Profound Methyl Effects in Drug Discovery and a Call for

Angewandte Chemie - International Edition 52, 12256-12267 DOI: 10.1002/anie.201303207

Citation Report

#	Article	IF	CITATIONS
1	Ligand-Accelerated <i>ortho</i> -C–H Alkylation of Arylcarboxylic Acids using Alkyl Boron Reagents. Journal of the American Chemical Society, 2013, 135, 17508-17513.	6.6	151
2	Cross-Coupling of Remote <i>meta</i> -C–H Bonds Directed by a U-Shaped Template. Journal of the American Chemical Society, 2013, 135, 18056-18059.	6.6	248
3	Bayesian inference of conformational state populations from computational models and sparse experimental observables. Journal of Computational Chemistry, 2014, 35, 2215-2224.	1.5	22
4	Further evaluation of novel structural modifications to scaffolds that engender PLD isoform selective inhibition. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5553-5557.	1.0	6
5	A highly efficient asymmetric synthesis of quaternary stereocenter-containing indolizidine and quinolizidine alkaloids using aldehydes, nitroalkenes, and unactivated cyclic ketimines. Chemical Communications, 2014, 50, 15913-15915.	2.2	19
6	C–H Methylation of Heteroarenes Inspired by Radical SAM Methyl Transferase. Journal of the American Chemical Society, 2014, 136, 4853-4856.	6.6	171
7	Lateâ€Stage Functionalization of Biologically Active Heterocycles Through Photoredox Catalysis. Angewandte Chemie - International Edition, 2014, 53, 4802-4806.	7.2	413
8	Palladium(II)â€Catalyzed <i>ortho</i> â€CH Arylation/Alkylation of <i>N</i> â€Benzoyl αâ€Amino Ester Derivatives. Chemistry - A European Journal, 2014, 20, 4548-4553.	1.7	61
9	Computational Screening and Selection of Cyclic Peptide Hairpin Mimetics by Molecular Simulation and Kinetic Network Models. Journal of Chemical Information and Modeling, 2014, 54, 1425-1432.	2.5	47
10	Iridium-catalyzed selective α-methylation of ketones with methanol. Chemical Communications, 2014, 50, 2491-2493.	2.2	143
11	A Free-Radical Cascade Methylation/Cyclization of <i>N</i> -Arylacrylamides and Isocyanides with Dicumyl Peroxide. Organic Letters, 2014, 16, 5670-5673.	2.4	128
12	Overcoming the limitations of directed C–H functionalizations of heterocycles. Nature, 2014, 515, 389-393.	13.7	279
13	Palladiumâ€Catalyzed Decarboxylative Methylthiolation of Aromatic Carboxylic Acids by Using DMSO as the Sulfurizing Reagent. European Journal of Organic Chemistry, 2014, 2014, 7798-7802.	1.2	38
15	Highly Chemoâ€, Enantioâ€, and Regioselective Synthesis ofÂα,αâ€Disubstituted Furanones by Cuâ€Catalyzed Conjugate Addition. Chemistry - A European Journal, 2014, 20, 8893-8897.	1.7	6
16	Photoredox Catalysis in a Complex Pharmaceutical Setting: Toward the Preparation of JAK2 Inhibitor LY2784544. Journal of Organic Chemistry, 2014, 79, 11631-11643.	1.7	78
17	tert-Butyl Peroxybenzoate-Promoted Î \pm -Methylation of 1,3-Dicarbonyl Compounds. Journal of Organic Chemistry, 2014, 79, 11285-11289.	1.7	50
18	Directed functionalization of 1,2-dihydropyridines: stereoselective synthesis of 2,6-disubstituted piperidines. Chemical Communications, 2014, 50, 6883-6885.	2.2	27
19	Recent Advances in α <i>-</i> Alkylation Reactions using Alcohols with Hydrogen Borrowing Methodologies. ACS Catalysis, 2014, 4, 3972-3981.	5.5	390

TION RE

#	Article	IF	CITATIONS
20	Iron-Catalyzed Coupling of Aryl Sulfamates and Aryl/Vinyl Tosylates with Aryl Grignards. Organic Letters, 2014, 16, 5080-5083.	2.4	69
21	Catalytic Methylation of Cï£;H Bonds Using CO ₂ and H ₂ . Angewandte Chemie - International Edition, 2014, 53, 10476-10480.	7.2	108
22	GPR103 Antagonists Demonstrating Anorexigenic Activity in Vivo: Design and Development of Pyrrolo[2,3- <i>c</i>]pyridines That Mimic the C-Terminal Arg-Phe Motif of QRFP26. Journal of Medicinal Chemistry, 2014, 57, 5935-5948.	2.9	19
23	Palladium-Catalyzed C8 Alkylation of 1-Naphthylamides with Alkyl Halides via Bidentate-Chelation Assistance. Journal of Organic Chemistry, 2014, 79, 6720-6725.	1.7	77
24	The carbomethylation of arylacrylamides leading to 3-ethyl-3-substituted indolin-2-one by cascade radical addition/cyclization. Chemical Communications, 2014, 50, 3865.	2.2	103
25	Diâ€ <i>tert</i> Butyl Peroxideâ€Promoted Sequential Methylation and Intramolecular Aromatization of Isonitriles. Advanced Synthesis and Catalysis, 2014, 356, 3341-3346.	2.1	63
26	Benzene construction via organocatalytic formal [3+3] cycloaddition reaction. Nature Communications, 2014, 5, 5027.	5.8	95
27	Tailoring 3,3′â€Ðihydroxyisorenieratene to Hydroxystilbene: Finding a Resveratrol Analogue with Increased Antiproliferation Activity and Cell Selectivity. Chemistry - A European Journal, 2014, 20, 8904-8908.	1.7	15
28	Discovery of Imigliptin, a Novel Selective DPP-4 Inhibitor for the Treatment of Type 2 Diabetes. ACS Medicinal Chemistry Letters, 2014, 5, 921-926.	1.3	36
31	Stereoselective Organocatalytic Synthesis of Oxindoles with Adjacent Tetrasubstituted Stereocenters. Angewandte Chemie, 2015, 127, 8311-8315.	1.6	28
32	Nickel-catalyzed Cross-coupling of Anisole Derivatives with Trimethylaluminum through the Cleavage of Carbon–Oxygen Bonds. Chemistry Letters, 2015, 44, 1729-1731.	0.7	57
33	Rational Design of Benzylidenehydrazinyl-Substituted Thiazole Derivatives as Potent Inhibitors of Human Dihydroorotate Dehydrogenase with in Vivo Anti-arthritic Activity. Scientific Reports, 2015, 5, 14836.	1.6	19
34	The Nickel(II)-Catalyzed Direct Benzylation, Allylation, Alkylation, and Methylation of C–H Bonds in Aromatic Amides Containing an 8-Aminoquinoline Moiety as the Directing Group. Bulletin of the Chemical Society of Japan, 2015, 88, 438-446.	2.0	78
36	Regiocomplementary Oâ€Methylation of Catechols by Using Threeâ€Enzyme Cascades. ChemBioChem, 2015, 16, 2576-2579.	1.3	37
37	Ironâ€Catalyzed Directed Alkylation of Alkenes and Arenes with Alkylzinc Halides . Advanced Synthesis and Catalysis, 2015, 357, 2175-2179.	2.1	67
38	Stereoselective Organocatalytic Synthesis of Oxindoles with Adjacent Tetrasubstituted Stereocenters. Angewandte Chemie - International Edition, 2015, 54, 8193-8197.	7.2	78
39	Iron-Catalyzed Directed C(sp ²)–H and C(sp ³)–H Functionalization with Trimethylaluminum. Journal of the American Chemical Society, 2015, 137, 7660-7663.	6.6	237
40	Benzimidazole-containing HCV NS5A inhibitors: Effect of 4-substituted pyrrolidines in balancing genotype 1a and 1b potency. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 944-947.	1.0	8

\sim	 A	Deee	
		REDU	ועו
\sim		ILLI U	

#	Article	IF	CITATIONS
41	Discovery of novel 2-(alkylmorpholin-4-yl)-6-(3-fluoropyridin-4-yl)-pyrimidin-4(3H)-ones as orally-active GSK-3β inhibitors for Alzheimer's disease. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1086-1091.	1.0	25
42	lodine-catalyzed ammoxidation of methyl arenes. Chemical Communications, 2015, 51, 5085-5088.	2.2	41
43	Synthesis of Bicyclic Proline Derivatives by the Azaâ€Cope–Mannich Reaction: Formal Synthesis of (±)â€Acetylaranotin. Chemistry - A European Journal, 2015, 21, 4141-4147.	1.7	15
44	Transition-Metal-Catalyzed Arylation of Nitroimidazoles and Further Transformations of Manipulable Nitro Group. Journal of Organic Chemistry, 2015, 80, 2103-2119.	1.7	37
45	Academia–Industry Symbiosis in Organic Chemistry. Accounts of Chemical Research, 2015, 48, 712-721.	7.6	64
46	Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Benzylic Ethers and Esters. Accounts of Chemical Research, 2015, 48, 2344-2353.	7.6	236
47	Conformational Restriction and Steric Hindrance in Medicinal Chemistry. , 2015, , 279-299.		29
48	Novel oxazolidinone calcitonin gene-related peptide (CGRP) receptor antagonists for the acute treatment of migraine. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4777-4781.	1.0	21
49	Methyl-substitution of an iminohydantoin spiropiperidine β-secretase (BACE-1) inhibitor has a profound effect on its potency. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4812-4819.	1.0	17
50	lodine catalyzed one-pot synthesis of highly substituted N-methyl pyrroles via [3 + 2] annulation and their in vitro evaluation as antibacterial agents. RSC Advances, 2015, 5, 64781-64789.	1.7	12
51	Discovery, design, and synthesis of indole-based EZH2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3644-3649.	1.0	48
52	Insights into the importance for designing curcumin-inspired anticancer agents by a prooxidant strategy: The case of diarylpentanoids. Free Radical Biology and Medicine, 2015, 85, 127-137.	1.3	70
53	Recent Advances in Transition Metalâ€Catalyzed Methylation Reactions. Advanced Synthesis and Catalysis, 2015, 357, 1333-1350.	2.1	123
54	The Literature of Heterocyclic Chemistry, Part XIII, 2012–2013. Advances in Heterocyclic Chemistry, 2015, 116, 193-363.	0.9	12
55	Design and synthesis of analogues of natural products. Organic and Biomolecular Chemistry, 2015, 13, 5302-5343.	1.5	132
56	Iron atalyzed C(sp ²)H and C(sp ³)H Methylations of Amides and Anilides. Chemistry - A European Journal, 2015, 21, 8812-8815.	1.7	95
57	Strong Nonadditivity as a Key Structure–Activity Relationship Feature: Distinguishing Structural Changes from Assay Artifacts. Journal of Chemical Information and Modeling, 2015, 55, 483-494.	2.5	38
58	WONKA: objective novel complex analysis for ensembles of protein–ligand structures. Journal of Computer-Aided Molecular Design, 2015, 29, 963-973.	1.3	8

#	Article	IF	CITATIONS
59	Copper-catalyzed N-methylation/ethylation of sulfoximines. Organic and Biomolecular Chemistry, 2015, 13, 9934-9937.	1.5	35
60	Alcohols as alkylating agents in heteroarene C–H functionalization. Nature, 2015, 525, 87-90.	13.7	581
61	Regioselective Direct Arylation of Fused 3â€Nitropyridines and Other Nitro‣ubstituted Heteroarenes: The Multipurpose Nature of the Nitro Group as a Directing Group. ChemCatChem, 2015, 7, 316-324.	1.8	27
62	Multigram Synthesis of Fluoroalkylâ€Substituted Pyrazoleâ€4â€carboxylic Acids. European Journal of Organic Chemistry, 2015, 2015, 886-891.	1.2	27
63	[Cp*Ru]-catalyzed selective coupling/hydrogenation. Catalysis Science and Technology, 2015, 5, 1650-1657.	2.1	3
64	Opportunities and challenges for direct C–H functionalization of piperazines. Beilstein Journal of Organic Chemistry, 2016, 12, 702-715.	1.3	36
65	Photoredox-mediated Minisci C–H alkylation of N-heteroarenes using boronic acids and hypervalent iodine. Chemical Science, 2016, 7, 6407-6412.	3.7	272
67	Pdâ€Catalyzed Câ^'H Alkylation of Arenes Using PyrDipSi, a Transformable and Removable Siliconâ€Tethered Directing Group. Chemistry - A European Journal, 2016, 22, 11201-11204.	1.7	23
68	Highâ€Valentâ€Cobaltâ€Catalyzed Câ^'H Functionalization Based on Concerted Metalation–Deprotonation and Singleâ€Electronâ€Transfer Mechanisms. ChemCatChem, 2016, 8, 1242-1263.	1.8	270
69	Palladium-catalysed direct C-2 methylation of indoles. Organic and Biomolecular Chemistry, 2016, 14, 7443-7446.	1.5	24
70	Mild and Efficient Palladium atalyzed Direct Trifluoroethylation of Aromatic Systems by Câ^'H Activation. Angewandte Chemie, 2016, 128, 2028-2032.	1.6	15
71	An Efficient Synthesis of Polysubstituted Pyridines <i>via</i> CH Oxidation and CS Cleavage of Dimethyl Sulfoxide. Advanced Synthesis and Catalysis, 2016, 358, 218-225.	2.1	78
72	Cobalt atalyzed C(sp ²)â^'H Methylation by using Dicumyl Peroxide as both the Methylating Reagent and Hydrogen Acceptor. Chemistry - A European Journal, 2016, 22, 12286-12289.	1.7	42
73	The Applications of Dimethyl Sulfoxide as Reagent in Organic Synthesis. Advanced Synthesis and Catalysis, 2016, 358, 336-352.	2.1	277
74	Synthesis of (pentafluorophenyl)benzenes via Pd-catalyzed C–H arylation of pentafluorobenzene with aryliodine diacetates. Journal of the Iranian Chemical Society, 2016, 13, 1931-1936.	1.2	3
75	Visible-Light-Promoted (Phenylsulfonyl)methylation of Electron-Rich Heteroarenes and <i>N</i> -Arylacrylamides. Journal of Organic Chemistry, 2016, 81, 6972-6979.	1.7	32
76	Discovery of novel non-steroidal reverse indole mineralocorticoid receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2866-2869.	1.0	12
77	The Synthesis of Methyl-Substituted Spirocyclic Piperidine-Azetidine (2,7-Diazaspiro[3.5]nonane) and Spirocyclic Piperidine-Pyrrolidine (2,8-Diazaspiro[4.5]decane) Ring Systems. Journal of Organic Chemistry, 2016, 81, 3509-3519.	1.7	16

#	Αρτιςι ε	IF	CITATIONS
78	Palladium-catalyzed Catellani-type couplings using methylating reagents for the synthesis of highly substituted ortho-methyl-arenes and heteroarenes. Tetrahedron Letters, 2016, 57, 5053-5056.	0.7	25
79	Vinyl Esters as Acetaldehyde Surrogates: Potential Utility in Some Common Multicomponent Sequences. ChemistrySelect, 2016, 1, 4672-4681.	0.7	1
80	Radical trideuteromethylation with deuterated dimethyl sulfoxide in the synthesis of heterocycles and labelled building blocks. Chemical Communications, 2016, 52, 12486-12489.	2.2	53
81	Asymmetric Synthesis of Chiral α-Methyl-α,β-diamino Acid Derivatives via Group-Assisted Purification Chemistry Using <i>N</i> -Phosphonyl Imines and a Ni(II)-Complexed Alanine Schiff Base. Journal of Organic Chemistry, 2016, 81, 7654-7661.	1.7	20
82	Regioâ€and Enantioselective Copperâ€Catalyzed 1,4â€Conjugate Addition of Trimethylaluminium to Linear α,β,γ,ΰâ€Unsaturated Alkyl Ketones. Advanced Synthesis and Catalysis, 2016, 358, 2510-2518.	2.1	15
83	Crystal Structure of Carboxyltransferase from Staphylococcus aureus Bound to the Antibacterial Agent Moiramide B. Biochemistry, 2016, 55, 4666-4674.	1.2	14
84	Iron-Catalyzed <i>Ortho</i> C–H Methylation of Aromatics Bearing a Simple Carbonyl Group with Methylaluminum and Tridentate Phosphine Ligand. Journal of the American Chemical Society, 2016, 138, 10132-10135.	6.6	133
85	Iron-Catalyzed C–H Functionalization Processes. Topics in Current Chemistry, 2016, 374, 57.	3.0	116
86	Iron-catalyzed arylmethylation of sulfonyl acrylamides. Tetrahedron Letters, 2016, 57, 4109-4112.	0.7	18
87	Rhodium-Catalyzed Annulation of Primary Benzylamine with α-Diazo Ketone toward Isoquinoline. Journal of Organic Chemistry, 2016, 81, 8009-8013.	1.7	46
88	Identification of Ligand Binding Hot Spots of the Histamine H ₁ Receptor following Structure-Based Fragment Optimization. Journal of Medicinal Chemistry, 2016, 59, 9047-9061.	2.9	26
89	A Convenient Rutheniumâ€Catalysed αâ€Methylation of Carbonyl Compounds using Methanol. Advanced Synthesis and Catalysis, 2016, 358, 3373-3380.	2.1	59
90	Nickelâ€Catalyzed Methylation of Aryl Halides with Deuterated Methyl Iodide. Angewandte Chemie, 2016, 128, 9895-9899.	1.6	13
91	Transitionâ€Metalâ€Free Regioselective Alkylation of Pyridine <i>N</i> â€Oxides Using 1,1â€Diborylalkanes as Alkylating Reagents. Angewandte Chemie - International Edition, 2016, 55, 9690-9694.	7.2	169
92	Nickelâ€Catalyzed Methylation of Aryl Halides with Deuterated Methyl Iodide. Angewandte Chemie - International Edition, 2016, 55, 9743-9747.	7.2	64
93	Transitionâ€Metalâ€Free Regioselective Alkylation of Pyridine <i>N</i> â€Oxides Using 1,1â€Diborylalkanes as Alkylating Reagents. Angewandte Chemie, 2016, 128, 9842-9846.	1.6	63
94	Cobalt-Catalyzed Monoselective <i>Ortho</i> -C–H Functionalization of Carboxamides with Organoaluminum Reagent. Organic Letters, 2016, 18, 5628-5631.	2.4	37
95	Hydrogen-Bonding-Induced Fluorescence: Water-Soluble and Polarity-Independent Solvatochromic Fluorophores. Journal of Organic Chemistry, 2016, 81, 10922-10929.	1.7	35

#	Article	IF	CITATIONS
96	Mild and Efficient Palladium atalyzed Direct Trifluoroethylation of Aromatic Systems by Câ^'H Activation. Angewandte Chemie - International Edition, 2016, 55, 1988-1992.	7.2	69
97	Phenyltrimethylammonium Salts as Methylation Reagents in the Nickelâ€Catalyzed Methylation of Câ^'H Bonds. Angewandte Chemie - International Edition, 2016, 55, 3162-3165.	7.2	120
98	Building Bridges: Biocatalytic C–C-Bond Formation toward Multifunctional Products. ACS Catalysis, 2016, 6, 4286-4311.	5.5	155
99	Metal-Free Oxidative 1,2-Arylmethylation Cascades of <i>N</i> -(Arylsulfonyl)acrylamides Using Peroxides as the Methyl Resource. Organic Letters, 2016, 18, 3198-3201.	2.4	63
100	Modern advances in heterocyclic chemistry in drug discovery. Organic and Biomolecular Chemistry, 2016, 14, 6611-6637.	1.5	540
101	Phenyltrimethylammonium Salts as Methylation Reagents in the Nickelâ€Catalyzed Methylation of Câ^'H Bonds. Angewandte Chemie, 2016, 128, 3214-3217.	1.6	27
102	Methyltransferases: Green Catalysts for Friedel–Crafts Alkylations. ChemCatChem, 2016, 8, 1354-1360.	1.8	22
103	C–C Activation by Retro-Aldol Reaction of Two β-Hydroxy Carbonyl Compounds: Synergy with Pd-Catalyzed Cross-Coupling To Access Mono-α-arylated Ketones and Esters. Journal of Organic Chemistry, 2016, 81, 57-65.	1.7	39
104	Dicumyl Peroxide as a Methylating Reagent in the Ni-Catalyzed Methylation of Ortho C–H Bonds in Aromatic Amides. Organic Letters, 2016, 18, 1698-1701.	2.4	95
105	Copper(I)â€Catalyzed 3â€Position Methylation of Coumarins by Using Diâ€ <i>tert</i> â€butyl Peroxide as the Methylation Reagents. Chinese Journal of Chemistry, 2016, 34, 368-372.	2.6	16
106	Measurement, Interpretation and Use of Free Ligand Solution Conformations in Drug Discovery. Progress in Medicinal Chemistry, 2016, 55, 45-147.	4.1	22
107	Molecular inflation, attrition and the rule of five. Advanced Drug Delivery Reviews, 2016, 101, 22-33.	6.6	144
108	Unveiling Secrets of Overcoming the "Heteroatom Problem―in Palladium-Catalyzed Aerobic C–H Functionalization of Heterocycles: A DFT Mechanistic Study. Journal of the American Chemical Society, 2016, 138, 2712-2723.	6.6	65
109	C-Alkylation by Hydrogen Autotransfer Reactions. Topics in Current Chemistry, 2016, 374, 11.	3.0	50
110	Functionalization of C(sp3)–H Bond by Visible-Light Photoredox Catalysis. Springer Briefs in Molecular Science, 2016, , 61-81.	0.1	1
111	Preclinical characterization of substituted 6,7-dihydro-[1,2,4]triazolo[4,3- a]pyrazin-8(5 H)-one P2X7 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 257-261.	1.0	20
112	Ultra-High-Throughput Structure-Based Virtual Screening for Small-Molecule Inhibitors of Protein–Protein Interactions. Journal of Chemical Information and Modeling, 2016, 56, 399-411.	2.5	44
113	The medicinal chemist's toolbox for late stage functionalization of drug-like molecules. Chemical Society Reviews, 2016, 45, 546-576.	18.7	1,243

#	ARTICLE	IF	CITATIONS
114	Matched Molecular Pair Analysis in Short: Algorithms, Applications and Limitations. Computational and Structural Biotechnology Journal, 2017, 15, 86-90.	1.9	71
115	Hydrazinyldiene-chroman-2,4-diones in inducing growth arrest and apoptosis in breast cancer cells: Synergism with doxorubicin and correlation with physicochemical properties. Acta Pharmaceutica, 2017, 67, 35-52.	0.9	8
116	Transitionâ€Metalâ€Catalyzed Utilization of Methanol as a C ₁ â€Source in Organic Synthesis. Angewandte Chemie - International Edition, 2017, 56, 6384-6394.	7.2	227
117	Übergangsmetallkatalysierte Nutzung von Methanol als C ₁ â€Quelle in der organischen Synthese. Angewandte Chemie, 2017, 129, 6482-6492.	1.6	45
118	A facile and general acid-catalyzed deuteration at methyl groups of N-heteroarylmethanes. Organic and Biomolecular Chemistry, 2017, 15, 2507-2511.	1.5	39
119	Asymmetric Câ€Alkylation by the <i>S</i> â€Adenosylmethionineâ€Dependent Methyltransferase SgvM. Angewandte Chemie - International Edition, 2017, 56, 4033-4036.	7.2	46
120	Asymmetric Câ€Alkylation by the <i>S</i> â€Adenosylmethionineâ€Dependent Methyltransferase SgvM. Angewandte Chemie, 2017, 129, 4091-4094.	1.6	29
121	Catalytic Alkylation Using a Cyclic <i>S</i> â€Adenosylmethionine Regeneration System. Angewandte Chemie, 2017, 129, 4095-4099.	1.6	42
122	The Necessary Nitrogen Atom: A Versatile High-Impact Design Element for Multiparameter Optimization. Journal of Medicinal Chemistry, 2017, 60, 3552-3579.	2.9	212
123	Catalytic Alkylation Using a Cyclic <i>S</i> â€Adenosylmethionine Regeneration System. Angewandte Chemie - International Edition, 2017, 56, 4037-4041.	7.2	124
124	Iron-catalyzed Methylation of Arylboron Compounds with Iodomethane. Chemistry Letters, 2017, 46, 711-714.	0.7	14
125	Recent advances in methyltransferase biocatalysis. Current Opinion in Chemical Biology, 2017, 37, 97-106.	2.8	90
126	Design, Synthesis, and Biological Evaluation of Dimorpholine Substituted Thienopyrimidines as Potential Class I PI3K/mTOR Dual Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 4023-4035.	2.9	29
127	Visible-light-induced and iron-catalyzed methylation of N-arylacrylamides with dimethyl sulphoxide: a convenient access to 3-ethyl-3-methyl oxindoles. Organic and Biomolecular Chemistry, 2017, 15, 4205-4211.	1.5	45
128	Simple and Clean Photo-induced Methylation of Heteroarenes with MeOH. CheM, 2017, 2, 688-702.	5.8	153
129	Katalytische Desymmetrisierung durch Câ€Hâ€Funktionalisierung: eine Lösung für das Problem der stereogenen Methylgruppe. Angewandte Chemie, 2017, 129, 7460-7462.	1.6	2
130	Catalytic Desymmetrization by Câ [~] 'H Functionalization as a Solution to the Chiral Methyl Problem. Angewandte Chemie - International Edition, 2017, 56, 7354-7356.	7.2	10
131	Conformational control in structure-based drug design. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2825-2837.	1.0	38

#	Article	IF	CITATIONS
132	Catalytic sp ³ –sp ³ Functionalisation of Sulfonamides: Lateâ€&tage Modification of Drugâ€Like Molecules. Chemistry - A European Journal, 2017, 23, 1494-1497.	1.7	7
133	Enantioselective Formal αâ€Methylation and αâ€Benzylation of Aldehydes by Means of Photoâ€organocatalysis. Angewandte Chemie, 2017, 129, 4518-4522.	1.6	22
134	Selective sp3 C–H alkylation via polarity-match-based cross-coupling. Nature, 2017, 547, 79-83.	13.7	396
135	Mild C(sp)–H functionalization of dihydrosanguinarine and dihydrochelerythrine for development of highly cytotoxic derivatives. European Journal of Medicinal Chemistry, 2017, 138, 1-12.	2.6	7
136	Estimation of kinetic and thermodynamic ligand-binding parameters using computational strategies. Future Medicinal Chemistry, 2017, 9, 507-523.	1.1	30
137	Copper-catalyzed methylation of 1,3-diketones with tert-butyl peroxybenzoate. Tetrahedron, 2017, 73, 2740-2746.	1.0	11
138	Mechanistic insight into the regioselectivity of Pd(<scp>ii</scp>)-catalyzed C–H functionalization of N-methoxy cinnamamide. Dalton Transactions, 2017, 46, 5288-5296.	1.6	5
139	Radical-Based Late Stage C–H Functionalization of Heteroaromatics in Drug Discovery. , 2017, , 103-120.		6
140	A Tandem Enzymatic sp ² â€Câ€Methylation Process: Coupling in Situ Sâ€Adenosylâ€ <scp>l</scp> â€Methionine Formation with Methyl Transfer. ChemBioChem, 2017, 18, 992-995.	1.3	27
141	Enantioselective Formal αâ€Methylation and αâ€Benzylation of Aldehydes by Means of Photoâ€organocatalysis. Angewandte Chemie - International Edition, 2017, 56, 4447-4451.	7.2	83
142	Lithium Enolates in the Enantioselective Construction of Tetrasubstituted Carbon Centers with Chiral Lithium Amides as Noncovalent Stereodirecting Auxiliaries. Journal of the American Chemical Society, 2017, 139, 527-533.	6.6	53
143	Metal-free radical C–H methylation of pyrimidinones and pyridinones with dicumyl peroxide. Green Chemistry, 2017, 19, 919-923.	4.6	35
144	Utilization of CO ₂ as a C1 Building Block for Catalytic Methylation Reactions. ACS Catalysis, 2017, 7, 1077-1086.	5.5	200
145	An Iron(II) Chlorideâ€Promoted Radical Cascade Methylation or αâ€Chloroâ€Î²â€methylation of <i>N</i> â€Arylacrylamides with Dimethyl Sulfoxide. Advanced Synthesis and Catalysis, 2017, 359, 246-249.	2.1	49
146	Functional and structural characterisation of a bacterial <i>O</i> â€methyltransferase and factors determining regioselectivity. FEBS Letters, 2017, 591, 312-321.	1.3	34
147	Preparation and use of DMF-stabilized iridium nanoclusters as methylation catalysts using methanol as the C1 source. Chemical Communications, 2017, 53, 1080-1083.	2.2	86
148	Click Chemistry: Novel Applications in Cell Biology and Drug Discovery. Angewandte Chemie - International Edition, 2017, 56, 15504-15505.	7.2	26
149	A systematic analysis of atomic protein–ligand interactions in the PDB. MedChemComm, 2017, 8, 1970-1981.	3.5	289

#	Article	IF	CITATIONS
150	Palladium-catalyzed C–H activation/C–C cross-coupling reactions via electrochemistry. Chemical Communications, 2017, 53, 12189-12192.	2.2	117
151	Mesoionic Pyrido[1,2- <i>a</i>]pyrimidinone Insecticides: From Discovery to Triflumezopyrim and Dicloromezotiaz. Accounts of Chemical Research, 2017, 50, 2381-2388.	7.6	41
152	Copper-Catalyzed Oxidative Alkylation (Methylation) of Phosphonamides and Phosphinamides Using Dicumyl Peroxide. Journal of Organic Chemistry, 2017, 82, 9497-9504.	1.7	15
153	Nickel-catalyzed methylation of aryl halides/tosylates with methyl tosylate. Chemical Communications, 2017, 53, 10180-10183.	2.2	67
154	Manganese-Catalyzed Directed Methylation of C(sp2)–H Bonds at 25 °C with High Catalytic Turnover. Organic Letters, 2017, 19, 5458-5461.	2.4	55
155	An ortho C-methylation/O-glycosylation motif on a hydroxy-coumarin scaffold, selectively installed by biocatalysis. Organic and Biomolecular Chemistry, 2017, 15, 7917-7924.	1.5	11
156	Structural Basis of the Selectivity of GenN, an Aminoglycoside <i>N</i> -Methyltransferase Involved in Gentamicin Biosynthesis. ACS Chemical Biology, 2017, 12, 2779-2787.	1.6	16
157	MnCl ₂ atalyzed Câ^'H Alkylations with Alkyl Halides. Chemistry - A European Journal, 2017, 23, 11524-11528.	1.7	57
158	Re ₂ O ₇ â€Mediated Dehydrative Cyclization Reactions: Total Synthesis of Herboxidiene and Its 12â€Desmethyl Analogue. Angewandte Chemie - International Edition, 2017, 56, 10900-10904.	7.2	23
159	Multicomponent Synthesis of Diverse <i>o</i> -Arylated Benzamides via <i>o</i> -Aminophenol (OAP) Directed C(sp ²)-H Arylation. Journal of Organic Chemistry, 2017, 82, 8950-8957.	1.7	17
160	Re ₂ O ₇ â€Mediated Dehydrative Cyclization Reactions: Total Synthesis of Herboxidiene and Its 12â€Desmethyl Analogue. Angewandte Chemie, 2017, 129, 11040-11044.	1.6	5
161	Development of a pharmacophore for cruzain using oxadiazoles as virtual molecular probes: quantitative structure–activity relationship studies. Journal of Computer-Aided Molecular Design, 2017, 31, 801-816.	1.3	9
162	Free-radical initiated cascade methylation or trideuteromethylation of isocyanides with dimethyl sulfoxides. RSC Advances, 2017, 7, 38830-38833.	1.7	35
163	Neue Anwendungen der Klickâ€Chemie in Zellbiologie und Wirkstoffentwicklung. Angewandte Chemie, 2017, 129, 15709-15711.	1.6	7
164	Which is the Stronger Nucleophile, Platinum or Nitrogen in Rollover Cycloplatinated(II) Complexes?. Inorganic Chemistry, 2017, 56, 14706-14713.	1.9	11
165	Tri-Substituted Triazole-Enabled C–H Activation of Benzyl and Aryl Amines by Iron Catalysis. Organic Letters, 2017, 19, 3795-3798.	2.4	51
166	Flexible Analog Search with Kernel PCA Embedded Molecule Vectors. Computational and Structural Biotechnology Journal, 2017, 15, 320-327.	1.9	4
167	Discovery and preclinical evaluation of 7-benzyl-N-(substituted)-pyrrolo[3,2-d]pyrimidin-4-amines as single agents with microtubule targeting effects along with triple-acting angiokinase inhibition as antitumor agents. Bioorganic and Medicinal Chemistry, 2017, 25, 545-556.	1.4	13

		CITATION RE	PORT	
#	Article		IF	CITATIONS
168	Fragment-Based Lead Discovery. Annual Reports in Medicinal Chemistry, 2017, , 371-4	39.	0.5	14
169	Enantioselective Copper-Catalyzed Methylboration of Alkenes. Organic Letters, 2018,	20, 1346-1349.	2.4	65
170	nBu4NI-catalyzed C C bond formation to construct 2-carbonyl-1,4-diketones under mil Tetrahedron Letters, 2018, 59, 1497-1500.	d conditions.	0.7	5
171	Direct synthesis of 2-methylpyridines <i>via</i> I ₂ -triggered [3 + 2 + 1] and methyl ketoxime acetates with triethylamine as the carbon source. Organic and Biomo Chemistry, 2018, 16, 2342-2348.	nnulation of aryl lecular	1.5	33
172	Fragment-Based Drug Discovery of Inhibitors of Phosphopantetheine Adenylyltransfera Gram-Negative Bacteria. Journal of Medicinal Chemistry, 2018, 61, 3309-3324.	ase from	2.9	24
173	Metal-free oxidative decarbonylative alkylation of chromones using aliphatic aldehydes Biomolecular Chemistry, 2018, 16, 3568-3571.	. Organic and	1.5	9
174	Mapping the Efficiency and Physicochemical Trajectories of Successful Optimizations. Medicinal Chemistry, 2018, 61, 6421-6467.	Journal of	2.9	79
175	Recent Progress in Methylation of (Hetero)Arenes by Cross-Coupling or C–H Activat 29, 375-382.	ion. Synlett, 2018,	1.0	13
176	Inexpensive Radical Methylation and Related Alkylations of Heteroarenes. Organic Lett 1413-1416.	ers, 2018, 20,	2.4	35
177	Atropisomerism in medicinal chemistry: challenges and opportunities. Future Medicina 2018, 10, 409-422.	l Chemistry,	1.1	230
178	Mechanistic Unveiling of Câ•C Double-Bond Rotation and Origins of Regioselectivity ar <i>E</i> / <i>Z</i> Selectivity of Pd-Catalyzed Olefinic C–H Functionalization of (<i>E</i>)- <i>N</i> Methoxy Cinnamamide. Journal of Organic Chemistry, 2018, 83, 20	ાd Product 067-2076.	1.7	13
179	A Coupling Approach for the Generation of α,α-Bis(enolate) Equivalents: Regioselectiv <i>gem</i> -Difunctionalized Ketones. Journal of the American Chemical Society, 2018	ve Synthesis of , 140, 2036-2040.	6.6	66
180	Generating carbyne equivalents with photoredox catalysis. Nature, 2018, 554, 86-91.		13.7	135
181	Pd-Catalyzed, <i>ortho</i> C–H Methylation and Fluorination of Benzaldehydes Usir Acids as Transient Directing Groups. Journal of the American Chemical Society, 2018, 1	ng Orthanilic .40, 2789-2792.	6.6	129
182	Thioimidazolium Ionic Liquids as Tunable Alkylating Agents. Journal of Organic Chemis 684-689.	try, 2018, 83,	1.7	19
183	Sulfonium Salts as Alkylating Agents for Palladium-Catalyzed Direct Ortho Alkylation o Aromatic Ureas. Organic Letters, 2018, 20, 676-679.	f Anilides and	2.4	36
184	One-pot cascade synthesis of azabicycles via the nitro-Mannich reaction and N-alkylati Biomolecular Chemistry, 2018, 16, 707-711.	on. Organic and	1.5	9
185	Methylation of Arenols through Niâ€catalyzed C—O Activation with Methyl Magnesi Chinese Journal of Chemistry, 2018, 36, 183-186. 	um Bromide.	2.6	19

#	Article	IF	CITATIONS
186	Identification of <i>N</i> -{ <i>cis</i> -3-[Methyl(7 <i>H</i> -pyrrolo[2,3- <i>d</i>]pyrimidin-4-yl)amino]cyclobutyl}propane-1-sulfona (PF-04965842): A Selective JAK1 Clinical Candidate for the Treatment of Autoimmune Diseases. Journal of Medicinal Chemistry, 2018, 61, 1130-1152.	mide 2.9	115
187	Identification of Morpholino-2 <i>H</i> -pyrido[3,2- <i>b</i>][1,4]oxazin-3(4 <i>H</i>)-ones as Nonsteroidal Mineralocorticoid Antagonists. Journal of Medicinal Chemistry, 2018, 61, 1086-1097.	2.9	15
188	Allosteric modulation of the farnesoid X receptor by a small molecule. Scientific Reports, 2018, 8, 6846.	1.6	15
189	Oxidative radical cascade cyclization involving C(sp ³)–C(sp ³), C(sp ³)–C(sp ²) and C(sp ²)–N bonds formation: direct construction of cyano and methyl substituted polyheterocycles. Organic Chemistry Frontiers, 2018, 5, 1945-1949.	2.3	27
190	Most Ligand-Based Classification Benchmarks Reward Memorization Rather than Generalization. Journal of Chemical Information and Modeling, 2018, 58, 916-932.	2.5	146
191	Lipophilic Efficiency as an Important Metric in Drug Design. Journal of Medicinal Chemistry, 2018, 61, 6401-6420.	2.9	191
192	Influence of methylation on the bacterial efflux pump-inducing property of triclosan. Journal of Hospital Infection, 2018, 98, 172-174.	1.4	0
193	AquaMMapS: An Alternative Tool to Monitor the Role of Water Molecules During Protein–Ligand Association. ChemMedChem, 2018, 13, 522-531.	1.6	29
194	Automating drug discovery. Nature Reviews Drug Discovery, 2018, 17, 97-113.	21.5	456
195	Steigerung der Katalysatoreffizienz in der Câ€Hâ€Aktivierungskatalyse. Angewandte Chemie, 2018, 130, 2318-2328.	1.6	62
196	Increasing Catalyst Efficiency in Câ^'H Activation Catalysis. Angewandte Chemie - International Edition, 2018, 57, 2296-2306.	7.2	206
197	Trimethylphosphate as a Methylating Agent for Cross Coupling: A Slow-Release Mechanism for the Methylation of Arylboronic Esters. Journal of the American Chemical Society, 2018, 140, 17197-17202.	6.6	61
198	Combination of PhI(OAc) ₂ and 2-Nitropropane as the Source of Methyl Radical in Room-Temperature Metal-Free Oxidative Decarboxylation/Cyclization: Construction of 6-Methyl Phenanthridines and 1-Methyl Isoquinolines. Journal of Organic Chemistry, 2018, 83, 15415-15425.	1.7	24
199	Metallaphotoredox-Catalyzed Cross-Electrophile C _{sp} ³ –C _{sp} ³ Coupling of Aliphatic Bromides. Journal of the American Chemical Society, 2018, 140, 17433-17438.	6.6	139
200	lsoform selective PLD inhibition by novel, chiral 2,8-diazaspiro[4.5]decan-1-one derivatives. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3670-3673.	1.0	12
201	Towards a comprehensive understanding of the structural dynamics of a bacterial diterpene synthase during catalysis. Nature Communications, 2018, 9, 3971.	5.8	57
202	Aliphatic C–H Oxidations for Late-Stage Functionalization. Journal of the American Chemical Society, 2018, 140, 13988-14009.	6.6	322
203	Synthesis of novel antiproliferative hybrid bis-(3-indolyl)methane phosphonate derivatives. European Journal of Medicinal Chemistry, 2018, 158, 874-883.	2.6	27

		CITATION REPORT		
#	Article		IF	CITATIONS
204	Copper-catalyzed methylative difunctionalization of alkenes. Nature Communications,	2018, 9, 3725.	5.8	76
205	Methyl-containing pharmaceuticals: Methylation in drug design. Bioorganic and Medici Letters, 2018, 28, 3283-3289.	nal Chemistry	1.0	77
206	Cytotoxic Activity and Structure–Activity Relationship of Triazoleâ€Containing Bis(Ar Macrocycles. ChemMedChem, 2018, 13, 1193-1209.	yl Ether)	1.6	14
207	Kava analogues as agents for treatment of periodontal diseases: Synthesis and initial bi evaluation. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2667-2669.	ological	1.0	7
208	Silica-supported silver nanoparticles as an efficient catalyst for aromatic C–H alkylation fluoroalkylation. Dalton Transactions, 2018, 47, 9608-9616.	on and	1.6	27
209	Visible Light-Mediated Decarboxylative Alkylation of Pharmaceutically Relevant Heteroc Letters, 2018, 20, 3487-3490.	ycles. Organic	2.4	92
210	Nickel and Nucleophilic Cobalt-Catalyzed Trideuteriomethylation of Aryl Halides Using Trideuteriomethyl <i>p</i> -Toluenesulfonate. Organic Letters, 2018, 20, 4375-4378.		2.4	28
211	Selective αâ€Monomethylation by an Amineâ€Borane/ <i>N</i> , <i>N</i> â€Dimethylfor Methyl Source. Angewandte Chemie - International Edition, 2018, 57, 11770-11775.	mamide System as the	7.2	42
212	Reductive C2â€Alkylation of Pyridine and Quinoline <i>N</i> â€Oxides Using Wittig Rea Chemie - International Edition, 2018, 57, 12737-12740.	agents. Angewandte	7.2	69
213	Selective αâ€Monomethylation by an Amineâ€Borane/ <i>N</i> , <i>N</i> â€Dimethylfor Methyl Source. Angewandte Chemie, 2018, 130, 11944-11949.	mamide System as the	1.6	9
214	Tailored Cobalt atalysts for Reductive Alkylation of Anilines with Carboxylic Acids ur Conditions. Angewandte Chemie, 2018, 130, 11847-11851.	ıder Mild	1.6	16
215	Tailored Cobalt atalysts for Reductive Alkylation of Anilines with Carboxylic Acids ur Conditions. Angewandte Chemie - International Edition, 2018, 57, 11673-11677.	der Mild	7.2	38
216	Selective Methylation of Arenes: A Radical Câ^'H Functionalization/Cross oupling Se Angewandte Chemie, 2018, 130, 10857-10861.	quence.	1.6	9
217	Decarbonylative Methylation of Aromatic Esters by a Nickel Catalyst. Organic Letters, 2 3132-3135.	018, 20,	2.4	38
218	Enantioselective Synthesis of Biaryl Atropisomers via the Addition of Thiophenols into Aryl-Naphthoquinones. ACS Catalysis, 2018, 8, 5443-5447.		5.5	33
219	Expanding the SAR of Nontoxic Antiplasmodial Indolylâ€3â€ethanone Ethers and Thioe ChemMedChem, 2018, 13, 1353-1362.	thers.	1.6	11
220	DMSO as a Switchable Alkylating Agent in Heteroarene Câ^'H Functionalization. Chemi Journal, 2018, 24, 10064-10068.	stry - A European	1.7	47
221	Potent and Selective Tetrahydroisoquinoline Kappa Opioid Receptor Antagonists of Lea (3 <i>R</i>)-7-Hydroxy- <i>N</i> -[(1 <i>S</i>)-2-methyl-1-(piperidin-1-ylmethyl)propyl]-1, (PDTic). Journal of Medicinal Chemistry, 2018, 61, 7525-7545.	d Compound 2,3,4-tetrahydroisoquinol	in@3)carb	ox ə mide

#	Article	IF	CITATIONS
222	Reductive C2â€Alkylation of Pyridine and Quinoline <i>N</i> â€Oxides Using Wittig Reagents. Angewandte Chemie, 2018, 130, 12919-12922.	1.6	9
223	Novel selective thiadiazine DYRK1A inhibitor lead scaffold with human pancreatic β-cell proliferation activity. European Journal of Medicinal Chemistry, 2018, 157, 1005-1016.	2.6	36
224	Expanding the medicinal chemistry synthetic toolbox. Nature Reviews Drug Discovery, 2018, 17, 709-727.	21.5	391
225	C–H Functionalization of Heteroarenes Using Unactivated Alkyl Halides through Visible-Light Photoredox Catalysis under Basic Conditions. Journal of Organic Chemistry, 2018, 83, 10933-10940.	1.7	32
226	Discovery of 3-Cyano- <i>N</i> -(3-(1-isobutyrylpiperidin-4-yl)-1-methyl-4-(trifluoromethyl)-1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyrid A Potent, Selective, and Orally Bioavailable Retinoic Acid Receptor-Related Orphan Receptor C2 Inverse Agonist. Journal of Medicinal Chemistry, 2018, 61, 10415-10439.	in-5-yl)bei 2.9	nzamide:
227	Iron-Catalyzed Methylation Using the Borrowing Hydrogen Approach. ACS Catalysis, 2018, 8, 6440-6445.	5.5	217
228	Modular <i>ipso</i> / <i>ortho</i> Difunctionalization of Aryl Bromides via Palladium/Norbornene Cooperative Catalysis. Journal of the American Chemical Society, 2018, 140, 8551-8562.	6.6	91
229	Selective Methylation of Arenes: A Radical Câ^'H Functionalization/Cross oupling Sequence. Angewandte Chemie - International Edition, 2018, 57, 10697-10701.	7.2	30
230	Cobalt-catalyzed directed <i>ortho</i> -methylation of arenes with methyl tosylate. Organic Chemistry Frontiers, 2018, 5, 2214-2218.	2.3	22
231	Beyond Friedel and Crafts: Innate Alkylation of Câ^'H Bonds in Arenes. Angewandte Chemie - International Edition, 2019, 58, 7558-7598.	7.2	82
232	Switching the site-selectivity of C–H activation in aryl sulfonamides containing strongly coordinating N-heterocycles. Chemical Science, 2019, 10, 8744-8751.	3.7	26
233	Access to Isothiazolones from Simple Acrylamides by Pd-Catalyzed C–H Bond Activation. Journal of Organic Chemistry, 2019, 84, 13194-13202.	1.7	21
234	Iron-Catalyzed Borrowing Hydrogen β- <i>C</i> (sp ³)-Methylation of Alcohols. ACS Catalysis, 2019, 9, 8575-8580.	5.5	80
235	Highly Selective Inhibition of Tyrosine Kinase 2 (TYK2) for the Treatment of Autoimmune Diseases: Discovery of the Allosteric Inhibitor BMS-986165. Journal of Medicinal Chemistry, 2019, 62, 8973-8995.	2.9	212
236	Discovery of GSK2798745: A Clinical Candidate for Inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4). ACS Medicinal Chemistry Letters, 2019, 10, 1228-1233.	1.3	29
237	Advancing Drug Discovery via Artificial Intelligence. Trends in Pharmacological Sciences, 2019, 40, 592-604.	4.0	316
238	Chelation-Assisted Nickel-Catalyzed Câ [~] 'H Functionalizations. Trends in Chemistry, 2019, 1, 524-539.	4.4	114
239	α-Methylation of 2-Arylacetonitrile by a Trimethylamine-Borane/CO ₂ System. Journal of Organic Chemistry, 2019, 84, 9744-9749	1.7	12

#	Article	IF	CITATIONS
240	Streamlined recycling of S-adenosylmethionine. Nature Catalysis, 2019, 2, 644-645.	16.1	7
241	The Cascade Methylation/Cyclization of <i>ortho</i> â€Cyanoarylacrylamides with Dicumyl Peroxide. European Journal of Organic Chemistry, 2019, 2019, 5749-5755.	1.2	11
242	Green oxidant H ₂ O ₂ as a hydrogen atom transfer reagent for visible light-mediated Minisci reaction. New Journal of Chemistry, 2019, 43, 12533-12537.	1.4	37
243	Free Ligand 1D NMR Conformational Signatures To Enhance Structure Based Drug Design of a Mcl-1 Inhibitor (AZD5991) and Other Synthetic Macrocycles. Journal of Medicinal Chemistry, 2019, 62, 9418-9437.	2.9	25
244	Palladium-Catalyzed <i>ortho</i> -C–H Methylation of Benzoic Acids. Journal of Organic Chemistry, 2019, 84, 9786-9791.	1.7	21
245	Retooling Asymmetric Conjugate Additions for Sterically Demanding Substrates with an Iterative Data-Driven Approach. ACS Catalysis, 2019, 9, 7179-7187.	5.5	26
246	Photochemical Asymmetric Nickelâ€Catalyzed Acyl Crossâ€Coupling. Angewandte Chemie - International Edition, 2019, 58, 16854-16858.	7.2	86
247	Surprising Non-Additivity of Methyl Groups in Drug–Kinase Interaction. ACS Chemical Biology, 2019, 14, 2585-2594.	1.6	14
248	S â€Adenosyl Methionine Cofactor Modifications Enhance the Biocatalytic Repertoire of Small Molecule C â€Alkylation. Angewandte Chemie, 2019, 131, 17747-17752.	1.6	12
249	Photochemical Asymmetric Nickel atalyzed Acyl Cross oupling. Angewandte Chemie, 2019, 131, 17010-17014.	1.6	28
250	Design and Synthesis of Conformationally Constrained RORÎ ³ t Inverse Agonists. ChemMedChem, 2019, 14, 1917-1932.	1.6	7
251	Nickelâ€Catalyzed <i>Ortho</i> C–H Methylation of Aromatic Amides with Diâ€ <i>tert</i> â€butyl Peroxide as Methylation Reagent. European Journal of Organic Chemistry, 2019, 2019, 6930-6934.	1.2	14
252	Visible-light-promoted sulfonylmethylation of imidazopyridines. Chinese Chemical Letters, 2019, 30, 2295-2298.	4.8	51
253	Commercial Pd/C-Catalyzed <i>N</i> -Methylation of Nitroarenes and Amines Using Methanol as Both C1 and H ₂ Source. Journal of Organic Chemistry, 2019, 84, 15389-15398.	1.7	67
254	<i>S</i> â€Adenosyl Methionine Cofactor Modifications Enhance the Biocatalytic Repertoire of Small Molecule <i>C</i> â€Alkylation. Angewandte Chemie - International Edition, 2019, 58, 17583-17588.	7.2	30
255	Aldehydes as Alkylating Agents for Ketones. Chemistry - A European Journal, 2019, 25, 16225-16229.	1.7	9
256	A Catalystâ€Free Minisciâ€Type Reaction: the C–H Alkylation of Quinoxalinones with Sodium Alkylsulfinates and Phenyliodine(III) Dicarboxylates. European Journal of Organic Chemistry, 2019, 2019, 6935-6944.	1.2	28
257	TEMPO–Me: An Electrochemically Activated Methylating Agent. Journal of the American Chemical Society, 2019, 141, 15450-15455.	6.6	38

#	Article	IF	CITATIONS
258	Direct C–H Methylsulfonylation of Alkenes with the Insertion of Sulfur Dioxide. Journal of Organic Chemistry, 2019, 84, 13159-13163.	1.7	51
259	UiO-type metal–organic frameworks with NHC or metal–NHC functionalities for <i>N</i> -methylation using CO ₂ as the carbon source. Chemical Communications, 2019, 55, 11928-11931.	2.2	28
260	Modular Dual-Tasked C–H Methylation via the Catellani Strategy. Journal of the American Chemical Society, 2019, 141, 15986-15993.	6.6	77
261	Identification of a Kavain Analog with Efficient Anti-inflammatory Effects. Scientific Reports, 2019, 9, 12940.	1.6	9
262	One-Pot Conversion of Allylic Alcohols to α-Methyl Ketones via Iron-Catalyzed Isomerization–Methylation. Organic Letters, 2019, 21, 7914-7918.	2.4	28
263	Synthesis of 3-(Methylsulfonyl)benzo[<i>b</i>]thiophenes from Methyl(2-alkynylphenyl)sulfanes and Sodium Metabisulfite via a Radical Relay Strategy. Organic Letters, 2019, 21, 1156-1160.	2.4	78
264	Iron-Catalyzed Cross Coupling of Aryl Chlorides with Alkyl Grignard Reagents: Synthetic Scope and FeII/FeIV Mechanism Supported by X-ray Absorption Spectroscopy and Density Functional Theory Calculations. Bulletin of the Chemical Society of Japan, 2019, 92, 381-390.	2.0	16
265	Advancements in Visible-Light-Enabled Radical C(sp)2–H Alkylation of (Hetero)arenes. Synthesis, 2019, 51, 1063-1072.	1.2	69
266	Selective formylation or methylation of amines using carbon dioxide catalysed by a rhodium perimidine-based NHC complex. Green Chemistry, 2019, 21, 538-549.	4.6	65
267	Jenseits von Friedel und Crafts: immanente Alkylierung von Câ€Hâ€Bindungen in Arenen. Angewandte Chemie, 2019, 131, 7638-7680.	1.6	24
268	Discovery of 1,2,3-triazole-based fibroblast growth factor receptor modulators. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2332-2337.	1.0	7
269	A pincer ligand enabled ruthenium catalyzed highly selective <i>N</i> -monomethylation of nitroarenes with methanol as the C1 source. Organic Chemistry Frontiers, 2019, 6, 2726-2731.	2.3	33
270	Visible Light-Promoted Aliphatic C–H Arylation Using Selectfluor as a Hydrogen Atom Transfer Reagent. Organic Letters, 2019, 21, 6179-6184.	2.4	87
271	Expanding the Isoprenoid Building Block Repertoire with an IPP Methyltransferase from <i>Streptomyces monomycini</i> . ACS Synthetic Biology, 2019, 8, 1303-1313.	1.9	36
272	Ligand-Accelerated Iron Photocatalysis Enabling Decarboxylative Alkylation of Heteroarenes. Organic Letters, 2019, 21, 4259-4265.	2.4	103
273	Ruthenium(II)â€Catalyzed <i>β</i> â€Methylation of Alcohols using Methanol as C ₁ Source. ChemCatChem, 2019, 11, 5287-5291.	1.8	48
274	Iron-Catalyzed Tandem Three-Component Alkylation: Access to α-Methylated Substituted Ketones. Organic Letters, 2019, 21, 3057-3061.	2.4	52
275	Cobalt-Catalyzed Alkylation of Drug-Like Molecules and Pharmaceuticals Using Heterocyclic Phosphonium Salts. ACS Catalysis, 2019, 9, 4862-4866.	5.5	70

#	Article	IF	CITATIONS
276	αâ€Methylation of Ketones with Methanol Catalyzed by Ni/SiO ₂ â€Al ₂ O ₃ . European Journal of Organic Chemistry, 2019, 2019, 3694-3698.	1.2	21
277	Cobalt catalyzed regioselective C–H methylation/acetoxylation of anilides: new routes for C–C and C–O bond formation. Organic Chemistry Frontiers, 2019, 6, 2043-2047.	2.3	22
278	Iridium-Catalyzed α-Methylation of α-Aryl Esters Using Methanol as the C1 Source. Organic Letters, 2019, 21, 3299-3303.	2.4	29
279	Catalysis in medicinal chemistry. Reaction Chemistry and Engineering, 2019, 4, 1530-1535.	1.9	13
280	Neue Entwicklungen auf dem Gebiet der Minisciâ€Reaktion. Angewandte Chemie, 2019, 131, 13802-13837.	1.6	73
281	Recent Advances in Minisciâ€Type Reactions. Angewandte Chemie - International Edition, 2019, 58, 13666-13699.	7.2	468
282	Strain-Release-Driven Homologation of Boronic Esters: Application to the Modular Synthesis of Azetidines. Journal of the American Chemical Society, 2019, 141, 4573-4578.	6.6	107
283	Reductive <i>N</i> -methylation of quinolines with paraformaldehyde and H ₂ for sustainable synthesis of <i>N</i> -methyl tetrahydroquinolines. Chemical Communications, 2019, 55, 3915-3918.	2.2	17
284	Palladium(II)-Catalyzed Stereospecific Alkenyl C–H Bond Alkylation of Allylamines with Alkyl Iodides. ACS Catalysis, 2019, 9, 4271-4276.	5.5	35
285	Coupling S-adenosylmethionine–dependent methylation to growth: Design and uses. PLoS Biology, 2019, 17, e2007050.	2.6	39
286	A Late-Stage Functionalization Approach to Derivatives of the Pyrano[3,2- <i>a</i>]carbazole Natural Products. Journal of Organic Chemistry, 2019, 84, 5965-5973.	1.7	14
287	Benzothiophene derivatives as phosphodiesterase 10A (PDE10A) inhibitors: Hit-to-lead studies. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1419-1422.	1.0	5
288	Automated De Novo Drug Design: Are We Nearly There Yet?. Angewandte Chemie - International Edition, 2019, 58, 10792-10803.	7.2	99
289	Automated De Novo Drug Design: Are We Nearly There Yet?. Angewandte Chemie, 2019, 131, 10906-10917.	1.6	12
290	Dithiane-directed Rh(<scp>iii</scp>)-catalyzed amidation of unactivated C(sp ³)–H bonds. Chemical Science, 2019, 10, 3733-3737.	3.7	46
291	Palladium-Catalyzed Methylation of Aryl, Heteroaryl, and Vinyl Boronate Esters. Organic Letters, 2019, 21, 1337-1341.	2.4	24
292	Radical alkylation of C(sp ³)–H bonds with diacyl peroxides under catalyst-free conditions. Chemical Communications, 2019, 55, 14813-14816.	2.2	16
293	Visible-light-mediated de-aminative alkylation of <i>N</i> -arylamines with alkyl Katritzky salts. Organic Chemistry Frontiers, 2019, 6, 3902-3905.	2.3	38

	CITATION REI	CITATION REPORT	
# 294	ARTICLE Profiling the oxidative activation of DMSO-F ₆ by pulse radiolysis and translational potential for radical C–H trifluoromethylation. Organic and Biomolecular Chemistry, 2019, 17, 9734-9742.	IF 1.5	Citations 2
295	Chemical Synthesis Enables Structural Reengineering of Aglaroxin C Leading to Inhibition Bias for Hepatitis C Viral Infection. Journal of the American Chemical Society, 2019, 141, 1312-1323.	6.6	26
296	3d Transition Metals for Câ€"H Activation. Chemical Reviews, 2019, 119, 2192-2452.	23.0	1,666
297	Catalytic C ₁ â€Alkylation with Methanol and Isotope‣abeled Methanol. Angewandte Chemie, 2019, 131, 785-789.	1.6	27
298	Catalytic C ₁ â€Alkylation with Methanol and Isotope‣abeled Methanol. Angewandte Chemie - International Edition, 2019, 58, 775-779.	7.2	105
299	Trideuteromethylation Enabled by a Sulfoxonium Metathesis Reaction. Organic Letters, 2019, 21, 448-452.	2.4	30
300	Rhodium-Catalyzed Asymmetric Hydroamination of Allyl Amines. Journal of the American Chemical Society, 2019, 141, 739-742.	6.6	62
301	Iridium atalyzed Asymmetric Hydrogenation of <i>N</i> â€Alkyl αâ€Aryl Furan ontaining Imines: an Efficien Route to Unnatural <i>N</i> â€Alkyl Arylalanines and Related Derivatives Advanced Synthesis and Catalysis, 2019, 361, 578-584.	t 2.1	12
302	Recent Advances in Methylation: A Guide for Selecting Methylation Reagents. Chemistry - A European Journal, 2019, 25, 3405-3439.	1.7	169
303	Identification of Selective Acyl Sulfonamide–Cycloalkylether Inhibitors of the Voltage-Gated Sodium Channel (Na _V) 1.7 with Potent Analgesic Activity. Journal of Medicinal Chemistry, 2019, 62, 908-927.	2.9	25
304	The dynamic properties of angiotensin II type 1 receptor inverse agonists in solution and in the receptor site. Arabian Journal of Chemistry, 2019, 12, 5062-5078.	2.3	19
305	Palladium-catalyzed methylation of terminal alkynes. Catalysis Communications, 2020, 133, 105835.	1.6	4
306	Manganese(I) atalyzed βâ€Methylation of Alcohols Using Methanol as C 1 Source. Angewandte Chemie, 2020, 132, 221-226.	1.6	15
307	Manganese(I)â€Catalyzed βâ€Methylation of Alcohols Using Methanol as C ₁ Source. Angewandte Chemie - International Edition, 2020, 59, 215-220.	7.2	95
308	Samarium Diiodide Catalyzed Radical Cascade Cyclizations that Construct Quaternary Stereocenters. Synlett, 2020, 31, 45-50.	1.0	5
309	Promiscuity of in Vitro Secondary Pharmacology Assays and Implications for Lead Optimization Strategies. Journal of Medicinal Chemistry, 2020, 63, 6251-6275.	2.9	12
310	Advances in the Synthesis of Methylated Products through Indirect Approaches. Advanced Synthesis and Catalysis, 2020, 362, 998-1014.	2.1	5
311	Catalytic Cleavage of Amide Câ^'N Bond: Scandium, Manganese, and Zinc Catalysts for Esterification of Amides. Chemical Record, 2020, 20, 332-343.	2.9	11

#	Article	IF	CITATIONS
312	Transitionâ€Metalâ€Free Radical Câ^'H Methylation of Quinoxalinones with TBHP. Asian Journal of Organic Chemistry, 2020, 9, 185-188.	1.3	21
313	Cp*Rh(III)-Catalyzed Regioselective C(sp ³)–H Methylation of 8-Methylquinolines with Organoborons. Organic Letters, 2020, 22, 305-309.	2.4	29
314	Manganese atalyzed βâ€Methylation of Alcohols by Methanol. Angewandte Chemie - International Edition, 2020, 59, 1485-1490.	7.2	84
315	Manganese atalyzed βâ€Methylation of Alcohols by Methanol. Angewandte Chemie, 2020, 132, 1501-1506.	1.6	25
316	Peroxide-mediated site-specific C–H methylation of imidazo[1,2-a]pyridines and quinoxalin-2(1H)-ones under metal-free conditions. Organic and Biomolecular Chemistry, 2020, 18, 205-210.	1.5	35
317	Selective Methylation of Amides, <i>N</i> -Heterocycles, Thiols, and Alcohols with Tetramethylammonium Fluoride. Organic Letters, 2020, 22, 331-334.	2.4	18
318	Structurally Modified Norbornenes: A Key Factor to Modulate Reaction Selectivity in the Palladium/Norbornene Cooperative Catalysis. Journal of the American Chemical Society, 2020, 142, 17859-17875.	6.6	69
319	Heiße Luft oder cooler Duft? Die Trends der letzten 20 Jahre in der Riechstoffchemie. Angewandte Chemie, 2020, 132, 16450.	1.6	12
321	Discovery of BMS-986144, a Third-Generation, Pan-Genotype NS3/4A Protease Inhibitor for the Treatment of Hepatitis C Virus Infection. Journal of Medicinal Chemistry, 2020, 63, 14740-14760.	2.9	12
322	Lipophilicity trends upon fluorination of isopropyl, cyclopropyl and 3-oxetanyl groups. Beilstein Journal of Organic Chemistry, 2020, 16, 2141-2150.	1.3	13
323	A Consistent Scheme for Gradient-Based Optimization of Protein – Ligand Poses. Journal of Chemical Information and Modeling, 2020, 60, 6502-6522.	2.5	32
324	Tertiary Amines Acting as Alkyl Radical Equivalents Enabled by a P/N Heteroleptic Cu(I) Photosensitizer. Organic Letters, 2020, 22, 8888-8893.	2.4	34
325	Modeling of novel CDK7 inhibitors activity by molecular dynamics and free energy perturbation methods. Mendeleev Communications, 2020, 30, 430-432.	0.6	3
326	Cyclic Ureate Tantalum Catalyst for Preferential Hydroaminoalkylation with Aliphatic Amines: Mechanistic Insights into Substrate Controlled Reactivity. Journal of the American Chemical Society, 2020, 142, 15740-15750.	6.6	28
327	Rhodium catalysed C-3/5 methylation of pyridines using temporary dearomatisation. Chemical Science, 2020, 11, 8595-8599.	3.7	30
328	From methylene bridged diindole to carbonyl linked benzimidazoleindole: Development of potent and metabolically stable PCSK9 modulators. European Journal of Medicinal Chemistry, 2020, 206, 112678.	2.6	6
329	Transition-Metal-Catalyzed Denitrative Coupling of Nitroarenes. ACS Catalysis, 2020, 10, 9856-9871.	5.5	67
330	Challenging nature's preference for methylation. Nature Chemistry, 2020, 12, 791-792.	6.6	6

#	Article	IF	CITATIONS
331	Computational mechanistic insights into non-noble-metal-catalysed CO ₂ conversion. Dalton Transactions, 2020, 49, 16608-16616.	1.6	4
332	Iron-Catalyzed Tandem Radical Addition/Cyclization: Highly Efficient Access to Methylated Quinoline-2,4-diones. Synlett, 2020, 31, 2049-2053.	1.0	1
333	Semiconductor photocatalysis to engineering deuterated N-alkyl pharmaceuticals enabled by synergistic activation of water and alkanols. Nature Communications, 2020, 11, 4722.	5.8	41
334	Structure-Guided Optimization of Dipeptidyl Inhibitors of Norovirus 3CL Protease. Journal of Medicinal Chemistry, 2020, 63, 11945-11963.	2.9	10
335	Effect of Hydration on the Molecular Dynamics of Hydroxychloroquine Sulfate. ACS Omega, 2020, 5, 21231-21240.	1.6	8
336	C-Methylation of Organic Substrates: A Comprehensive Overview. Part II—Methyl Metals as Methylating Agents. Chemistry Africa, 2020, 3, 845-880.	1.2	5
337	Modular and Stereoselective Synthesis of C-Aryl Glycosides via Catellani Reaction. Journal of the American Chemical Society, 2020, 142, 14864-14870.	6.6	68
338	Single step syntheses of (1S)-aryl-tetrahydroisoquinolines by norcoclaurine synthases. Communications Chemistry, 2020, 3, .	2.0	10
339	Hydration-Induced Disorder Lowers the Energy Barriers for Methyl Rotation in Drug Molecules. Journal of Physical Chemistry Letters, 2020, 11, 10256-10261.	2.1	7
340	Enhancement of S-Adenosylmethionine-Dependent Methylation by Integrating Methanol Metabolism with 5-Methyl-Tetrahydrofolate Formation in Escherichia coli. Catalysts, 2020, 10, 1001.	1.6	5
341	Visible-Light-Promoted Cross-Coupling Reactions of Aryldiazonium Salts with <i>S</i> -Methyl- <i>d</i> ₃ Sulfonothioate or <i>Se</i> -Methyl- <i>d</i> ₃ Selenium Sulfonate: Synthesis of Trideuteromethylated Sulfides, Sulfoxides, and Selenides. Organic Letters, 2020, 22, 9128-9132.	2.4	25
342	Discovery of a Remarkable Methyl Shift Effect in the Vanilloid Activity of Triterpene Amides. Journal of Natural Products, 2020, 83, 3476-3481.	1.5	2
343	Photocatalytic Methylation of Nonactivated sp ³ and sp ² C–H Bonds Using Methanol on GaN. ACS Catalysis, 2020, 10, 6248-6253.	5.5	21
344	Rh(I)-Catalyzed C6-Selective Decarbonylative Alkylation of 2-Pyridones with Alkyl Carboxylic Acids and Anhydrides. Organic Letters, 2020, 22, 4228-4234.	2.4	37
345	Biocatalytic Alkylation Cascades: Recent Advances and Future Opportunities for Lateâ€Stage Functionalization. ChemBioChem, 2020, 21, 2890-2897.	1.3	29
346	What's Hot, What's Not: The Trends of the Past 20 Years in the Chemistry of Odorants. Angewandte Chemie - International Edition, 2020, 59, 16310-16344.	7.2	53
347	Cobalt-catalysed C–H methylation for late-stage drug diversification. Nature Chemistry, 2020, 12, 511-519.	6.6	154
348	Decorating and diversifying drugs. Nature Chemistry, 2020, 12, 505-506.	6.6	9

#	Article	IF	CITATIONS
349	Combining Cloud-Based Free-Energy Calculations, Synthetically Aware Enumerations, and Goal-Directed Generative Machine Learning for Rapid Large-Scale Chemical Exploration and Optimization. Journal of Chemical Information and Modeling, 2020, 60, 4311-4325.	2.5	34
350	<i>N</i> -Methylation and Trideuteromethylation of Amines via Magnesium-Catalyzed Reduction of Cyclic and Linear Carbamates. Organic Letters, 2020, 22, 3209-3214.	2.4	26
351	Rapid functionalization of multiple C–H bonds in unprotected alicyclic amines. Nature Chemistry, 2020, 12, 545-550.	6.6	67
353	Computational Optimization of Alkoxyamine-based Electrochemical Methylation. Journal of Physical Chemistry A, 2020, 124, 6104-6110.	1.1	10
354	ZnMe ₂ -Mediated, Direct Alkylation of Electron-Deficient N-Heteroarenes with 1,1-Diborylalkanes: Scope and Mechanism. Journal of the American Chemical Society, 2020, 142, 13235-13245.	6.6	34
355	Evolution of a 4-Benzyloxy-benzylamino Chemotype to Provide Efficacious, Potent, and Isoform Selective PPARα Agonists as Leads for Retinal Disorders. Journal of Medicinal Chemistry, 2020, 63, 2854-2876.	2.9	7
356	Chromium(III)-Catalyzed C(sp ²)–H Alkynylation, Allylation, and Naphthalenation of Secondary Amides with Trimethylaluminum as Base. Journal of the American Chemical Society, 2020, 142, 4883-4891.	6.6	35
357	Asymmetric βâ€Methylation of l ―and d â€Î±â€Amino Acids by a Selfâ€Contained Enzyme Cascade. Angewandte Chemie, 2020, 132, 7251-7254.	2 1.6	20
358	Finding an efficient tetramethylated hydroxydiethylene of resveratrol analogue for potential anticancer agent. BMC Chemistry, 2020, 14, 13.	1.6	4
359	Palladium-Catalyzed Cascade Reactions of δ-Ketonitriles with Arylboronic Acids: Synthesis of Pyridines. ACS Combinatorial Science, 2020, 22, 114-119.	3.8	15
360	Unlocking the potential of late-stage functionalisation: an accurate and fully automated method for the rapid characterisation of multiple regioisomeric products. Reaction Chemistry and Engineering, 2020, 5, 779-792.	1.9	4
361	Organocatalyzed Kinetic Resolution of α-Functionalized Ketones: The Malonate Unit Leads the Way. ACS Catalysis, 2020, 10, 2882-2893.	5.5	19
362	Relative Abundances of Surface Diastereomeric Complexes Formed by Two Chiral Modifiers That Differ by a Methyl Group. ACS Catalysis, 2020, 10, 3034-3041.	5.5	1
363	C3-Alkylation of indoles and oxindoles by alcohols by means of borrowing hydrogen methodology. Tetrahedron Letters, 2020, 61, 151875.	0.7	19
364	B(C ₆ F ₅) ₃ -Catalyzed Direct C3 Alkylation of Indoles and Oxindoles. ACS Catalysis, 2020, 10, 4835-4840.	5.5	53
365	Nickel/Photoredox-Catalyzed Methylation of (Hetero)aryl Chlorides Using Trimethyl Orthoformate as a Methyl Radical Source. Journal of the American Chemical Society, 2020, 142, 7683-7689.	6.6	95
366	Positional Analogue Scanning: An Effective Strategy for Multiparameter Optimization in Drug Design. Journal of Medicinal Chemistry, 2020, 63, 8956-8976.	2.9	30
367	Exhaustive Reduction of Esters Enabled by Nickel Catalysis. Journal of the American Chemical Society, 2020, 142, 8109-8115.	6.6	23

#	Article	IF	CITATIONS
368	Iron-Catalyzed C–H Functionalizations under Triazole-Assistance. Molecules, 2020, 25, 1806.	1.7	8
369	Late-stage oxidative C(sp3)–H methylation. Nature, 2020, 580, 621-627.	13.7	125
370	Mechanochemical Solventâ€Free Catalytic Câ^'H Methylation. Angewandte Chemie - International Edition, 2021, 60, 6660-6666.	7.2	78
371	Recent advances in visible-light photocatalytic deuteration reactions. Organic Chemistry Frontiers, 2021, 8, 426-444.	2.3	56
372	Carbon monoxide and hydrogen (syngas) as a C1-building block for selective catalytic methylation. Chemical Science, 2021, 12, 976-982.	3.7	23
373	Mechanochemical Solventâ€Free Catalytic Câ^'H Methylation. Angewandte Chemie, 2021, 133, 6734-6740.	1.6	19
374	Rhodiumâ€Catalyzed Enantioselective Synthesis of βâ€Amino Alcohols via Desymmetrization of <i>gem</i> â€Dimethyl Groups. Angewandte Chemie - International Edition, 2021, 60, 8396-8400.	7.2	35
375	Visible light photocatalysis in the late-stage functionalization of pharmaceutically relevant compounds. Chemical Society Reviews, 2021, 50, 766-897.	18.7	227
376	Die gerichtete Evolution einer Halogenidâ€Methyltransferase erlaubt die biokatalytische Synthese diverser SAMâ€Analoga. Angewandte Chemie, 2021, 133, 1547-1551.	1.6	16
377	Peroxide-mediated synthesis of benzimidazo[2,1-a]isoquinoline-6(5H)-ones via cascade methylation/ethylation and intramolecular cyclization. Organic and Biomolecular Chemistry, 2021, 19, 619-626.	1.5	26
378	Directed Evolution of a Halide Methyltransferase Enables Biocatalytic Synthesis of Diverse SAM Analogs. Angewandte Chemie - International Edition, 2021, 60, 1524-1527.	7.2	54
379	Iron-catalyzed domino decarboxylation-oxidation of α,β-unsaturated carboxylic acids enabled aldehyde C–H methylation. Chemical Communications, 2021, 57, 5905-5908.	2.2	9
380	A bicyclic <i>S</i> -adenosylmethionine regeneration system applicable with different nucleosides or nucleotides as cofactor building blocks. RSC Chemical Biology, 2021, 2, 883-891.	2.0	24
381	Homogeneous catalytic C(sp ³)–H functionalization of gaseous alkanes. Chemical Communications, 2021, 57, 9956-9967.	2.2	21
382	Installing the "magic methyl―– C–H methylation in synthesis. Chemical Society Reviews, 2021, 50, 5517-5563.	18.7	130
383	Nickel-catalyzed defluorinative alkylation of C(sp ²)–F bonds. Organic Chemistry Frontiers, 2021, 8, 4533-4542.	2.3	7
384	lodine-promoted ring-opening methylation of benzothiazoles with dimethyl sulfite. Chemical Communications, 2021, 57, 1923-1926.	2.2	8
385	Advances in transition metal-free deborylative transformations of <i>gem</i> -diborylalkanes. Chemical Communications, 2021, 57, 4346-4353.	2.2	46

#	Article	IF	CITATIONS
386	The emergence of the C–H functionalization strategy in medicinal chemistry and drug discovery. Chemical Communications, 2021, 57, 10842-10866.	2.2	52
387	Broadening of horizons in the synthesis of CD ₃ -labeled molecules. Chemical Society Reviews, 2021, 50, 10806-10835.	18.7	47
388	Trialkylammonium salt degradation: implications for methylation and cross-coupling. Chemical Science, 2021, 12, 6949-6963.	3.7	12
389	Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp ³)–H Cross-Coupling. Accounts of Chemical Research, 2021, 54, 988-1000.	7.6	144
390	Alternative metabolic pathways and strategies to high-titre terpenoid production in <i>Escherichia coli</i> . Natural Product Reports, 2022, 39, 90-118.	5.2	38
391	Discovery and Biological Evaluation of <i>N</i> -Methyl-pyrrolo[2,3- <i>b</i>]pyridine-5-carboxamide Derivatives as JAK1-Selective Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 958-979.	2.9	12
392	Perrhenate Esters as Intermediates in Molecular Complexity-Increasing Reactions. Synlett, 2021, 32, 1406-1418.	1.0	4
393	Oxa-spirocycles: synthesis, properties and applications. Chemical Science, 2021, 12, 11294-11305.	3.7	15
394	Into the Fray! A Beginner's Guide to Medicinal Chemistry. ChemMedChem, 2021, 16, 1199-1225.	1.6	9
395	Role of inflammatory cytokines in genesis and treatment of atherosclerosis. Trends in Cardiovascular Medicine, 2022, 32, 138-142.	2.3	20
396	A Chiral Pentafluorinated Isopropyl Group via Iodine(I)/(III) Catalysis. Angewandte Chemie - International Edition, 2021, 60, 6430-6434.	7.2	39
397	Simple RuCl ₃ â€catalyzed <i>N</i> â€Methylation of Amines and Transfer Hydrogenation of Nitroarenes using Methanol. ChemCatChem, 2021, 13, 1722-1729.	1.8	41
398	Selected Thoughts on Hydrophobicity in Drug Design. Molecules, 2021, 26, 875.	1.7	8
399	Eine chirale pentafluorierte Isopropylgruppe durch Iod(I)/(III)â€Katalyse. Angewandte Chemie, 2021, 133, 6501-6506.	1.6	10
400	In vitro anti-parasitic activity and mechanism of β-carboline derivatives isolated from the extracellular product of Salinivibrio proteolyticus strain YCSC6. Aquaculture, 2021, 534, 736337.	1.7	2
401	Prefusion structure of human cytomegalovirus glycoprotein B and structural basis for membrane fusion. Science Advances, 2021, 7, .	4.7	45
402	Enzymkatalysierte spÃæ Modifizierungen: Besser spÃæals nie. Angewandte Chemie, 2021, 133, 16962-16993.	1.6	11
404	Rhodiumâ€Catalyzed Enantioselective Synthesis of βâ€Amino Alcohols via Desymmetrization of gem â€Dimethyl Groups. Angewandte Chemie, 2021, 133, 8477-8481.	1.6	8

#	Article	IF	CITATIONS
405	Pd-Catalyzed <i>ipso</i> , <i>meta</i> -Dimethylation of <i>ortho</i> -Substituted Iodoarenes via a Base-Controlled C–H Activation Cascade with Dimethyl Carbonate as the Methyl Source. Journal of the American Chemical Society, 2021, 143, 4524-4530.	6.6	24
406	Enzymatic Late‧tage Modifications: Better Late Than Never. Angewandte Chemie - International Edition, 2021, 60, 16824-16855.	7.2	75
407	Discovery of a Biased Allosteric Modulator for Cannabinoid 1 Receptor: Preclinical Anti-Glaucoma Efficacy. Journal of Medicinal Chemistry, 2021, 64, 8104-8126.	2.9	18
408	C(sp ³)–H methylation enabled by peroxide photosensitization and Ni-mediated radical coupling. Science, 2021, 372, 398-403.	6.0	107
409	A Perspective on Synthetic Biology in Drug Discovery and Development—Current Impact and Future Opportunities. SLAS Discovery, 2021, 26, 581-603.	1.4	10
410	Non-canonical substrates for terpene synthases in bacteria are synthesized by a new family of methyltransferases. FEMS Microbiology Reviews, 2021, 45, .	3.9	3
411	Metal-Free C–C/C–N/C–C Bond Formation Cascade for the Synthesis of (Trifluoromethyl)sulfonylated Cyclopenta[<i>b</i>]indolines. Organic Letters, 2021, 23, 2921-2926.	2.4	3
413	Rhenium(I)-Catalyzed C-Methylation of Ketones, Indoles, and Arylacetonitriles Using Methanol. Journal of Organic Chemistry, 2021, 86, 6943-6951.	1.7	16
414	From Natural Methylation to Versatile Alkylations Using Halide Methyltransferases. ChemBioChem, 2021, 22, 2584-2590.	1.3	15
415	Site‧pecific Alkene Hydromethylation via Protonolysis of Titanacyclobutanes. Angewandte Chemie - International Edition, 2021, 60, 14360-14364.	7.2	8
416	Site‧pecific Alkene Hydromethylation via Protonolysis of Titanacyclobutanes. Angewandte Chemie, 2021, 133, 14481-14485.	1.6	0
417	Anti-inflammatory activity of ortho-trifluoromethoxy-substituted 4-piperidione-containing mono-carbonyl curcumin derivatives in vitro and in vivo. European Journal of Pharmaceutical Sciences, 2021, 160, 105756.	1.9	17
418	Innovative Tools and Strategies for Optimizing Yeast Cell Factories. Trends in Biotechnology, 2021, 39, 488-504.	4.9	37
419	Selective α-Methylation of Ketones. Journal of Organic Chemistry, 2021, 86, 7333-7346.	1.7	7
420	Benefits of Fast Battery Formation in a Model System. Journal of the Electrochemical Society, 2021, 168, 050543.	1.3	8
421	S-methylation of organosulfur substrates: A comprehensive overview. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 702-721.	0.8	0
422	Iridium-catalyzed Câ [~] 'H methylation and d3-methylation of benzoic acids with application to late-stage functionalizations. IScience, 2021, 24, 102467.	1.9	31
423	Holistic drug design for multiparameter optimization in modern small molecule drug discovery. Bioorganic and Medicinal Chemistry Letters, 2021, 41, 128003.	1.0	19

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
424	Inhibition of CMP-sialic acid transport by endogenous 5-methyl CMP. PLoS ONE, 2021, 16, e0249905.	1.1	2
425	Highly efficient NHC-iridium-catalyzed β-methylation of alcohols with methanol at low catalyst loadings. Science China Chemistry, 2021, 64, 1361-1366.	4.2	23
426	Aliphatic C–H bond methylation enabled by hydrogen atom transfer. CheM, 2021, 7, 1427-1430.	5.8	3
427	Stereodefined rhodium-catalysed 1,4-H/D delivery for modular syntheses and deuterium integration. Nature Catalysis, 2021, 4, 586-594.	16.1	25
428	Sustainable manganese catalysis for late-stage C–H functionalization of bioactive structural motifs. Beilstein Journal of Organic Chemistry, 2021, 17, 1733-1751.	1.3	13
429	Ru-Catalyzed Selective Catalytic Methylation and Methylenation Reaction Employing Methanol as the C1 Source. Journal of Organic Chemistry, 2021, 86, 10544-10554.	1.7	37
430	Aromatic C–H Methylation and Other Functionalizations via the Rh(III)-Catalyzed Migratory Insertion of Bis(phenylsulfonyl)carbene and Subsequent Transformations. Journal of Organic Chemistry, 2021, 86, 10177-10189.	1.7	12
431	Nonadditivity in public and inhouse data: implications for drug design. Journal of Cheminformatics, 2021, 13, 47.	2.8	11
432	Carbonylic-Carbon-Centered Mechanism for Catalytic α-Methylation. Organometallics, 2021, 40, 2420-2429.	1.1	6
433	The Deuterated "Magic Methyl―Group: A Guide to Site‧elective Trideuteromethyl Incorporation and Labeling by Using CD ₃ Reagents. Chemistry - A European Journal, 2021, 27, 11751-11772.	1.7	49
434	A Multicomponent Protocol for the Synthesis of Highly Functionalized Î ³ -Lactam Derivatives and Their Applications as Antiproliferative Agents. Pharmaceuticals, 2021, 14, 782.	1.7	11
435	Fourâ€Selective Pyridine Alkylation via Wittig Olefination of Dearomatized Pyridylphosphonium Ylides. Angewandte Chemie, 2021, 133, 21453-21458.	1.6	3
436	C-Methylation Of Organic Substrates. A Comprehensive Overview. Part IV ^a . Methylating Agents Other Than Methane, Methanol, and Methyl Metals. Current Chinese Chemistry, 2022, 2, .	0.3	0
437	Low rotational barriers for the most dynamically active methyl groups in the proposed antiviral drugs for treatment of SARS-CoV-2, apilimod and tetrandrine. Chemical Physics Letters, 2021, 777, 138727.	1.2	9
438	<i>N</i> , <i>N</i> , <i>N</i> , <i>N</i> ', <i>N</i> '-Tetramethylethylenediamine-Enabled Photoredox-Catalyzed C–H Methylation of <i>N</i> -Heteroarenes. Journal of Organic Chemistry, 2021, 86, 11905-11914.	1.7	13
439	Recent Progress in Methyl-Radical-Mediated Methylation or Demethylation Reactions. ACS Catalysis, 2021, 11, 10713-10732.	5.5	22
440	Photoredox catalysis in nickel-catalyzed C–H functionalization. Beilstein Journal of Organic Chemistry, 2021, 17, 2209-2259.	1.3	23
441	Fourâ€6elective Pyridine Alkylation via Wittig Olefination of Dearomatized Pyridylphosphonium Ylides. Angewandte Chemie - International Edition, 2021, 60, 21283-21288.	7.2	14

	CITATION REP	CITATION REPORT	
#	Article	IF	CITATIONS
442	Deaminative Reductive Methylation of Alkylpyridinium Salts. Organic Letters, 2021, 23, 7059-7063.	2.4	15
443	Discovery of "Molecular Switches―within a Series of mGlu ₅ Allosteric Ligands Driven by a "Magic Methyl―Effect Affording Both PAMs and NAMs with <i>In Vivo</i> Activity, Derived from an M ₁ PAM Chemotype. ACS Bio & Med Chem Au, 2021, 1, 21-30.	1.7	3
444	Supported Metal Nanoparticles Assisted Catalysis: A Broad Concept in Functionalization of Ubiquitous Câ^'H Bonds. ChemCatChem, 2021, 13, 4655-4678.	1.8	13
445	Biokatalytische C3â€Indolâ€Methylierung – ein nützliches Werkzeug für die naturstoffinspirierte stereoselektive Synthese von Pyrroloindolen. Angewandte Chemie, 2021, 133, 23600.	1.6	6
446	Electrochemical utilization of methanol and methanol-d4 as a C1 source to access (deuterated) 2,3-dihydroquinazolin-4(1H)-one. Chinese Chemical Letters, 2022, 33, 1559-1562.	4.8	18
447	Photocatalysis in the Life Science Industry. Chemical Reviews, 2022, 122, 2907-2980.	23.0	183
448	Manganaelectro-Catalyzed Azine C–H Arylations and C–H Alkylations by Assistance of Weakly Coordinating Amides. ACS Catalysis, 2021, 11, 11639-11649.	5.5	19
449	Base Metalâ€Catalyzed Câ€Methylation Reactions Using Methanol. Advanced Synthesis and Catalysis, 2021, 363, 5028-5046.	2.1	30
450	Recent advances of the site-specific direct methylation on aromatic rings. Tetrahedron, 2021, 96, 132402.	1.0	8
451	Biocatalytic C3â€Indole Methylation—A Useful Tool for the Naturalâ€Productâ€Inspired Stereoselective Synthesis of Pyrroloindoles. Angewandte Chemie - International Edition, 2021, 60, 23412-23418.	7.2	16
452	Virtual and experimental high throughput screening of substituted hydrazones on β-Tubulin polymerization. Bioorganic Chemistry, 2021, 114, 105094.	2.0	2
453	Efficient photocatalytic H2 evolution and α-methylation of ketones from copper complex modified polymeric carbon nitride. Chemical Engineering Journal, 2022, 427, 132042.	6.6	18
454	Green chemistry meets medicinal chemistry: a perspective on modern metal-free late-stage functionalization reactions. Chemical Society Reviews, 2021, 50, 10955-10982.	18.7	75
455	Asymmetric βâ€Methylation of <scp>l</scp> ―and <scp>d</scp> â€Î±â€Amino Acids by a Selfâ€Contained Enzyr Cascade. Angewandte Chemie - International Edition, 2020, 59, 7184-7187.	ne 7.2	39
456	Discovery of novel dual c-Met/HDAC inhibitors as a promising strategy for cancer therapy. Bioorganic Chemistry, 2020, 101, 103970.	2.0	14
457	Manganese catalyst enables exploration of the magic methyl effect. Nature, 2020, 580, 592-593.	13.7	6
458	CHAPTER 6. Chemical Similarity, Shape Matching and QSAR. Issues in Toxicology, 2017, , 120-173.	0.2	1
459	A methylation platform of unconventional inert aryl electrophiles: trimethylboroxine as a universal methylating reagent. Chemical Science, 2020, 11, 6031-6035.	3.7	30

#	Article	IF	CITATIONS
460	Crystal Structure and Catalytic Mechanism of CouO, a Versatile C-Methyltransferase from Streptomyces rishiriensis. PLoS ONE, 2017, 12, e0171056.	1.1	16
461	Lipophilic Guanylhydrazone Analogues as Promising Trypanocidal Agents: An Extended SAR Study. Current Pharmaceutical Design, 2020, 26, 838-866.	0.9	4
462	Chemical Intuition in Drug Design and Discovery. Current Topics in Medicinal Chemistry, 2019, 19, 1679-1693.	1.0	10
463	Iron-Catalyzed C-H Bond Activation. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 802-809.	0.0	5
464	A Modular C-H Methylation Reaction via Catellani Strategy. Chinese Journal of Organic Chemistry, 2019, 39, 3306.	0.6	2
465	Microbial synthesis of natural, semisynthetic, and new-to-nature tetrahydroisoquinoline alkaloids. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100561.	3.2	11
467	From Stoichiometric Reagents to Catalytic Partners: Selenonium Salts as Alkylating Agents for Nucleophilic Displacement Reactions in Water. Advanced Synthesis and Catalysis, 0, , .	2.1	5
468	Palladium atalyzed Synthesis of αâ€Methyl Ketones from Allylic Alcohols and Methanol. Advanced Synthesis and Catalysis, 2022, 364, 413-419.	2.1	7
469	Cuâ€Catalyzed Phenol Oâ€Methylation with Methylboronic acid. European Journal of Organic Chemistry, 2021, 2021, 5661.	1.2	2
470	Exhaustive Oneâ€Step Bridgehead Methylation of Adamantane Derivatives with Tetramethylsilane. European Journal of Organic Chemistry, 2021, 2021, 5227-5237.	1.2	4
472	Ketones and Aldehydes as Alkyl Radical Equivalents for Direct C-H Alkylation of Heteroarenes. Chinese Journal of Organic Chemistry, 2019, 39, 3312.	0.6	3
476	Rhodaâ€Electrocatalyzed Câ^'H Methylation and Paired Electrocatalyzed Câ^'H Ethylation and Propylation. Chemistry - A European Journal, 2022, 28, .	1.7	18
477	Enhanced Affinity for 3-Amino-Chromane-Derived Ïf 1 Receptor Ligands. ACS Omega, 2020, 5, 32724-32737.	1.6	0
478	Copper-catalyzed oxidative methylation of sulfonamides by dicumyl peroxide. Synthetic Communications, 0, , 1-11.	1.1	Ο
479	Picomolar FKBP inhibitors enabled by a single water-displacing methyl group in bicyclic [4.3.1] aza-amides. Chemical Science, 2021, 12, 14758-14765.	3.7	19
480	Site-Selective α-C–H Functionalization of Trialkylamines via Reversible Hydrogen Atom Transfer Catalysis. Journal of the American Chemical Society, 2021, 143, 18952-18959.	6.6	43
482	A photocatalytic radical relay reaction of 2-methylthiolated phenylalkynones and potassium metabisulfite. Organic Chemistry Frontiers, 2022, 9, 450-455.	2.3	18
483	Pd(II)-Catalyzed Synthesis of Benzocyclobutenes by β-Methylene-Selective C(sp ³)–H Arylation with a Transient Directing Group. Journal of the American Chemical Society, 2021, 143, 20035-20041.	6.6	37

ARTICLE IF CITATIONS # Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chemical Reviews, 23.0 660 484 2022, 122, 1485-1542. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic 485 23.0 Synthesis. Chemical Reviews, 2022, 122, 2017-2291. Recent advances in sustainable organic transformations using methanol: expanding the scope of 486 2.3 32 hydrogen-borrowing catalysis. Organic Chemistry Frontiers, 2021, 8, 7077-7096. Recent Advances in Câ€"H Bond Functionalization under Mechanochemical Conditions. Chinese Journal 487 of Organic Chemistry, 2021, 41, 4623. Synthesis of 20â€Membered Macrocyclic Pseudoâ€Natural Products Yields Inducers of LC3 Lipidation. 488 1.6 1 Angewandte Chemie, 2022, 134, . Using Data Science To Guide Aryl Bromide Substrate Scope Analysis in a Ni/Photoredox-Catalyzed Cross-Coupling with Acetals as Alcohol-Derived Radical Sources. Journal of the American Chemical Society, 2022, 144, 1045-1055. 6.6 Exploring Electrochemical C(sp³)â€"H Oxidation for the Late-Stage Methylation of Complex 490 6.6 76 Molecules. Journal of the American Chemical Society, 2022, 144, 1187-1197. Transition metal-catalyzed dehydrogenation of methanol and related transformations., 2022, , 123-161. 491 Leveraging the 1,3-azadiene-anhydride reaction for the synthesis of functionalized piperidines bearing 492 1.7 5 up to five contiguous stereocenters. RSC Advances, 2021, 12, 309-318. Algorithm-aided engineering of aliphatic halogenase WelO5* for the asymmetric late-stage 5.8 38 functionalization of soraphens. Nature Communications, 2022, 13, 371 Palladium-catalyzed decarbonylative methylation of aryl carboxylic acids. Organic Chemistry 494 2.3 6 Frontiers, 2022, 9, 1085-1089. Overcoming <i>peri</i>- and <i>ortho</i>-selectivity in Câ€"H methylation of 1-naphthaldehydes by a 3.7 tunable transient ligand strategy. Chemical Science, 2022, 13, 2900-2908. Synthetic Applications of Carbene and Nitrene C H Insertion., 2022, , . 496 0 Recent Advances in Dimethyl Sulfoxide (DMSO) Used as a Multipurpose Reactant. Current Organic Chemistry, 2022, 26, 91-121. Design, Synthesis, and Anticancer Activity of Cinnamoylated Barbituric Acid Derivatives. Chemistry and 498 1.0 2 Biodiversity, 2022, 19, . Recent advances in palladium-catalyzed $C(sp < sup > 3 < |sup >)/C(sp < sup > 2 < |sup >) \hat{a} \in H bond$ functionalizations: access to C-branched glycosides. Organic and Biomolecular Chemistry, 2022, 20, 19 264-281. <i>N</i>-tosylhydrazones as acceptors for nucleophilic alkyl radicals in photoredox catalysis: A 501 1.1 7 short case study on possible side reactions. Synthetic Communications, 2022, 52, 413-423. Synthesis of 20â€Membered Macrocyclic Pseudoâ€Natural Products Yields Inducers of LC3 Lipidation. Angewandte Chemie - International Edition, 2022, 61, .

# 503	ARTICLE Theoretical Insight into the Mechanism and Selectivity in Manganese-Catalyzed Oxidative	IF 5.5	CITATIONS
505	Dioxygen-promoted cobalt-catalyzed oxidative hydroamination using unactivated alkenes and free amines. Chem Catalysis, 2022, 2, 345-357.	2.9	14
506	Robust, scalable construction of an electrophilic deuterated methylthiolating reagent: facile access to SCD ₃ -containing scaffolds. Chemical Communications, 2022, 58, 3015-3018.	2.2	20
507	Iridium-catalyzed synthesis of β-methylated secondary alcohols using methanol. Journal of Catalysis, 2022, 407, 90-96.	3.1	6
508	Discovery of DS-3801b, a non-macrolide GPR38 agonist with N-methylanilide structure. Bioorganic and Medicinal Chemistry Letters, 2022, 59, 128554.	1.0	1
509	Diversification of aliphatic C–H bonds in small molecules and polyolefins through radical chain transfer. Science, 2022, 375, 545-550.	6.0	91
510	Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chemical Reviews, 2022, 122, 6634-6718.	23.0	186
511	Modifications of the Triaminoaryl Metabophore of Flupirtine and Retigabine Aimed at Avoiding Quinone Diimine Formation. ACS Omega, 2022, 7, 7989-8012.	1.6	12
512	Tetramethylammonium Fluoride: Fundamental Properties and Applications in C-F Bond-Forming Reactions and as a Base. Catalysts, 2022, 12, 233.	1.6	9
513	Machine learning studies on asymmetric relay Heck reaction—Potential avenues for reaction development. Journal of Chemical Physics, 2022, 156, 114303.	1.2	7
514	Reactivity of triplet diradical intermediates in aqueous media for transition-metal-free Csp2–H alkylation. Cell Reports Physical Science, 2022, , 100819.	2.8	1
515	Stop-Flow Microtubing Reactor-Assisted Visible Light-Induced Hydrogen-Evolution Cross Coupling of Heteroarenes with C(sp ³)–H Bonds. ACS Catalysis, 2022, 12, 4473-4480.	5.5	23
516	Selective α-Methylation of Aryl Ketones Using Quaternary Ammonium Salts as Solid Methylating Agents. Journal of Organic Chemistry, 2022, 87, 4305-4315.	1.7	8
517	Covalent Allosteric Inhibitors of Akt Generated Using a Click Fragment Approach. ChemMedChem, 2022, 17, .	1.6	3
518	Nontraditional Fragment Couplings of Alcohols and Carboxylic Acids: C(<i>sp</i> ³)–C(<i>sp</i> ³) Cross-Coupling via Radical Sorting. Journal of the American Chemical Society, 2022, 144, 6185-6192.	6.6	80
519	Electrification promotes tricky synthetic chemical reactions. Nature, 2022, , .	13.7	1
520	Applying a Bioisosteric Replacement Strategy in the Discovery and Optimization of Mesoionic Pyrido[1,2- <i>a</i>]pyrimidinone Insecticides: A Review. Journal of Agricultural and Food Chemistry, 2022, 70, 11056-11062.	2.4	7
521	Photo-Induced Cross-Dehydrogenative Alkylation of Heteroarenes with Alkanes under Aerobic Conditions. Journal of Organic Chemistry, 2021, 86, 17816-17832.	1.7	32

#	Δρτιςι ε	IF	CITATIONS
т 522	Navigating complex peptide structures using macrocycle conformational maps. RSC Chemical Biology,	2.0	11
523	vith Electrochemistry. Journal of Organic Chemistry, 2022, 87, 6161-6178.	1.7	8
524	Electrochemical Câ \in "H Functionalization of Cyclic Amines. Synlett, 0, , .	1.0	2
525	Advances in Sulfonamide Kappa Opioid Receptor Antagonists: Structural Refinement and Evaluation of CNS Clearance. ACS Chemical Neuroscience, 2022, 13, 1315-1332.	1.7	1
526	Enzyme Kits to Facilitate the Integration of Biocatalysis into Organic Chemistry – First Aid for Synthetic Chemists. ChemCatChem, 2022, 14, .	1.8	6
527	<i>O</i> -Methylation of carboxylic acids with streptozotocin. Organic and Biomolecular Chemistry, 2022, 20, 5230-5233.	1.5	3
528	The quest for magic: recent advances in C(sp ³)–H methylation. Pure and Applied Chemistry, 2022, 94, 547-558.	0.9	1
529	Discovery and Preclinical Profiling of GSK3839919, a Potent HIV-1 Allosteric Integrase Inhibitor. ACS Medicinal Chemistry Letters, 2022, 13, 972-980.	1.3	9
530	Câ^'H Methylation Using Sustainable Approaches. Catalysts, 2022, 12, 510.	1.6	4
531	Rutheniumâ€Catalyzed Intermolecular Cyclization and Nâ€Methylation of Salicyl Nâ€Tosylhydrazones. European Journal of Organic Chemistry, 2022, 2022, .	1.2	1
532	Surprising lipophilicity observations identify unexpected conformational effects. Bioorganic and Medicinal Chemistry Letters, 2022, 69, 128786.	1.0	1
533	Radical C(sp3)–H functionalization and cross-coupling reactions. Nature Reviews Chemistry, 2022, 6, 405-427.	13.8	73
534	Enantioselective alkylative cross-coupling of unactivated aromatic C–O electrophiles. Nature Communications, 2022, 13, .	5.8	15
535	Ring replacement recommender: Ring modifications for improving biological activity. European Journal of Medicinal Chemistry, 2022, 238, 114483.	2.6	3
536	MegaSyn: Integrating Generative Molecular Design, Automated Analog Designer, and Synthetic Viability Prediction. ACS Omega, 2022, 7, 18699-18713.	1.6	13
537	Electrochemically mediated decarboxylative acylation of N-nitrosoanilines with α-oxocarboxylic acids. Chinese Chemical Letters, 2023, 34, 107537.	4.8	30
538	Structural Basis for Control of Methylation Extent in Polyketide Synthase Metal-Dependent <i>C</i> -Methyltransferases. ACS Chemical Biology, 2022, 17, 2088-2098.	1.6	2
539	Methyltransferases: Functions and Applications. ChemBioChem, 2022, 23, .	1.3	36

#	Article	IF	CITATIONS
540	Ligand-Controlled Ruthenium-Catalyzed Borrowing-Hydrogen and Interrupted-Borrowing-Hydrogen Methodologies: Functionalization of Ketones Using Methanol as a C1 Source. Journal of Organic Chemistry, 2023, 88, 5135-5146.	1.7	3
541	Improved flotation separation of sulfide minerals by synthesized surfactant based on para-position methyl effect. Separation and Purification Technology, 2022, 297, 121550.	3.9	11
542	The impact of the methyl esters of homogalacturonan on cellular uptake dependent hypoglycemic activity in IR-HepG2 cells. Carbohydrate Polymers, 2022, 293, 119741.	5.1	6
543	Dual Nickel/Photoredoxâ€Catalyzed Siteâ€Selective Crossâ€Coupling of 1,2â€Bisâ€Boronic Esters Enabled by 1,2â€Boron Shifts. Angewandte Chemie, 0, , .	1.6	2
544	Dual Nickel/Photoredoxâ€Catalyzed Siteâ€Selective Crossâ€Coupling of 1,2â€Bisâ€Boronic Esters Enabled by 1,2â€Boron Shifts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
545	A Highâ€Throughput Continuous Spectroscopic Assay to Measure the Activity of Natural Product Methyltransferases. ChemBioChem, 2022, 23, .	1.3	10
546	Implications of Additivity and Nonadditivity for Machine Learning and Deep Learning Models in Drug Design. ACS Omega, 2022, 7, 26573-26581.	1.6	9
547	Synthesis of Unsymmetrical Vicinal Diamines via Directed Hydroamination. Organic Letters, 2022, 24, 5513-5518.	2.4	3
548	Synthetic Reagents for Enzymeâ€Catalyzed Methylation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
549	Biocatalytic One-Carbon Transfer – A Review. Synthesis, 2022, 54, 4401-4425.	1.2	8
550	GNE-064: A Potent, Selective, and Orally Bioavailable Chemical Probe for the Bromodomains of SMARCA2 and SMARCA4 and the Fifth Bromodomain of PBRM1. Journal of Medicinal Chemistry, 2022, 65, 11177-11186.	2.9	6
551	Iron-Catalyzed α-Methylation of Ketones Using Methanol as the C1 Source under Photoirradiation. Organic Letters, 2022, 24, 6219-6223.	2.4	21
552	Synthesis and characterization of 1,4-di(1H-imidazol-1-yl) butane dihydrate and 1,4-di(1H-2-methylimidazol-1-yl) butane tetrahydrate: A study of the methyl group effect on spectroscopic data, thermal properties, and the crystal structures. Journal of Molecular Structure, 2022, 1269, 133823.	1.8	1
553	Selective reductive α-methylation of chalcone derivatives using methanol. Journal of Catalysis, 2022, 414, 225-235.	3.1	4
554	Towards better syntheses of partially methylated carbohydrates?. Organic Chemistry Frontiers, 2022, 9, 5414-5425.	2.3	1
555	A late-stage functionalization tool: sulfonyl fluoride mediated deoxymethylation of phenols. Organic and Biomolecular Chemistry, 2022, 20, 7640-7644.	1.5	5
556	Rhodium(<scp>i</scp>)-catalyzed directed trideuteromethylation of (hetero)arene C–H bonds with CD ₃ CO ₂ D. Organic and Biomolecular Chemistry, 2022, 20, 7645-7649.	1.5	3
557	Palladium-catalyzed nucleomethylation of alkynes for synthesis of methylated heteroaromatic compounds. Chemical Science, 2022, 13, 10095-10102.	3.7	12

#	Article	IF	CITATIONS
558	Copper Hydride-Catalyzed Enantioselective Olefin Hydromethylation. Journal of the American Chemical Society, 2022, 144, 16303-16309.	6.6	12
559	Photoredox-Catalyzed C–H Trideuteromethylation of Quinoxalin-2(1 <i>H</i>)-ones with CDCl ₃ as the "CD ₃ ―source. Organic Letters, 2022, 24, 6412-6416.	2.4	7
560	The Catalytic Synthesis of <i>N</i> -Aryl Indoles Featuring an Alternative Disconnection. Hydroaminoalkylation for a Telescoped Reaction Sequence. Organic Letters, 2022, 24, 6571-6575.	2.4	3
561	On drug discovery against infectious diseases and academic medicinal chemistry contributions. Beilstein Journal of Organic Chemistry, 0, 18, 1355-1378.	1.3	0
562	Scalable (Enantioselective) Syntheses of Novel 3-Methylated Analogs of Pazinaclone, (S)-PD172938 and Related Biologically Relevant Isoindolinones. Molecules, 2022, 27, 5647.	1.7	4
563	<i>Ortho</i> C–H Hydroxyalkylation or Methylation of Aryl Iodides by Ethers and TMSI via a Catellani Strategy. Organic Letters, 2022, 24, 6897-6902.	2.4	5
565	Titanium atalyzed Exhaustive Reduction of Oxoâ€Chemicals. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
566	In Silico Positional Analogue Scanning with Amber GPU-TI. Journal of Chemical Information and Modeling, 2022, 62, 4448-4459.	2.5	2
567	Synthetic Reagents for Enzymeâ \in Catalyzed Methylation. Angewandte Chemie, 2022, 134, .	1.6	2
568	Copper-Catalyzed C(sp3)–H Methylation via Radical Relay. ACS Catalysis, 2022, 12, 11854-11859.	5.5	9
569	Atropisomerism in the Pharmaceutically Relevant Realm. Accounts of Chemical Research, 2022, 55, 2904-2919.	7.6	79
570	Titaniumâ€Catalyzed Exhaustive Reduction of Oxoâ€Chemicals. Angewandte Chemie, 2022, 134, .	1.6	0
571	Monoselective N-Methylation of Amides, Indoles, and Related Structures Using Quaternary Ammonium Salts as Solid Methylating Agents. Organic Letters, 2022, 24, 7315-7319.	2.4	13
572	Theoretical Study for Evaluating and Discovering Organic Hydride Compounds as Potential Novel Methylation Reagents. ACS Omega, 0, , .	1.6	0
575	Ruthenium(II)-Catalyzed Hydrogenation and Tandem (De)Hydrogenation <i>via</i> Metal–Ligand Cooperation: Base- and Solvent-Assisted Switchable Selectivity. Journal of Organic Chemistry, 2024, 89, 1361-1378.	1.7	3
576	Ni/Photoredox-Catalyzed C(sp ³)–C(sp ³) Coupling between Aziridines and Acetals as Alcohol-Derived Alkyl Radical Precursors. Journal of the American Chemical Society, 2022, 144, 20067-20077.	6.6	22
577	Ruthenium-Catalyzed Monoselective C–H Methylation and <i>d</i> ₃ -Methylation of Arenes. Jacs Au, 2022, 2, 2529-2538.	3.6	6
578	Ionic Liquid Mediated Triple Catalysis for Alkylation and Methylation of Acyl Chlorides with Mechanistic Insight. Journal of Catalysis, 2022, 416, 58-67.	3.1	1

#	ARTICLE	IF	CITATIONS
579	Enzymatic C3-Methylation of Indoles Using Methyltransferase PsmD─Crystal Structure, Catalytic Mechanism, and Preparative Applications. ACS Catalysis, 2022, 12, 14130-14139.	5.5	1
580	Modular and Fast Synthesis of Versatile Secondary α,αâ€Dialkyl Boronates via Deoxygenative Alkylboration of Aldehydes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
581	Modular and Fast Synthesis of Versatile Secondary α,αâ€Đialkyl Boronates via Deoxygenative Alkylboration of Aldehydes. Angewandte Chemie, 2022, 134, .	1.6	3
582	Design, synthesis and antitumor activity of potent and safe para-quinone methides derivatives in vitro and in vivo. Biomedicine and Pharmacotherapy, 2022, 156, 113893.	2.5	Ο
583	Methanol as a greener C1 synthon under non-noble transition metal-catalyzed conditions. Coordination Chemistry Reviews, 2023, 475, 214851.	9.5	12
584	Applications of High Throughput Chemistry to Medicinal Chemistry. ACS Symposium Series, 0, , 3-21.	0.5	Ο
586	Evolving Progress in Ester Activation Driven by High Throughput Experimentation. ACS Symposium Series, 0, , 147-160.	0.5	0
587	High-Throughput Experimentation for Medicinal Chemistry: State of the Art, Challenges, and Opportunities. ACS Symposium Series, 0, , 37-66.	0.5	Ο
590	HTE as a Tool in C–H Activation Reaction Discovery and Late-Stage Functionalization of Pharmaceuticals. ACS Symposium Series, 0, , 161-179.	0.5	1
592	High Throughput Experimentation as an Enabler to the Success of Biocatalysis in Industry. ACS Symposium Series, 0, , 67-75.	0.5	Ο
593	High-Throughput Experimentation for Resource-Efficient Discovery of Methane Functionalization Catalysts. ACS Symposium Series, 0, , 123-145.	0.5	0
594	Applications of High-Throughput Experimentation to Enable Discovery Chemistry. ACS Symposium Series, 0, , 23-36.	0.5	Ο
596	Application of High-Throughput Experimentation in Identification of Conditions for Selective Nitro Group Hydrogenation. ACS Symposium Series, 0, , 79-91.	0.5	0
597	Leveraging HTE in Non-canonical Amino Acid Synthesis and Peptide Ligation. ACS Symposium Series, 0, , 109-120.	0.5	Ο
598	Leveraging High Throughput Experimentation for Improved Access to Privileged Pharmaceutical Structures. ACS Symposium Series, 0, , 93-108.	0.5	0
599	Design, synthesis and evaluation of antitumor activity of selective PRMT6 inhibitors. European Journal of Medicinal Chemistry, 2023, 247, 115032.	2.6	4
600	Discovery of N-methylbenzo[d]oxazol-2-amine as new anthelmintic agent through scalable protocol for the synthesis of N-alkylbenzo[d]oxazol-2-amine and N-alkylbenzo[d]thiazol-2-amine derivatives. Bioorganic Chemistry, 2023, 131, 106287.	2.0	2
601	Enzyme-substrate interactions in orotate-mimetic OPRT inhibitor complexes: A QM/MM analysis. Physical Chemistry Chemical Physics, 0, , .	1.3	0

#	Article	IF	CITATIONS
602	Synthesis of Tetrasubstituted Phosphorus Analogs of Aspartic Acid as Antiproliferative Agents. Molecules, 2022, 27, 8024.	1.7	3
603	Feâ€Catalyzed Aliphatic Câ€H Methylation of Glycine Derivatives and Peptides. Chemistry - A European Journal, 0, , .	1.7	2
604	Cobalt(II)-Catalyzed C–H Alkylation of <i>N</i> -Heterocycles with 1,4-Dihydropyridines. ACS Catalysis, 2022, 12, 15707-15714.	5.5	9
605	Brief considerations on targeting RNA with small molecules. Faculty Reviews, 0, 11, .	1.7	3
606	Structural Alterations of the "Address―Moiety of NAN Leading to the Discovery of a Novel Opioid Receptor Modulator with Reduced hERG Toxicity. Journal of Medicinal Chemistry, 2023, 66, 577-595.	2.9	5
607	Regio- and Stereoselective Reductive Coupling of Alkynes and Crotononitrile. Journal of the American Chemical Society, 2022, 144, 23001-23009.	6.6	19
608	Diversification of pharmaceutical molecules via late-stage C(sp2)–H functionalization. Green Synthesis and Catalysis, 2023, 4, 104-123.	3.7	11
609	Methyl Effects on the Stereochemistry and Reactivity of PPP-Ligated Iron Hydride Complexes. Inorganic Chemistry, 2023, 62, 967-978.	1.9	1
610	Energy Harvesting: Synthetic Use of Recovered Energy in Electrochemical Lateâ€Stage Functionalization. ChemElectroChem, 0, , .	1.7	0
611	Nutlinâ€3aâ€aa: Improving the Bioactivity of a p53/MDM2 Interaction Inhibitor by Introducing a Solventâ€Exposed Methylene Group. ChemBioChem, 2023, 24, .	1.3	1
612	Transition-metal-free electrochemical-induced active C(sp ³)-H functionalization. Green Chemistry Letters and Reviews, 2023, 16, .	2.1	2
613	Mapping interaction between big spaces; active space from protein structure and available chemical space. , 2023, , 299-332.		0
614	Late-Stage C(<i>sp</i> ^{<i>3</i>})–H Methylation of Drug Molecules. Journal of the American Chemical Society, 2023, 145, 2787-2793.	6.6	23
615	Late-stage functionalization of 5-nitrofurans derivatives and their antibacterial activities. RSC Advances, 2023, 13, 3204-3209.	1.7	0
617	Photocatalytic Late-Stage C–H Functionalization. Chemical Reviews, 2023, 123, 4237-4352.	23.0	112
618	Drug discovery: Standing on the shoulders of giants. , 2023, , 207-338.		0
619	Radical Bicyclization of 2 yanoaryl Acrylamides with Dicumyl Peroxide. Advanced Synthesis and Catalysis, 2023, 365, 579-583.	2.1	3
620	Martin Silicates as Partners in Photoredox/Ni Dual Catalysis for the Installation of CH ₃ , CH ₂ D, CD ₂ H, CD ₃ and ¹³ CH ₃ Groups onto (Hetero)Arenes. Advanced Synthesis and Catalysis, 2023, 365, 884-891.	2.1	3

#	Article	IF	Citations
621	Recent Advances in Rhodium atalyzed Electrochemical Câ^'H Activation. Chemistry - an Asian Journal, 2023, 18, .	1.7	3
622	metaâ€Selective Câ^'H Functionalization of Pyridines. Angewandte Chemie, 0, , .	1.6	0
623	Low-temperature plasma modification, structural characterization and anti-diabetic activity of an apricot pectic polysaccharide. International Journal of Biological Macromolecules, 2023, 240, 124301.	3.6	4
624	Three Component <i>syn</i> â€1,2â€Arylmethylation of Internal Alkynes**. Angewandte Chemie, 2023, 135, .	1.6	Ο
625	Three Component <i>syn</i> â€1,2â€Arylmethylation of Internal Alkynes**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
626	Metalâ€Free, Photoredox atalyzed Synthesis of Quinazolinâ€4(3 <i>H</i>)â€ones and Benzo[4,5]imidazo[1,2â€ <i>c</i>]quinazolines Using Trialkylamines as Alkyl Synthon. European Journal of Organic Chemistry, 2023, 26, .	1.2	4
627	Controlling Ibrutinib's Conformations about Its Heterobiaryl Axis to Increase BTK Selectivity. ACS Medicinal Chemistry Letters, 2023, 14, 305-311.	1.3	2
628	Arylative Methylation of 2,3-Dihydropyrazines and Pyrazinones Using Dimethyl Sulfoxide as a C1 Source. Journal of Organic Chemistry, 2023, 88, 2931-2941.	1.7	5
629	Functionalized Cycloolefin Ligand as a Solution to <i>Ortho</i> -Constraint in the Catellani-Type Reaction. Journal of the American Chemical Society, 2023, 145, 4871-4881.	6.6	5
630	Combinatorial Therapeutic Potential of Stem Cells and Benzimidazol Derivatives for the Reduction of Liver Fibrosis. Pharmaceuticals, 2023, 16, 306.	1.7	1
631	TFE assisted mechanochemical synthesis of new pyrazolones from Meldrum acid carbothioamides-Experimental and theoretical studies. Molecular Catalysis, 2023, 539, 113002.	1.0	0
632	Scale-Up Synthesis of 1-Methyladamantane and Its Functionalization as a Key Point for Promising Antiviral Agents. Organic Process Research and Development, 2023, 27, 477-487.	1.3	1
633	Manganese atalyzed Chemoselective Coupling of Secondary Alcohols, Primary Alcohols and Methanol. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
634	Manganeseâ€Catalyzed Chemoselective Coupling of Secondary Alcohols, Primary Alcohols and Methanol. Angewandte Chemie, 2023, 135, .	1.6	0
635	Activation of DMSO(-d ₆) <i>via</i> heterogeneous photo-Fenton-like process with <i>in situ</i> production of hydroxyl radicals for the C–H (trideutero)methylation of (iso)quinoliniums. Green Chemistry, 2023, 25, 3187-3197.	4.6	4
636	Biomimetic <i>S</i> â€Adenosylmethionine Regeneration Starting from Multiple Byproducts Enables Biocatalytic Alkylation with Radical SAM Enzymes**. ChemBioChem, 2023, 24, .	1.3	7
638	Methylation of Unactivated Alkenes with Engineered Methyltransferases To Generate Nonâ€natural Terpenoids. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
639	Methylierung nichtâ€aktivierter Alkene mit modifizierten Methyltransferasen zur Diversifizierung von Terpenoiden. Angewandte Chemie, 2023, 135, .	1.6	1

#	Article	IF	CITATIONS
640	Transition-metal-free silylboronate-mediated cross-couplings of organic fluorides with amines. Nature Communications, 2023, 14, .	5.8	5
641	"Magic Chloro†Profound Effects of the Chlorine Atom in Drug Discovery. Journal of Medicinal Chemistry, 2023, 66, 5305-5331.	2.9	29
642	Matched Molecular Pair Analysis in Drug Discovery: Methods and Recent Applications. Journal of Medicinal Chemistry, 2023, 66, 4361-4377.	2.9	6
643	<i>metaâ€</i> Selective Câ^'H Functionalization of Pyridines. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
644	Iridium catalysed C2 site-selective methylation of indoles using a pivaloyl directing group through weak chelation-assistance. RSC Advances, 2023, 13, 11291-11295.	1.7	0
645	Controlling the structure of supramolecular fibre formation for benzothiazole based hydrogels with antimicrobial activity against methicillin resistant <i>Staphylococcus aureus</i> . Journal of Materials Chemistry B, 2023, 11, 3958-3968.	2.9	2
646	Comparative <i>S</i> -adenosyl- <scp>l</scp> -methionine analogue generation for selective biocatalytic Friedel-Crafts alkylation. Chemical Communications, 2023, 59, 5463-5466.	2.2	0
647	Rapid, Labelâ€Free Screening of Diverse Biotransformations by Flowâ€Injection Mass Spectrometry. ChemBioChem, 0, , .	1.3	0
649	Targeting RET Solvent-Front Mutants with Alkynyl Nicotinamide-Based Inhibitors. Molecular Cancer Therapeutics, 2023, 22, 717-725.	1.9	3
657	Distal <i>p</i> -benzylic deuteration <i>via</i> N-heterocyclic carbene catalyzed ring opening of <i>p</i> -cyclopropylbenzaldehydes. Organic and Biomolecular Chemistry, 2023, 21, 4750-4754.	1.5	2
659	Late-stage Functionalization for Improving Drug-like Molecular Properties. Chemical Reviews, 2023, 123, 8127-8153.	23.0	22
660	The Role of Allylic Strain for Conformational Control in Medicinal Chemistry. Journal of Medicinal Chemistry, 2023, 66, 7730-7755.	2.9	4
700	Evolutionary Algorithms and Workflows for De Novo Catalyst Design. , 2024, , 540-561.		0
722	Catalytic Methylation Using Methanol as C1 Source. Topics in Organometallic Chemistry, 2023, , .	0.7	0
741	Non-enzymatic synthesis of <i>C</i> -methylated fluostatins: discovery and reaction mechanism. Organic and Biomolecular Chemistry, 2024, 22, 1152-1156.	1.5	0
761	Artificial Intelligence in Drug Discovery and Development. , 2023, , 1-38.		0