Quantifying the domestic electricity consumption for a islands in hot arid regions

Applied Energy 112, 371-380

DOI: 10.1016/j.apenergy.2013.06.013

Citation Report

#	Article	IF	CITATIONS
1	Air-conditioning energy consumption due to green roofs with different building thermal insulation. Applied Energy, 2014, 128, 49-59.	5.1	100
2	On the colours and properties of building surface materials to mitigate urban heat islands in highly productive solar regions. Building and Environment, 2014, 72, 162-172.	3.0	52
3	Thermal assessment of heat mitigation strategies: The case of Portland State University, Oregon, USA. Building and Environment, 2014, 73, 138-150.	3.0	129
4	On the energy impact of urban heat island and global warming on buildings. Energy and Buildings, 2014, 82, 100-113.	3.1	455
5	Key Conclusions of the First International Urban Land Surface Model Comparison Project. Bulletin of the American Meteorological Society, 2015, 96, 805-819.	1.7	83
6	Temperature effects on firms' electricity demand: An analysis of sectorial differences in Spain. Applied Energy, 2015, 142, 407-425.	5.1	36
7	Impact of urban heat islands on the thermal comfort and cooling energy demand of artificial islands—A case study of AMWAJ Islands in Bahrain. Sustainable Cities and Society, 2015, 19, 310-318.	5.1	48
8	Quantification of Residential Energy Consumption Reduction Using Glass-Modified Asphalt Shingle. Journal of Architectural Engineering, 2015, 21, .	0.8	4
9	Detecting Temporal Changes in Riyadh's Urban Heat Island. Papers in Applied Geography, 2015, 1, 312-325.	0.8	13
10	Adaptive model for outdoor thermal comfort assessment in an Oasis city of arid climate. Building and Environment, 2015, 85, 40-51.	3.0	81
11	Generalized model-based predictive weather control for the control of free cooling by enhanced night-time ventilation. Applied Energy, 2016, 168, 482-492.	5.1	23
12	Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer. Applied Energy, 2016, 183, 1428-1440.	5.1	86
13	High-resolution temperature fields to evaluate the response of Italian electricity demand to meteorological variables: an example of climate service for the energy sector. Theoretical and Applied Climatology, 2016, 125, 729-742.	1.3	18
14	Analyzing the Impact of Outside Temperature on Energy Consumption and Production Patterns in High-Performance Research Buildings in Arizona. Journal of Architectural Engineering, 2017, 23, .	0.8	13
15	Will cool roofs improve the thermal performance of our built environment? A study assessing roof systems in Bahrain. Energy and Buildings, 2017, 135, 324-337.	3.1	28
16	Modeling Future Land Cover Changes and Their Effects on the Land Surface Temperatures in the Saudi Arabian Eastern Coastal City of Dammam. Land, 2017, 6, 36.	1.2	76
17	Quantifying the Cost of Cooling in Qatar. , 2017, , .		11
18	Generation, analysis, and applications of high resolution electricity load profiles in Qatar. Journal of Cleaner Production, 2018, 183, 527-543.	4.6	46

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
19	Finding a criterion for the pressure loss of energy recovery exchangers in HVAC systems from thermodynamic and economic points of view. Energy and Buildings, 2018, 166, 426-437.	3.1	6
20	On the relation between urban climate and energy performance of buildings. A three-years experience in Rome, Italy. Applied Energy, 2018, 221, 148-160.	5.1	68
21	Outdoor thermal comfort by different heat mitigation strategies- A review. Renewable and Sustainable Energy Reviews, 2018, 81, 2011-2018.	8.2	195
22	Impacts of urbanization and air pollution on building energy demands — Beijing case study. Applied Energy, 2018, 225, 98-109.	5.1	74
23	Impact of the urban heat island on residents' energy consumption: a case study of Qingdao. IOP Conference Series: Earth and Environmental Science, 2018, 121, 032026.	0.2	4
24	Global and local environmental and energy advantages of a geothermal heat pump interacting with a low temperature thermal micro grid. Energy Conversion and Management, 2018, 172, 540-553.	4.4	22
25	Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium. Applied Energy, 2018, 228, 852-872.	5.1	75
26	Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong. Energy, 2019, 189, 116208.	4.5	34
27	Survey and analysis of the quantitative methods used in electricity research on GCC countries: 1983–2018. Heliyon, 2019, 5, e02634.	1.4	7
28	PLANHEAT's Satellite-Derived Heating and Cooling Degrees Dataset for Energy Demand Mapping and Planning. Remote Sensing, 2019, 11, 2048.	1.8	2
29	Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts. Applied Energy, 2019, 254, 113647.	5.1	72
30	Comparative Analysis of Two Urban Microclimates: Energy Consumption and Greenhouse Gas Emissions. Sustainability, 2019, 11, 2045.	1.6	13
31	Thermodynamic and thermal comfort optimisation of a coastal social house considering the influence of the thermal breeze. Building and Environment, 2019, 155, 224-246.	3.0	9
32	Thermal comfort improvement in urban spaces with water spray systems: Field measurements and survey. Building and Environment, 2019, 156, 46-61.	3.0	58
33	Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy, 2019, 174, 407-419.	4.5	300
34	Water nebulization to counteract urban overheating: Development and experimental test of a smart logic to maximize energy efficiency and outdoor environmental quality. Applied Energy, 2019, 239, 1091-1113.	5.1	36
35	Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy and Buildings, 2020, 207, 109482.	3.1	345
36	Impact of urban heat island on energy demand in buildings: Local climate zones in Nanjing. Applied Energy, 2020, 260, 114279.	5.1	106

#	Article	IF	CITATIONS
37	Analysis of thermal comfort during movement in a semi-open transition space. Energy and Buildings, 2020, 225, 110312.	3.1	31
38	The effects of microclimate and air-infiltration on energy and long-term thermal comfort in high-rise buildings in tropical climate. IOP Conference Series: Earth and Environmental Science, 2020, 476, 012079.	0.2	0
39	Sustainable alternative futures for urban India: the resource, energy, and emissions implications of urban form scenarios. Environmental Research: Infrastructure and Sustainability, 2021, 1, 011004.	0.9	2
40	Urban microclimate and its impact on building performance: A case study of San Francisco. Urban Climate, 2021, 38, 100871.	2.4	35
41	The Hot Climate of the Middle East. Advances in 21st Century Human Settlements, 2021, , 205-234.	0.3	4
42	Exploring the effects of urban heat island: A case study of two cities in Thailand and Indonesia. APN Science Bulletin, 2019, 9, .	0.2	13
43	Estimating urban LST using multiple remotely sensed spectral indices and elevation retrievals. Sustainable Cities and Society, 2022, 78, 103623.	5.1	11
44	URBAN FACADE GEOMETRY ON OUTDOOR COMFORT CONDITIONS: A REVIEW. Indonesian Journal of Urban and Environmental Technology, 0, , 45-59.	0.3	1
45	Challenge of Using Groundwater for Buildings Air Conditioning in Subtropical Areas. Sustainability, 2022, 14, 364.	1.6	2
46	Determining the Influence of Long Term Urban Growth on Surface Urban Heat Islands Using Local Climate Zones and Intensity Analysis Techniques. Remote Sensing, 2022, 14, 2060.	1.8	10
47	On the determination and assessment of the impacts of urban heat islands: a narrative review of literature in the Arab world. Geo Journal, 2023, 88, 2365-2398.	1.7	1
48	How do urban heat islands affect the thermo-energy performance of buildings?. Journal of Cleaner Production, 2022, 373, 133713.	4.6	10
49	Hourly air temperature projection in future urban area by coupling climate change and urban heat island effect. Energy and Buildings, 2023, 279, 112676.	3.1	10
50	Urban overheating—energy, environmental, and heat-health implications. , 2023, , 165-225.		2
51	Sectoral electricity consumption modeling with D-vine quantile regression: The US electricity market case. Energy Sources, Part B: Economics, Planning and Policy, 2023, 18, .	1.8	0
52	ESMUST: EnergyPlus-driven surrogate model for urban surface temperature prediction. Building and Environment, 2023, 229, 109935.	3.0	4
53	Split-degree day method: A novel degree day method for improving building energy performance estimation. Energy and Buildings, 2023, 289, 113034.	3.1	5
54	The Intersection of Environmental Policy, Public Health, & Economic Performance in Shanghai. Future of Business and Finance, 2023, , 283-300.	0.3	Ο

CITATION REPORT

ARTICLE

IF CITATIONS