Hydrothermal Ni: Doriri Creek, Papua New Guinea

Ore Geology Reviews 52, 37-57

DOI: 10.1016/j.oregeorev.2012.10.001

Citation Report

#	Article	IF	CITATIONS
1	A re-appraisal of the Epoch nickel sulphide deposit, Filabusi Greenstone Belt, Zimbabwe: A hydrothermal nickel mineral system?. Ore Geology Reviews, 2013, 52, 58-65.	1.1	17
3	Suckling Dome and the Australian–Woodlark plate boundary in eastern Papua: the geology of the Keveri and Ada'u Valleys. Australian Journal of Earth Sciences, 2014, 61, 1125-1147.	0.4	10
4	A Hydrothermal Ni-As-PGE Geochemical Halo Around the Miitel Komatiite-Hosted Nickel Sulfide Deposit, Yilgarn Craton, Western Australia. Economic Geology, 2015, 110, 505-530.	1.8	46
5	Review of lithogeochemical exploration tools for komatiite-hosted Ni-Cu-(PGE) deposits. Journal of Geochemical Exploration, 2016, 168, 1-19.	1.5	15
6	Epithermal and arc-related layered mafic platinum-group element mineralisation in the mafic–ultramafic rocks of eastern Papua. Australian Journal of Earth Sciences, 2016, 63, 393-411.	0.4	3
7	Chloritites of the Tocantins Group, Araguaia fold belt, central-northern Brazil: Vestiges of basaltic magmatism and metallogenetic implications. Journal of South American Earth Sciences, 2016, 69, 171-193.	0.6	5
8	Effects of hydrous alteration on the distribution of base metals and platinum group elements within the Kevitsa magmatic nickel sulphide deposit. Ore Geology Reviews, 2016, 72, 128-148.	1.1	36
9	Geology and geochemistry of the Jianchaling hydrothermal nickel deposit: T–pH–fO2–fS2 conditions and nickel precipitation mechanism. Ore Geology Reviews, 2017, 91, 216-235.	1.1	6
10	Review of Predictive and Detective Exploration Tools for Magmatic Ni-Cu-(PGE) Deposits, With a Focus on Komatiite-Related Systems in Western Australia. , 2018, , 47-78.		1
11	Occurrence of Fibrous Chrysotile and Tremolite in the Çankiri and Ankara Regions, Central Anatolia, Turkey. Clays and Clay Minerals, 2018, 66, 146-172.	0.6	1
12	Incorporating conceptual and interpretation uncertainty to mineral prospectivity modelling. Geoscience Frontiers, 2019, 10, 1383-1396.	4.3	20
13	Twoâ€Stage Sulfide Mineral Assemblages in the Mineralized Ultramafic Rocks of the Laowangzhai Gold Deposit (Yunnan, SW China): Implications for Metallogenic Evolution. Resource Geology, 2019, 69, 270-286.	0.3	8
14	Metallogenic model of the Jinchang Au-Ni deposit in the Ailaoshan belt, SW China, determined on the basis of pyrite trace element contents, in-situ sulfur isotope composition and PGE geochemistry. Ore Geology Reviews, 2020, 120, 103415.	1.1	4
15	The Jaguar hydrothermal nickel sulfide deposit: Evidence for a nickel-rich member of IOCG-type deposits in the Caraj $ ilde{A}_i$ s Mineral Province, Brazil. Journal of South American Earth Sciences, 2021, 111, 103501.	0.6	9
16	Identification of hydrothermal alteration and mineralization in the Sancha magmatic Cu-Ni-Au sulfide deposit, NW China: Implications for timing and genesis of mineralization. Ore Geology Reviews, 2022, 143, 104770.	1.1	2
17	Ultra-Refractory Peridotites of Phanerozoic Mantle Origin: the Papua New Guinea Ophiolite Mantle Tectonites. Journal of Petrology, 2022, 63, .	1.1	3
18	Lithologic and Geochemical Constraints on the Genesis of a Newly Discovered Orebody in the Jinchuan Intrusion, NW China. Economic Geology, 2022, 117, 1809-1825.	1.8	10
19	New Models to Aid Discovery of CRM Deposits for the Green Stone Age. Geological Society Special Publication, 0, , SP526-2022-79.	0.8	O

#	ARTICLE	lŀ	CITATIONS
20	The distribution of trace elements in sulfides and magnetite from the Jaguar hydrothermal nickel deposit: Exploring the link with IOA and IOCG deposits within the CarajA¡s Mineral Province, Brazil. Ore Geology Reviews, 2023, 152, 105256.	1.1	2