Preparation, characterization and thermal properties of form-stable composite phase change material

Energy and Buildings 66, 697-705 DOI: 10.1016/j.enbuild.2013.07.083

Citation Report

#	Article	IF	CITATIONS
1	Phase change materials integrated in building walls: A state of the art review. Renewable and Sustainable Energy Reviews, 2014, 31, 870-906.	16.4	525
2	Lauric–palmitic–stearic acid/expanded perlite composite as form-stable phase change material: Preparation and thermal properties. Energy and Buildings, 2014, 82, 505-511.	6.7	123
3	Diatomite/Palm Wax Composite as a Phase Change Material for Latent Heat Storage. Advanced Materials Research, 2015, 1126, 33-38.	0.3	1
4	Influence of Ultrafine 2CaO·SiO2 Powder on Hydration Properties of Reactive Powder Concrete. Materials, 2015, 8, 6195-6207.	2.9	14
5	Preparation and thermal characterization ofÂcomposite "Paraffin/Red Brick―as a novel form-stable of phase change material for thermal energy storage. International Journal of Hydrogen Energy, 2015, 40, 13771-13776.	7.1	23
6	Preparation and properties of shape-stabilized phase change materials based on fatty acid eutectics and cellulose composites for thermal energy storage. Energy, 2015, 80, 98-103.	8.8	79
7	Synthesis and thermal properties of fatty acid eutectics and diatomite composites as shape-stabilized phase change materials with enhanced thermal conductivity. Solar Energy Materials and Solar Cells, 2015, 141, 218-224.	6.2	138
8	Properties evaluation and applications of thermal energystorage materials in buildings. Renewable and Sustainable Energy Reviews, 2015, 48, 500-522.	16.4	50
9	Development of structural–functional integrated concrete with macro-encapsulated PCM for thermal energy storage. Applied Energy, 2015, 150, 245-257.	10.1	127
10	Fabrication and thermal characterization of kaolin-based composite phase change materials for latent heat storage in buildings. Energy and Buildings, 2015, 96, 193-200.	6.7	102
11	Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete. Applied Energy, 2015, 139, 43-55.	10.1	150
12	Preparation and Characterization of Urea-Formaldehyde Resin Microcapsules Containing Dodecanol as Phase Change Material. Journal of Chemical Engineering of Japan, 2016, 49, 987-994.	0.6	5
13	A Study on a Novel Phase Change Material Panel Based on Tetradecanol/Lauric Acid/Expanded Perlite/Aluminium Powder for Building Heat Storage. Materials, 2016, 9, 896.	2.9	16
14	Preparation of fine powdered composite for latent heat storage. AIP Conference Proceedings, 2016, , .	0.4	0
15	Preparation and properties of a formâ€stable phaseâ€change hydrogel for thermal energy storage. Journal of Applied Polymer Science, 2016, 133, .	2.6	24
16	Thermal regulating performance of gypsum/(C18–C24) composite phase change material (CPCM) for building energy storage applications. Applied Thermal Engineering, 2016, 107, 55-62.	6.0	62
17	Development and thermal performance of pumice/organic PCM/gypsum composite plasters for thermal energy storage in buildings. Solar Energy Materials and Solar Cells, 2016, 149, 19-28.	6.2	154
18	Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials. Energy Conversion and Management, 2016, 117, 132-141.	9.2	156

#	Article	IF	CITATIONS
19	Development and optimisation of phase change material-impregnated lightweight aggregates for geopolymer composites made from aluminosilicate rich mud and milled glass powder. Construction and Building Materials, 2016, 110, 201-210.	7.2	75
20	Influence of intumescent flame retardant on thermal and flame retardancy of eutectic mixed paraffin/polypropylene form-stable phase change materials. Applied Energy, 2016, 162, 428-434.	10.1	103
21	Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system. Renewable Energy, 2016, 85, 1334-1356.	8.9	208
22	Thermal Energy Storage Properties and Laboratory-Scale Thermoregulation Performance of Bentonite/Paraffin Composite Phase Change Material for Energy-Efficient Buildings. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	23
23	Development of heat storage gypsum board with paraffin-based mixed SSPCM for application to buildings. Journal of Adhesion Science and Technology, 2017, 31, 297-309.	2.6	20
24	Preparation, characterization and thermal regulation performance of cement based-composite phase change material. Solar Energy Materials and Solar Cells, 2018, 174, 523-529.	6.2	94
25	Numerical and experimental research of cold storage for a novel expanded perlite-based shape-stabilized phase change material wallboard used in building. Energy Conversion and Management, 2018, 155, 20-31.	9.2	139
26	Thermal and Mechanical Properties of Expanded Graphite/Paraffin Gypsum-Based Composite Material Reinforced by Carbon Fiber. Materials, 2018, 11, 2205.	2.9	49
27	Study on a PEG/epoxy shape-stabilized phase change material: Preparation, thermal properties and thermal storage performance. International Journal of Heat and Mass Transfer, 2018, 126, 1134-1142.	4.8	57
28	Nanoclay and polymer-based nanocomposites: Materials for energy efficiency. , 2018, , 75-103.		7
29	A practical ranking system for evaluation of industry viable phase change materials for use in concrete. Construction and Building Materials, 2018, 177, 272-286.	7.2	21
30	Optimization of preparation and analysis of Paraffin/SiO2 composite PCMs via sol-gel method. IOP Conference Series: Earth and Environmental Science, 0, 242, 032005.	0.3	4
31	General Synthesis of Lead-Free Metal Halide Perovskite Colloidal Nanocrystals in 1-Dodecanol. Inorganic Chemistry, 2019, 58, 11807-11818.	4.0	34
32	Porous geopolymer as a possible template for a phase change material. Materials Chemistry and Physics, 2019, 236, 121785.	4.0	15
33	Development of structural thermal energy storage concrete using paraffin intruded lightweight aggregate with nano-refined modified encapsulation paste layer. Construction and Building Materials, 2019, 228, 116768.	7.2	21
34	Capric acid phase change microcapsules modified with graphene oxide for energy storage. Journal of Materials Science, 2019, 54, 14834-14844.	3.7	39
35	A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials. Renewable and Sustainable Energy Reviews, 2019, 110, 467-484.	16.4	135
36	Development of high performance PCM cement composites for passive solar buildings. Energy and Buildings, 2019, 194, 33-45.	6.7	52

#	Article	IF	CITATIONS
37	An experimental study on applying organic PCMs to gypsum-cement board for improving thermal performance of buildings in different climates. Energy and Buildings, 2019, 190, 183-194.	6.7	56
38	A Taguchi approach for optimizing the mixture design of cold-bonded PCM aggregates. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, , 1-21.	2.3	1
39	Investigation on interfacial interaction and thermal properties of flame retarded wood-plastic form-stable phase change material. Composite Interfaces, 2019, 26, 597-610.	2.3	11
40	Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage. Waste Management, 2020, 103, 352-360.	7.4	44
41	Applications of ESEM on Materials Science: Recent Updates and a Look Forward. Small Methods, 2020, 4, 1900588.	8.6	12
42	Thermal energy storage and thermal conductivity properties of Octadecanol-MWCNT composite PCMs as promising organic heat storage materials. Scientific Reports, 2020, 10, 9168.	3.3	29
43	Tuning surface functionality of standard biochars and the resulting uplift capacity of loading/energy storage for organic phase change materials. Chemical Engineering Journal, 2020, 394, 125049.	12.7	55
44	Waste materials as the potential phase change material substitute in thermal energy storage system: a review. Chemical Engineering Communications, 2021, 208, 687-707.	2.6	31
45	Mechanical and Thermo-Physical Performances of Gypsum-Based PCM Composite Materials Reinforced with Carbon Fiber. Applied Sciences (Switzerland), 2021, 11, 468.	2.5	12
46	Experimental investigation for the development of superior structural integrated thermocrete via incorporation of novel non-encapsulated paraffin aggregate. Construction and Building Materials, 2021, 271, 121883.	7.2	11
47	Energy performance evaluation of heat storage of calcium sulfate hemihydrate composite with fine aggregate based on paraffinic phase change material. Journal of Building Engineering, 2021, 42, 103075.	3.4	3
48	Performance of energy storage system containing cement mortar and PCM/epoxy/SiC composite fine aggregate. Applied Thermal Engineering, 2021, 198, 117445.	6.0	18
49	PREPARATION OF PUZZOLANA ACTIVE TWO COMPONENT COMPOSITE FOR LATENT HEAT STORAGE. Ceramics - Silikaty, 2016, , 291-298.	0.3	5
50	The porous composite BN@SHS made of boron nitride, silica hollow spheres and Si–O–B interface. Journal of Porous Materials, 2022, 29, 651-662.	2.6	1
51	A novel dodecanol/tepexil PCM composite for thermal energy storage in buildings. Materials Chemistry and Physics, 2022, 284, 126067.	4.0	6
52	Preparation of Composite Microencapsulated Phase Change Material Based on Phosphogypsum for Passive Building Applications. SSRN Electronic Journal, 0, , .	0.4	0
53	Characteristics, energy saving and carbon emission reduction potential of gypsum wallboard containing phase change material. Journal of Energy Storage, 2022, 55, 105685.	8.1	20
54	Preparation of composite microencapsulated phase change material based on phosphogypsum for passive building applications. Construction and Building Materials, 2023, 378, 131068.	7.2	3

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
55	Review on application of phase change materials in asphalt pavement. Journal of Traffic and Transportation Engineering (English Edition), 2023, 10, 185-229.	4.2	1
56	Shielding Encapsulation to Enhance Fire Endurance of Phase Change Materials in Energy-Efficient Concrete. Fire Technology, 2023, 59, 1697-1723.	3.0	2
57	Fuel, cost, energy efficiency and CO2 emission performance of PCM integrated wood fiber composite phase change material at different climates. Scientific Reports, 2023, 13, .	3.3	6
58	Preparation, microstructure, performance and mortar application of paraffin/titanium-bearing blast furnace slag phase change aggregate. Case Studies in Construction Materials, 2023, 19, e02262.	1.7	Ο
59	Thermal-mechanical behaviors of concrete with innovative salt hydrate PCM-based thermal energy storage aggregate. Energy Conversion and Management, 2023, 293, 117477.	9.2	1
60	Phase change materials embedded in expanded clay aggregates to develop energy storage concrete: A review. Science and Technology for the Built Environment, 2023, 29, 1050-1071.	1.7	Ο
61	Advances in phase change building materials: An overview. Nanotechnology Reviews, 2023, 12, .	5.8	0
62	Enhancement of the thermal properties of the phase change composite of acid-base modified biochar/paraffin wax. Solar Energy Materials and Solar Cells, 2024, 269, 112802.	6.2	0