT	
#	Article	IF	CITATIONS
74	Molecular mechanism of dietary phospholipid requirement of Atlantic salmon, Salmo salar, fry. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1428-1441.	1.2	31
75	Bioinformatics Reveal Five Lineages of Oleosins and the Mechanism of Lineage Evolution Related to Structure/Function from Green Algae to Seed Plants. Plant Physiology, 2015, 169, 453-470.	2.3	56
76	Spectrally resolved fluorescence lifetime imaging of Nile red for measurements of intracellular polarity. Journal of Biomedical Optics, 2015, 20, 096002.	1.4	36
77	The characteristics and potential applications of structural lipid droplet proteins in plants. Journal of Biotechnology, 2015, 201, 15-27.	1.9	39
79	A Molecular Probe for the Detection of Polar Lipids in Live Cells. PLoS ONE, 2016, 11, e0161557.	1.1	29
80	Primitive red alga <i>Cyanidioschyzon merolae</i> accumulates storage glucan and triacylglycerol under nitrogen depletion. Journal of General and Applied Microbiology, 2016, 62, 111-117.	0.4	17
81	Seipin is required for converting nascent to mature lipid droplets. ELife, 2016, 5, .	2.8	292
82	Skin autoimmune disorders: lipid biopolymers and colloidal delivery systems for topical delivery. , 2016, , 257-296.		2
83	Lipidomics—Reshaping the Analysis and Perception of Type 2 Diabetes. International Journal of Molecular Sciences, 2016, 17, 1841.	1.8	43
84	Triglyceride Mobilization from Lipid Droplets Sustains the Anti-Steatotic Action of Iodothyronines in Cultured Rat Hepatocytes. Frontiers in Physiology, 2015, 6, 418.	1.3	29
85	Building a minimum frustration framework for brain functions over long time scales. Journal of Neuroscience Research, 2016, 94, 702-716.	1.3	16
86	Plant acyl-CoA-binding proteins: An emerging family involved in plant development and stress responses. Progress in Lipid Research, 2016, 63, 165-181.	5.3	67
87	Remodeling of lipid bodies by docosahexaenoic acid in activated microglial cells. Journal of Neuroinflammation, 2016, 13, 116.	3.1	42
88	Subcellular Lipid Droplets in Vanilla Leaf Epidermis and Avocado Mesocarp Are Coated with Oleosins of Distinct Phylogenic Lineages. Plant Physiology, 2016, 171, 1867-1878.	2.3	16
89	Fusion detection in time-lapse microscopy images : application to lipid droplets coalescence in plant seeds. IFAC-PapersOnLine, 2016, 49, 239-244.	0.5	0
90	Septin 9 induces lipid droplets growth by a phosphatidylinositol-5-phosphate and microtubule-dependent mechanism hijacked by HCV. Nature Communications, 2016, 7, 12203.	5.8	63
91	Lipid droplet dynamics during <i>Schizosaccharomyces pombe</i> sporulation and their role in spor survival. Biology Open, 2017, 6, 217-222.	e 0.6	13
92	The histone deacetylase inhibiting drug Entinostat induces lipid accumulation in differentiated HepaRG cells. Scientific Reports, 2016, 6, 28025.	1.6	18

#	Article	IF	CITATIONS
93	Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells. Nature Communications, 2016, 7, 11814.	5.8	69
94	Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nature Chemistry, 2016, 8, 569-575.	6.6	278
95	Oil is on the agenda: Lipid turnover in higher plants. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1253-1268.	1.2	38
96	Heart lipid droplets and lipid droplet-binding proteins: Biochemistry, physiology, and pathology. Experimental Cell Research, 2016, 340, 198-204.	1.2	15
97	Label-Free Digital Quantification of Lipid Droplets in Single Cells by Stimulated Raman Microscopy on a Microfluidic Platform. Analytical Chemistry, 2016, 88, 4931-4939.	3.2	47
98	Cellular cholesterol accumulation modulates high fat high sucrose (HFHS) diet-induced ER stress and hepatic inflammasome activation in the development of non-alcoholic steatohepatitis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 594-605.	1.2	31
99	Control of chylomicron export from the intestine. American Journal of Physiology - Renal Physiology, 2016, 310, G659-G668.	1.6	43
100	The physics of lipid droplet nucleation, growth and budding. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 715-722.	1.2	97
101	Mature lipid droplets are accessible to ER luminal proteins. Journal of Cell Science, 2016, 129, 3803-3815.	1.2	42
102	Lipoprotein-like particles in a prokaryote: quinone droplets of <i>Thermoplasma acidophilum</i> . FEMS Microbiology Letters, 2016, 363, fnw169.	0.7	4
104	Embryonic exposures of lithium and homocysteine and folate protection affect lipid metabolism during mouse cardiogenesis and placentation. Reproductive Toxicology, 2016, 61, 82-96.	1.3	9
105	Liver regeneration is associated with lipid reorganization in membranes of the endoplasmic reticulum. Frontiers in Biology, 2016, 11, 396-403.	0.7	0
106	ARAP2 promotes GLUT1-mediated basal glucose uptake through regulation of sphingolipid metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1643-1651.	1.2	14
107	Epigenetic changes in cancer by Raman imaging, fluorescence imaging, AFM and scanning near-field optical microscopy (SNOM). Acetylation in normal and human cancer breast cells MCF10A, MCF7 and MDA-MB-231. Analyst, The, 2016, 141, 5646-5658.	1.7	38
108	Rab proteins as regulators of lipid droplet formation and lipolysis. Cell Biology International, 2016, 40, 1026-1032.	1.4	31
109	Hdac3 Deficiency Increases Marrow Adiposity and Induces Lipid Storage and Glucocorticoid Metabolism in Osteochondroprogenitor Cells. Journal of Bone and Mineral Research, 2016, 31, 116-128.	3.1	58
110	Saturated fatty acid in the phospholipid monolayer contributes to theÂformation of large lipid droplets. Biochemical and Biophysical Research Communications, 2016, 480, 641-647.	1.0	36
111	Reep1null mice reveal a converging role for hereditary spastic paraplegia proteins in lipid droplet regulation. Human Molecular Genetics, 2016, 25, ddw315.	1.4	72

C	E A 751	DEDC	NDT.
			ו גוו
\sim		ICLI C	

#	Article	IF	CITATIONS
112	Droplet migration characteristics in confined oscillatory microflows. Physical Review E, 2016, 93, 023106.	0.8	15
113	The Perilipins: Major Cytosolic Lipid Droplet–Associated Proteins and Their Roles in Cellular Lipid Storage, Mobilization, and Systemic Homeostasis. Annual Review of Nutrition, 2016, 36, 471-509.	4.3	208
114	Thermal fluctuations of an interface near a contact line. Physical Review E, 2016, 94, 052803.	0.8	9
115	Spatial control of lipid droplet proteins by the <scp>ERAD</scp> ubiquitin ligase Doa10. EMBO Journal, 2016, 35, 1644-1655.	3.5	65
116	Lipid droplet-associated proteins in atherosclerosis (Review). Molecular Medicine Reports, 2016, 13, 4527-4534.	1.1	50
117	Insertion of perilipin 3 into a glycero(phospho)lipid monolayer depends on lipid headgroup and acyl chain species. Journal of Lipid Research, 2016, 57, 1465-1476.	2.0	23
118	Further increased production of free fatty acids by overexpressing a predicted transketolase gene of the pentose phosphate pathway in Aspergillus oryzae faaA disruptant. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1829-1835.	0.6	13
119	Unprecedented staining of polar lipids by a luminescent rhenium complex revealed by FTIR microspectroscopy in adipocytes. Molecular BioSystems, 2016, 12, 2064-2068.	2.9	26
120	Pharmacological inhibition of lipid droplet formation enhances the effectiveness of curcumin in glioblastoma. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 100, 66-76.	2.0	44
121	The Role of Cholesterol in the Pathogenesis of NASH. Trends in Endocrinology and Metabolism, 2016, 27, 84-95.	3.1	347
122	Detailed characterization of alterations in the lipid profiles during autophagic cell death of leukemia cells. RSC Advances, 2016, 6, 29512-29518.	1.7	10
123	The role of triacylglycerol in cardiac energy provision. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1481-1491.	1.2	21
124	Targeting Fat: Mechanisms of Protein Localization to Lipid Droplets. Trends in Cell Biology, 2016, 26, 535-546.	3.6	242
125	The protein and lipid composition of the membrane of milk fat globules depends on their size. Journal of Dairy Science, 2016, 99, 4726-4738.	1.4	65
126	A Three omponent Assembly Promoted by Boronic Acids Delivers a Modular Fluorophore Platform (BASHY Dyes). Chemistry - A European Journal, 2016, 22, 1631-1637.	1.7	56
127	Dropping in on the lipid droplet- tumor protein D52 (TPD52) as a new regulator and resident protein. Adipocyte, 2016, 5, 326-332.	1.3	5
128	Lipid droplets go nuclear. Journal of Cell Biology, 2016, 212, 7-8.	2.3	28
129	Artificial biomembranes stabilized over spin coated hydrogel scaffolds. Crosslinking agent nature induces wrinkled or flat surfaces on the hydrogel. Chemistry and Physics of Lipids, 2016, 196, 13-23.	1.5	6

#	Article	IF	CITATIONS
130	Impaired adipogenic capacity in induced pluripotent stem cells from lipodystrophic patients with BSCL2 mutations. Metabolism: Clinical and Experimental, 2016, 65, 543-556.	1.5	24
131	Effects of rumen-protected methionine and choline supplementation on the preimplantation embryo in Holstein cows. Theriogenology, 2016, 85, 1669-1679.	0.9	39
132	Cis and Trans Cooperativity of E-Cadherin Mediates Adhesion in Biomimetic Lipid Droplets. Biophysical Journal, 2016, 110, 391-399.	0.2	25
133	Differential Roles of Cell Death-inducing DNA Fragmentation Factor-α-like Effector (CIDE) Proteins in Promoting Lipid Droplet Fusion and Growth in Subpopulations of Hepatocytes. Journal of Biological Chemistry, 2016, 291, 4282-4293.	1.6	85
134	Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 2016, 100, 3781-3798.	1.7	85
135	Large lipid droplets in leaf epidermis of angiosperms. Flora: Morphology, Distribution, Functional Ecology of Plants, 2016, 219, 62-67.	0.6	8
136	Lipid droplets, lipophagy, and beyond. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 793-805.	1.2	133
137	Hepatic De Novo Lipogenesis and Regulation of Metabolism. , 2016, , .		7
138	Lipid Droplet Proteins and Hepatic Lipid Metabolism. , 2016, , 165-188.		0
139	Conserved Amphipathic Helices Mediate Lipid Droplet Targeting of Perilipins 1–3. Journal of Biological Chemistry, 2016, 291, 6664-6678.	1.6	104
140	Lipid droplet dynamics in skeletal muscle. Experimental Cell Research, 2016, 340, 180-186.	1.2	57
141	Fatty Acid Handling in Mammalian Cells. , 2016, , 149-184.		13
142	Role of bioactive lipid mediators in obese adipose tissue inflammation and endocrine dysfunction. Molecular and Cellular Endocrinology, 2016, 419, 44-59.	1.6	64
143	Lipid droplet mobilization: The different ways to loosen the purse strings. Biochimie, 2016, 120, 17-27.	1.3	54
144	Unsaturated lipid bodies as a hallmark of inflammation studied by Raman 2D and 3D microscopy. Scientific Reports, 2017, 7, 40889.	1.6	75
145	Cross-talk between lipid and protein carbonylation in a dynamic cardiomyocyte model of mild nitroxidative stress. Redox Biology, 2017, 11, 438-455.	3.9	38
146	Probing micro-environment of lipid droplets in a live breast cell: MCF7 and MCF10A. Chemical Physics Letters, 2017, 670, 27-31.	1.2	40
147	Differently localized lysophosphatidic acid acyltransferases crucial for triacylglycerol biosynthesis in the oleaginous alga <i>Nannochloropsis</i> . Plant Journal, 2017, 90, 547-559.	2.8	52

#	Article	IF	CITATIONS
148	Lipid droplet growth: regulation of a dynamic organelle. Current Opinion in Cell Biology, 2017, 47, 9-15.	2.6	60
149	Downsizing cumulus cell layers to improve cryotolerance of germinal vesicle-stage bovine oocytes. Theriogenology, 2017, 95, 1-7.	0.9	11
150	Phosphatidylcholine transfer protein/StarD2 promotes microvesicular steatosis and liver injury in murine experimental steatohepatitis. American Journal of Physiology - Renal Physiology, 2017, 313, G50-G61.	1.6	11
151	Interdigitation between Triglycerides and Lipids Modulates Surface Properties of Lipid Droplets. Biophysical Journal, 2017, 112, 1417-1430.	0.2	102
152	Lipid droplets and liver disease: from basic biology to clinical implications. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 343-355.	8.2	427
153	Specific Imaging of Intracellular Lipid Droplets Using a Benzothiadiazole Derivative with Solvatochromic Properties. Bioconjugate Chemistry, 2017, 28, 1363-1370.	1.8	43
154	Correlations between Structure and Near-Infrared Spectra of Saturated and Unsaturated Carboxylic Acids. Insight from Anharmonic Density Functional Theory Calculations. Journal of Physical Chemistry A, 2017, 121, 3437-3451.	1.1	64
155	Lysophosphatidylcholine acyltransferase 1 is downregulated by hepatitis C virus: impact on production of lipo-viro-particles. Gut, 2017, 66, 2160-2169.	6.1	16
156	Turning Over a New Leaf in Lipid Droplet Biology. Trends in Plant Science, 2017, 22, 596-609.	4.3	126
157	Lipid droplet hijacking by intracellular pathogens. Cellular Microbiology, 2017, 19, e12688.	1.1	78
158	Sequential self-assembly of DNA functionalized droplets. Nature Communications, 2017, 8, 21.	5.8	63
159	Live cell imaging and analysis of lipid droplets biogenesis in hepatatis C virus infected cells. Methods, 2017, 127, 30-36.	1.9	8
160	Lipid Droplets: Formation to Breakdown. Lipids, 2017, 52, 465-475.	0.7	57
161	Nanomaterials in Daily Life. , 2017, , .		13
162	Breaking fat! How mycobacteria and other intracellular pathogens manipulate host lipid droplets. Biochimie, 2017, 141, 54-61.	1.3	61
163	Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation. Archives of Microbiology, 2017, 199, 1195-1209.	1.0	27
164	ER Membrane Phospholipids and Surface Tension Control Cellular Lipid Droplet Formation. Developmental Cell, 2017, 41, 591-604.e7.	3.1	213
165	A different kind of love – lipid droplet contact sites. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1188-1196.	1.2	160

#	Article	IF	CITATIONS
166	Improved clearing of lipid droplet-rich tissues for three-dimensional structural elucidation. Acta Biochimica Et Biophysica Sinica, 2017, 49, 465-467.	0.9	9
167	Function of lipid droplet-organelle interactions in lipid homeostasis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1459-1468.	1.9	80
168	Quantification of Lipid Metabolism in Living Cells through the Dynamics of Lipid Droplets Measured by Stimulated Raman Scattering Imaging. Analytical Chemistry, 2017, 89, 4502-4507.	3.2	63
169	Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. European Journal of Medicinal Chemistry, 2017, 133, 379-402.	2.6	196
170	Insights into Caco-2 cell culture structure using coherent anti-Stokes Raman scattering (CARS) microscopy. International Journal of Pharmaceutics, 2017, 523, 270-280.	2.6	5
171	Interfacial Structure and Hydration of 3D Lipid Monolayers in Aqueous Solution. Journal of Physical Chemistry B, 2017, 121, 2808-2813.	1.2	16
172	Ageing: Lessons from C. elegans. Healthy Ageing and Longevity, 2017, , .	0.2	14
173	Interaction forces and membrane charge tunability: Oleic acid containing membranes in different pH conditions. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 211-217.	1.4	34
174	Protein in culture and endogenous lipid interact with embryonic stages in vitro to alter calf birthweight after embryo vitrification and warming. Reproduction, Fertility and Development, 2017, 29, 1932.	0.1	19
175	The why, when and how of lipid droplet diversity. Journal of Cell Science, 2017, 130, 315-324.	1.2	185
176	Lipid Metabolism, Lipid Signalling and Longevity. Healthy Ageing and Longevity, 2017, , 307-329.	0.2	3
177	Arabidansis linid draplatâfessaciated protein (LDAD) âf" interacting protein (zsepst DIDz/seps) influences		
	lipid droplet size and neutral lipid homeostasis in both leaves and seeds. Plant Journal, 2017, 92, 1182-1201.	2.8	71
178	Ipid droplet size and neutral lipid homeostasis in both leaves and seeds. Plant Journal, 2017, 92, 1182-1201. Quantum Dot-Based Designed Nanoprobe for Imaging Lipid Droplet. Journal of Physical Chemistry C, 2017, 121, 23727-23735.	2.8 1.5	71 23
178 179	Arabidopsis lipid dropletacessociated protein (EDAr) act interacting protein (ESCP/EDIr(S	2.8 1.5 2.0	71 23 23
178 179 180	Arabidopsis lipid dropletacessociated protein (LOAP) act interacting protein (Cscp2EDPC) indenceslipid droplet size and neutral lipid homeostasis in both leaves and seeds. Plant Journal, 2017, 92,1182-1201.Quantum Dot-Based Designed Nanoprobe for Imaging Lipid Droplet. Journal of Physical Chemistry C, 2017, 121, 23727-23735.Regulation of TG accumulation and lipid droplet morphology by the novel TLDP1 in Aurantiochytrium limacinum F26-b. Journal of Lipid Research, 2017, 58, 2334-2347.Recent development of luminescent rhenium(<scp>i</scp>) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents. Dalton Transactions, 2017, 46, 16357-16380.	2.8 1.5 2.0 1.6	71 23 23 142
178 179 180 181	Resultion of TG accumulation and lipid droplet morphology by the novel TLDP1 in Aurantiochytrium limacinum F26-b. Journal of Lipid Research, 2017, 58, 2334-2347. Recent development of luminescent rhenium(<scp>i</scp>) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents. Dalton Transactions, 2017, 46, 16357-16380. Emerging Roles for the Lysosome in Lipid Metabolism. Trends in Cell Biology, 2017, 27, 833-850.	2.8 1.5 2.0 1.6 3.6	71 23 23 142 181
178 179 180 181 182	Ipid droplet size and neutral lipid homeostasis in both leaves and seeds. Plant Journal, 2017, 92, 1182-1201. Quantum Dot-Based Designed Nanoprobe for Imaging Lipid Droplet. Journal of Physical Chemistry C, 2017, 121, 23727-23735. Regulation of TG accumulation and lipid droplet morphology by the novel TLDP1 in Aurantiochytrium limacinum F26-b. Journal of Lipid Research, 2017, 58, 2334-2347. Recent development of luminescent rhenium(<scp>i</scp>) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents. Dalton Transactions, 2017, 46, 16357-16380. Emerging Roles for the Lysosome in Lipid Metabolism. Trends in Cell Biology, 2017, 27, 833-850. Oleate but not stearate induces the regulatory phenotype of myeloid suppressor cells. Scientific Reports, 2017, 7, 7498.	2.8 1.5 2.0 1.6 3.6 1.6	 71 23 23 142 181 35

#	Article	IF	CITATIONS
184	Lipid droplet functions beyond energy storage. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1260-1272.	1.2	402
185	Intramyocellular lipid droplets and insulin sensitivity, the human perspective. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1242-1249.	1.2	44
186	Metabolic control of the scaffold protein TKS5 in tissue-invasive, proinflammatory T cells. Nature Immunology, 2017, 18, 1025-1034.	7.0	103
187	Organelle biogenesis in the endoplasmic reticulum. Nature Cell Biology, 2017, 19, 876-882.	4.6	94
188	Acid-sensitive lipidated doxorubicin prodrug entrapped in nanoemulsion impairs lung tumor metastasis in a breast cancer model. Nanomedicine, 2017, 12, 1751-1765.	1.7	29
189	A Pyridoindoleâ€Based Multifunctional Bioprobe: pHâ€Induced Fluorescence Switching and Specific Targeting of Lipid Droplets. Chemistry - an Asian Journal, 2017, 12, 2501-2509.	1.7	35
190	The collaborative work of droplet assembly. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1205-1211.	1.2	38
191	Hepatic lipophagy: New insights into autophagic catabolism of lipid droplets in the liver. Hepatology Communications, 2017, 1, 359-369.	2.0	73
192	Slfn2 mutationâ€induced loss of Tâ€cell quiescence leads to elevated <i>de novo</i> sterol synthesis. Immunology, 2017, 152, 484-493.	2.0	4
193	Precise Labeling and Tracking of Lipid Droplets in Adipocytes Using a Luminescent ZnSalen Complex. Chemistry - an Asian Journal, 2017, 12, 2533-2538.	1.7	23
194	Lipid droplet subset targeting of the Drosophila protein CG2254/dmLdsdh1. Journal of Cell Science, 2017, 130, 3141-3157.	1.2	21
195	The Lipid Droplet and the Endoplasmic Reticulum. Advances in Experimental Medicine and Biology, 2017, 997, 111-120.	0.8	17
196	Lipids in Insect Oocytes: From the Storage Pathways to Their Multiple Functions. Results and Problems in Cell Differentiation, 2017, 63, 403-434.	0.2	14
197	Lipid Droplet Biogenesis. Annual Review of Cell and Developmental Biology, 2017, 33, 491-510.	4.0	520
198	Pet10p is a yeast perilipin that stabilizes lipid droplets and promotes their assembly. Journal of Cell Biology, 2017, 216, 3199-3217.	2.3	92
199	Lipid Droplet Fusion in Mammary Epithelial Cells is Regulated by Phosphatidylethanolamine Metabolism. Journal of Mammary Cland Biology and Neoplasia, 2017, 22, 235-249.	1.0	35
200	Metabolic reprogramming ensures cancer cell survival despite oncogenic signaling blockade. Genes and Development, 2017, 31, 2067-2084.	2.7	57
201	Visualization of lipid directed dynamics of perilipin 1 in human primary adipocytes. Scientific Reports, 2017, 7, 15011.	1.6	37

	CITATION	Report	
#	ARTICLE	IF	Citations
202	What are the benefits of being big?. Journal of Physiology, 2017, 595, 5409-5410.	1.3	1
203	Lipid Droplets Can Spontaneously Bud Off from a Symmetric Bilayer. Biophysical Journal, 2017, 113, 15-18.	0.2	34
204	Imaging and lipidomics methods for lipid analysis in metabolic and cardiovascular disease. Journal of Developmental Origins of Health and Disease, 2017, 8, 566-574.	0.7	3
205	The Role of Lipid Bodies in the Microglial Aging Process and Related Diseases. Neurochemical Research, 2017, 42, 3140-3148.	1.6	12
206	A comparison between liquid drops and solid particles in partial wetting. Advances in Colloid and Interface Science, 2017, 247, 223-233.	7.0	21
207	Lipid droplet growth and adipocyte development: mechanistically distinct processes connected by phospholipids. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1273-1283.	1.2	25
209	Mice lacking lipid droplet-associated hydrolase, a gene linked to human prostate cancer, have normal cholesterol ester metabolism. Journal of Lipid Research, 2017, 58, 226-235.	2.0	16
210	Lipid Droplets and Metabolic Pathways Regulate Steroidogenesis in the Corpus Luteum. , 2017, , 57-78.		13
211	Endogenous Protein Interactome of Human UDP-Glucuronosyltransferases Exposed by Untargeted Proteomics. Frontiers in Pharmacology, 2017, 8, 23.	1.6	14
212	Identification of the Relationship between Oil Body Morphology and Oil Content by Microstructure Comparison Combining with QTL Analysis in Brassica napus. Frontiers in Plant Science, 2016, 7, 1989.	1.7	31
213	Whispering-gallery-mode emission from biological luminescent protein microcavity assemblies. Optica, 2017, 4, 222.	4.8	37
214	Modulation of Lipid Droplet Metabolism—A Potential Target for Therapeutic Intervention in Flaviviridae Infections. Frontiers in Microbiology, 2017, 8, 2286.	1.5	67
215	Studying Gastric Lipase Adsorption Onto Phospholipid Monolayers by Surface Tensiometry, Ellipsometry, and Atomic Force Microscopy. Methods in Enzymology, 2017, 583, 255-278.	0.4	12
216	An autonomous metabolic role for Spen. PLoS Genetics, 2017, 13, e1006859.	1.5	19
217	Models of non-Alcoholic Fatty Liver Disease and Potential Translational Value: the Effects of 3,5-L-diiodothyronine. Annals of Hepatology, 2017, 16, 707-719.	0.6	25
218	Lipid bilayer stress in obesity-linked inflammatory and metabolic disorders. Biochemical Pharmacology, 2018, 153, 168-183.	2.0	36
219	An Asymmetry in Monolayer Tension Regulates Lipid Droplet Budding Direction. Biophysical Journal, 2018, 114, 631-640.	0.2	73
220	Hepatic subcellular distribution of squalene changes according to the experimental setting. Journal of Physiology and Biochemistry, 2018, 74, 531-538.	1.3	9

#	Article	IF	CITATIONS
221	Forced lipophagy reveals that lipid droplets are required for early embryonic development in mouse. Development (Cambridge), 2018, 145, .	1.2	64
222	Interface-Targeting Strategy Enables Two-Photon Fluorescent Lipid Droplet Probes for High-Fidelity Imaging of Turbid Tissues and Detecting Fatty Liver. ACS Applied Materials & Interfaces, 2018, 10, 10706-10717.	4.0	70
223	The effect of diet and exercise on lipid droplet dynamics in human muscle tissue. Journal of Experimental Biology, 2018, 221, .	0.8	25
224	The formation of giant plasma membrane vesicles enable new insights into the regulation of cholesterol efflux. Experimental Cell Research, 2018, 365, 194-207.	1.2	10
225	Polycation Interactions with Zwitterionic Phospholipid Monolayers on Oil Nanodroplet Suspensions in Water (D ₂ O) Probed by Sum Frequency Scattering. Journal of Physical Chemistry B, 2018, 122, 5049-5056.	1.2	19
226	The cytoplasmic dynein transport machinery and its many cargoes. Nature Reviews Molecular Cell Biology, 2018, 19, 382-398.	16.1	485
227	A giant amphipathic helix from a perilipin that is adapted for coating lipid droplets. Nature Communications, 2018, 9, 1332.	5.8	89
228	Lysosomotropic cationic amphiphilic drugs inhibit adipocyte differentiation in 3T3-L1K cells via accumulation in cells and phospholipid membranes, and inhibition of autophagy. European Journal of Pharmacology, 2018, 829, 44-53.	1.7	6
229	Real time quantitative analysis of lipid storage and lipolysis pathways by confocal spectral imaging of intracellular micropolarity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 783-793.	1.2	18
230	Deletion of Adipose Triglyceride Lipase Links Triacylglycerol Accumulation to a More-Aggressive Phenotype in A549 Lung Carcinoma Cells. Journal of Proteome Research, 2018, 17, 1415-1425.	1.8	35
231	Ultrabright and Fluorogenic Probes for Multicolor Imaging and Tracking of Lipid Droplets in Cells and Tissues. Journal of the American Chemical Society, 2018, 140, 5401-5411.	6.6	294
232	Small rubber particle proteins from <i>Taraxacum brevicorniculatum</i> promote stress tolerance and influence the size and distribution of lipid droplets and artificial poly(<i>cis</i> â€1,4â€isoprene) bodies. Plant Journal, 2018, 93, 1045-1061.	2.8	25
233	Understanding the diversity of membrane lipid composition. Nature Reviews Molecular Cell Biology, 2018, 19, 281-296.	16.1	1,179
234	Brr6 and Brl1 locate to nuclear pore complex assembly sites to promote their biogenesis. Journal of Cell Biology, 2018, 217, 877-894.	2.3	40
235	Arabidopsis serine/threonine/tyrosine protein kinase phosphorylates oil body proteins that regulate oil content in the seeds. Scientific Reports, 2018, 8, 1154.	1.6	16
236	Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. Journal of Cell Biology, 2018, 217, 975-995.	2.3	164
237	New Method for Quantitation of Lipid Droplet Volume From Light Microscopic Images With an Application to Determination of PAT Protein Density on the Droplet Surface. Journal of Histochemistry and Cytochemistry, 2018, 66, 447-465.	1.3	5
238	Neutral dipole-dipole dimers: A new field in science. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 192, 291-296.	2.0	2

#	Article	IF	CITATIONS
239	Autophagy in turnover of lipid stores: trans-kingdom comparison. Journal of Experimental Botany, 2018, 69, 1301-1311.	2.4	25
240	Cold nanourchins and celastrol reorganize the nucleo- and cytoskeleton of glioblastoma cells. Nanoscale, 2018, 10, 1716-1726.	2.8	19
241	Microanalysis using surface modification and biphasic droplets. Polymer Journal, 2018, 50, 699-709.	1.3	4
242	Proteomic profiling of Ganoderma tsugae ethanol extractâ€induced adipogenesis displaying browning features. FEBS Letters, 2018, 592, 1643-1666.	1.3	8
243	Degradation of maternal factors during preimplantation embryonic development. Journal of Reproduction and Development, 2018, 64, 217-222.	0.5	18
244	Structural changes of large lipid droplets in stomatal complex of Trochodendron aralioides and their possible functional significance. Flora: Morphology, Distribution, Functional Ecology of Plants, 2018, 242, 146-154.	0.6	5
245	Systemic profiling of ectopic fat deposits in the reproductive tract of dairy cows. Theriogenology, 2018, 114, 46-53.	0.9	8
246	Identification of small droplets of photosynthetic squalene in engineered <i>Synechococcus elongatus</i> PCC 7942 using TEM and selective fluorescent Nile red analysis. Letters in Applied Microbiology, 2018, 66, 523-529.	1.0	6
247	Mild mitochondrial uncoupling induces HSL/ATGL-independent lipolysis relying on a form of autophagy in 3T3-L1 adipocytes. Journal of Cellular Physiology, 2018, 233, 1247-1265.	2.0	15
248	Lipopolysaccharide can modify differentiation and immunomodulatory potential of periodontal ligament stem cells via ERK1,2 signaling. Journal of Cellular Physiology, 2018, 233, 447-462.	2.0	50
249	Endothelial Cell Metabolism. Physiological Reviews, 2018, 98, 3-58.	13.1	351
250	Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation. Journal of Cell Biology, 2018, 217, 269-282.	2.3	99
251	Lipid Metabolism in Mammary Epithelial Cells-A Comparison of Common In vitro Models. Journal of Advances in Dairy Research, 2018, 06, .	0.5	0
252	Lipid metabolic networks, Mediterranean diet and cardiovascular disease in the PREDIMED trial. International Journal of Epidemiology, 2018, 47, 1830-1845.	0.9	19
253	Comparative Transcriptome Analysis Provides Novel Insight into Morphologic and Metabolic Changes in the Fat Body during Silkworm Metamorphosis. International Journal of Molecular Sciences, 2018, 19, 3525.	1.8	18
254	Decreasing Phosphatidylcholine on the Surface of the Lipid Droplet Correlates with Altered Protein Binding and Steatosis. Cells, 2018, 7, 230.	1.8	28
255	Mechanosensitivity of Membrane Budding and Trafficking. , 2018, , 385-419.		0
256	Changes in lipid droplets morphometric features in mammary epithelial cells upon exposure to non-esterified free fatty acids compared with VLDL. PLoS ONE, 2018, 13, e0209565.	1.1	14

		CITATION R	EPORT	
#	Article		IF	CITATIONS
257	Triacylglycerol Metabolism in <i>Drosophila melanogaster</i> . Genetics, 2018, 210, 12	163-1184.	1.2	137
258	Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeut Microbiology, 2018, 13, 1301-1328.	tics. Future	1.0	35
259	Polybasic RKKR motif in the linker region of lipid droplet (LD)–associated protein CIE fusion activity by interacting with acidic phospholipids. Journal of Biological Chemistry 19330-19343.)EC inhibits LD , 2018, 293,	1.6	10
260	Ezetimibe inhibits dengue virus infection in Huh-7 cells by blocking the cholesterol trar Niemann–Pick C1-like 1 receptor. Antiviral Research, 2018, 160, 151-164.	nsporter	1.9	23
261	Dynamic Monitoring of the Oxidation Process of Phosphatidylcholine Using SERS Anal Chemistry, 2018, 90, 13751-13758.	ysis. Analytical	3.2	6
262	Recent Advances in Fluorescent Probes for Lipid Droplets. Materials, 2018, 11, 1768.		1.3	190
263	Insights into autophagosome biogenesis from structural and biochemical analyses of t complex. Proceedings of the National Academy of Sciences of the United States of Am E9792-E9801.	he ATG2A-WIPI4 Ierica, 2018, 115,	3.3	159
264	A comparison of absorption and phase contrast for X-ray imaging of biological cells. Jo Synchrotron Radiation, 2018, 25, 1490-1504.	urnal of	1.0	11
265	Bioinformatics of Embryonic Exposures: Lipid Metabolism and Gender as Biomedical Va Translational Bioinformatics, 2018, , 21-37.	ariables.	0.0	0
266	Interaction of Oil and Lipids in Freestanding Lipid Bilayer Membranes Studied with Lab High-Throughput Wide-Field Second-Harmonic Microscopy. Langmuir, 2018, 34, 1130	el-Free 5-11310.	1.6	15
267	Trefoil Factor 3 Deficiency Affects Liver Lipid Metabolism. Cellular Physiology and Biocl 47, 827-841.	nemistry, 2018,	1.1	16
268	Association of Mycobacterium Proteins with Lipid Droplets. Journal of Bacteriology, 20	18, 200, .	1.0	17
269	Lipid Index Determination by Liquid Fluorescence Recovery in the Fungal Pathogen <er Maydis. Journal of Visualized Experiments, 2018, , .</er 	n>Ustilago	0.2	1
270	The assembly of lipid droplets and their roles in challenged cells. EMBO Journal, 2018,	37,.	3.5	200
271	A novel NIR probe for detection of viscosity in cellular lipid droplets, zebra fishes and liv Sensors and Actuators B: Chemical, 2018, 271, 321-328.	ving mice.	4.0	78
272	Mechanisms of Lipid Sorting in the Endosomal Pathway. Advances in Biomembranes an Self-Assembly, 2018, 28, 1-39.	nd Lipid	0.3	0
273	Specific Two-Photon Imaging of Live Cellular and Deep-Tissue Lipid Droplets by Lipophi Ultralow Concentration. Chemistry of Materials, 2018, 30, 4778-4787.	lic AlEgens at	3.2	154
274	Extravascular Hydrophobic Surfaces, Fat Droplets, and the Connection With Decompre Spinal, Joint Pain, and Dysbaric Osteonecrosis. Frontiers in Physiology, 2018, 9, 305.	ession Illness:	1.3	3

#	Article	IF	CITATIONS
275	The Many Faces of Amphipathic Helices. Biomolecules, 2018, 8, 45.	1.8	135
276	Methods for Lipid Droplet Biophysical Characterization in Flaviviridae Infections. Frontiers in Microbiology, 2018, 9, 1951.	1.5	35
277	Bright Near-Infrared Aggregation-Induced Emission Luminogens with Strong Two-Photon Absorption, Excellent Organelle Specificity, and Efficient Photodynamic Therapy Potential. ACS Nano, 2018, 12, 8145-8159.	7.3	281
278	Fission yeast ceramide ts mutants <i>cwh43</i> exhibit defects in GO quiescence, nutrient metabolism, and lipid homeostasis. Journal of Cell Science, 2018, 131, .	1.2	9
279	When Dicty Met Myco, a (Not So) Romantic Story about One Amoeba and Its Intracellular Pathogen. Frontiers in Cellular and Infection Microbiology, 2017, 7, 529.	1.8	47
280	Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease. Frontiers in Molecular Neuroscience, 2018, 11, 10.	1.4	242
281	Hypoxia-Inducible Factor 2-Dependent Pathways Driving Von Hippel–Lindau-Deficient Renal Cancer. Frontiers in Oncology, 2018, 8, 214.	1.3	46
282	Kinetically Stable Triglyceride-Based Nanodroplets and Their Interactions with Lipid-Specific Proteins. Langmuir, 2018, 34, 8983-8993.	1.6	3
283	Lipid droplets in clusters negatively affect <i>Bos indicus</i> embryos during cryopreservation. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 2018, 47, 435-443.	0.3	7
284	New approaches targeting brown adipose tissue transplantation as a therapy in obesity. Biochemical Pharmacology, 2018, 155, 346-355.	2.0	39
285	Human Adipose-Derived Mesenchymal Stem/Stromal Cells Handling Protocols. Lipid Droplets and Proteins Double-Staining. Frontiers in Cell and Developmental Biology, 2018, 6, 33.	1.8	15
286	The impact of dietâ€induced hepatic steatosis in a murine model of hepatic ischemia/reperfusion injury. Liver Transplantation, 2018, 24, 908-921.	1.3	25
287	First-passage dynamics of linear stochastic interface models: numerical simulations and entropic repulsion effect. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018, 033212.	0.9	8
288	PUX10 Is a CDC48A Adaptor Protein That Regulates the Extraction of Ubiquitinated Oleosins from Seed Lipid Droplets in Arabidopsis. Plant Cell, 2018, 30, 2116-2136.	3.1	64
289	Lipid Droplets in Cancer: Guardians of Fat in a Stressful World. Molecules, 2018, 23, 1941.	1.7	240
290	OPA1-anchored PKA phosphorylates perilipin 1 on S522 and S497 in adipocytes differentiated from human adipose stem cells. Molecular Biology of the Cell, 2018, 29, 1487-1501.	0.9	22
291	Macromolecularly Crowded Protocells from Reversibly Shrinking Monodisperse Liposomes. Journal of the American Chemical Society, 2018, 140, 7399-7402.	6.6	72
292	NIR Spectra Simulations by Anharmonic DFT-Saturated and Unsaturated Long-Chain Fatty Acids. Journal of Physical Chemistry B, 2018, 122, 6931-6944.	1.2	39

\sim		<u> </u>	
	TION	REDC) D L

#	Article	IF	CITATIONS
293	The cholesterol, fatty acid and triglyceride synthesis pathways regulated by site 1 protease (S1P) are required for efficient replication of severe fever with thrombocytopenia syndrome virus. Biochemical and Biophysical Research Communications, 2018, 503, 631-636.	1.0	13
294	Lipid droplet density alters the early innate immune response to viral infection. PLoS ONE, 2018, 13, e0190597.	1.1	49
295	Lipid Droplets as Organelles. International Review of Cell and Molecular Biology, 2018, 337, 83-110.	1.6	60
296	The Inner Nuclear Membrane Is a Metabolically Active Territory that Generates Nuclear Lipid Droplets. Cell, 2018, 174, 700-715.e18.	13.5	213
297	Nanoparticles at Fluid Interfaces: From Surface Properties to Biomedical Applications. , 2019, , 127-146.		1
298	Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. Journal of Cell Biology, 2019, 218, 3320-3335.	2.3	180
299	Single cell study of adipose tissue mediated lipid droplet formation and biochemical alterations in breast cancer cells. Analyst, The, 2019, 144, 5558-5570.	1.7	12
300	Chemistry of Lipid Membranes from Models to Living Systems: A Perspective of Hydration, Surface Potential, Curvature, Confinement and Heterogeneity. Journal of the American Chemical Society, 2019, 141, 12168-12181.	6.6	39
301	lncRNA HULC facilitates efficient loading of HCVâ€core protein onto lipid droplets and subsequent virusâ€particle release. Cellular Microbiology, 2019, 21, e13086.	1.1	13
302	Quantitative Mapping of Triacylglycerol Chain Length and Saturation Using Broadband CARSÂMicroscopy. Biophysical Journal, 2019, 116, 2346-2355.	0.2	11
303	Perilipin 2 and lipid droplets provide reciprocal stabilization. Biophysics Reports, 2019, 5, 145-160.	0.2	35
304	DFCP1 associates with lipid droplets. Cell Biology International, 2019, 43, 1492-1504.	1.4	21
305	Lipid droplet–membrane contact sites – from protein binding to function. Journal of Cell Science, 2019, 132, .	1.2	55
306	Mechanisms of lipid droplet biogenesis. Biochemical Journal, 2019, 476, 1929-1942.	1.7	68
307	Hypolipidemic effects of herbal extracts by reduction of adipocyte differentiation, intracellular neutral lipid content, lipolysis, fatty acid exchange and lipid droplet motility. Scientific Reports, 2019, 9, 10492.	1.6	13
308	The interplay between depression and tuberculosis. Journal of Leukocyte Biology, 2019, 106, 749-757.	1.5	19
309	A Tense Situation: Maintaining ER Homeostasis during Lipid Droplet Budding. Developmental Cell, 2019, 50, 1-2.	3.1	19
310	Periodontal bacterial supernatants modify differentiation, migration and inflammatory cytokine expression in human periodontal ligament stem cells. PLoS ONE, 2019, 14, e0219181.	1.1	17

#	Article	IF	CITATIONS
311	MIGA2 Links Mitochondria, the ER, and Lipid Droplets and Promotes De Novo Lipogenesis in Adipocytes. Molecular Cell, 2019, 76, 811-825.e14.	4.5	136
312	Electron Tomography Revels that Milk Lipids Originate from Endoplasmic Reticulum Domains with Novel Structural Features. Journal of Mammary Gland Biology and Neoplasia, 2019, 24, 293-304.	1.0	11
313	Dynamic Interactions between Autophagosomes and Lipid Droplets in Chlamydomonas reinhardtii. Cells, 2019, 8, 992.	1.8	23
314	Tuberculosis Host-Pathogen Interactions. , 2019, , .		0
315	Lipid droplet dynamics in alcoholic fatty liver disease. Liver Research, 2019, 3, 185-190.	0.5	10
316	Dual binding motifs underpin the hierarchical association of perilipins1–3 with lipid droplets. Molecular Biology of the Cell, 2019, 30, 703-716.	0.9	41
317	Induction of lipid droplets in non-macrophage cells as well as macrophages by liposomes and exosomes. Biochemical and Biophysical Research Communications, 2019, 510, 184-190.	1.0	10
318	Three-dimensional depth profiling of prostate tissue by micro ATR-FTIR spectroscopic imaging with variable angles of incidence. Analyst, The, 2019, 144, 2954-2964.	1.7	19
319	Mega-stokes pyrene ceramide conjugates for STED imaging of lipid droplets in live cells. Analyst, The, 2019, 144, 1608-1621.	1.7	22
320	Seipin Facilitates Triglyceride Flow to Lipid Droplet and Counteracts Droplet Ripening via Endoplasmic Reticulum Contact. Developmental Cell, 2019, 50, 478-493.e9.	3.1	149
321	Membrane Asymmetry Imposes Directionality on Lipid Droplet Emergence from the ER. Developmental Cell, 2019, 50, 25-42.e7.	3.1	114
322	LION/web: a web-based ontology enrichment tool for lipidomic data analysis. GigaScience, 2019, 8, .	3.3	128
323	Three-dimensional label-free imaging throughout adipocyte differentiation by stimulated Raman microscopy. PLoS ONE, 2019, 14, e0216811.	1.1	27
324	Lipid droplet biogenesis. Current Opinion in Cell Biology, 2019, 59, 88-96.	2.6	93
325	N-terminal sequences in matrin 3 mediate phase separation into droplet-like structures that recruit TDP43 variants lacking RNA binding elements. Laboratory Investigation, 2019, 99, 1030-1040.	1.7	30
326	Mapping and Profiling Lipid Distribution in a 3D Model of Breast Cancer Progression. ACS Central Science, 2019, 5, 768-780.	5.3	40
327	FluoroCellTrack: An algorithm for automated analysis of high-throughput droplet microfluidic data. PLoS ONE, 2019, 14, e0215337.	1.1	22
328	An interface-targeting and H ₂ O ₂ -activatable probe liberating AlEgen: enabling on-site imaging and dynamic movement tracking of lipid droplets. Chemical Communications, 2019, 55, 4491-4494.	2.2	29

#	Article	IF	CITATIONS
329	Eliciting the impacts of cellular noise on metabolic trade-offs by quantitative mass imaging. Nature Communications, 2019, 10, 848.	5.8	29
330	Visualization of intracellular lipid droplets using lipophilic benzothiazole-based push-pull fluorophores at ultralow concentration. Dyes and Pigments, 2019, 167, 68-76.	2.0	15
331	Lipid distribution patterns of nine commercial fish in Thailand. Aquaculture Research, 2019, 50, 1348-1360.	0.9	2
332	Neutral Lipid Storage Diseases as Cellular Model to Study Lipid Droplet Function. Cells, 2019, 8, 187.	1.8	65
333	Effects of Microglial Cytokines on Alzheimer's Disease-Related Phenomena. Journal of Alzheimer's Disease, 2019, 67, 1021-1034.	1.2	7
334	Immune cell metabolism in autoimmunity. Clinical and Experimental Immunology, 2019, 197, 181-192.	1.1	25
335	Mdm1 maintains endoplasmic reticulum homeostasis by spatially regulating lipid droplet biogenesis. Journal of Cell Biology, 2019, 218, 1319-1334.	2.3	97
336	Nanoemulsions as Effective Carriers for the Treatment of Lung Cancer. , 2019, , 217-247.		24
337	The P5A ATPase Spf1p is stimulated by phosphatidylinositol 4-phosphate and influences cellular sterol homeostasis. Molecular Biology of the Cell, 2019, 30, 1069-1084.	0.9	37
338	Redundancy in regulation of lipid accumulation in skeletal muscle during prolonged fasting in obese men. Physiological Reports, 2019, 7, e14285.	0.7	10
339	Penalized Variable Selection for Lipid–Environment Interactions in a Longitudinal Lipidomics Study. Genes, 2019, 10, 1002.	1.0	9
340	Femtosecond Stimulated Raman microscopy: home-built realization and a case study of biological imaging. Journal of Instrumentation, 2019, 14, P09008-P09008.	0.5	16
341	Bone marrow adipose tissue does not express UCP1 during development or adrenergic-induced remodeling. Scientific Reports, 2019, 9, 17427.	1.6	22
342	Universal phase behaviors of intracellular lipid droplets. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25440-25445.	3.3	22
343	A novel role for DGATs in cancer. Advances in Biological Regulation, 2019, 72, 89-101.	1.4	19
344	Probing Polarity and Heterogeneity of Lipid Droplets in Live Cells Using a Push–Pull Fluorophore. Analytical Chemistry, 2019, 91, 1928-1935.	3.2	100
345	Moving out but keeping in touch: contacts between endoplasmic reticulum and lipid droplets. Current Opinion in Cell Biology, 2019, 57, 64-70.	2.6	48
346	Subcellular Organelles. , 2019, , 87-101.		0

#	Article	IF	CITATIONS
348	Viscous resistance in drop coalescence. Physics of Fluids, 2019, 31, .	1.6	30
349	Dynamics and functions of lipid droplets. Nature Reviews Molecular Cell Biology, 2019, 20, 137-155.	16.1	1,430
350	Coumarin-Based Fluorescent Probes for Super-resolution and Dynamic Tracking of Lipid Droplets. Analytical Chemistry, 2019, 91, 977-982.	3.2	102
351	Influence of Cellular Lipids on Cryopreservation of Mammalian Oocytes and Preimplantation Embryos: A Review. Biopreservation and Biobanking, 2019, 17, 76-83.	0.5	51
352	The whole transcriptional profiling of cellular metabolism during adipogenesis from hMSCs. Journal of Cellular Physiology, 2020, 235, 349-363.	2.0	12
353	Mechanisms, biomarkers and targets for therapy in alcohol-associated liver injury: From Genetics to nutrition: Summary of the ISBRA 2018 symposium. Alcohol, 2020, 83, 105-114.	0.8	17
354	Moderate chronic ethanol consumption exerts beneficial effects on nonalcoholic fatty liver in mice fed a high-fat diet: possible role of higher formation of triglycerides enriched in monounsaturated fatty acids. European Journal of Nutrition, 2020, 59, 1619-1632.	1.8	10
355	A new insight into the mechanism for cytosolic lipid droplet degradation in senescent leaves. Physiologia Plantarum, 2020, 168, 835-844.	2.6	8
356	Spatial compartmentalization of lipid droplet biogenesis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158499.	1.2	33
357	Towards dewetting monoclonal antibodies for therapeutical purposes. Progress in Biophysics and Molecular Biology, 2020, 150, 153-159.	1.4	1
358	Come a little bit closer! Lipid droplet-ER contact sites are getting crowded. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118603.	1.9	29
359	Dynamic cyclic behaviors of lipid droplets monitored by two-photon fluorescence probe with high photostability. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117766.	2.0	11
360	Biogenesis and fate of lipid droplets. Biochimie, 2020, 169, 1-2.	1.3	5
361	Projective mechanisms subtending real world phenomena wipe away cause effect relationships. Progress in Biophysics and Molecular Biology, 2020, 151, 1-13.	1.4	8
362	CIDE family proteins control lipid homeostasis and the development of metabolic diseases. Traffic, 2020, 21, 94-105.	1.3	51
363	A twist of FATe: Lipid droplets and inflammatory lipid mediators. Biochimie, 2020, 169, 69-87.	1.3	90
364	Changes in lipid profiles of epileptic mouse model. Metabolomics, 2020, 16, 106.	1.4	7
365	Characterization of essential domains in HSD17B13 for cellular localization and enzymatic activity. Journal of Lipid Research, 2020, 61, 1400-1409.	2.0	17

#	Article	IF	CITATIONS
366	Deuterated stearic acid uptake and accumulation in lipid droplets of cat oocytes. Archives of Biochemistry and Biophysics, 2020, 692, 108532.	1.4	15
367	Seipin-Mediated Contacts as Gatekeepers of Lipid Flux at the Endoplasmic Reticulum–Lipid Droplet NexusÂ. Contact (Thousand Oaks (Ventura County, Calif)), 2020, 3, 251525642094582.	0.4	13
368	Comprehensive lipidomics in apoM mice reveals an overall state of metabolic distress and attenuated hepatic lipid secretion into the circulation. Journal of Genetics and Genomics, 2020, 47, 523-534.	1.7	6
369	The Relationship between Wormlike Micelle Scission Free Energy and Micellar Composition: The Case of Sodium Lauryl Ether Sulfate and Cocamidopropyl Betaine. Langmuir, 2020, 36, 12288-12298.	1.6	16
370	The cell biology of lipid droplets: More than just a phase. Seminars in Cell and Developmental Biology, 2020, 108, 1-3.	2.3	6
371	Molecular profiling of lipid droplets inside HuH7 cells with Raman micro-spectroscopy. Communications Biology, 2020, 3, 372.	2.0	23
372	Membrane Heterogeneity Beyond the Plasma Membrane. Frontiers in Cell and Developmental Biology, 2020, 8, 580814.	1.8	34
373	HLH-11 modulates lipid metabolism in response to nutrient availability. Nature Communications, 2020, 11, 5959.	5.8	20
374	The dynamic behavior of lipid droplets in the pre-metastatic niche. Cell Death and Disease, 2020, 11, 990.	2.7	9
375	The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes. Results and Problems in Cell Differentiation, 2020, 69, 281-334.	0.2	2
376	Regulation of intracellular lipid storage and utilization. , 2020, , 131-156.		1
377	Lipid Dropletâ€Targetable Fluorescence Guided Photodynamic Therapy of Cancer Cells with an Activatable AIEâ€Active Fluorescent Probe for Hydrogen Peroxide. Advanced Optical Materials, 2020, 8, 2001119.	3.6	46
378	Lipidomics of brown and white adipose tissue: Implications for energy metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158788.	1.2	29
379	Regulation Mechanism of Bubbling Deformation and Fracture Toughness of the Membrane by Asymmetric Phospholipids: A Model System Study. Langmuir, 2020, 36, 10138-10146.	1.6	Ο
380	Milk fat globule size development in the mammary epithelial cell: a potential role for ether phosphatidylethanolamine. Scientific Reports, 2020, 10, 12299.	1.6	8
381	Universality in coalescence of polymeric fluids. Soft Matter, 2020, 16, 10921-10927.	1.2	30
382	Neutral lipids regulate amphipathic helix affinity for model lipid droplets. Journal of Cell Biology, 2020, 219, .	2.3	57
383	Membrane determinants for the passive translocation of analytes through droplet interface bilayers. Soft Matter, 2020, 16, 5970-5980.	1.2	11

#	Article	IF	CITATIONS
384	Progesterone Regulation of Milk Fat Globule Size Is VLDL Dependent. Frontiers in Endocrinology, 2020, 11, 596.	1.5	3
385	Aqueous enzymatic protein and lipid release from the microalgae Chlamydomonas reinhardtii. Bioresources and Bioprocessing, 2020, 7, .	2.0	14
386	Triacylglycerol synthesis enhances macrophage inflammatory function. Nature Communications, 2020, 11, 4107.	5.8	127
387	Deregulation of Lipid Homeostasis: A Fa(c)t in the Development of Metabolic Diseases. Cells, 2020, 9, 2605.	1.8	17
388	The Relationship Between Reactive Oxygen Species and Endothelial Cell Metabolism. Frontiers in Chemistry, 2020, 8, 592688.	1.8	55
389	Integrative quantitative-phase and airy light-sheet imaging. Scientific Reports, 2020, 10, 20150.	1.6	10
390	Pistacia lentiscus extract enhances mammary epithelial cells' productivity by modulating their oxidative status. Scientific Reports, 2020, 10, 20985.	1.6	7
391	Direct lysosome-based autophagy of lipid droplets in hepatocytes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32443-32452.	3.3	141
392	Rapeseed Lecithin Increases Lymphatic Lipid Output and α-Linolenic Acid Bioavailability in Rats. Journal of Nutrition, 2020, 150, 2900-2911.	1.3	5
393	A Redâ€Emissive Fluorescent Probe with a Compact Singleâ€Benzeneâ€Based Skeleton for Cell Imaging of Lipid Droplets. Advanced Optical Materials, 2020, 8, 1902123.	3.6	40
394	In Vitro-Generated Hypertrophic-Like Adipocytes Displaying PPARG Isoforms Unbalance Recapitulate Adipocyte Dysfunctions In Vivo. Cells, 2020, 9, 1284.	1.8	14
395	New friends for seipin — Implications of seipin partner proteins in the life cycle of lipid droplets. Seminars in Cell and Developmental Biology, 2020, 108, 24-32.	2.3	20
396	Molecular organization in mixed SOPC and SDPC model membranes: Water permeability studies of polyunsaturated lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183365.	1.4	8
397	Metabolic reprogramming by Zika virus provokes inflammation in human placenta. Nature Communications, 2020, 11, 2967.	5.8	68
398	Lipid droplets in prostate cancer cells and effect of irradiation studied by Raman microspectroscopy. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158753.	1.2	31
399	Fusionâ€Induced Structural and Functional Evolution in Binary Emulsion Communities. Angewandte Chemie, 2020, 132, 17101-17108.	1.6	5
400	Fusionâ€Induced Structural and Functional Evolution in Binary Emulsion Communities. Angewandte Chemie - International Edition, 2020, 59, 16953-16960.	7.2	23
401	Multiplex Stimulated Raman Scattering Imaging Cytometry Reveals Lipid-Rich Protrusions in Cancer Cells under Stress Condition. IScience, 2020, 23, 100953.	1.9	72

# 402	ARTICLE Mechanisms of protein targeting to lipid droplets: A unified cell biological and biophysical perspective. Seminars in Cell and Developmental Biology, 2020, 108, 4-13.	IF 2.3	Citations
403	The physics of microemulsions extracted from modeling balanced tensionless surfactant-loaded liquid–liquid interfaces. Journal of Chemical Physics, 2020, 152, 094902.	1.2	0
404	Metabolic determinants of lupus pathogenesis. Immunological Reviews, 2020, 295, 167-186.	2.8	30
405	Live-cell imaging of lipid droplets using solvatochromic coumarin derivatives. Organic and Biomolecular Chemistry, 2020, 18, 5608-5616.	1.5	14
406	The hepatic lipidome: From basic science to clinical translation. Advanced Drug Delivery Reviews, 2020, 159, 180-197.	6.6	37
407	Phase separation effects on a partially miscible viscous fingering dynamics. Journal of Fluid Mechanics, 2020, 898, .	1.4	17
408	Speeding up biphasic reactions with surface nanodroplets. Lab on A Chip, 2020, 20, 2965-2974.	3.1	12
409	Light-Up Lipid Droplets Dynamic Behaviors Using a Red-Emitting Fluorogenic Probe. Analytical Chemistry, 2020, 92, 3613-3619.	3.2	104
410	A Review of Diatom Lipid Droplets. Biology, 2020, 9, 38.	1.3	24
411	Cells Undergo Major Changes in the Quantity of Cytoplasmic Organelles after Uptake of Gold Nanoparticles with Biologically Relevant Surface Coatings. ACS Nano, 2020, 14, 2248-2264.	7.3	31
412	A BODIPY-Based Fluorogenic Probe for Specific Imaging of Lipid Droplets. Materials, 2020, 13, 677.	1.3	16
414	Lipid droplets throughout the evolutionary tree. Progress in Lipid Research, 2020, 78, 101029.	5.3	55
415	Nanoemulsions to support exÂvivo cell culture of breast cancer circulating tumor cells. Materials Today Chemistry, 2020, 16, 100265.	1.7	4
416	Astrocytes with TDP-43 inclusions exhibit reduced noradrenergic cAMP and Ca2+ signaling and dysregulated cell metabolism. Scientific Reports, 2020, 10, 6003.	1.6	50
417	Tethering Fat: Tethers in Lipid Droplet Contact Sites. Contact (Thousand Oaks (Ventura County, Calif) Tj ETQq0 (0.rgBT /C	Overlock 10 T
418	Leading the way in the nervous system: Lipid Droplets as new players in health and disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158820.	1.2	25
419	The role of lipids in the central nervous system and their pathological implications in amyotrophic lateral sclerosis. Seminars in Cell and Developmental Biology, 2021, 112, 69-81.	2.3	23
420	Microbial metabolic noise. WIREs Mechanisms of Disease, 2021, 13, e1512.	1.5	11

#	Article	IF	CITATIONS
421	Lipid Droplet Nucleation. Trends in Cell Biology, 2021, 31, 108-118.	3.6	88
422	CG32803 is the fly homolog of LDAF1 and influences lipid storage in vivo. Insect Biochemistry and Molecular Biology, 2021, 133, 103512.	1.2	6
423	The ULK1 kinase, a necessary component of the pro-regenerative and anti-aging machinery in Hydra. Mechanisms of Ageing and Development, 2021, 194, 111414.	2.2	2
424	Investigation of triple-coalescence behaviors for comprehensively understanding the structural evolution of coalesced TiAl droplets from an atomic-level view. Journal of Alloys and Compounds, 2021, 859, 157791.	2.8	7
425	A near-infrared AIE probe for super-resolution imaging and nuclear lipid droplet dynamic study. Materials Chemistry Frontiers, 2021, 5, 3043-3049.	3.2	37
426	Whole-genome sequencing reveals sex determination and liver high-fat storage mechanisms of yellowstripe goby (Mugilogobius chulae). Communications Biology, 2021, 4, 15.	2.0	11
427	Lipids Biogenesis of Lipid Droplets. , 2021, , 719-731.		0
428	A Pyridinylâ€Pyrazole <scp>BODIPY</scp> as Lipid Droplets Probe. Bulletin of the Korean Chemical Society, 2021, 42, 111-114.	1.0	8
429	Long-term live-cell lipid droplet-targeted biosensor development for nanoscopic tracking of lipid droplet-mitochondria contact sites. Theranostics, 2021, 11, 7767-7778.	4.6	21
430	Lipid droplet biogenesis and COX-2 pathway activation are triggered by Barrett's esophagus and adenocarcinoma, but not esophageal squamous cell carcinoma risk factors. Scientific Reports, 2021, 11, 981.	1.6	3
431	Tunable NIR AIE-active optical materials for lipid droplet imaging in typical model organisms and photodynamic therapy. Journal of Materials Chemistry B, 2021, 9, 2417-2427.	2.9	20
432	Photoacoustic molecular imaging-escorted adipose photodynamic–browning synergy for fighting obesity with virus-like complexes. Nature Nanotechnology, 2021, 16, 455-465.	15.6	92
433	Simultaneous Two-Color Visualization of Lipid Droplets and Endoplasmic Reticulum and Their Interplay by Single Fluorescent Probes in Lambda Mode. Journal of the American Chemical Society, 2021, 143, 3169-3179.	6.6	154
434	Versatility of Reverse Micelles: From Biomimetic Models to Nano (Bio)Sensor Design. Processes, 2021, 9, 345.	1.3	36
435	Astrocytes in stress accumulate lipid droplets. Glia, 2021, 69, 1540-1562.	2.5	42
436	Î ² -carotene oxygenase 2 deficiency-triggered mitochondrial oxidative stress promotes low-grade inflammation and metabolic dysfunction. Free Radical Biology and Medicine, 2021, 164, 271-284.	1.3	16
437	Decoding the Reproductive System of the Olive Fruit Fly, Bactrocera oleae. Genes, 2021, 12, 355.	1.0	7
438	Intramolecular Spirocyclization Enables Design of a Single Fluorescent Probe for Monitoring the Interplay between Mitochondria and Lipid Droplets, Analytical Chemistry, 2021, 93, 3602-3610	3.2	33

#	Article	IF	CITATIONS
439	In Vivo Threeâ€Photon Imaging of Lipids using Ultrabright Fluorogens with Aggregationâ€Induced Emission. Advanced Materials, 2021, 33, e2007490.	11.1	58
440	Picornaviruses: A View from 3A. Viruses, 2021, 13, 456.	1.5	9
441	Tumor tissues diagnosis with PIEE lipid droplet vesicles. Sensors and Actuators B: Chemical, 2021, 330, 129269.	4.0	3
442	A Unique Junctional Interface at Contact Sites Between the Endoplasmic Reticulum and Lipid Droplets. Frontiers in Cell and Developmental Biology, 2021, 9, 650186.	1.8	23
443	Alteration of the lipid phase transition during mouse embryos freezing after in vitro culture with linoleic acid. Cryobiology, 2021, 99, 55-63.	0.3	9
444	Stimulated Emission Depletion (STED) Super-Resolution Imaging with an Advanced Organic Fluorescent Probe: Visualizing the Cellular Lipid Droplets at the Unprecedented Nanoscale Resolution. , 2021, 3, 516-524.		22
446	Unique Attributes of the Laurel Wilt Fungal Pathogen, Raffaelea lauricola, as Revealed by Metabolic Profiling. Pathogens, 2021, 10, 528.	1.2	6
447	Exceptional stability of a perilipin on lipid droplets depends on its polar residues, suggesting multimeric assembly. ELife, 2021, 10, .	2.8	21
448	The C-Terminus of Perilipin 3 Shows Distinct Lipid Binding at Phospholipid-Oil-Aqueous Interfaces. Membranes, 2021, 11, 265.	1.4	8
449	Deep learning classification of lipid droplets in quantitative phase images. PLoS ONE, 2021, 16, e0249196.	1.1	12
450	Arabidopsis thaliana EARLY RESPONSIVE TO DEHYDRATION 7 Localizes to Lipid Droplets via Its Senescence Domain. Frontiers in Plant Science, 2021, 12, 658961.	1.7	16
451	In vitro cytotoxicity study of superparamagnetic iron oxide and silica nanoparticles on pneumocyte organelles. Toxicology in Vitro, 2021, 72, 105071.	1.1	6
453	The surface of lipid droplets constitutes a barrier for endoplasmic reticulum-resident integral membrane proteins. Journal of Cell Science, 2022, 135, .	1.2	13
454	Nonalcoholic Fatty Liver Disease (NAFLD). Mitochondria as Players and Targets of Therapies?. International Journal of Molecular Sciences, 2021, 22, 5375.	1.8	59
455	A Polarityâ€ S ensitive Ratiometric Fluorescence Probe for Monitoring Changes in Lipid Droplets and Nucleus during Ferroptosis. Angewandte Chemie, 2021, 133, 15222-15227.	1.6	11
456	Lipid Droplet-Specific Fluorescent Probe for <i>In Vivo</i> Visualization of Polarity in Fatty Liver, Inflammation, and Cancer Models. Analytical Chemistry, 2021, 93, 8019-8026.	3.2	105
457	A Polarityâ€5ensitive Ratiometric Fluorescence Probe for Monitoring Changes in Lipid Droplets and Nucleus during Ferrontosis. Angewandte Chemie - International Edition, 2021, 60, 15095-15100	7.2	182

		CITATION REPORT		
#	Article		IF	CITATIONS
459	Lipid Droplet Contact Sites in Health and Disease. Trends in Cell Biology, 2021, 31, 34	5-358.	3.6	88
460	Formulative Study and Intracellular Fate Evaluation of Ethosomes and Transethosomes Delivery. International Journal of Molecular Sciences, 2021, 22, 5341.	for Vitamin D3	1.8	25
461	Lessons in Organic Fluorescent Probe Discovery. ChemBioChem, 2021, 22, 3109-3139	·.	1.3	31
462	Variation in milk fat globule size and composition: A source of bioactives for human he Reviews in Food Science and Nutrition, 2023, 63, 87-113.	alth. Critical	5.4	24
463	Physical Characterization of Triolein and Implications for Its Role in Lipid Droplet Bioge of Physical Chemistry B, 2021, 125, 6874-6888.	nesis. Journal	1.2	13
465	Distinct Roles of Perilipins in the Intramuscular Deposition of Lipids in Glutamine-Supp and Normal-Birth-Weight Piglets. Frontiers in Veterinary Science, 2021, 8, 633898.	emented, Low-,	0.9	5
466	The disassembly of lipid droplets in Chlamydomonas. New Phytologist, 2021, 231, 135	9-1364.	3.5	19
467	The Drosophila model to interrogate triacylglycerol biology. Biochimica Et Biophysica A Molecular and Cell Biology of Lipids, 2021, 1866, 158924.	icta -	1.2	16
469	Viroplasms: Assembly and Functions of Rotavirus Replication Factories. Viruses, 2021,	13, 1349.	1.5	44
470	Lipid Droplets and Their Autophagic Turnover via the Raft-Like Vacuolar Microdomains. Journal of Molecular Sciences, 2021, 22, 8144.	International	1.8	13
471	Construction of Hybrid Biâ€microcompartments with Exocytosisâ€Inspired Behavior to Temperatureâ€Modulated Transportation of Living Organisms. Angewandte Chemie - I Edition, 2021, 60, 20795-20802.	oward Fast nternational	7.2	16
472	Real-time in vitro monitoring of the subcellular toxicity of inorganic Hg and methylmer zebrafish cells. Aquatic Toxicology, 2021, 236, 105859.	cury in	1.9	12
473	Effect of palmitoleic acid on the differentiation of bovine skeletal muscle satellite cells. Animal Science and Technology, 2021, 63, 919-933.	Journal of	0.8	6
474	Real-time tracking of lipid droplets interactions with other organelles by a high signal/r Dyes and Pigments, 2021, 191, 109366.	oise probe.	2.0	16
475	A pH-Sensitive Spirocyclization Strategy for Constructing a Single Fluorescent Probe S Two-Color Visualizing of Lipid Droplets and Lysosomes and Monitoring of Lipophagy. A Chemistry, 2021, 93, 11729-11735.	imultaneous nalytical	3.2	46
476	Construction of Hybrid Biâ€microcompartments with Exocytosisâ€Inspired Behavior to Temperatureâ€Modulated Transportation of Living Organisms. Angewandte Chemie, 2 20963-20970.	oward Fast 021, 133,	1.6	0
478	Disorders of lipid metabolism in the liver in patients with chronic viral hepatitis. HERAL North-Western State Medical University Named After I I Mechnikov, 2021, 13, 27-38.	D of	0.1	1
479	Lipid droplets form a network interconnected by the endoplasmic reticulum through w proteins equilibrate. Journal of Cell Science, 2022, 135, .	hich their	1.2	13

#	Article	IF	CITATIONS
481	Physiological fluid interfaces: Functional microenvironments, drug delivery targets, and first line of defense. Acta Biomaterialia, 2021, 130, 32-53.	4.1	24
483	Role of Cholesterolâ€Associated Steatohepatitis in the Development of NASH. Hepatology Communications, 2022, 6, 12-35.	2.0	80
484	Integrated response of growth performance, fatty acid composition, antioxidant responses and lipid metabolism to dietary phospholipids in hybrid grouper (Epinephelus fuscoguttatus ♀Â×ÂE. lanceolatus â™,) larvae. Aquaculture, 2021, 541, 736728.	1.7	15
485	Whispering Galleryâ€Mode Microdroplet Tensiometry. Advanced Photonics Research, 2021, 2, 2100129.	1.7	4
486	The CYTOLD and ERTOLD pathways for lipid droplet–protein targeting. Trends in Biochemical Sciences, 2022, 47, 39-51.	3.7	40
487	Triglyceride Lenses at the Air–Water Interface as a Model System for Studying the Initial Stage in the Biogenesis of Lipid Droplets. Langmuir, 2021, 37, 10958-10970.	1.6	6
488	Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chemical Reviews, 2021, 121, 13454-13619.	23.0	657
489	Lipid droplet evolution gives insight into polyaneuploid cancer cell lipid droplet functions. Medical Oncology, 2021, 38, 133.	1.2	11
490	Quantitative Structure–Activity Relationship Enables the Rational Design of Lipid Droplet-Targeting Carbon Dots for Visualizing Bisphenol A-Induced Nonalcoholic Fatty Liver Disease-like Changes. ACS Applied Materials & Interfaces, 2021, 13, 44086-44095.	4.0	33
491	The prognostic miR-532-5p-correlated ceRNA-mediated lipid droplet accumulation drives nodal metastasis of cervical cancer. Journal of Advanced Research, 2022, 37, 169-184.	4.4	17
492	Stable Superâ€Resolution Imaging of Lipid Droplet Dynamics through a Buffer Strategy with a Hydrogenâ€Bond Sensitive Fluorogenic Probe. Angewandte Chemie, 2021, 133, 25308-25317.	1.6	9
494	Stable Superâ€Resolution Imaging of Lipid Droplet Dynamics through a Buffer Strategy with a Hydrogenâ€Bond Sensitive Fluorogenic Probe. Angewandte Chemie - International Edition, 2021, 60, 25104-25113.	7.2	60
495	Co-translational biogenesis of lipid droplet integral membrane proteins. Journal of Cell Science, 2022, 135, .	1.2	11
496	Recent advances in 1,8-naphthalimide-based small-molecule fluorescent probes for organelles imaging and tracking in living cells. Coordination Chemistry Reviews, 2021, 444, 214019.	9.5	66
497	Cellular and sub-cellular mechanisms of lipid transport from gut to lymph. Tissue and Cell, 2021, 72, 101529.	1.0	12
498	An insight on the future therapeutic application potential of Stevia rebaudiana Bertoni for atherosclerosis and cardiovascular diseases. Biomedicine and Pharmacotherapy, 2021, 143, 112207.	2.5	9
499	Interfacial kinetics in olive oil-in-water nanoemulsions: Relationships between rates of initiation of lipid peroxidation, induction times and effective interfacial antioxidant concentrations. Journal of Colloid and Interface Science, 2021, 604, 248-259.	5.0	20
500	Bulging and budding of lipid droplets from symmetric and asymmetric membranes: competition between membrane elastic energy and interfacial energy. Soft Matter, 2021, 17, 5319-5328.	1.2	10

#	ARTICLE	IF	CITATIONS
501	Lipolytic and Lipophagic Effects of Pinellia ternata Pharmacopuncture on Localized Adiposity. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-9.	0.5	3
502	Mycobacteria Infection and Lipid Droplets: Host and Pathogen Stealing, Sharing and Storing Fat. , 2019, , 201-229.		1
503	Nanomaterials in Food Industry and Packaging. , 2017, , 23-46.		5
504	Lipidomic analysis of epithelial corneal cells following hyperosmolarity and benzalkonium chloride exposure: New insights in dry eye disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158728.	1.2	14
505	Low serum concentration in bovine embryo culture enhances early blastocyst rates on Day-6 with quality traits in the expanded blastocyst stage similar to BSA-cultured embryos. Reproductive Biology, 2017, 17, 162-171.	0.9	22
506	Hepatic lipid droplet homeostasis and fatty liver disease. Seminars in Cell and Developmental Biology, 2020, 108, 72-81.	2.3	88
507	Chapter 7. Polymeric Ionic Liquids with Micelle-like Topologies and Functions. RSC Polymer Chemistry Series, 2016, , 259-285.	0.1	2
515	Mfge8 regulates enterocyte lipid storage by promoting enterocyte triglyceride hydrolase activity. JCI Insight, 2016, 1, e87418.	2.3	31
516	Metabolic shifts in residual breast cancer drive tumor recurrence. Journal of Clinical Investigation, 2017, 127, 2091-2105.	3.9	128
517	Regulation of Lipid Droplet Size in Mammary Epithelial Cells by Remodeling of Membrane Lipid Composition—A Potential Mechanism. PLoS ONE, 2015, 10, e0121645.	1.1	45
518	The Energy of COPI for Budding Membranes. PLoS ONE, 2015, 10, e0133757.	1.1	7
519	Carnitine Palmitoyltransferase 1 Increases Lipolysis, UCP1 Protein Expression and Mitochondrial Activity in Brown Adipocytes. PLoS ONE, 2016, 11, e0159399.	1.1	47
520	Mercury-Pollution Induction of Intracellular Lipid Accumulation and Lysosomal Compartment Amplification in the Benthic Foraminifer Ammonia parkinsoniana. PLoS ONE, 2016, 11, e0162401.	1.1	17
521	Exploiting Bioprocessing Fluctuations to Elicit the Mechanistics of De Novo Lipogenesis in Yarrowia lipolytica. PLoS ONE, 2017, 12, e0168889.	1.1	5
522	Stearoyl-coenzyme A desaturase 1 is required for lipid droplet formation in pig embryo. Reproduction, 2019, 157, 235-243.	1.1	15
523	Structurally diverse c-Myc inhibitors share a common mechanism of action involving ATP depletion. Oncotarget, 2015, 6, 15857-15870.	0.8	35
524	Physiological and cellular requirements for successful elongation of the preimplantation conceptus and the implications for fertility in lactating dairy cows. Animal Reproduction, 2018, 15, 765-783.	0.4	4
525	Structure, Function and Metabolism of Hepatic and Adipose Tissue Lipid Droplets: Implications in Alcoholic Liver Disease. Current Molecular Pharmacology, 2017, 10, 237-248.	0.7	19

#	Article	IF	CITATIONS
526	Two Types of Contact Between Lipid Droplets and Mitochondria. Frontiers in Cell and Developmental Biology, 2020, 8, 618322.	1.8	57
527	Lipid Droplet Isolation for Quantitative Mass Spectrometry Analysis. Journal of Visualized Experiments, 2017, , .	0.2	2
528	DGAT1-deficiency affects the cellular distribution of hepatic retinoid and attenuates the progression of CCl4-induced liver fibrosis. Hepatobiliary Surgery and Nutrition, 2015, 4, 184-96.	0.7	4
529	Monoacylglycerol O-acyltransferase 1 (MGAT1) localizes to the ER and lipid droplets promoting triacylglycerol synthesis. BMB Reports, 2017, 50, 367-372.	1.1	20
530	Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. ELife, 2014, 3, e01607.	2.8	240
531	Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport. ELife, 2015, 4, .	2.8	161
532	Developmentally regulated H2Av buffering via dynamic sequestration to lipid droplets in Drosophila embryos. ELife, 2018, 7, .	2.8	34
533	Mycobacterium tuberculosis induces decelerated bioenergetic metabolism in human macrophages. ELife, 2018, 7, .	2.8	150
534	Rab proteins implicated in lipid storage and mobilization. Journal of Biomedical Research, 2014, 28, 169.	0.7	32
535	Lipid droplets and the transcriptome of Mycobacterium tuberculosis from direct sputa: a literature review. Lipids in Health and Disease, 2021, 20, 129.	1.2	10
536	Biomimetic Materials. , 2017, , 189-213.		0
538	Mechanical Insights into TLDP1 on the Accumulation of n-3PUFA in Lipid Droplets of Labyrinthulea: Accumulation of n-3PUFA in Lipid Droplets by TLDP1. Kagaku To Seibutsu, 2018, 56, 338-344.	0.0	0
544	Femtosecond Stimulated Raman Microscopy in Câ—¬H Region of Raman Spectra of Biomolecules and Its Extension to Silent and Fingerprint Regions. , 0, , .		0
546	A distyrylbenzene-based fluorescent probe with high photostability and large Stokes shift for STED nanoscopy imaging of cellular lipid droplets. Sensors and Actuators B: Chemical, 2022, 353, 131000.	4.0	16
547	Bulging-to-Budding Transition of Lipid Droplets Confined within Vesicle Membranes. Langmuir, 2021, 37, 12867-12873.	1.6	2
548	STED Nanoscopy Imaging of Cellular Lipid Droplets Employing a Superior Organic Fluorescent Probe. Analytical Chemistry, 2021, 93, 14784-14791.	3.2	23
550	Metabolic engineering of oleaginous yeasts to enhance single cell oil production. Journal of Food Process Engineering, 2022, 45, e13634.	1.5	6
551	Lipid scavenging macrophages and inflammation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159066.	1.2	8

#	Article	IF	CITATIONS
552	Zurück zum Genuss. , 2020, , 419-485.		0
553	Lipid droplets in the immune response and beyond. , 2020, , 173-196.		4
555	Hepatitis C virus core protein uses triacylglycerols to fold onto the endoplasmic reticulum membrane. Traffic, 2022, 23, 63-80.	1.3	7
556	Chemical seed priming alleviates salinity stress and improves <i>Sulla carnosa</i> germination in the saline depression of Tunisia. Plant Direct, 2021, 5, e357.	0.8	13
558	Lipid Droplets and the Management of Cellular Stress. Yale Journal of Biology and Medicine, 2019, 92, 435-452.	0.2	89
559	Lipid droplet and its implication in cancer progression. American Journal of Cancer Research, 2020, 10, 4112-4122.	1.4	13
560	Hello from the other side: Membrane contact of lipid droplets with other organelles and subsequent functional implications. Progress in Lipid Research, 2022, 85, 101141.	5.3	24
561	A short perinuclear amphipathic α-helix in Apq12 promotes nuclear pore complex biogenesis. Open Biology, 2021, 11, 210250.	1.5	11
562	The autophagy protein ATG9A enables lipid mobilization from lipid droplets. Nature Communications, 2021, 12, 6750.	5.8	49
563	Endoplasmic reticulum stress as a key mechanism in stunted growth of seawater rainbow trout (Oncorhynchus mykiss). BMC Genomics, 2021, 22, 824.	1.2	4
564	Lipid Droplets Protect Aging Mitochondria and Thus Promote Lifespan in Yeast Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 774985.	1.8	9
565	Origin of gradients in lipid density and surface tension between connected lipid droplet and bilayer. Biophysical Journal, 2021, 120, 5491-5503.	0.2	24
566	Lysophosphatidylcholine mediates fast decline in kidney function in diabetic kidney disease. Kidney International, 2022, 101, 510-526.	2.6	36
567	A new perspective on NAFLD: Focusing on lipid droplets. Journal of Hepatology, 2022, 76, 934-945.	1.8	118
570	Ultrabright and Highly Polarityâ€Sensitive NIRâ€I/NIRâ€II Fluorophores for the Tracking of Lipid Droplets and Staging of Fatty Liver Disease. Advanced Functional Materials, 2022, 32, .	7.8	38
571	D-ï€-A structure fluorophore: NIR emission, response to viscosity, detection cyanide and bioimaging of lipid droplets. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, , 120593.	2.0	2
573	Key Factors Governing Initial Stages of Lipid Droplet Formation. Journal of Physical Chemistry B, 2022, 126, 453-462.	1.2	15
574	Fat and Protein Combat Triggers Immunological Weapons of Innate and Adaptive Immune Systems to Launch Neuroinflammation in Parkinson's Disease. International Journal of Molecular Sciences, 2022, 23, 1089.	1.8	4

#	Article	IF	CITATIONS
575	A Fluorescent Probe Targeting Mitochondria and Lipid Droplets for Visualization of Cell Death. Chemistry - an Asian Journal, 2022, 17, e202101304.	1.7	9
576	A novel and modified fluorescent amphiphilic block copolymer simultaneously targeting to lysosomes and lipid droplets for cell imaging with large Stokes shift. European Polymer Journal, 2022, 166, 111030.	2.6	7
577	A primary effect of palmitic acid on mouse oocytes is the disruption of the structure of the endoplasmic reticulum. Reproduction, 2022, 163, 45-56.	1.1	3
578	Lipid droplet dynamics regulate adult muscle stem cell fate. Cell Reports, 2022, 38, 110267.	2.9	23
579	Observing hepatic steatosis with a commercially viable two-photon fluorogenic probe. Materials Chemistry Frontiers, 2022, 6, 553-560.	3.2	19
581	Adaptive and maladaptive roles of lipid droplets in health and disease. American Journal of Physiology - Cell Physiology, 2022, 322, C468-C481.	2.1	13
582	Lipid Droplets in Cancer: From Composition and Role to Imaging and Therapeutics. Molecules, 2022, 27, 991.	1.7	27
583	Running â€~LAPS' Around nLD: Nuclear Lipid Droplet Form and Function. Frontiers in Cell and Developmental Biology, 2022, 10, 837406.	1.8	10
584	Biogenesis and Breakdown of Lipid Droplets in Pathological Conditions. Frontiers in Cell and Developmental Biology, 2021, 9, 826248.	1.8	21
586	A lipid droplet-targetable and biothiol-sensitive fluorescent probe for the diagnosis of cancer cells/tissues. Analyst, The, 2022, 147, 1695-1701.	1.7	8
587	Nir Fluorophore for Monitoring Viscosity in Vitro, in Vivo, and Ex Vivo, and Dynamic Tracking Lipid Droplets in Live System. SSRN Electronic Journal, 0, , .	0.4	1
588	Touch and Go: Membrane Contact Sites Between Lipid Droplets and Other Organelles. Frontiers in Cell and Developmental Biology, 2022, 10, 852021.	1.8	13
589	Exploiting the Twisted Intramolecular Charge Transfer Effect to Construct a Wash-Free Solvatochromic Fluorescent Lipid Droplet Probe for Fatty Liver Disease Diagnosis. Analytical Chemistry, 2022, 94, 3881-3887.	3.2	48
590	Lipid metabolic reprogramming by hypoxia-inducible factor-1 in the hypoxic tumour microenvironment. Pflugers Archiv European Journal of Physiology, 2022, 474, 591-601.	1.3	9
591	Lipophagy at a glance. Journal of Cell Science, 2022, 135, .	1.2	21
592	Entourage effect for phenolic compounds on production and metabolism of mammary epithelial cells. Heliyon, 2022, 8, e09025.	1.4	3
593	BODIPY 493 acts as a bright buffering fluorogenic probe for super-resolution imaging of lipid droplet dynamics. Chinese Chemical Letters, 2022, 33, 5042-5046.	4.8	24
594	Highly Sensitive Two-Photon Lipid Droplet Tracker for <i>In Vivo</i> Screening of Drug Induced Liver Injury. ACS Sensors, 2022, 7, 1027-1035.	4.0	19

#	Article	IF	CITATIONS
595	Lipid droplets and autophagosomes together with chaperones fineâ€ŧune expression of SGK1. Journal of Cellular and Molecular Medicine, 2022, , .	1.6	3
596	MOSPD2 is an endoplasmic reticulum–lipid droplet tether functioning in LD homeostasis. Journal of Cell Biology, 2022, 221, .	2.3	13
597	Cellular organelle-targeted smart AlEgens in tumor detection, imaging and therapeutics. Coordination Chemistry Reviews, 2022, 462, 214508.	9.5	10
598	A General Method to Develop Highly Environmentally Sensitive Fluorescent Probes and AIEgens. Advanced Science, 2022, 9, e2104609.	5.6	35
600	Lipid Droplets, Phospholipase A2, Arachidonic Acid, and Atherosclerosis. Biomedicines, 2021, 9, 1891.	1.4	15
601	Rotavirus-Induced Lipid Droplet Biogenesis Is Critical for Virus Replication. Frontiers in Physiology, 2022, 13, 836870.	1.3	20
606	The GTP-Bound form of Rab3D Promotes Lipid Droplet Growth in Adipocyte. Molecular Biology, 0, , 1.	0.4	1
607	Lipogenesis mediated by OGR1 regulates metabolic adaptation to acid stress in cancer cells via autophagy. Cell Reports, 2022, 39, 110796.	2.9	13
608	Seipin transmembrane segments critically function in triglyceride nucleation and lipid droplet budding from the membrane. ELife, 2022, 11, .	2.8	22
609	A novel polarity-sensitive fluorescent probe for lighting up lipid droplets and its application in discriminating dead and living zebrafish. Dyes and Pigments, 2022, 204, 110433.	2.0	16
610	A Functional Fluorescence Conversion Probe for Dual-Color Visualization of Mitochondria and Lipid Droplets and Monitoring of So2 in Vivo. SSRN Electronic Journal, 0, , .	0.4	0
611	A Novel Lipid Droplets-Specific Fluorescent Bio-Probe with Large Stokes Shift for the Marking of Living Cells and Zebrafish. SSRN Electronic Journal, 0, , .	0.4	0
612	A lipid droplet-specific fluorescence probe for atherosclerotic plaque imaging. Analyst, The, 2022, 147, 3081-3086.	1.7	6
613	Analysis and comparison of lipids in Saanen goat milk from different geographic regions in China based on UHPLC-QTOF-MS lipidomics. Food Research International, 2022, 157, 111441.	2.9	7
614	Development of a fluorescent nanoprobe based on an amphiphilic single-benzene-based fluorophore for lipid droplet detection and its practical applications. Organic and Biomolecular Chemistry, 2022, 20, 5423-5433.	1.5	8
615	Sporulation: A response to starvation in the fission yeast <i>Schizosaccharomyces pombe</i> . MicrobiologyOpen, 2022, 11, .	1.2	10
616	Arginine Regulates Zygotic Genome Activation in Porcine Embryos Under Nutrition Restriction. Frontiers in Veterinary Science, 0, 9, .	0.9	2
617	Squaraine probes for the bimodal staining of lipid droplets and endoplasmic reticulum imaging in live cells. Analyst, The, 2022, 147, 3570-3577.	1.7	6

#	Article	IF	CITATIONS
618	Conserved mechanisms drive host-lipid access, import, and utilization in Mycobacterium tuberculosis and M.Âmarinum. , 2022, , 133-161.		4
619	Metabolic and immune-sensitive contacts between lipid droplets and endoplasmic reticulum reconstituted inÂvitro. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
620	Fine-tuning cell organelle dynamics during mitosis by small GTPases. Frontiers of Medicine, 0, , .	1.5	0
621	One-step assembly of Pd-Keggin-polyoxometalates for catalytic benzothiadiazole generation and derived cell-imaging probe application. Chinese Chemical Letters, 2023, 34, 107692.	4.8	5
622	A novel lipid droplets-specific fluorescent bio-probe with large Stokes shift for the marking of living cells and zebrafish. Tetrahedron, 2022, , 132915.	1.0	1
624	Constructing D-Ï€-A-Ï€ dye to obtain red-emission fluorescent probe for structured illumination microscopy imaging of lipid droplet dynamics. Green Chemical Engineering, 2023, 4, 387-392.	3.3	2
625	Domain Size Regulation in Phospholipid Model Membranes Using Oil Molecules and Hybrid Lipids. Journal of Physical Chemistry B, 2022, 126, 5842-5854.	1.2	4
626	A water-soluble polymer fluorescent probe <i>via</i> RAFT polymerization for dynamic monitoring of cellular lipid droplet levels and zebrafish imaging. New Journal of Chemistry, 2022, 46, 16539-16546.	1.4	4
627	Lens Nucleation and Droplet Budding in a Membrane Model for Lipid Droplet Biogenesis. Langmuir, 2022, 38, 9247-9256.	1.6	5
628	Structure Rigidification Promoted Ultrabright Solvatochromic Fluorescent Probes for Super-Resolution Imaging of Cytosolic and Nuclear Lipid Droplets. Analytical Chemistry, 2022, 94, 10676-10684.	3.2	24
629	Luminescent Metal Complexes as Emerging Tools for Lipid Imaging. Topics in Current Chemistry, 2022, 380, .	3.0	6
630	ORP5 and ORP8 orchestrate lipid droplet biogenesis and maintenance at ER–mitochondria contact sites. Journal of Cell Biology, 2022, 221, .	2.3	26
631	Highly Efficient Red/NIR-Emissive Fluorescent Probe with Polarity-Sensitive Character for Visualizing Cellular Lipid Droplets and Determining Their Polarity. Analytical Chemistry, 2022, 94, 12095-12102.	3.2	27
632	Lipid droplets imaging with three-photon microscopy. Journal of Innovative Optical Health Sciences, 2023, 16, .	0.5	1
633	Membrane lipid compositions and their difference between subcellular structures. , 2023, , 7-26.		0
634	A multifunctional fluorescent probe for dual-color visualization of intracellular mitochondria and lipid droplets and monitoring of SO2 in vivo. Chemical Engineering Journal, 2023, 451, 139023.	6.6	21
635	Genuss und ErnÄ ¤ rung. , 2022, , 419-483.		0
636	Controlled evaporation-induced phase separation of droplets containing nanogels and salt molecules. RSC Advances, 2022, 12, 27977-27986.	1.7	1

#	Article	IF	CITATIONS
637	Luminescence chemosensors, biological probes, and imaging reagents. , 2022, , .		0
639	Nile Red and BODIPY Staining of Lipid Droplets in Mouse Oocytes and Embryos. Methods in Molecular Biology, 2023, , 205-212.	0.4	0
640	Generation of mega brown adipose tissue in adults by controlling brown adipocyte differentiation in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	1
641	Identification of two pathways mediating protein targeting from ER to lipid droplets. Nature Cell Biology, 2022, 24, 1364-1377.	4.6	29
643	Molecular and colloidal self-assembly at the oil–water interface. Current Opinion in Colloid and Interface Science, 2022, 62, 101639.	3.4	8
644	Lipid Droplets and Their Participation in Zika Virus Infection. International Journal of Molecular Sciences, 2022, 23, 12584.	1.8	5
645	Maternal Fructose Intake, Programmed Mitochondrial Function and Predisposition to Adult Disease. International Journal of Molecular Sciences, 2022, 23, 12215.	1.8	1
646	<i>In Vivo</i> Simultaneous Imaging of Plasma Membrane and Lipid Droplets in Hepatic Steatosis using Red-Emissive Two-Photon Probes. Analytical Chemistry, 2022, 94, 15100-15107.	3.2	7
647	Overexpression of <i>ATGL</i> impairs lipid droplet accumulation by accelerating lipolysis in goat mammary epithelial cells. Animal Biotechnology, 0, , 1-9.	0.7	0
648	First Evidence of Anti-Steatotic Action of Macrotympanain A1, an Amphibian Skin Peptide from Odorrana macrotympana. Molecules, 2022, 27, 7417.	1.7	1
649	Chapter 15. Dosimetry and Imaging of Micro and Nanoparticles by Means of High Resolution Techniques. Chemistry in the Environment, 2022, , 363-388.	0.2	0
650	Activation energy and force fields during topological transitions of fluid lipid vesicles. Communications Physics, 2022, 5, .	2.0	5
651	Active reconfiguration of cytoplasmic lipid droplets governs migration of nutrient-limited phytoplankton. Science Advances, 2022, 8, .	4.7	4
652	The ApoA-I mimetic peptide 5A enhances remyelination by promoting clearance and degradation of myelin debris. Cell Reports, 2022, 41, 111591.	2.9	4
653	Mechanistic View on the Effects of SGLT2 Inhibitors on Lipid Metabolism in Diabetic Milieu. Journal of Clinical Medicine, 2022, 11, 6544.	1.0	13
655	A new organic molecular probe as a powerful tool for fluorescence imaging and biological study of lipid droplets. Theranostics, 2023, 13, 95-105.	4.6	13
656	Altered intramuscular network of lipid droplets and mitochondria in type 2 diabetes. American Journal of Physiology - Cell Physiology, 2023, 324, C39-C57.	2.1	9
657	NSCLC Cells Resistance to PI3K/mTOR Inhibitors Is Mediated by Delta-6 Fatty Acid Desaturase (FADS2). Cells, 2022, 11, 3719.	1.8	0

#	ARTICLE	IF	CITATIONS
658	Overcharged lipid metabolism in mechanisms of antitumor by <i>Tremella fuciformis</i> â€ʿderived polysaccharide. International Journal of Oncology, 2022, 62, .	1.4	0
659	Construction of a TICT-AIE-Integrated Unimolecular Platform for Imaging Lipid Droplet–Mitochondrion Interactions in Live Cells and <i>In Vivo</i> . ACS Sensors, 2023, 8, 40-50.	4.0	11
660	The chemistry of chemically fueled droplets. Trends in Chemistry, 2023, 5, 45-60.	4.4	12
661	Methodological advancements in organ-specific ectopic lipid quantitative characterization: Effects of high fat diet on muscle and liver intracellular lipids. Molecular Metabolism, 2023, 68, 101669.	3.0	2
662	Evaluation of 1,2-diacyl-3-acetyl triacylglycerol production in Yarrowia lipolytica. Metabolic Engineering, 2023, 76, 18-28.	3.6	2
663	Three polarity-sensitive fluorescence probe possessing AIE activity and its application on lipid droplets imaging. Dyes and Pigments, 2023, 211, 111082.	2.0	8
664	A red-emitting thiophene-modified BODIPY probe for fluorescence lifetime-based polarity imaging of lipid droplets in living cells. Journal of Materials Chemistry B, 2023, 11, 3919-3928.	2.9	3
665	The Role of Cytosolic Lipid Droplets in Hepatitis C Virus Replication, Assembly, and Release. BioMed Research International, 2023, 2023, 1-15.	0.9	4
666	Super-resolution dynamic tracking of cellular lipid droplets employing with a photostable deep red fluorogenic probe. Biosensors and Bioelectronics, 2023, 229, 115243.	5.3	11
667	The lineage-specific evolution of the oleosin family in Theaceae. Gene, 2023, 868, 147385.	1.0	2
668	An advanced organic molecular probe for multimodal fluorescence imaging of cellular lipid droplets. Sensors and Actuators B: Chemical, 2023, 387, 133772.	4.0	5
669	Seipin—still a mysterious protein?. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	2
670	Cholesterol esters form supercooled lipid droplets whose nucleation is facilitated by triacylglycerols. Nature Communications, 2023, 14, .	5.8	12
671	Solvatochromic Near-Infrared Aggregation-Induced Emission-Active Acrylonitriles by Acceptor Modulation for Low-Power Stimulated Emission Depletion Nanoscopy. Chemistry of Materials, 2023, 35, 2472-2485.	3.2	20
672	Far-Red Fluorophore for Monitoring Viscosity <i>In Vitro</i> , <i>In Vivo</i> , and <i>Ex Vivo</i> and Dynamic Tracking of Lipid Droplets in Live Systems. , 2023, 1, 795-801.		0
674	Effect of different substituents on the fluorescence properties of precursors of synthetic GFP analogues and a polarity-sensitive lipid droplet probe with AIE properties for imaging cells and zebrafish. Organic and Biomolecular Chemistry, 2023, 21, 2960-2967.	1.5	3
675	SB2301-mediated perturbation of membrane composition in lipid droplets induces lipophagy and lipid droplets ubiquitination. Communications Biology, 2023, 6, .	2.0	1
676	Changes in the content of pollen total lipid and TAG in <i>Arabidopsis thaliana DGAT1</i> mutant <i>as11</i> . AoB PLANTS, 2023, 15,	1.2	2

IF ARTICLE CITATIONS # GPAT3 regulates the synthesis of lipid intermediate LPA and exacerbates Kupffer cell inflammation 677 2.7 3 mediated by the ERK signaling pathway. Cell Death and Disease, 2023, 14, . Lipid droplets are intracellular mechanical stressors that impair hepatocyte function. Proceedings of 678 3.3 the National Academy of Sciences of the United States of America, 2023, 120, . Tff3â^'/â^' Knock-Out Mice with Altered Lipid Metabolism Exhibit a Lower Level of Inflammation following the Dietary Intake of Sodium Chloride for One Week. International Journal of Molecular Sciences, 679 1.8 1 2023, 24, 7315. Lipid droplet biogenesis and functions in health and disease. Nature Reviews Endocrinology, 2023, 19, 696 443-459 Regulation of lipid droplets and cholesterol metabolism in adrenal cortical cells. Vitamins and 699 0.7 0 Hormones, 2024, , 79-136. Aggregation-Induced Emission (AIE), Life and Health. ACS Nano, 2023, 17, 14347-14405. 708 Lipidomics Analysis in Ferroptosis. Methods in Molecular Biology, 2023, , 149-156. 0.4 0 Pleasure and Nutrition., 2023, , 385-444. Understanding the "Berg limit": The 65° contact angle as the universal adhesion threshold of 735 1.3 2 biomatter. Physical Chemistry Chemical Physics, 0, , .