Design and simulation of a methanol production plant f

Journal of Cleaner Production 57, 38-45 DOI: 10.1016/j.jclepro.2013.06.008

Citation Report

#	Article	IF	CITATIONS
2	CO2 Utilization: A Process Systems Engineering Vision. , 0, , .		6
3	ON THE CHALLENGES OF THE USE AND INTEGRATION OF RENEWABLE ENERGY SOURCES. Energy Research Journal, 2014, 5, 1-3.	0.8	3
4	CO2 Utilization Pathways: Techno-Economic Assessment and Market Opportunities. Energy Procedia, 2014, 63, 7968-7975.	1.8	113
5	Evaluation of Carbon Dioxide Utilisation Concepts: A Quick and Complete Methodology. Energy Procedia, 2014, 63, 8010-8016.	1.8	8
6	Environmental impact and techno-economic analysis of the coal gasification process with/without CO2 capture. Journal of Cleaner Production, 2014, 71, 59-66.	9.3	94
7	Environmental assessment of marine fuels: liquefied natural gas, liquefied biogas, methanol and bio-methanol. Journal of Cleaner Production, 2014, 74, 86-95.	9.3	265
8	Quantitative risk assessment integrated with process simulator for a new technology of methanol production plant using recycled CO2. Journal of Hazardous Materials, 2014, 274, 164-172.	12.4	11
9	Influence of acidic strength on the catalytic activity of BrÃ,nsted acidic ionic liquids on synthesizing cyclic carbonate from carbon dioxide and epoxide. Journal of Cleaner Production, 2014, 67, 285-290.	9.3	62
10	Optimal year-round operation for methane production from CO2 and water using wind and/or solar energy. Journal of Cleaner Production, 2014, 80, 252-261.	9.3	77
11	Development of sustainable CO2 conversion processes for the methanol production. Computer Aided Chemical Engineering, 2015, , 1145-1150.	0.5	19
12	Carbon cycle in advanced coal chemical engineering. Chemical Society Reviews, 2015, 44, 5409-5445.	38.1	142
13	A model-based analysis of CO2 utilization in methanol synthesis plant. Journal of CO2 Utilization, 2015, 10, 12-22.	6.8	121
14	Chemical storage of wind energy by renewable methanol production: Feasibility analysis using a multi-criteria decision matrix. Energy, 2015, 93, 343-353.	8.8	116
15	A comparative study of CO2 utilization in methanol synthesis with various syngas production technologies. Journal of CO2 Utilization, 2015, 12, 62-76.	6.8	101
16	Performance investigation of Passive Direct Methanol Fuel Cell in different structural configurations. Journal of Cleaner Production, 2015, 88, 23-28.	9.3	39
17	Multi-objective optimization approach for green design of methanol plant based on CO2-efficeincy indicator. Journal of Cleaner Production, 2015, 103, 640-650.	9.3	47
18	Sustainable technologies for the reclamation of greenhouse gas CO2. Journal of Cleaner Production, 2015, 103, 784-792.	9.3	71
19	Formation of Dimethyl Carbonate on Nature Clay Supported Bimetallic Copper-Nickel Catalysts. Journal of Cleaner Production, 2015, 103, 925-933.	9.3	25

ATION REDO

#	Article	IF	CITATIONS
20	Efficient methanol synthesis: Perspectives, technologies and optimization strategies. Progress in Energy and Combustion Science, 2016, 56, 71-105.	31.2	316
21	Methodology for solar and wind energy chemical storage facilities design under uncertainty: Methanol production from CO2 and hydrogen. Computers and Chemical Engineering, 2016, 92, 43-54.	3.8	53
22	Optimal Integration of Algae–Switchgrass Facility for the Production of Methanol and Biodiesel. ACS Sustainable Chemistry and Engineering, 2016, 4, 5651-5658.	6.7	12
23	A review of fuel cell systems for maritime applications. Journal of Power Sources, 2016, 327, 345-364.	7.8	395
24	Implementation of the Power to Methanol concept by using CO2 from lignite power plants: Techno-economic investigation. International Journal of Hydrogen Energy, 2016, 41, 16674-16687.	7.1	65
25	Sensitivity based optimization of the Tri-reforming based CO2 valorization process. IFAC-PapersOnLine, 2016, 49, 359-364.	0.9	11
26	Process systems engineering issues and applications towards reducing carbon dioxide emissions through conversion technologies. Chemical Engineering Research and Design, 2016, 116, 27-47.	5.6	43
27	1D Model for Coupled Simulation of Steam Cracker Convection Section with Improved Evaporation Model. Chemie-Ingenieur-Technik, 2016, 88, 1650-1664.	0.8	9
28	Modeling of a Methanol Synthesis Reactor for Storage of Renewable Energy and Conversion of CO ₂ – Comparison of Two Kinetic Models. Chemical Engineering and Technology, 2016, 39, 233-245.	1.5	33
29	Analysis and assessment of methanol production by integration of carbon capture and photocatalytic hydrogen production. International Journal of Greenhouse Gas Control, 2016, 51, 56-70.	4.6	21
30	On the systematic carbon integration of industrial parks for climate footprint reduction. Journal of Cleaner Production, 2016, 112, 4053-4064.	9.3	56
31	Terminology used for renewable liquid and gaseous fuels based on the conversion of electricity: a review. Journal of Cleaner Production, 2016, 112, 3709-3720.	9.3	62
32	Investigation of technical and economic aspects for methanol production through CO 2 hydrogenation. International Journal of Hydrogen Energy, 2016, 41, 2202-2214.	7.1	161
33	Feasibility study of methanol production from different renewable sources and thermo-economic analysis. International Journal of Hydrogen Energy, 2016, 41, 2105-2116.	7.1	94
34	Valorization of carbon dioxide by conversion into fuel using renewable energy in Algeria. Transportation Research, Part D: Transport and Environment, 2016, 43, 145-157.	6.8	10
35	Analysis of CO2 utilization for methanol synthesis integrated with enhanced gas recovery. Journal of Cleaner Production, 2016, 112, 3540-3554.	9.3	43
36	Investigation of power-to-methanol processes coupling electrolytic hydrogen production and catalytic CO2 reduction. International Journal of Hydrogen Energy, 2016, 41, 4546-4559.	7.1	110
37	A methodology for the sustainable design and implementation strategy of CO2 utilization processes. Computers and Chemical Engineering, 2016, 91, 407-421.	3.8	39

ARTICLE IF CITATIONS # Comparative energetic assessment of methanol production from CO2: Chemical versus 38 10.1 103 electrochemical process. Applied Energy, 2016, 165, 1-13. Thermocatalytic CO 2 hydrogenation for methanol and ethanol production: Process improvements. 39 7.1 International Journal of Hydrogen Energy, 2016, 41, 792-806. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental 40 10.1 565 assessment. Applied Energy, 2016, 161, 718-732. Optimal integration of a self sustained algae based facility with solar and/or wind energy. Journal of Cleaner Production, 2017, 145, 336-347. Enhancing the Potential of Methane Combined Reforming for Methanol Production via Partial 42 3.7 15 CO₂ Hydrogenation. Industrial & amp; Engineering Chemistry Research, 2017, 56, 6480-6492. Mechanisms and kinetics of CO 2 hydrogenation to value-added products: A detailed review on current status and future trends. Renewable and Sustainable Energy Reviews, 2017, 80, 1292-1311. 16.4 The role of CO2 capture and utilization in mitigating climate change. Nature Climate Change, 2017, 7, 44 18.8 725 243-249. Life cycle assessment of CO₂-based C1-chemicals. Green Chemistry, 2017, 19, 2244-2259. 147 New indicator for comparing the energy performance of CO 2 utilization concepts. Journal of CO2 22 46 6.8 Utilization, 2017, 22, 278-288. Plant-wide modeling and analysis of the shale gas to dimethyl ether (DME) process via direct and 10.1 39 indirect synthesis routes. Applied Energy, 2017, 204, 163-180. Heterogeneously Catalyzed Hydrogenation of Supercritical CO₂ to Methanol. Chemical 48 1.5 6 Engineering and Technology, 2017, 40, 1907-1915. Producing a CO2-neutral clean cooking fuel in India– Where and at what cost?. International Journal 49 of Hydrogen Energy, 2017, 42, 19067-19078. A life cycle assessment of oxymethylene ether synthesis from biomass-derived syngas as a diesel 50 9.3 40 additive. Journal of Cleaner Production, 2017, 165, 1249-1262. An improved tri-reforming based methanol production process for enhanced CO2 valorization. International Journal of Hydrogen Energy, 2017, 42, 23227-23241. 7.1 29 On the climate change mitigation potential of CO₂ conversion to fuels. Energy and 52 30.8 225 Environmental Science, 2017, 10, 2491-2499. Novel process technologies for conversion of carbon dioxide from industrial flue gas streams into 6.8 100 methanol. Journal of CO2 Utilization, 2017, 21, 52-63. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by 54 Heterogeneously Catalyzed CO₂Hydrogenation Processes. Chemical Reviews, 2017, 117, 47.7 1,058 9804-9838. Integrated transdisciplinary technologies for greener and more sustainable innovations and applications of Cleaner Production in the Asia–Pacific region. Journal of Cleaner Production, 2017, 142, 1131-1137.

#	Article	IF	CITATIONS
56	Cleaner production of methanol from carbon dioxide over copper and iron supported MCM-41 catalysts using innovative integrated magnetic field-packed bed reactor. Journal of Cleaner Production, 2017, 142, 1222-1233.	9.3	24
57	Design of a New Sustainable Methanol Plant Coupled to an Ethanol Distillery. Computer Aided Chemical Engineering, 2017, 40, 805-810.	0.5	0
58	Optimization through Response Surface Methodology of a Reactor Producing Methanol by the Hydrogenation of Carbon Dioxide. Processes, 2017, 5, 62.	2.8	21
59	Process Simulation for the Design and Scale Up of Heterogeneous Catalytic Process: Kinetic Modelling Issues. Catalysts, 2017, 7, 159.	3.5	22
60	Development of an Efficient Methanol Production Process for Direct CO2 Hydrogenation over a Cu/ZnO/Al2O3 Catalyst. Catalysts, 2017, 7, 332.	3.5	42
61	Economic Assessment of Methanol Production. , 2018, , 613-632.		5
62	Simulation and optimization of reforming reactors for carbon dioxide utilization using both rigorous and reduced models. Journal of CO2 Utilization, 2018, 23, 80-104.	6.8	42
63	Multi-objective optimisation of steam methane reforming considering stoichiometric ratio indicator for methanol production. Journal of Cleaner Production, 2018, 180, 655-665.	9.3	34
64	Catalytic hydrogenation of CO2 from 600ÂMW supercritical coal power plant to produce methanol: A techno-economic analysis. International Journal of Hydrogen Energy, 2018, 43, 2726-2741.	7.1	75
65	Environmental impact of the excess electricity conversion into methanol. Journal of Cleaner Production, 2018, 191, 87-98.	9.3	33
66	Multi-objective design of a new sustainable scenario for bio-methanol production in Brazil. Journal of Cleaner Production, 2018, 187, 1043-1056.	9.3	35
67	Improving methanol synthesis from carbon-free H2 and captured CO2: A techno-economic and environmental evaluation. Journal of CO2 Utilization, 2018, 24, 555-563.	6.8	101
68	Oxy-fuel combustion based enhancement of the tri-reforming coupled methanol production process for CO2 valorization. Journal of CO2 Utilization, 2018, 24, 376-385.	6.8	13
69	Electrofuels for the transport sector: A review of production costs. Renewable and Sustainable Energy Reviews, 2018, 81, 1887-1905.	16.4	337
70	Carbon dioxide and ethanol from sugarcane biorefinery as renewable feedstocks to environment-oriented integrated chemical plants Journal of Cleaner Production, 2018, 172, 1232-1242.	9.3	22
71	Fermentation, thermochemical and catalytic processes in the transformation of biomass through efficient biorefineries. Catalysis Today, 2018, 302, 61-72.	4.4	58
72	Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chemical Reviews, 2018, 118, 434-504.	47.7	1,571
73	Power and methanol production from biomass combined with solar and wind energy: analysis and comparison. Energy Procedia, 2018, 145, 576-581.	1.8	26

#	Article	IF	CITATIONS
74	Comparison of light-duty transportation fuels produced from renewable hydrogen and green carbon dioxide. Applied Energy, 2018, 231, 757-767.	10.1	79
75	Metal-Catalysed Hydrogenation of CO2 into Methanol. Topics in Organometallic Chemistry, 2018, , 1-16.	0.7	1
76	Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis. Frontiers of Chemical Science and Engineering, 2018, 12, 878-892.	4.4	45
77	An overview on conversion technologies to produce value added products from CH4 and CO2 as major biogas constituents. Renewable and Sustainable Energy Reviews, 2018, 98, 56-63.	16.4	74
78	CO2 to succinic acid – Estimating the potential of biocatalytic routes. Metabolic Engineering Communications, 2018, 7, e00075.	3.6	31
79	Modeling the Catalytic Conversion of Steel Mill Gases Using the Example of Methanol Synthesis. Chemie-Ingenieur-Technik, 2018, 90, 1541-1558.	0.8	18
80	Closing the carbon cycle to maximise climate change mitigation: power-to-methanol <i>vs.</i> power-to-direct air capture. Sustainable Energy and Fuels, 2018, 2, 1153-1169.	4.9	53
81	Promising catalytic synthesis pathways towards higher alcohols as suitable transport fuels based on H2 and CO2. Journal of CO2 Utilization, 2018, 27, 223-237.	6.8	33
82	Process simulation of ammonia synthesis over optimized Ru/C catalyst and multibed Fe + Ru configurations. Journal of Industrial and Engineering Chemistry, 2018, 66, 176-186.	5.8	25
83	1.22 Biofuels. , 2018, , 875-908.		20
84	Process development and techno-economic evaluation of methanol production by direct CO2 hydrogenation using solar-thermal energy. Journal of CO2 Utilization, 2019, 33, 461-472.	6.8	63
85	RSM approach for stochastic sensitivity analysis of the economic sustainability of a methanol production plant using renewable energy sources. Journal of Cleaner Production, 2019, 240, 117947.	9.3	41
86	Introducing, evaluation and exergetic performance assessment of a novel hybrid system composed of MCFC, methanol synthesis process, and a combined power cycle. Energy Conversion and Management, 2019, 197, 111878.	9.2	61
87	Pathways to Industrial-Scale Fuel Out of Thin Air from CO2 Electrolysis. Joule, 2019, 3, 1822-1834.	24.0	137
88	CO2 Hydrogenation to Methanol by a Liquid-Phase Process with Alcoholic Solvents: A Techno-Economic Analysis. Processes, 2019, 7, 405.	2.8	37
89	Techno-economic analysis for the integration of a power to fuel system with a CCS coal power plant. Journal of CO2 Utilization, 2019, 33, 262-272.	6.8	65
90	Thermodynamic and economic analysis of a plant for the CO ₂ hydrogenation for methanol production. E3S Web of Conferences, 2019, 113, 01013.	0.5	9
91	Self-recuperative high temperature co-electrolysis-based methanol production with vortex search-based exergy efficiency enhancement. Journal of Cleaner Production, 2019, 239, 118029.	9.3	17

#	Article	IF	CITATIONS
92	Dual-stage chemical looping of microalgae for methanol production with negative-carbon emission. Energy Procedia, 2019, 158, 842-847.	1.8	2
93	Economic feasibility of methanol synthesis as a method for CO2 reduction and energy storage. Energy Procedia, 2019, 158, 4721-4728.	1.8	33
94	<i>110th Anniversary</i> : Evaluation of CO ₂ -Based and CO ₂ -Free Synthetic Fuel Systems Using a Net-Zero-CO ₂ -Emission Framework. Industrial & Engineering Chemistry Research, 2019, 58, 19958-19972.	3.7	23
95	Techno-economic optimization of shale gas to dimethyl ether production processes via direct and indirect synthesis routes. Applied Energy, 2019, 238, 119-134.	10.1	42
96	Performance comparison of different membrane reactors for combined methanol synthesis and biogas upgrading. Chemical Engineering and Processing: Process Intensification, 2019, 136, 191-200.	3.6	10
97	Dimethyl ether synthesis via captured CO2 hydrogenation within the power to liquids concept: A techno-economic assessment. Energy Conversion and Management, 2019, 184, 262-276.	9.2	130
98	Techno-economic study of a zero-emission methanol based energy storage system. Energy Conversion and Management, 2019, 182, 530-545.	9.2	45
99	On the energetic efficiency of producing polyoxymethylene dimethyl ethers from CO ₂ using electrical energy. Energy and Environmental Science, 2019, 12, 1019-1034.	30.8	58
100	A Critical Look at Direct Catalytic Hydrogenation of Carbon Dioxide to Olefins. ChemSusChem, 2019, 12, 3896-3914.	6.8	119
101	Evaluation of Renewable Methanol Production Plant Design Using Tri-Pressure Stripper Configuration. Key Engineering Materials, 0, 797, 342-350.	0.4	0
102	Introducing a novel process to enhance the syngas conversion to methanol over Cu/ZnO/Al2O3 catalyst. Fuel Processing Technology, 2019, 193, 159-179.	7.2	22
103	A review of synthetic fuels for passenger vehicles. Energy Reports, 2019, 5, 555-569.	5.1	89
104	Methanol production from captured CO2 using hydrogenation and reforming technologies_ environmental and economic evaluation. Journal of CO2 Utilization, 2019, 34, 1-11.	6.8	100
105	Power-to-fuels via solid-oxide electrolyzer: Operating window and techno-economics. Renewable and Sustainable Energy Reviews, 2019, 110, 174-187.	16.4	85
106	Renewable methanol production and use through reversible solid oxide cells and recycled CO2 hydrogenation. Fuel, 2019, 246, 500-515.	6.4	42
107	Production of Oxymethylene Dimethyl Ethers from Hydrogen and Carbon Dioxide—Part I: Modeling and Analysis for OME ₁ . Industrial & Engineering Chemistry Research, 2019, 58, 4881-4889.	3.7	48
108	Methanol production by CO2 hydrogenation: Analysis and simulation of reactor performance. International Journal of Hydrogen Energy, 2019, 44, 7915-7933.	7.1	90
109	Power-to-fuels through carbon dioxide Re-Utilization and high-temperature electrolysis: A technical and economical comparison between synthetic methanol and methane. Journal of Cleaner Production, 2019, 226, 679-691.	9.3	62

#	Article	IF	CITATIONS
110	Innovative alternatives to methanol manufacture: Carbon footprint assessment. Journal of Cleaner Production, 2019, 225, 426-434.	9.3	37
111	Production of Oxymethylene Dimethyl Ethers from Hydrogen and Carbon Dioxide—Part II: Modeling and Analysis for OME _{3–5} . Industrial & Engineering Chemistry Research, 2019, 58, 5567-5578.	3.7	42
112	Direct and indirect electrification of chemical industry using methanol production as a case study. Applied Energy, 2019, 243, 71-90.	10.1	44
113	19. Towards sustainable methanol from industrial CO ₂ sources. , 2019, , 361-384.		1
114	Production of chemicals from syngas: an enviro-economic model-based investigation. Computer Aided Chemical Engineering, 2019, 46, 367-372.	0.5	7
115	Production of Sodium Bicarbonate from CO2 Reuse Processes: A Brief Review. International Journal of Chemical Reactor Engineering, 2019, .	1.1	8
116	Techno-Economic Optimization of CO2-to-Methanol with Solid-Oxide Electrolyzer. Energies, 2019, 12, 3742.	3.1	33
117	Plant-to-planet analysis of CO ₂ -based methanol processes. Energy and Environmental Science, 2019, 12, 3425-3436.	30.8	160
118	Performance evaluation of an integrated energy system for the production and use of renewable methanol via water electrolysis and CO2 hydrogenation. AIP Conference Proceedings, 2019, , .	0.4	2
119	Technoeconomic Perspective on Natural Gas Liquids and Methanol as Potential Feedstocks for Producing Olefins. Industrial & Engineering Chemistry Research, 2019, 58, 963-972.	3.7	18
120	Potential and challenges of low-carbon energy options: Comparative assessment of alternative fuels for the transport sector. Applied Energy, 2019, 236, 590-606.	10.1	92
121	Thermoeconomic assessment of a novel integrated CHP system incorporating solar energy based biogas-steam reformer with methanol and hydrogen production. Solar Energy, 2019, 178, 1-16.	6.1	43
122	Biogas to methanol: A comparison of conversion processes involving direct carbon dioxide hydrogenation and via reverse water gas shift reaction. Journal of Cleaner Production, 2019, 217, 615-626.	9.3	56
123	Methanol production via direct carbon dioxide hydrogenation using hydrogen from photocatalytic water splitting: Process development and techno-economic analysis. Journal of Cleaner Production, 2019, 208, 1446-1458.	9.3	58
124	Incorporation of hydrogen by-product from NaOCH3 production for methanol synthesis via CO2 hydrogenation: Process analysis and economic evaluation. Journal of Cleaner Production, 2019, 212, 893-909.	9.3	23
125	H2-based synthetic fuels: A techno-economic comparison of alcohol, ether and hydrocarbon production. International Journal of Hydrogen Energy, 2020, 45, 5395-5414.	7.1	109
126	The impact of the development of catalyst and reaction system of the methanol synthesis stage on the overall profitability of the entire plant: A techno-economic study. Catalysis Today, 2020, 343, 191-198.	4.4	31
127	Alternative production of methanol from industrial CO2. Renewable Energy, 2020, 146, 1192-1203.	8.9	137

#	Article	IF	CITATIONS
128	Low temperature oxidation of carbon monoxide for heat recuperation: A green approach for energy production and a catalytic review. Journal of Cleaner Production, 2020, 245, 118838.	9.3	26
129	Optimization of natural gas treatment for the removal of CO2 and H2S in a novel alkaline-DEA hybrid scrubber. Egyptian Journal of Petroleum, 2020, 29, 83-94.	2.6	24
130	Design and optimization of small-scale methanol production from sour natural gas by integrating reforming with hydrogenation. International Journal of Hydrogen Energy, 2020, 45, 34483-34493.	7.1	7
131	Modelling and Simulation of Methanol Production and Conversion into Various Chemical Intermediates and Products. Computer Aided Chemical Engineering, 2020, , 553-558.	0.5	1
132	Agile Operation of Renewable Methanol Synthesis under Fluctuating Power Inputs. Computer Aided Chemical Engineering, 2020, , 1381-1386.	0.5	1
133	Power-to-Methanol at Refineries as a Precursor to Green Jet Fuel Production: a Simulation and Assessment Study. Computer Aided Chemical Engineering, 2020, , 1453-1458.	0.5	11
134	A Review of Technical Advances, Barriers, and Solutions in the Power to Hydrogen (P2H) Roadmap. Engineering, 2020, 6, 1364-1380.	6.7	63
135	Direct DME Synthesis from Syngas: a Technoeconomic Model-based Investigation. Computer Aided Chemical Engineering, 2020, 48, 655-660.	0.5	1
136	Methanol as a carrier of hydrogen and carbon in fossil-free production of direct reduced iron. Energy Conversion and Management: X, 2020, 7, 100051.	1.6	7
137	Key technologies for polymer electrolyte membrane fuel cell systems fueled impure hydrogen. Progress in Natural Science: Materials International, 2020, 30, 751-763.	4.4	37
138	Thermo-economic analysis of reverse water-gas shift process with different temperatures for green methanol production as a hydrogen carrier. Journal of CO2 Utilization, 2020, 41, 101280.	6.8	25
139	The environmental opportunity cost of using renewable energy for carbon capture and utilization for methanol production. Applied Energy, 2020, 279, 115770.	10.1	52
140	Advances in the Design of Heterogeneous Catalysts and Thermocatalytic Processes for CO ₂ Utilization. ACS Catalysis, 2020, 10, 14147-14185.	11.2	181
141	Understanding Catalysis—A Simplified Simulation of Catalytic Reactors for CO2 Reduction. ChemEngineering, 2020, 4, 62.	2.4	5
142	Thermodynamic limitations of synthetic fuel production using carbon dioxide: A cleaner methanol-to-gasoline process. Journal of Cleaner Production, 2020, 276, 122790.	9.3	7
143	Multiscale modelling of CO2 reduction to methanol over industrial Cu/ZnO/Al2O3 heterogeneous catalyst: Linking ab initio surface reaction kinetics with reactor fluid dynamics. Journal of Cleaner Production, 2020, 275, 122958.	9.3	45
144	Power-to-liquid <i>via</i> synthesis of methanol, DME or Fischer–Tropsch-fuels: a review. Energy and Environmental Science, 2020, 13, 3207-3252.	30.8	328
145	Conceptual Design Development of Coal-to-Methanol Process with Carbon Capture and Utilization. Energies, 2020, 13, 6421.	3.1	24

#	Article	IF	CITATIONS
146	Techno-economic modeling of an integrated biomethane-biomethanol production process via biomass gasification, electrolysis, biomethanation, and catalytic methanol synthesis. Biomass Conversion and Biorefinery, 2020, , 1.	4.6	15
147	Renewable Methanol Synthesis through Single Step Bi-reforming of Biogas. Industrial & Engineering Chemistry Research, 2020, 59, 10542-10551.	3.7	21
148	Bio-methane and bio-methanol co-production from biogas: A profitability analysis to explore new sustainable chemical processes. Journal of Cleaner Production, 2020, 265, 121909.	9.3	36
149	Early-stage evaluation of emerging CO ₂ utilization technologies at low technology readiness levels. Green Chemistry, 2020, 22, 3842-3859.	9.0	71
150	The development of inexact dual-objective programming for regional energy systems planning in Guang-Fo-Zhao region, China. Journal of Cleaner Production, 2020, 265, 121351.	9.3	7
151	Techno-economic barriers of an industrial-scale methanol CCU-plant. Journal of CO2 Utilization, 2020, 39, 101166.	6.8	62
152	Toward the practical application of direct CO 2 hydrogenation technology for methanol production. International Journal of Energy Research, 2020, 44, 8781-8798.	4.5	8
153	The Role of Carbon Capture and Utilization, Carbon Capture and Storage, and Biomass to Enable a Net-Zero-CO ₂ Emissions Chemical Industry. Industrial & Engineering Chemistry Research, 2020, 59, 7033-7045.	3.7	286
154	Recent achievements in CO ₂ -assisted and CO ₂ -catalyzed biomass conversion reactions. Green Chemistry, 2020, 22, 2628-2642.	9.0	46
155	A comparative study on three reactor types for methanol synthesis from syngas and CO2. Chemical Engineering Journal, 2020, 393, 124632.	12.7	54
156	Effective hydrogenation of carbonates to produce methanol over a ternary Cu/Zn/Al catalyst. RSC Advances, 2020, 10, 13083-13094.	3.6	8
157	Methanol production from water electrolysis and tri-reforming: Process design and technical-economic analysis. Journal of CO2 Utilization, 2020, 38, 241-251.	6.8	43
158	Evaluation of a wind energy based system for co-generation of hydrogen and methanol production. International Journal of Hydrogen Energy, 2020, 45, 15869-15877.	7.1	47
159	Mathematical modeling of a methanol reactor by using different kinetic models. Journal of Industrial and Engineering Chemistry, 2020, 85, 130-140.	5.8	19
160	Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chemical Reviews, 2020, 120, 7984-8034.	47.7	825
161	Methanol Production Using Ultrahigh Concentrated Solar Cells: Hybrid Electrolysis and CO ₂ Capture. ACS Energy Letters, 2020, 5, 540-544.	17.4	30
162	Fluorinated conjugated poly(benzotriazole)/g-C3N4 heterojunctions for significantly enhancing photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2020, 267, 118577.	20.2	56
163	CO2 utilization: Turning greenhouse gas into fuels and valuable products. Journal of Environmental Management, 2020, 260, 110059.	7.8	101

#	Article	IF	CITATIONS
164	Novel post combustion CO2 capture in the coal-fired power plant employing a transcritical CO2 power generation and low temperature steam upgraded by an absorption heat transformer. Energy Conversion and Management, 2020, 207, 112542.	9.2	35
165	Kinetic modelling of methanol synthesis over commercial catalysts: A critical assessment. Chemical Engineering Journal, 2020, 394, 124881.	12.7	60
166	Investigation of a new integrated system for multiple outputs with hydrogen and methanol. International Journal of Hydrogen Energy, 2021, 46, 4699-4715.	7.1	6
167	Catalytic conversions of CO2 to help mitigate climate change: Recent process developments. Chemical Engineering Research and Design, 2021, 145, 172-194.	5.6	57
168	Hydrogen-efficient non-oxidative transformation of methanol into dimethoxymethane over a tailored bifunctional Cu catalyst. Sustainable Energy and Fuels, 2021, 5, 117-126.	4.9	11
169	Power-to-methanol: The role of process flexibility in the integration of variable renewable energy into chemical production. Energy Conversion and Management, 2021, 228, 113673.	9.2	66
170	Analysis of the work of a "renewable―methanol production installation based ON H2 from electrolysis and CO2 from power plants. Energy, 2021, 221, 119538.	8.8	23
171	Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen. Renewable and Sustainable Energy Reviews, 2021, 138, 110644.	16.4	48
172	Assessment of integrated energy systems for the production and use of renewable methanol by water electrolysis and CO2 hydrogenation. Fuel, 2021, 285, 119160.	6.4	66
173	Study of alternative configurations for methanol purification. Computer Aided Chemical Engineering, 2021, , 267-272.	0.5	2
174	Comparing pathways for electricity-based production of dimethoxymethane as a sustainable fuel. Energy and Environmental Science, 2021, 14, 3686-3699.	30.8	15
175	What is the best green propylene production pathway?: technical, economic, and environmental assessment. Green Chemistry, 2021, 23, 7635-7645.	9.0	11
176	Challenges in the use of hydrogen for maritime applications. Energy and Environmental Science, 2021, 14, 815-843.	30.8	159
177	Power-to-OME1 via Direct Oxidation of Methanol: Process Design and Global Flowsheet Optimization. Computer Aided Chemical Engineering, 2021, , 273-278.	0.5	1
178	CO ₂ hydrogenation to methanol and hydrocarbons over bifunctional Zn-doped ZrO ₂ /zeolite catalysts. Catalysis Science and Technology, 2021, 11, 1249-1268.	4.1	33
179	Energetic and exergetic evaluation of methanol synthesis process in a hybridized system of methane cracking, chemical looping combustion, thermal desalination and photovoltaic panels. Journal of Thermal Analysis and Calorimetry, 2021, 145, 1385-1411.	3.6	2
181	Methanol synthesis through CO2 capture and hydrogenation: Thermal integration, energy performance and techno-economic assessment. Journal of CO2 Utilization, 2021, 44, 101407.	6.8	80
182	An improved water electrolysis and oxy-fuel combustion coupled tri-reforming process for methanol production and CO2 valorization. Journal of Environmental Chemical Engineering, 2021, 9, 105041.	6.7	7

#	Article	IF	CITATIONS
183	Scenario assessment for producing methanol through carbon capture and utilization technologies considering regional characteristics. Journal of CO2 Utilization, 2021, 45, 101452.	6.8	7
184	Simulations and Optimization of a Reduced CO ₂ Emission Process for Methanol Production Using Syngas from Bi-reforming. Energy & Fuels, 2021, 35, 8844-8856.	5.1	13
185	Design and thermodynamic analysis of a novel methanol, hydrogen, and power trigeneration system based on renewable energy and flue gas carbon dioxide. Energy Conversion and Management, 2021, 233, 113922.	9.2	33
186	Comparative simulation study of methanol production by CO2 hydrogenation with 3A, 4A and 5A zeolites as adsorbents in a PSA reactor. Separation and Purification Technology, 2021, 262, 118292.	7.9	8
187	Investigation and optimization of a new hybrid natural gas reforming system for cascaded hydrogen, ammonia and methanol synthesis. Computers and Chemical Engineering, 2021, 148, 107234.	3.8	6
188	Rigorous and Customizable 1D Simulation Framework for Membrane Reactors to, in Principle, Enhance Synthetic Methanol Production. ACS Sustainable Chemistry and Engineering, 2021, 9, 7620-7629.	6.7	5
189	Techno-economic analysis of hydrogen enhanced methanol to gasoline process from biomass-derived synthesis gas. Fuel Processing Technology, 2021, 216, 106776.	7.2	10
190	Prediction of Methanol Production in a Carbon Dioxide Hydrogenation Plant Using Neural Networks. Energies, 2021, 14, 3965.	3.1	3
191	Sustainability Assessment of Thermocatalytic Conversion of CO ₂ to Transportation Fuels, Methanol, and 1-Propanol. ACS Sustainable Chemistry and Engineering, 2021, 9, 10591-10600.	6.7	20
192	Power-to-Green Methanol via CO2 Hydrogenation—A Concept Study Including Oxyfuel Fluidized Bed Combustion of Biomass. Energies, 2021, 14, 4638.	3.1	6
193	Hydrogen carriers: Production, transmission, decomposition, and storage. International Journal of Hydrogen Energy, 2021, 46, 24169-24189.	7.1	52
194	Developing an integrated hybrid polygeneration system combined with utility steam network. International Journal of Sustainable Energy, 2022, 41, 646-674.	2.4	3
195	Assessment of different kinetic models of carbon dioxide transformation to methanol via hydrogenation, over a Cu/ZnO/Al2O3 catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 801-823.	1.7	4
196	Artificial intelligent based energy scheduling of steel mill gas utilization system towards carbon neutrality. Applied Energy, 2021, 295, 117069.	10.1	35
197	CO2 utilization for methanol production; Part I: Process design and life cycle GHG assessment of different pathways. Journal of CO2 Utilization, 2021, 50, 101608.	6.8	40
198	Membrane-Assisted Methanol Synthesis Processes and the Required Permselectivity. Membranes, 2021, 11, 596.	3.0	3
199	A comparison of two hydrogen storages in a fossil-free direct reduced iron process. International Journal of Hydrogen Energy, 2021, 46, 28657-28674.	7.1	13
200	Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 2021, 373, 1523-1527.	12.6	274

#	Article	IF	CITATIONS
201	Low CO2 emissions chemically recuperated gas turbines fed by renewable methanol. Applied Energy, 2021, 298, 117146.	10.1	31
202	Techno-economic analysis of co-production of bio-hydrogenated diesel from palm oil and methanol. Energy Conversion and Management, 2021, 244, 114464.	9.2	4
203	Techno-economic assessment and early-stage screening of CO2 direct hydrogenation catalysts for methanol production using knowledge-based surrogate modeling. Energy Conversion and Management, 2021, 244, 114477.	9.2	12
204	Large-scale stationary hydrogen storage via liquid organic hydrogen carriers. IScience, 2021, 24, 102966.	4.1	93
205	Can carbon capture be a new revenue opportunity for the pulp and paper sector?. Tappi Journal, 2021, 20, 527-540.	0.5	3
206	The transformation of plastics production from net positive greenhouse gas emissions to net negative: An environmental sustainability assessment of CO2-based polypropylene. Journal of CO2 Utilization, 2021, 52, 101672.	6.8	11
207	Methods to increase the efficiency of production and purification installations of renewable methanol. Renewable Energy, 2021, 177, 568-583.	8.9	10
208	CO2 capture and utilization from supercritical coal direct chemical looping combustion power plant – Comprehensive analysis of different case studies. Applied Energy, 2021, 304, 117915.	10.1	12
209	Process design within planetary boundaries: Application to CO2 based methanol production. Chemical Engineering Science, 2021, 246, 116891.	3.8	20
210	Methanol fuel production from solar-assisted supercritical water gasification of algae: a techno-economic annual optimisation. Sustainable Energy and Fuels, 2021, 5, 4913-4931.	4.9	7
211	Techno-economic assessment of a synthetic fuel production facility by hydrogenation of CO2 captured from biogas. International Journal of Hydrogen Energy, 2022, 47, 3306-3315.	7.1	20
212	CO2 Derived E-Fuels: Research Trends, Misconceptions, and Future Directions. Trends in Chemistry, 2020, 2, 785-795.	8.5	54
213	Performance assessment of integrated energy systems for the production of renewable hydrogen energy carriers. E3S Web of Conferences, 2020, 197, 01007.	0.5	3
214	Methanol-Managing greenhouse gas emissions in the production chain by optimizing the resource base. AIMS Energy, 2018, 6, 1074-1102.	1.9	44
215	Application of Synthetic Renewable Methanol to Power the Future Propulsion. , 0, , .		8
216	High-pressure methanol synthesis case study: safety and environmental impact assessment using consequence analysis. International Journal of Environmental Science and Technology, 0, , 1.	3.5	1
217	A Systematic Approach To Carbon Footprint Reduction Stategries In Industrial Parks. , 2014, , .		0
218	Designing an automated complex based on a mini-CHP with recycling the flue gas to methanol. Eastern-European Journal of Enterprise Technologies, 2017, 4, 61-67.	0.5	Ο

#	Article	IF	CITATIONS
219	A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks. Journal of Energy Chemistry, 2022, 68, 255-266.	12.9	43
220	Environmental Analysis of the Use of Liquefied Natural Gas in Maritime Transport within the Port Environment. Sustainability, 2021, 13, 11989.	3.2	8
221	Low-carbon biomass-fueled integrated system for power, methane and methanol production. Energy Conversion and Management, 2022, 253, 115163.	9.2	28
222	Techno-economic assessment of dimethyl carbonate production based on carbon capture and utilization and power-to-fuel technology. Renewable and Sustainable Energy Reviews, 2022, 157, 112006.	16.4	10
223	Conversion of municipal solid waste to hydrogen and its storage to methanol. Sustainable Energy Technologies and Assessments, 2022, 51, 101968.	2.7	5
225	Techno-economic analysis of green methanol plant with optimal design of renewable hydrogen production: A case study in China. International Journal of Hydrogen Energy, 2022, 47, 5085-5100.	7.1	51
226	Methanol production from biomass: Analysis and optimization. Materials Today: Proceedings, 2022, 57, 1770-1775.	1.8	4
227	Techno-economic analysis of renewable fuels for ships carrying bulk cargo in Europe. Nature Energy, 2022, 7, 203-212.	39.5	51
228	Eco-friendly and techno-economic conversion of CO ₂ into calcium formate, a valuable resource. Green Chemistry, 2022, 24, 1738-1745.	9.0	4
229	Novel coal-to-methanol process with near-zero carbon emission: Pulverized coal gasification-integrated green hydrogen process. Journal of Cleaner Production, 2022, 339, 130500.	9.3	34
230	Electrified methane reforming decarbonises methanol synthesis. Journal of CO2 Utilization, 2022, 58, 101911.	6.8	11
231	Decarbonizing Methanol Production Via an Electrified Steam or Dry Methane Reformer. SSRN Electronic Journal, 0, , .	0.4	0
232	Blend for all or pure for few? Well-to-wheel life cycle assessment of blending electricity-based OME _{3–5} with fossil diesel. Sustainable Energy and Fuels, 2022, 6, 1959-1973.	4.9	10
233	Highly Efficient Synthesis of Methanol Via In-Situ Condensation and Sorption in a Novel Multi-Stage Circulating Fast Fluidized Bed Reactor. SSRN Electronic Journal, 0, , .	0.4	0
234	Economic accounting and high-tech strategy for sustainable production: A case study of methanol production from CO2 hydrogenation. International Journal of Hydrogen Energy, 2022, 47, 25929-25944.	7.1	28
235	Techno-Economic Evaluation of Novel Hybrid Biomass and Electricity-Based Ethanol Fuel Production. Frontiers in Energy Research, 2022, 10, .	2.3	12
236	Hydrogen Utilization in the Sustainable Manufacture of CO ₂ -Based Methanol. Industrial & Engineering Chemistry Research, 2022, 61, 6163-6172.	3.7	20
237	Techno-economic analysis of integrated hydrogen and methanol production process by CO2 hydrogenation. International Journal of Greenhouse Gas Control, 2022, 115, 103615.	4.6	38

#	Article	IF	CITATIONS
238	Data-driven robust optimization for optimal scheduling of power to methanol. Energy Conversion and Management, 2022, 256, 115338.	9.2	15
239	Methanol Synthesis from Syngas: a Process Simulation. , 0, , .		0
240	Comparative Techno-economic analysis of methanol production via carbon dioxide reforming of landfill gas using a highly active and stable Nickel-based catalyst. Energy Conversion and Management, 2022, 259, 115585.	9.2	11
241	Techno-environmental-economic assessment on municipal solid waste to methanol coupling with/without solid oxygen electrolysis cell unit. Chemical Engineering Research and Design, 2022, 161, 611-628.	5.6	18
242	Design and optimization of CO2 hydrogenation multibed reactors. Chemical Engineering Research and Design, 2022, 181, 89-100.	5.6	12
243	Utilizing carbon dioxide from refinery flue gas for methanol production: System design and assessment. Energy, 2022, 249, 123602.	8.8	9
244	Highly efficient CO2 hydrogenation to methanol via in-situ condensation and sorption in a novel multi-stage circulating fast fluidized bed reactor. Chemical Engineering Journal, 2022, 439, 135628.	12.7	7
245	An integrated CCU-plant scheme and assessment for conversion of captured CO2 into methanol. International Journal of Low-Carbon Technologies, 2022, 17, 550-562.	2.6	8
246	<scp>LCA</scp> comparison analysis for two types of <scp> H ₂ </scp> carriers: Methanol and ammonia. International Journal of Energy Research, 2022, 46, 11818-11833.	4.5	5
247	Developing a novel gasification-based sludge-to-methanol utilization process and exergy-economic-environmental (3E) analysis. Energy Conversion and Management, 2022, 260, 115600.	9.2	26
248	The closer the better? Theoretical assessment of the impact of catalytic site separation for bifunctional core–shell catalyst particles. Chemical Engineering Journal, 2022, 446, 136891.	12.7	3
249	A comprehensive study on production of methanol from wind energy. Environmental Technology and Innovation, 2022, 28, 102589.	6.1	6
250	Promising Approaches to Carbon Dioxide Processing Using Heterogeneous Catalysts (A Review). Petroleum Chemistry, 2022, 62, 445-474.	1.4	7
251	Thermo-economic optimization of a new solar-driven system for efficient production of methanol and liquefied natural gas using the liquefaction process of coke oven gas and post-combustion carbon dioxide capture. Energy Conversion and Management, 2022, 264, 115733.	9.2	8
252	Multi-objective optimization of a methanol synthesis process: CO2 emission vs. economics. Korean Journal of Chemical Engineering, 0, , .	2.7	3
253	Optimization of electrolysis and carbon capture processes for sustainable production of chemicals through Power-to-X. ChemistrySelect, 2022, .	1.5	0
254	Comparison of fibrous versus Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol through modeling the reactor and the process flowsheet. Brazilian Journal of Chemical Engineering, 0, , .	1.3	0
255	Emergy investigation of carbon dioxide utilization processes for methanol synthesis. Journal of Environmental Chemical Engineering, 2022, 10, 108063.	6.7	5

#	Article	IF	CITATIONS
256	Repurposing Fischer-Tropsch and natural gas as bridging technologies for the energy revolution. Energy Conversion and Management, 2022, 267, 115882.	9.2	17
257	Advanced exergy analysis and optimization of a CO2 to methanol process based on rigorous modeling and simulation. Fuel, 2022, 325, 124944.	6.4	12
258	What is the best scenario to utilize landfill gas? Quantitative and qualitative approaches for technical, economic, and environmental feasibility. Green Chemistry, 0, , .	9.0	2
259	Ultra-Cheap Renewable Energy as an Enabling Technology for Deep Industrial Decarbonization via Capture and Utilization of Process CO2 Emissions. Energies, 2022, 15, 5181.	3.1	2
260	Process modelling and feasibility study of sorption-enhanced methanol synthesis. Chemical Engineering and Processing: Process Intensification, 2022, 179, 109052.	3.6	1
261	Methanol production reactor simulation and optimization under kinetic parameter uncertainty conditions. Chemical Engineering Research and Design, 2022, 185, 14-25.	5.6	4
262	Development and assessment of a hybrid biomass and wind energy-based system for cleaner production of methanol with electricity, heat and freshwater. Journal of Cleaner Production, 2022, 367, 132967.	9.3	13
263	Preliminary feasibility study for hydrogen storage using several promising liquid organic hydrogen carriers: Technical, economic, and environmental perspectives. Energy Conversion and Management, 2022, 268, 116001.	9.2	15
264	Challenges and opportunities of process modelling renewable advanced fuels. Biomass Conversion and Biorefinery, 0, , .	4.6	2
265	Strategies for Carbon Dioxide Utilization in Highly Volatile Industrial Transformation Pathways. Chemie-Ingenieur-Technik, 0, , .	0.8	0
266	A Detailed Process and Techno-Economic Analysis of Methanol Synthesis from H2 and CO2 with Intermediate Condensation Steps. Processes, 2022, 10, 1535.	2.8	9
267	Methanol fuel production, utilization, and techno-economy: a review. Environmental Chemistry Letters, 2022, 20, 3525-3554.	16.2	40
268	A unique solar and biomass-based system for integrated production of electricity, heat, freshwater, hydrogen and ethanol. Energy Conversion and Management, 2022, 269, 116115.	9.2	17
269	Direct air capture of CO2 in the Republic of Ireland. Is it necessary?. Energy Reports, 2022, 8, 10449-10463.	5.1	10
270	Highly effective hydrogenation of CO2 to methanol over Cu/ZnO/Al2O3 catalyst: A process economy & environmental aspects. Fuel, 2023, 332, 126027.	6.4	25
271	Process development and policy implications for large scale deployment of solar-driven electrolysis-based renewable methanol production. Green Chemistry, 2022, 24, 7630-7643.	9.0	7
272	Enviro-economic assessment of DME synthesis using carbon capture and hydrogen from methane pyrolysis. Computer Aided Chemical Engineering, 2022, , 1003-1008.	0.5	1
273	Safety Assessment: Predicting Fatality Rates in Methanol Plant Incidents. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
274	Carbon Dioxide Utilization Management Via Exergoenvironmental-Base Sustainability Assessment: A Case Study of Co2 Hydrogenation to Methanol. SSRN Electronic Journal, 0, , .	0.4	0
275	Process Optimization under Parameter Uncertainty Conditions in CCU Process. IFAC-PapersOnLine, 2022, 55, 586-591.	0.9	0
276	Thermo-Economic Analysis of Integrated Hydrogen, Methanol and Dimethyl Ether Production Using Water Electrolyzed Hydrogen. Resources, 2022, 11, 85.	3.5	6
277	Carbon dioxide hydrogenation to methanol: Process simulation and optimization studies. International Journal of Hydrogen Energy, 2022, 47, 36418-36432.	7.1	3
278	Carbon dioxide utilization: A critical review from multiscale perspective. Energy Science and Engineering, 2022, 10, 4890-4923.	4.0	6
279	Optimization of methanol production process from carbon dioxide hydrogenation in order to reduce recycle flow and energy consumption. Journal of Cleaner Production, 2022, 376, 134184.	9.3	9
280	Review and environmental footprint assessment of various formalin production pathways. Journal of Cleaner Production, 2022, 377, 134537.	9.3	2
281	Non-Thermal Plasma Technology for CO2 Conversion—An Overview of the Most Relevant Experimental Results and Kinetic Models. Energies, 2022, 15, 7790.	3.1	6
282	Early-Stage Evaluation of Catalyst Using Machine Learning Based Modeling and Simulation of Catalytic Systems: Hydrogen Production via Water–Gas Shift over Pt Catalysts. ACS Sustainable Chemistry and Engineering, 2022, 10, 14417-14432.	6.7	6
283	Choice of the kinetic model significantly affects the outcome of techno-economic assessments of CO2-based methanol synthesis. Energy Conversion and Management, 2022, 271, 116200.	9.2	6
284	Optimal design and scheduling of carbon capture power plant based on uncertainty decision-making methods. Journal of Cleaner Production, 2022, 380, 134852.	9.3	3
285	Novel process design and techno-economic simulation of methanol synthesis from blast furnace gas in an integrated steelworks CCUS system. Journal of CO2 Utilization, 2022, 66, 102278.	6.8	12
286	Methanol production from natural gas reforming and CO2 capturing process, simulation, design, and technical-economic analysis. Energy, 2023, 263, 125879.	8.8	20
287	Modeling and environmental implications of methanol production from biogenic CO2 in the sugarcane industry. Journal of CO2 Utilization, 2023, 67, 102301.	6.8	4
288	Safety assessment: predicting fatality rates in methanol plant incidents. Heliyon, 2022, 8, e11610.	3.2	2
289	Further study on carbon fixation using green power for a solar-assisted multi-generation system with carbon capture. Energy Conversion and Management, 2023, 276, 116574.	9.2	3
290	A CO2 valorization plant to produce light hydrocarbons: Kinetic model, process design and life cycle assessment. Journal of CO2 Utilization, 2023, 67, 102337.	6.8	7
291	Sustainability analyses of CO2 sequestration and CO2 utilization as competing options for mitigating CO2 emissions. Sustainable Energy Technologies and Assessments, 2023, 55, 102942.	2.7	8

#	ARTICLE	IF	CITATIONS
292	Thermodynamic and Economic Evaluation of a Novel Green Methanol Poly-Generation System. Processes, 2023, 11, 206.	2.8	1
293	Dual mechanisms of Ni and Si sludge-derived catalyst for catalytic methanation with high CO2 conversion and CH4 selectivity. Journal of Environmental Chemical Engineering, 2023, 11, 109341.	6.7	1
294	Municipal solid waste gasification integrated with water electrolysis technology for fuel production: A comparative analysis. Chemical Engineering Research and Design, 2023, 191, 14-26.	5.6	3
295	Techno-economic and environmental assessment of CO2 conversion to methanol: Direct versus indirect conversion routes. Chemical Engineering and Processing: Process Intensification, 2023, 184, 109264.	3.6	15
296	Modelling of an integrated protonic ceramic electrolyzer cell (PCEC) for methanol synthesis. Journal of Power Sources, 2023, 559, 232667.	7.8	8
297	Economic and Environmental Performance of an Integrated CO ₂ Refinery. ACS Sustainable Chemistry and Engineering, 2023, 11, 1949-1961.	6.7	5
298	Graphene-based nanomaterials for CO2 capture and conversion. , 2023, , 211-243.		1
299	A multi-criteria sustainability assessment and decision-making framework for DME synthesis via CO2 hydrogenation. Energy, 2023, 275, 127467.	8.8	0
300	Power-to-X processes based on PEM water electrolyzers: A review of process integration and flexible operation. Computers and Chemical Engineering, 2023, 175, 108260.	3.8	13
301	Carbon dioxide utilization based on exergoenvironmental sustainability assessment: A case study of CO2 hydrogenation to methanol. Energy, 2023, 273, 127219.	8.8	3
302	Evaluation of alternative processes of methanol production from CO2: Design, optimization, control, techno-economic, and environmental analysis. Fuel, 2023, 343, 127856.	6.4	17
303	Conceptual design of full carbon upcycling of CO2 into clean DME fuel: Techno-economic assessment and process optimization. Fuel, 2023, 344, 128120.	6.4	3
304	A novel trigeneration model using landfill gas upgrading process and waste heat recovery: Application of methanol, desalinated water, and oxygen production. Journal of Cleaner Production, 2023, 393, 136224.	9.3	17
305	CO2 methanation enhanced with a cyclic SERP process using a commercial Ni-based catalyst mixed with 3A zeolite as adsorbent. Chemical Engineering Journal, 2023, 461, 141897.	12.7	6
306	Recovery of Pure Methanol from Humid Gas Using Mn–Co Prussian Blue Analogue. ACS Applied Materials & Interfaces, 2023, 15, 11977-11982.	8.0	0
307	Investigation of a New Methanol, Hydrogen, and Electricity Production System Based on Carbon Capture and Utilization. Power Systems, 2023, , 87-129.	0.5	0
308	Hybrid synthesis of polyhydroxybutyrate bioplastics from carbon dioxide. Green Chemistry, 2023, 25, 3247-3255.	9.0	8
309	Value creation by converting pulp mill flue gas streams to green fuels. Tappi Journal, 2023, 22, 193-205.	0.5	Ο

#	Article	IF	CITATIONS
310	Design framework for dimethyl ether (<scp>DME)</scp> production from coal and biomassâ€derived syngas via simulation approach. Canadian Journal of Chemical Engineering, 2023, 101, 3213-3225.	1.7	2
311	Climate and biodiversity impacts of low-density polyethylene production from CO2 and electricity in comparison to bio-based polyethylene. Science of the Total Environment, 2023, 882, 163628.	8.0	5
312	Modelling of a novel electricity and methanol co-generation using heat recovery and CO2 capture: Comprehensive thermodynamic, economic, and environmental analyses. Energy, 2023, 278, 127481.	8.8	7
313	Simulation of and multi-aspect study of a novel trigeneration process for crude helium, liquefied natural gas, and methanol production; operation improvement and emission reduction. Fuel, 2023, 347, 128402.	6.4	10
314	Design, techno-economic evaluation, and optimisation of renewable methanol plant model: Finland case study. Chemical Engineering Science, 2023, 278, 118888.	3.8	2
315	Net-zero emissions chemical industry in a world of limited resources. One Earth, 2023, 6, 682-704.	6.8	20
316	Low-carbon transformation of ethylene production system through deployment of carbon capture, utilization, storage and renewable energy technologies. Journal of Cleaner Production, 2023, 413, 137475.	9.3	6
317	Proposal of an environmental-friendly poly-generation model regarding the flue gas processing for the production of electricity, cooling, heating, freshwater, and methanol. Chemical Engineering Research and Design, 2023, 175, 870-891.	5.6	6
318	Assessing the efficiency of CO2 hydrogenation for emission reduction: Simulating ethanol synthesis process as a case study. Chemical Engineering Research and Design, 2023, 195, 106-115.	5.6	3
319	Techno-Economic assessment of synthetic E-Fuels derived from atmospheric CO2 and green hydrogen. Energy Conversion and Management, 2023, 291, 117271.	9.2	5
320	Multi-aspect study of an innovative glycerol-fed polygeneration model involving combined power cycles, chilled water unit, desalination, and methanol synthesis. Desalination, 2023, 564, 116795.	8.2	2
321	Sustainability of Biorefineries: Challenges and Perspectives. Energies, 2023, 16, 3786.	3.1	5
322	A model for assessing pathways to integrate intermittent renewable energy for e-methanol production. International Journal of Hydrogen Energy, 2023, 48, 30221-30237.	7.1	6
323	A near-zero carbon emission methanol production through CO2 hydrogenation integrated with renewable hydrogen: Process analysis, modification and evaluation. Journal of Cleaner Production, 2023, 412, 137388.	9.3	12
324	Production of high-purity carbon dioxide and sodium bicarbonate by lime cellar gas cleaning and chemical recycling: Process simulation and techno-economic analysis. Journal of the Indian Chemical Society, 2023, 100, 101023.	2.8	0
325	Economic cost and performance analysis of a novel trigeneration scheme utilizing CO2 capture and solid oxide electrolysis units. Chemical Engineering Research and Design, 2023, 175, 377-391.	5.6	7
326	Kinetic conversion of magnesium and calcium ions of dolomite into useful value-added products using CO2. Chemical Engineering Journal, 2023, 469, 143684.	12.7	0
327	Coupling biogas upgrading and carbon capture and utilization for enhanced environmental performance of water reclamation plants. Journal of Environmental Chemical Engineering, 2023, 11, 110198.	6.7	0

#	Article	IF	CITATIONS
328	Proposal of a biogas upgrading process for a novel eco-friendly trigeneration model, producing power, methanol, and desalinated water. Chemical Engineering Research and Design, 2023, 176, 357-374.	5.6	11
329	Efficient Utilization of Carbon Dioxide in Power-to-Gas and Power-to-Liquid Processes: A Vital Path to Carbon Neutrality. Processes, 2023, 11, 1898.	2.8	1
330	Unveiling environmental impacts of methanol production via electrocatalysis against conventional and thermochemical routes by life cycle assessment. Sustainable Materials and Technologies, 2023, 37, e00663.	3.3	3
331	Simulation and 4E analysis of a novel coke oven gas-fed combined power, methanol, and oxygen production system: Application of solid oxide fuel cell and methanol synthesis unit. Separation and Purification Technology, 2023, 324, 124483.	7.9	7
332	Development and evaluation of FINEX off-gas capture and utilization processes for sustainable steelmaking industry. International Journal of Greenhouse Gas Control, 2023, 127, 103936.	4.6	2
333	Autocatalysis through the Generation of Water during Methanol Oxidation over a Titania-Supported Platinum Catalyst. ACS Catalysis, 0, , 9997-10006.	11.2	1
334	The Economics of Electrochemical Syngas Production via Direct Air Capture. ACS Energy Letters, 2023, 8, 3398-3403.	17.4	3
335	Methane-to-X: an economic assessment of methane valorisation options to improve carbon circularity. Computer Aided Chemical Engineering, 2023, , 2435-2440.	0.5	0
336	Internal carbon loop strategy for methanol production from natural gas: Multi-objective optimization and process evaluation. Journal of Cleaner Production, 2023, 418, 138140.	9.3	3
337	Multi-objective Optimization of a Novel Hybrid Structure for Co-generation of Ammonium Bicarbonate, Formic Acid, and Methanol with Net-Zero Carbon Emissions. Energy & Fuels, 2023, 37, 12474-12502.	5.1	4
338	A simulation and thermodynamic improvement of the methanol production process with economic analysis: natural gas vapor reforming and utilization of carbon capture. Chemical Product and Process Modeling, 2023, .	0.9	0
340	Process simulation and multi-aspect analysis of methanol production through blast furnace gas and landfill gas. Energy, 2023, 285, 128609.	8.8	2
341	A novel process for the simultaneous production of methanol, oxygen, and electricity using a PEM electrolyzer and agricultural-based landfill gas-fed oxyfuel combustion power plant. Energy, 2023, 284, 128689.	8.8	1
342	A strategy for CO2 capture and utilization towards methanol production at industrial scale: An integrated highly efficient process based on multi-criteria assessment. Energy Conversion and Management, 2023, 293, 117516.	9.2	9
343	Advanced Safety Accident Analysis for Temperature Variation on Methanol Chemical Plant. , 2023, , .		0
344	Cost-optimal Power-to-Methanol: Flexible operation or intermediate storage?. Journal of Energy Storage, 2023, 72, 108614.	8.1	6
345	Techno-economic and exergy analysis of e-methanol production under fixed operating conditions in Germany. Applied Energy, 2023, 351, 121738.	10.1	2
346	Assessment of a new binary geothermal based methanol synthesis plant with power, hydrogen and freshwater. Energy Conversion and Management, 2023, 294, 117576.	9.2	0

ARTICLE IF CITATIONS # Process Integration Approach to the Methanol (MeOH) Production Variability from Syngas and 347 3.1 0 Industrial Waste Gases. Energies, 2023, 16, 6557. Design and analysis for chemical process electrification based on renewable electricity: 348 9.2 Coal-to-methanol process as a case study. Energy Conversion and Management, 2023, 292, 117424. Design, thermodynamic and economic evaluation, and optimization of gasoline production from 349 9.2 1 refinery furnaces flue gas. Energy Conversion and Management, 2023, 293, 117492. Inherent safety assessment of on-board methanol reforming hydrogen production fuel cell system considering jet fire and vapor cloud explosion. International Journal of Hydrogen Energy, 2024, 50, 1047-1061 A Simulation and Thermodynamic Improvement of Methanol Production Process with Economic Analysis: Natural Gas Vapor Reforming and Utilization of Carbon Capture. Theoretical Foundations of 351 0.7 0 Chemical Engineering, 2023, 57, 411-433. Techno-economic and life cycle assessment of the integration of bioenergy with carbon capture and storage in the polygeneration system (BECCS-PS) for producing green electricity and methanol., 2023, Applying real options with reinforcement learning to assess commercial CCU deployment. Journal of 353 6.8 0 CO2 Utilization, 2023, 77, 102613. Process design and energy analysis on synthesis of liquid fuels in an integrated CCUS system. Applied Energy, 2023, 351, 121903. 354 10.1 Biofuels and Electrofuels as Alternative Green Fuels for Marine Applications: A Review. Marine 355 0.4 0 Technology Society Journal, 2023, 57, 51-68. Plastic Waste Upcycling for Generation of Power and Methanol: Process Simulation and Energy–Exergy–Economic (3E) Analysis. Industrial & amp; Engineering Chemistry Research, 0, , . Synthetic natural gas production through biogas methanation using a sorption-enhanced reaction 357 1 7.9 process. Separation and Purification Technology, 2024, 331, 125714. An efficient methanol pre-reforming gas turbine combined cycle with mid-temperature energy 8.8 upgradation: Thermodynamic and economic analysis. Energy, 2024, 288, 129844. Hybrid analytical surrogate-based process optimization via Bayesian symbolic regression. Computers 359 3.8 1 and Chemical Engineering, 2023, , 108563. Techno-economic assessment of a novel integrated multigeneration system to synthesize e-methanol 8.8 and green hydrogen in a carbon-neutral context. Energy, 2024, 290, 130104. Recent progress and techno-economic analysis of liquid organic hydrogen carriers for Australian renewable energy export – A critical review. International Journal of Hydrogen Energy, 2024, 56, 361 2 7.1 1419-1434. Techno-economic assessment of a floating photovoltaic power plant assisted methanol production by hydrogenation of CO2 captured from Zawiya oil refinery. International Journal of Hydrogen Energy, 2024, 57, 589-600. Conceptual Process Design and Technoeconomic Analysis of an e-Methanol Plant with Direct 363 5.10 Air-Captured CO₂ and Electrolytic H₂. Energy & amp; Fuels, 2024, 38, 3251-3261. Carbon capture, utilization and storage opportunities to mitigate greenhouse gases. Heliyon, 2024, 10, 364 3.2 e25419.

#	Article	IF	CITATIONS
365	Challenges of Modeling and Simulation for Methanol Production. , 2024, , .		0
366	Co-production of Bi-methanol From Biomass. , 2024, , .		0
367	Adiabatic Reactor for Methanol Synthesis. , 2024, , .		0
368	Valorization of refinery flue gas through triâ€reforming and direct hydrogenation routes. Canadian Journal of Chemical Engineering, 2024, 102, 2136-2150.	1.7	0
369	Biomass: Hydrogen and Methanol Production. , 2024, , 1-34.		0
370	Waste oxy-fuel combustion integrated with supercritical CO2 cycle and high-temperature electrolysis technologies for e-methanol production: A feasibility analysis. Chemical Engineering Research and Design, 2024, 185, 225-238.	5.6	Ο
371	CO2 utilization for methanol production: a review on the safety concerns and countermeasures. Environmental Science and Pollution Research, 2024, 31, 23393-23407.	5.3	0
372	Techno-economic assessment of upgraded pyrolysis bio-oils for future marine fuels. Energy Conversion and Management, 2024, 306, 118225.	9.2	Ο
373	Experimental and kinetic modelling studies for the design of fixed bed methanol reactor over CuZA catalyst. Chemical Engineering Research and Design, 2024, 205, 79-90.	5.6	0