Entanglement Polytopes: Multiparticle Entanglement fr

Science 340, 1205-1208 DOI: 10.1126/science.1232957

Citation Report

#	Article	IF	CITATIONS
1	Now you see it. Nature Physics, 2013, 9, 394-394.	6.5	1
2	Classification of Multipartite Entanglement of All Finite Dimensionality. Physical Review Letters, 2013, 111, 060502.	2.9	64
3	Topology of entanglement in multipartite states with translational invariance. European Physical Journal D, 2013, 67, 1.	0.6	2
4	How many invariant polynomials are needed to decide local unitary equivalence of qubit states?. Journal of Mathematical Physics, 2013, 54, .	0.5	22
5	Four-qubit pure states as fermionic states. Physical Review A, 2013, 88, .	1.0	16
6	Entropy vector formalism and the structure of multidimensional entanglement in multipartite systems. Physical Review A, 2013, 88, .	1.0	52
7	Causal structures from entropic information: geometry and novel scenarios. New Journal of Physics, 2014, 16, 043001.	1.2	51
8	Canonical form of three-fermion pure-states with six single particle states. Journal of Mathematical Physics, 2014, 55, .	0.5	9
9	Entanglement classification of three fermions with up to nine single-particle states. Physical Review A, 2014, 89, .	1.0	16
10	Single-Photon W-states of High-Order for Random Number Generation. , 2014, , .		0
11	Effect of the Time-Dependent Atom-Field Couplings on Entanglement. Communications in Theoretical Physics, 2014, 62, 49-53.	1.1	3
12	Local Unitary Invariants for Multipartite Quantum Systems. Communications in Theoretical Physics, 2014, 62, 673-676.	1.1	1
13	Hypothesis testing on invariant subspaces of the symmetric group: part I. Quantum Sanov's theorem and arbitrarily varying sources. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 235303.	0.7	6
14	Role of correlations in the two-body-marginal problem. Physical Review A, 2014, 90, .	1.0	16
15	Multiqubit symmetric states with maximally mixed one-qubit reductions. Physical Review A, 2014, 90, .	1.0	29
16	Quantifying entanglement resources. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 424005.	0.7	124
17	Eigenvalue Distributions of Reduced Density Matrices. Communications in Mathematical Physics, 2014, 332, 1-52.	1.0	34
18	On-chip generation of high-order single-photon W-states. Nature Photonics, 2014, 8, 791-795.	15.6	109

TION RED

#	Article	IF	CITATIONS
19	YANG–BAXTER EQUATION, MAJORANA FERMIONS AND THREE BODY ENTANGLING STATES. International Journal of Modern Physics B, 2014, 28, 1450089.	1.0	4
20	Factorized three-body S-matrix restrained by the Yang–Baxter equation and quantum entanglements. Annals of Physics, 2014, 348, 106-126.	1.0	12
21	Experimental Determination of Multipartite Entanglement with Incomplete Information. Physical Review X, 2015, 5, .	2.8	6
22	The holographic entropy cone. Journal of High Energy Physics, 2015, 2015, 1.	1.6	109
23	Critical points of the linear entropy for pureL-qubit states. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 045305.	0.7	10
24	An alternative approach to the construction of Schur-Weyl transform. European Physical Journal D, 2015, 69, 1.	0.6	2
25	Operational entanglement families of symmetric mixedN-qubit states. Physical Review A, 2015, 91, .	1.0	9
27	Entanglement classification with matrix product states. Scientific Reports, 2016, 6, 30188.	1.6	15
28	On the geometry of mixed states and the Fisher information tensor. Journal of Mathematical Physics, 2016, 57, 062209.	0.5	9
29	Center-of-mass interpretation for bipartite purity analysis of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi>-party entanglement. Physical Review A, 2016, 94, .</mml:math 	1.0	14
30	Simple permutation-based measure of quantum correlations and maximally-3-tangled states. Physical Review A, 2016, 94, .	1.0	3
31	Detecting consistency of overlapping quantum marginals by separability. Physical Review A, 2016, 93, .	1.0	8
32	Identifying non-k-separability of a class of N-qubit complete graph states using correlation tensors. European Physical Journal D, 2016, 70, 1.	0.6	2
33	Indistinguishability of causal relations from limited marginals. Physical Review A, 2016, 94, .	1.0	12
34	Three-qutrit entanglement and simple singularities. Journal of Physics A: Mathematical and Theoretical, 2016, 49, 465301.	0.7	5
35	Multiparticle entanglement as an emergent phenomenon. Physical Review A, 2016, 93, .	1.0	19
36	The coupled cluster method and entanglement in three fermion systems. Journal of Mathematical Physics, 2017, 58, 012203.	0.5	2
37	Entanglement classification with algebraic geometry. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 195303.	0.7	11

#	Article	IF	CITATIONS
38	Towards a formal definition of static and dynamic electronic correlations. Physical Chemistry Chemical Physics, 2017, 19, 12655-12664.	1.3	44
39	Membership in Moment Polytopes is in NP and coNP. SIAM Journal on Computing, 2017, 46, 972-991.	0.8	10
40	Average entropy of a subsystem over a global unitary orbit of a mixed bipartite state. Quantum Information Processing, 2017, 16, 1.	1.0	3
41	<scp>L</scp> agrange function method for energy optimization directly in the space of natural orbitals. International Journal of Quantum Chemistry, 2017, 117, e25376.	1.0	3
42	Entanglement classification of four-partite states under the SLOCC. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 325301.	0.7	8
43	Experimental detection of entanglement polytopes via local filters. Npj Quantum Information, 2017, 3, .	2.8	5
44	Quantum marginals from pure doubly excited states. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 465304.	0.7	11
45	Almost all four-particle pure states are determined by their two-body marginals. Physical Review A, 2017, 96, .	1.0	13
46	Improvement in device-independent witnessing of genuine tripartite entanglement by local marginals. Physical Review A, 2017, 95, .	1.0	4
47	Local Detection of Correlations in Composite Quantum Systems. Springer Theses, 2017, , 69-128.	0.0	0
48	Dynamics and Characterization of Composite Quantum Systems. Springer Theses, 2017, , .	0.0	4
49	Recoupling Coefficients and Quantum Entropies. Annales Henri Poincare, 2018, 19, 385-410.	0.8	8
50	Tensor rank is not multiplicative under the tensor product. Linear Algebra and Its Applications, 2018, 543, 125-139.	0.4	13
51	Asymptotic properties of entanglement polytopes for large number of qubits. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 07LT01.	0.7	14
52	Coarse graining of entanglement classes in 2×m×n systems. Physical Review A, 2018, 97, .	1.0	7
53	The stabilizer for n -qubit symmetric states. Chinese Physics B, 2018, 27, 100311.	0.7	2
54	Entanglement of Three-Qubit Random Pure States. Entropy, 2018, 20, 745.	1.1	25
55	Efficient Algorithms for Tensor Scaling, Quantum Marginals, and Moment Polytopes. , 2018, , .		16

#	Article	IF	CITATIONS
56	A Possible Time-Dependent Generalization of the Bipartite Quantum Marginal Problem. Journal of Russian Laser Research, 2018, 39, 422-437.	0.3	1
57	Universal points in the asymptotic spectrum of tensors. , 2018, , .		18
58	Operator scaling with specified marginals. , 2018, , .		9
59	Proving genuine multiparticle entanglement from separable nearest-neighbor marginals. Physical Review A, 2018, 98, .	1.0	8
60	Multipartite Quantum Correlations: Symplectic and Algebraic Geometry Approach. Reports on Mathematical Physics, 2018, 82, 81-111.	0.4	9
61	Universal and distortion-free entanglement concentration of multiqubit quantum states in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>W</mml:mi></mml:math> class. Physical Review A, 2018, 98, .	1.0	4
62	Generalized Pauli constraints in small atoms. Physical Review A, 2018, 97, .	1.0	22
63	Entanglement polygon inequality in qubit systems. New Journal of Physics, 2018, 20, 063012.	1.2	21
64	On the time evolution of fermionic occupation numbers. Journal of Chemical Physics, 2019, 151, 044112.	1.2	12
65	Experimental data from a quantum computer verifies the generalized Pauli exclusion principle. Communications Physics, 2019, 2, .	2.0	17
66	Detection of genuine n-qubit entanglement via the proportionality of two vectors. Quantum Information Processing, 2019, 18, 1.	1.0	2
67	Characterizing Multipartite Entanglement with Moments of Random Correlations. Physical Review Letters, 2019, 122, 120505.	2.9	41
68	Controlled teleportation of qubit states: Relation between teleportation faithfulness, controller's authority, and tripartite entanglement. Physical Review A, 2019, 99, .	1.0	14
69	Entanglement classification via integer partitions. Quantum Information Processing, 2020, 19, 1.	1.0	Ο
70	One-body entanglement as a quantum resource in fermionic systems. Physical Review A, 2020, 102, .	1.0	9
71	Higher-order singular value decomposition and the reduced density matrices of three qubits. Quantum Information Processing, 2020, 19, 1.	1.0	2
72	Some Remarks on the Local Unitary Classification of Three-Qubit Pure States. Journal of Physics: Conference Series, 2020, 1540, 012025.	0.3	0
73	Counting Classical Nodes in Quantum Networks. Physical Review Letters, 2020, 124, 180503.	2.9	8

#	Article	IF	CITATIONS
74	Classical analog of the quantum marginal problem. Physical Review A, 2020, 101, .	1.0	1
75	Implications of pinned occupation numbers for natural orbital expansions. II: rigorous derivation and extension to non-fermionic systems. New Journal of Physics, 2020, 22, 023002.	1.2	2
76	Quantum Information and Algorithms for Correlated Quantum Matter. Chemical Reviews, 2021, 121, 3061-3120.	23.0	67
77	Bell inequalities for entangled qubits: quantitative tests of quantum character and nonlocality on quantum computers. Physical Chemistry Chemical Physics, 2021, 23, 6370-6387.	1.3	1
78	A complete hierarchy for the pure state marginal problem in quantum mechanics. Nature Communications, 2021, 12, 1012.	5.8	15
79	The quantum marginal problem for symmetric states: applications to variational optimization, nonlocality and self-testing. New Journal of Physics, 2021, 23, 033026.	1.2	6
80	Designing locally maximally entangled quantum states with arbitrary local symmetries. Quantum - the Open Journal for Quantum Science, 0, 5, 450.	0.0	2
81	Local transformations of multiple multipartite states. SciPost Physics, 2021, 11, .	1.5	6
82	Machine learning universal bosonic functionals. Physical Review Research, 2021, 3, .	1.3	11
83	Computable and Operationally Meaningful Multipartite Entanglement Measures. Physical Review Letters, 2021, 127, 140501.	2.9	21
84	Integrated photonic quantum walks. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 073001.	0.6	15
85	Determining system Hamiltonian from eigenstate measurements without correlation functions. New Journal of Physics, 2020, 22, 083088.	1.2	10
86	Locally Maximally Entangled States of Multipart Quantum Systems. Quantum - the Open Journal for Quantum Science, 0, 3, 115.	0.0	10
87	A link between symmetries of critical states and the structure of SLOCC classes in multipartite systems. Quantum - the Open Journal for Quantum Science, 0, 4, 300.	0.0	5
88	Algebraic-geometric characterization of tripartite entanglement. Physical Review A, 2021, 104, .	1.0	5
89	High-Order Single-Photon W-states for Random Number Generation. , 2014, , .		0
90	Detection of the Entanglement in Many-Qubit Quantum Systems on the Basis of the Mermin and Ardehali Criteria. Ukrainian Journal of Physics, 2016, 61, 1061-1072.	0.1	0
91	Universal points in the asymptotic spectrum of tensors. , 0, , .		4

#	Article	IF	CITATIONS
92	Fine-structure classification of multiqubit entanglement by algebraic geometry. Physical Review Research, 2020, 2, .	1.3	8
93	Classification of four qubit states and their stabilisers under SLOCC operations. Journal of Physics A: Mathematical and Theoretical, 0, , .	0.7	2
94	Standard model physics and the digital quantum revolution: thoughts about the interface. Reports on Progress in Physics, 2022, 85, 064301.	8.1	62
95	Special entangled fermionic systems and exceptional symmetries. Journal of Mathematical Chemistry, 0, , .	0.7	0
96	Entanglement polygon inequality in qudit systems. Physical Review A, 2022, 105, .	1.0	7
97	Maximum likelihood estimation for tensor normal models via castling transforms. Forum of Mathematics, Sigma, 2022, 10, .	0.3	2
98	Monogamy constraints on entanglement of four-qubit pure states. Quantum Information Processing, 2022, 21, .	1.0	0
99	Entanglement transitivity problems. Npj Quantum Information, 2022, 8, .	2.8	0
100	Group-Invariant Quantum Machine Learning. PRX Quantum, 2022, 3, .	3.5	31
101	The chaotic emergence of thermalization in highly excited string decays. Journal of High Energy Physics, 2023, 2023, .	1.6	2
102	Certificates of quantum many-body properties assisted by machine learning. Physical Review Research, 2023, 5, .	1.3	0
103	Clobal and Bipartite Entanglement for Three-Qubit System Local Unitary Classes. Journal of Physics: Conference Series, 2023, 2448, 012020.	0.3	0
104	Weighted slice rank and a minimax correspondence to Strassen's spectra. Journal Des Mathematiques Pures Et Appliquees, 2023, 172, 299-329.	0.8	0
119	Interior-point methods on manifolds: theory and applications. , 2023, , .		1
120	The minimal canonical form of a tensor network. , 2023, , .		0