CITATION REPORT List of articles citing

Rewards teach visual selective attention

DOI: 10.1016/j.visres.2012.12.005 Vision Research, 2013, 85, 58-72.

Source: https://exaly.com/paper-pdf/55080080/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
295	Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. 2013 , 79, 1001-	-10	120
294	Attentional modulation: target selection, active search and cognitive processing. <i>Vision Research</i> , 2013 , 85, 1-4	2.1	2
293	Past rewards capture spatial attention and action choices. 2013 , 230, 291-300		26
292	Why skill matters. 2013 , 17, 434-41		54
291	Effects of prospective monetary rewards on movement initiation in choice reaction-time tasks with varying stimulus-response compatibility. 2013 , 117, 1141-9		1
2 90	Harnessing motivation to alleviate neglect. Frontiers in Human Neuroscience, 2013, 7, 230	3.3	14
289	Reward-priming of location in visual search. <i>PLoS ONE</i> , 2014 , 9, e103372	3.7	40
288	Random reward priming is task-contingent: the robustness of the 1-trial reward priming effect. <i>Frontiers in Psychology</i> , 2014 , 5, 309	3.4	5
287	Three-dimensional reach trajectories as a probe of real-time decision-making between multiple competing targets. 2014 , 8, 215		51
286	Exogenous visual orienting by reward. <i>Journal of Vision</i> , 2014 , 14, 6	0.4	74
285	The angular gyrus and visuospatial attention in decision-making under risk. <i>NeuroImage</i> , 2014 , 103, 75-8	B 9 9	26
284	Flow Experience during Attentional Training Improves Cognitive Functions in Patients with Traumatic Brain Injury: An Exploratory Case Study. 2014 , 24, 81-87		7
283	Task relevance regulates the interaction between reward expectation and emotion. 2014 , 232, 1783-91		19
282	Attention, reward, and information seeking. 2014 , 34, 15497-504		97
281	Basal ganglia circuits for reward value-guided behavior. 2014 , 37, 289-306		140
280	Reward associations and spatial probabilities produce additive effects on attentional selection. <i>Attention, Perception, and Psychophysics</i> , 2014 , 76, 2315-25	2	28
279	Reward speeds up and increases consistency of visual selective attention: a lifespan comparison. 2014 , 14, 659-71		25

278	The effect of reward on orienting and reorienting in exogenous cuing. 2014, 14, 635-46	31
277	Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict. 2014 , 14, 561-77	61
276	Biases of attention in chronic smokers: men and women are not alike. 2014 , 14, 742-55	6
275	Altering spatial priority maps via reward-based learning. 2014 , 34, 8594-604	113
274	On emotion-cognition integration: The effect of happy and sad moods on language comprehension. 2015 , 38, e73	1
273	Integration of cognition and emotion in physical and mental actions in musical and other behaviors. 2015 , 38, e76	9
272	How arousal influences neural competition: What dual competition does not explain. 2015, 38, e77	1
271	The cognitive-emotional brain is an embodied and social brain. 2015, 38, e78	2
270	Behavioral evidence for a continuous approach to the perception of emotionally valenced stimuli. 2015 , 38, e79	1
269	United we stand, divided we fall: Cognition, emotion, and the moral link between them. 2015 , 38, e80	2
268	Surprise as an ideal case for the interplay of cognition and emotion. 2015 , 38, e74	2
267	Models for cognition and emotion: Evolutionary and linguistic considerations. 2015 , 38, e81	
266	On theory integration: Toward developing affective components within cognitive architectures. 2015 , 38, e82	
265	Neuropsychology still needs to model organismic processes "from within". 2015 , 38, e83	8
264	When emotion and cognition do (not) work together: Delusions as emotional and executive dysfunctions. 2015 , 38, e84	1
263	Active inference and cognitive-emotional interactions in the brain. 2015 , 38, e85	15
262	The cognitive-emotional brain: Opportunities [corrected] and challenges for understanding neuropsychiatric disorders. 2015 , 38, e86	11
261	Strengthening emotion-cognition integration. 2015 , 38, e87	2

260	Social theory and the cognitive-emotional brain. 2015 , 38, e88	О
259	Precision about the automatic emotional brain. 2015 , 38, e89	1
258	Preferences and motivations with and without inferences. 2015 , 38, e90	1
257	The cognitive-emotional amalgam. 2015 , 38, e91	18
256	Cognition as the tip of the emotional iceberg: A neuro-evolutionary perspective. 2015 , 38, e72	1
255	Enactive neuroscience, the direct perception hypothesis, and the socially extended mind. 2015 , 38, e75	8
254	Oculomotor capture by stimuli that signal the availability of reward. 2015 , 114, 2316-27	53
253	The snooze of lose: Rapid reaching reveals that losses are processed more slowly than gains. 2015 , 144, 844-63	18
252	Reward breaks through center-surround inhibition via anterior insula. 2015 , 36, 5233-51	26
251	Affective stimuli capture attention regardless of categorical distinctiveness: An emotion-induced blindness study. <i>Visual Cognition</i> , 2015 , 23, 105-117	7
250	Easy to learn, hard to suppress: The impact of learned stimulus-outcome associations on subsequent action control. 2015 , 101, 17-34	5
249	Neural mechanisms of incentive salience in naturalistic human vision. 2015 , 85, 512-8	148
248	Nonspatial attentional capture by previously rewarded scene semantics. <i>Visual Cognition</i> , 2015 , 23, 82-10.8	35
247	Money talks in attention bias modification: Reward in a dot-probe task affects attentional biases. Visual Cognition, 2015 , 23, 118-132	14
246	Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task. <i>NeuroImage</i> , 2015 , 121, 115-25	34
245	Reward modulates oculomotor competition between differently valued stimuli. <i>Vision Research</i> , 2015 , 108, 103-12	21
244	When goals conflict with values: counterproductive attentional and oculomotor capture by reward-related stimuli. 2015 , 144, 158-171	168
243	The modulatory impact of reward and attention on global feature selection in human visual cortex. Visual Cognition, 2015 , 23, 229-248	19

(2015-2015)

242	Strategic top-down control versus attentional bias by previous reward history. <i>Attention, Perception, and Psychophysics</i> , 2015 , 77, 2207-16	2	2
241	Reward-prospect interacts with trial-by-trial preparation for potential distraction. <i>Visual Cognition</i> , 2015 , 23, 313-335	1.8	11
240	Valuable Orientations Capture Attention. Visual Cognition, 2015, 23, 133-146	1.8	25
239	Independent effects of reward expectation and spatial orientation on the processing of emotional facial expressions. 2015 , 233, 2571-80		6
238	Reward priming of temporal preparation. Visual Cognition, 2015, 23, 25-40	1.8	8
237	Separating value from selection frequency in rapid reaching biases to visual targets. <i>Visual Cognition</i> , 2015 , 23, 249-271	1.8	18
236	Distractors that signal reward attract the eyes. Visual Cognition, 2015, 23, 1-24	1.8	34
235	Multiple influences of reward on perception and attention. Visual Cognition, 2015, 23, 272-290	1.8	44
234	Reward learning and negative emotion during rapid attentional competition. <i>Frontiers in Psychology</i> , 2015 , 6, 269	3.4	16
233	Prālis on The Cognitive-Emotional Brain. 2015 , 38, e71		43
233	Prdis on The Cognitive-Emotional Brain. 2015, 38, e71 Task-irrelevant stimulus-reward association induces value-driven attentional capture. Attention, Perception, and Psychophysics, 2015, 77, 1896-907	2	43 32
	Task-irrelevant stimulus-reward association induces value-driven attentional capture. <i>Attention</i> ,	1.8	
232	Task-irrelevant stimulus-reward association induces value-driven attentional capture. <i>Attention, Perception, and Psychophysics</i> , 2015 , 77, 1896-907	2	32
232	Task-irrelevant stimulus-reward association induces value-driven attentional capture. <i>Attention, Perception, and Psychophysics</i> , 2015 , 77, 1896-907 A learning rule that explains how rewards teach attention. <i>Visual Cognition</i> , 2015 , 23, 179-205 Motivation by potential gains and losses affects control processes via different mechanisms in the	1.8	32
232 231 230	Task-irrelevant stimulus-reward association induces value-driven attentional capture. <i>Attention, Perception, and Psychophysics</i> , 2015 , 77, 1896-907 A learning rule that explains how rewards teach attention. <i>Visual Cognition</i> , 2015 , 23, 179-205 Motivation by potential gains and losses affects control processes via different mechanisms in the attentional network. <i>NeuroImage</i> , 2015 , 111, 549-61	1.8	32 17 29
232 231 230 229	Task-irrelevant stimulus-reward association induces value-driven attentional capture. <i>Attention, Perception, and Psychophysics,</i> 2015 , 77, 1896-907 A learning rule that explains how rewards teach attention. <i>Visual Cognition,</i> 2015 , 23, 179-205 Motivation by potential gains and losses affects control processes via different mechanisms in the attentional network. <i>NeuroImage,</i> 2015 , 111, 549-61 Affective and motivational control of vision. 2015 , 28, 29-35 Modulation of spatial attention by goals, statistical learning, and monetary reward. <i>Attention,</i>	1.8 7·9	32 17 29 79
232 231 230 229	Task-irrelevant stimulus-reward association induces value-driven attentional capture. <i>Attention, Perception, and Psychophysics,</i> 2015 , 77, 1896-907 A learning rule that explains how rewards teach attention. <i>Visual Cognition,</i> 2015 , 23, 179-205 Motivation by potential gains and losses affects control processes via different mechanisms in the attentional network. <i>NeuroImage,</i> 2015 , 111, 549-61 Affective and motivational control of vision. 2015 , 28, 29-35 Modulation of spatial attention by goals, statistical learning, and monetary reward. <i>Attention, Perception, and Psychophysics,</i> 2015 , 77, 2189-206 More of me! Distinguishing self and reward bias using redundancy gains. <i>Attention, Perception, and</i>	1.8 7·9	32 17 29 79 31

224	Object-finding skill created by repeated reward experience. Journal of Vision, 2016, 16, 17	0.4	17
223	Motivation and attention following hemispheric stroke. 2016 , 229, 343-366		7
222	Introducing a Method for Calculating the Allocation of Attention in a Cognitive "Two-Armed Bandit" Procedure: Probability Matching Gives Way to Maximizing. <i>Frontiers in Psychology</i> , 2016 , 7, 223	3.4	1
221	No Apparent Influence of Reward upon Visual Statistical Learning. Frontiers in Psychology, 2016 , 7, 1687	3.4	4
220	The attention habit: how reward learning shapes attentional selection. 2016 , 1369, 24-39		207
219	Attentional bias modification in depression through gaze contingencies and regulatory control using a new eye-tracking intervention paradigm: study protocol for a placebo-controlled trial. 2016 , 16, 439		18
218	The impact of simulated MRI scanner background noise on visual attention processes as measured by the EEG. <i>Scientific Reports</i> , 2016 , 6, 28371	4.9	4
217	Attracted by rewards: Disentangling the motivational influence of rewarding and punishing targets and distractors <i>Motivation Science</i> , 2016 , 2, 143-156	3.4	7
216	Try to see it my way: Embodied perspective enhances self and friend-biases in perceptual matching. 2016 , 153, 108-17		16
215	The left hemisphere learns what is right: Hemispatial reward learning depends on reinforcement learning processes in the contralateral hemisphere. 2016 , 89, 1-13		8
214	Attention \$ Accelerator. 2016 , 27, 790-8		16
213	Transcranial random-noise stimulation of visual cortex potentiates value-driven attentional capture. 2016 , 11, 1481-8		20
212	What is abnormal about addiction-related attentional biases?. 2016 , 167, 8-14		47
211	Motivation is Important in Game-Based Memory Recall. 2016 , 60, 1140-1144		
210	How motivation and reward learning modulate selective attention. 2016 , 229, 325-342		48
209	Auditory attentional selection is biased by reward cues. <i>Scientific Reports</i> , 2016 , 6, 36989	4.9	15
208	Value-modulated oculomotor capture by task-irrelevant stimuli is a consequence of early competition on the saccade map. <i>Attention, Perception, and Psychophysics</i> , 2016 , 78, 2226-40	2	31
207	Appetitive and aversive outcome associations modulate exogenous cueing. <i>Attention, Perception, and Psychophysics</i> , 2016 , 78, 2253-65	2	18

206	Learning a New Selection Rule in Visual and Frontal Cortex. Cerebral Cortex, 2016, 26, 3611-26	5.1	1
205	Reward-associated features capture attention in the absence of awareness: Evidence from object-substitution masking. <i>Neurolmage</i> , 2016 , 137, 116-123	7.9	9
204	Rewarded visual items capture attention only in heterogeneous contexts. <i>Psychophysiology</i> , 2016 , 53, 1063-73	4.1	30
203	The Impact of Absolute Importance and Processing Overlaps on Prospective Memory Performance. 2016 , 30, 170-177		8
202	In-class distractions: The role of Facebook and the primary learning task. 2016 , 55, 1165-1178		39
201	The Rapid Capture of Attention by Rewarded Objects. <i>Journal of Cognitive Neuroscience</i> , 2016 , 28, 529-4	13 .1	40
200	Components of reward-driven attentional capture. <i>Attention, Perception, and Psychophysics</i> , 2016 , 78, 403-14	2	38
199	Reward alters the perception of time. 2016 , 148, 19-26		18
198	Effects of monetary reward and punishment on information checking behaviour. 2016 , 53 Pt A, 258-66		7
197	Reward expectation regulates brain responses to task-relevant and task-irrelevant emotional words: ERP evidence. 2016 , 11, 191-203		21
196	Neural structures involved in visual search guidance by reward-enhanced contextual cueing of the target location. <i>NeuroImage</i> , 2016 , 124, 887-897	7.9	20
195	Attentional Selection Can Be Predicted by Reinforcement Learning of Task-relevant Stimulus Features Weighted by Value-independent Stickiness. <i>Journal of Cognitive Neuroscience</i> , 2016 , 28, 333-49	9 ^{3.1}	18
194	Counterintuitive effects of negative social feedback on attention. 2017 , 31, 590-597		14
193	Prediction and uncertainty in associative learning: examining controlled and automatic components of learned attentional biases. <i>Quarterly Journal of Experimental Psychology</i> , 2017 , 70, 1485-1503	1.8	17
192	Caudate-Precuneus Functional Connectivity Is Associated with Obesity Preventive Eating Tendency. 2017 , 7, 211-217		19
191	The salience of a reward cue can outlast reward devaluation. 2017 , 131, 226-234		11
190	Thinking inside the box: How seeing products on, or through, the packaging influences consumer perceptions and purchase behaviour. 2017 , 62, 340-351		68
189	SOAP Opera: Self as Object and Agent in Prioritizing Attention. <i>Journal of Cognitive Neuroscience</i> , 2017 , 29, 937-952	3.1	13

Reaching reveals that best-versus-rest processing contributes to biased decision making. 2017, 176, 32-38 188 5 Cognitive Control and Emotional Processing. 2017, 392-407 187 Attention in natural scenes: Affective-motivational factors guide gaze independently of visual 186 2.1 20 salience. Vision Research, 2017, 133, 161-175 Pavlovian reward learning underlies value driven attentional capture. Attention, Perception, and 185 41 Psychophysics, 2017, 79, 415-428 Working memory accuracy for multiple targets is driven by reward expectation and stimulus 184 4.9 19 contrast with different time-courses. Scientific Reports, 2017, 7, 9082 The Blur of Pleasure: Appetitively Appealing Stimuli Decrease Subjective Temporal Perceptual 183 Acuity. **2017**, 28, 1563-1582 182 Development of Monetary and Social Reward Processes. Scientific Reports, 2017, 7, 11128 19 4.9 181 Do Intelligent Robots Need Emotion?. 2017, 21, 817-819 15 Don's let it distract you: how information about the availability of reward affects attentional 180 2 29 selection. Attention, Perception, and Psychophysics, 2017, 79, 2275-2298 Contextual and Developmental Differences in the Neural Architecture of Cognitive Control. 2017, 179 7 37, 7711-7726 The necessity to choose causes reward-related anticipatory biasing: Parieto-occipital alpha-band 178 4.9 9 oscillations reveal suppression of low-value targets. Scientific Reports, 2017, 7, 14318 A novel test for evaluating horsesSspontaneous visual attention is predictive of attention in 9 operant learning tasks. 2017, 104, 61 Sensitivity to value-driven attention is predicted by how we learn from value. Psychonomic Bulletin 176 4.1 17 and Review, 2017, 24, 408-415 Reward-based plasticity of spatial priority maps: Exploiting inter-subject variability to probe the 8 175 underlying neurobiology. 2017, 8, 85-101 The influences and neural correlates of past and present during gambling in humans. Scientific 174 4.9 2 Reports, 2017, 7, 17111 . 2017, 173 24 Learning Where to Look for High Value Improves Decision Making Asymmetrically. Frontiers in 6 172 3.4 Psychology, 2017, 8, 2000 New rules for visual selection: Isolating procedural attention. Journal of Vision, 2017, 17, 18 0.4

(2018-2017)

170	Memory Performance for Everyday Motivational and Neutral Objects Is Dissociable from Attention. 2017 , 11, 121		5
169	Are horses capable of mirror self-recognition? A pilot study. <i>PLoS ONE</i> , 2017 , 12, e0176717	3.7	14
168	Attention and Perceptual Decision Making. 2017 , 199-217		0
167	Independent effects of motivation and spatial attention in the human visual cortex. 2017 , 12, 146-156		19
166	Probing the role of the vestibular system in motivation and reward-based attention. 2018 , 103, 82-99		12
165	Stimuli that signal the availability of reward break into attentional focus. <i>Vision Research</i> , 2018 , 144, 20-28	2.1	10
164	Temporal-prefrontal cortical network for discrimination of valuable objects in long-term memory. 2018 , 115, E2135-E2144		21
163	EEG measures of brain activity reveal that smoking-related images capture the attention of smokers outside of awareness. 2018 , 111, 324-333		5
162	Overt and covert attention to location-based reward. Vision Research, 2018, 142, 27-39	2.1	6
161	Explaining Variations in Mindfulness Levels in Daily Life. 2018 , 9, 1895-1906		7
161 160	Explaining Variations in Mindfulness Levels in Daily Life. 2018 , 9, 1895-1906 Stimulus-driven and goal-driven effects on Pavlovian associative reward learning. <i>Visual Cognition</i> , 2018 , 26, 131-148	1.8	7
	Stimulus-driven and goal-driven effects on Pavlovian associative reward learning. Visual Cognition,	1.8	
160	Stimulus-driven and goal-driven effects on Pavlovian associative reward learning. <i>Visual Cognition</i> , 2018 , 26, 131-148 Pavlovian reward learning elicits attentional capture by reward-associated stimuli. <i>Attention</i> ,		13
160 159	Stimulus-driven and goal-driven effects on Pavlovian associative reward learning. <i>Visual Cognition</i> , 2018 , 26, 131-148 Pavlovian reward learning elicits attentional capture by reward-associated stimuli. <i>Attention</i> , <i>Perception</i> , <i>and Psychophysics</i> , 2018 , 80, 1083-1095		13
160 159 158	Stimulus-driven and goal-driven effects on Pavlovian associative reward learning. <i>Visual Cognition</i> , 2018 , 26, 131-148 Pavlovian reward learning elicits attentional capture by reward-associated stimuli. <i>Attention</i> , <i>Perception</i> , <i>and Psychophysics</i> , 2018 , 80, 1083-1095 Habitual versus goal-driven attention. 2018 , 102, 107-120		13 6 57
160 159 158	Stimulus-driven and goal-driven effects on Pavlovian associative reward learning. <i>Visual Cognition</i> , 2018 , 26, 131-148 Pavlovian reward learning elicits attentional capture by reward-associated stimuli. <i>Attention</i> , <i>Perception</i> , <i>and Psychophysics</i> , 2018 , 80, 1083-1095 Habitual versus goal-driven attention. 2018 , 102, 107-120 Motivation and short-term memory in visual search: Attentions accelerator revisited. 2018 , 102, 45-56 Altering spatial priority maps via statistical learning of target selection and distractor filtering.		136576
160 159 158 157	Stimulus-driven and goal-driven effects on Pavlovian associative reward learning. <i>Visual Cognition</i> , 2018 , 26, 131-148 Pavlovian reward learning elicits attentional capture by reward-associated stimuli. <i>Attention</i> , <i>Perception</i> , <i>and Psychophysics</i> , 2018 , 80, 1083-1095 Habitual versus goal-driven attention. 2018 , 102, 107-120 Motivation and short-term memory in visual search: Attentions accelerator revisited. 2018 , 102, 45-56 Altering spatial priority maps via statistical learning of target selection and distractor filtering. 2018 , 102, 67-95 Selection history: How reward modulates selectivity of visual attention. <i>Psychonomic Bulletin and</i>	2	13657688

152	Rewarding objects appear larger but not brighter. <i>Journal of Vision</i> , 2018 , 18, 9	0.4	1
151	Can Monetary Reward Modulate Social Attention?. Frontiers in Psychology, 2018, 9, 2213	3.4	1
150	Impact of Language Experience on Attention to Faces in Infancy: Evidence From Unimodal and Bimodal Bilingual Infants. <i>Frontiers in Psychology</i> , 2018 , 9, 1943	3.4	6
149	Behavioral facilitation and increased brain responses from a high interference working memory context. <i>Scientific Reports</i> , 2018 , 8, 15308	4.9	4
148	Reward differentially interacts with physical salience in feature-based attention. <i>Journal of Vision</i> , 2018 , 18, 12	0.4	5
147	Cross-modal integration during value-driven attentional capture. 2018 , 120, 105-112		10
146	Separate and combined effects of action relevance and motivational value on visual working memory. <i>Journal of Vision</i> , 2018 , 18, 14	0.4	12
145	Flow experience enhances the effectiveness of attentional training: A pilot randomized controlled trial of patients with attention deficits after traumatic brain injury. 2018 , 43, 183-193		8
144	Monetary Reward and Punishment to Response Inhibition Modulate Activation and Synchronization Within the Inhibitory Brain Network. <i>Frontiers in Human Neuroscience</i> , 2018 , 12, 27	3.3	14
143	Implicit reward associations impact face processing: Time-resolved evidence from event-related brain potentials and pupil dilations. <i>NeuroImage</i> , 2018 , 179, 557-569	7.9	21
143		7.9	21
	brain potentials and pupil dilations. <i>NeuroImage</i> , 2018 , 179, 557-569	7.9	
142	brain potentials and pupil dilations. <i>NeuroImage</i> , 2018 , 179, 557-569 Differential temporal salience of earning and saving. 2018 , 9, 2843 A Clinical Trial with Combined Transcranial Direct Current Stimulation and Attentional Bias	7·9 3·7	8
142 141	Differential temporal salience of earning and saving. 2018, 9, 2843 A Clinical Trial with Combined Transcranial Direct Current Stimulation and Attentional Bias Modification in Alcohol-Dependent Patients. 2018, 42, 1961-1969 Idiosyncratic representation of peripersonal space depends on the success of one's own motor		8
142 141 140	Differential temporal salience of earning and saving. 2018, 9, 2843 A Clinical Trial with Combined Transcranial Direct Current Stimulation and Attentional Bias Modification in Alcohol-Dependent Patients. 2018, 42, 1961-1969 Idiosyncratic representation of peripersonal space depends on the success of one's own motor actions, but also the successful actions of others!. <i>PLoS ONE</i> , 2018, 13, e0196874 Differential Deployment of Visual Attention During Interactive Approach and Avoidance Behavior.	3.7	8
142 141 140	Differential temporal salience of earning and saving. 2018, 9, 2843 A Clinical Trial with Combined Transcranial Direct Current Stimulation and Attentional Bias Modification in Alcohol-Dependent Patients. 2018, 42, 1961-1969 Idiosyncratic representation of peripersonal space depends on the success of one's own motor actions, but also the successful actions of others!. PLoS ONE, 2018, 13, e0196874 Differential Deployment of Visual Attention During Interactive Approach and Avoidance Behavior. Cerebral Cortex, 2019, 29, 2366-2383 Music to my ears, goal for my eyes? Music reward modulates gaze disengagement from negative	3.7	8 28 14
142 141 140 139	Differential temporal salience of earning and saving. 2018, 9, 2843 A Clinical Trial with Combined Transcranial Direct Current Stimulation and Attentional Bias Modification in Alcohol-Dependent Patients. 2018, 42, 1961-1969 Idiosyncratic representation of peripersonal space depends on the success of one's own motor actions, but also the successful actions of others!. PLoS ONE, 2018, 13, e0196874 Differential Deployment of Visual Attention During Interactive Approach and Avoidance Behavior. Cerebral Cortex, 2019, 29, 2366-2383 Music to my ears, goal for my eyes? Music reward modulates gaze disengagement from negative stimuli in dysphoria. 2019, 120, 103434 Hemispheric Asymmetry of Globus Pallidus Relates to Alpha Modulation in Reward-Related	3.7	8 28 14 4

134	Suppression history of distractor location biases attentional and oculomotor control. <i>Visual Cognition</i> , 2019 , 27, 142-157	1.8	8
133	The Limitations of Reward Effects on Saccade Latencies: An Exploration of Task-Specificity and Strength. 2019 , 3,		2
132	The Puzzling Relationship between Attention and Motivation: Do Motor Biases Matter?. 2019, 406, 150-	158	0
131	Positive emotions have a unique capacity to capture attention. 2019 , 247, 23-46		8
130	Revealing Dissociable Attention Biases in Chronic Smokers Through an Individual-Differences Approach. <i>Scientific Reports</i> , 2019 , 9, 4930	4.9	2
129	Reward cues readily direct monkeysSauditory performance resulting in broad auditory cortex modulation and interaction with sites along cholinergic and dopaminergic pathways. <i>Scientific Reports</i> , 2019 , 9, 3055	4.9	9
128	Statistical regularities bias overt attention. Attention, Perception, and Psychophysics, 2019, 81, 1813-182	12	21
127	Reward expectation facilitates context learning and attentional guidance in visual search. <i>Journal of Vision</i> , 2019 , 19, 10	0.4	3
126	Theta and alpha band oscillations during value-directed strategic processing. 2019, 367, 210-214		10
125	Punishment-related memory-guided attention: Neural dynamics of perceptual modulation. 2019 , 115, 231-245		4
124	Working Memory Load Enhances the Attentional Capture of Low Reward History. <i>Frontiers in Psychology</i> , 2019 , 10, 2722	3.4	
123	Reward association alters brain responses to emotional stimuli: ERP evidence. 2019 , 135, 21-32		6
122	Neurobiology of value-driven attention. 2019 , 29, 27-33		42
121	Differential modulations of reward expectation on implicit facial emotion processing: ERP evidence. <i>Psychophysiology</i> , 2019 , 56, e13304	4.1	6
120	Dissociating Reward- and Attention-driven Biasing of Global Feature-based Selection in Human Visual Cortex. <i>Journal of Cognitive Neuroscience</i> , 2019 , 31, 469-481	3.1	3
119	Goal-driven, stimulus-driven, and history-driven selection. 2019 , 29, 97-101		78
118	Can take my eyes off you - How task irrelevant pictures of food influence attentional selection. 2019 , 133, 313-323		6
117	Multiple reward-cue contingencies favor expectancy over uncertainty in shaping the reward-cue attentional salience. <i>Psychological Research</i> , 2019 , 83, 332-346	2.5	2

116	Reward priming eliminates color-driven affect in perception. <i>Psychological Research</i> , 2019 , 83, 321-331	2.5	2
115	Trial-by-trial modulations in the orienting of attention elicited by gaze and arrow cues. <i>Quarterly Journal of Experimental Psychology</i> , 2019 , 72, 543-556	1.8	6
114	Differential effects of sustained and transient effort triggered by reward - A combined EEG and pupillometry study. 2019 , 123, 116-130		14
113	Attention for future reward. <i>Psychological Research</i> , 2020 , 84, 706-712	2.5	2
112	Adults with Autism and Adults with Depression Show Similar Attentional Biases to Social-Affective Images. 2020 , 50, 2336-2347		11
111	Emotional Objectivity: Neural Representations of Emotions and Their Interaction with Cognition. 2020 , 71, 25-48		17
110	Orbitofrontal cortex is selectively activated in a primate model of attentional bias to cocaine cues. 2020 , 45, 675-682		5
109	The effects of video gaming on visual selective attention. 2020 , 50, 183-194		1
108	Conflict monitoring and the affective-signaling hypothesis-An integrative review. <i>Psychonomic Bulletin and Review</i> , 2020 , 27, 193-216	4.1	40
107	Independent effects of statistical learning and top-down attention. <i>Attention, Perception, and Psychophysics</i> , 2020 , 82, 3895-3906	2	4
106	Are Individuals Perceived as More Attractive within a Group? A Confirmative Study of Group Attractiveness Effect and the Cheerleader Effect in China. 2020 , 8,		1
105	Reaching movements are attracted by stimuli that signal reward. <i>Attention, Perception, and Psychophysics</i> , 2020 , 82, 3804-3810	2	2
104	Sudden onsets reflexively drive spatial attention, but those that predict reward do more. <i>Journal of Vision</i> , 2020 , 20, 30	0.4	
103	The role of the vestibular system in value attribution to positive and negative reinforcers. 2020 , 133, 215-235		1
102	Previously Reward-Associated Stimuli Capture Spatial Attention in the Absence of Changes in the Corresponding Sensory Representations as Measured with MEG. 2020 , 40, 5033-5050		12
101	Physical Salience and Value-Driven Salience Operate through Different Neural Mechanisms to Enhance Attentional Selection. 2020 , 40, 5455-5464		13
100	Prioritization within visual working memory reflects a flexible focus of attention. <i>Attention, Perception, and Psychophysics</i> , 2020 , 82, 2985-3004	2	4
99	The Bright and Dark Sides of Performance-Dependent Monetary Rewards: Evidence From Visual Perception Tasks. 2020 , 44, e12825		O

(2021-2020)

98	Inhibiting the Whole Number Bias in a Fraction Comparison Task: An Event-Related Potential Study. 2020 , 13, 245-255		4
97	Incentive motivation improves numerosity discrimination: Insights from pupillometry combined with drift-diffusion modelling. <i>Scientific Reports</i> , 2020 , 10, 2608	4.9	5
96	Patients with major depression show greater memory improvement if motivation is increased: An exploratory study under real-life-like conditions. 2020 , 42, 307-318		2
95	Mapping Dynamic Interactions Among Cognitive Biases in Depression. <i>Emotion Review</i> , 2020 , 12, 93-110	04.6	10
94	Attentional Orienting by Non-informative Cue Is Shaped via Reinforcement Learning. <i>Frontiers in Psychology</i> , 2019 , 10, 2884	3.4	0
93	Are all behavioral reward benefits created equally? An EEG-fMRI study. <i>NeuroImage</i> , 2020 , 215, 116829	7.9	4
92	Impact of relative and absolute values on selective attention. <i>Psychonomic Bulletin and Review</i> , 2020 , 27, 735-741	4.1	5
91	Selective attention to real-world objects drives their emotional appraisal. <i>Attention, Perception, and Psychophysics</i> , 2021 , 83, 122-132	2	O
90	Uncertainty modulates value-driven attentional capture. <i>Attention, Perception, and Psychophysics</i> , 2021 , 83, 142-155	2	О
89	Learned value and predictiveness affect gaze but not figure assignment. <i>Attention, Perception, and Psychophysics</i> , 2021 , 83, 156-172	2	1
88	Spatial suppression due to statistical learning tracks the estimated spatial probability. <i>Attention, Perception, and Psychophysics</i> , 2021 , 83, 283-291	2	5
87	Peripersonal space in social context is modulated by action reward, but differently in males and females. <i>Psychological Research</i> , 2021 , 85, 181-194	2.5	10
86	Attention-Based Design and User Decisions on Information Sharing: A Thematic Literature Review. <i>IEEE Access</i> , 2021 , 1-1	3.5	
85	The Influence of Value on Attentional Bias: A Study of Changing Blindness. <i>Advances in Social Sciences</i> , 2021 , 10, 757-764	О	
84	Prefrontal Control of Proactive and Reactive Mechanisms of Visual Suppression. <i>Cerebral Cortex</i> , 2021 ,	5.1	О
83	Reward makes the rhythmic sampling of spatial attention emerge earlier. <i>Attention, Perception, and Psychophysics</i> , 2021 , 83, 1522-1537	2	1
82	Reward-driven attention alters perceived salience. <i>Journal of Vision</i> , 2021 , 21, 7	0.4	2
81	Visual attention of experts and novices to a critical industrial maintenance task. <i>Gest® & Produ</i> ® , 2021 , 28,	0.9	

80	Attention-Based Design and Selective Exposure Amid COVID-19 Misinformation Sharing. <i>Lecture Notes in Computer Science</i> , 2021 , 501-510	0.9	1
79	The Role of Motivation and Anxiety on Error Awareness in Younger and Older Adults. <i>Frontiers in Psychiatry</i> , 2021 , 12, 567718	5	
78	Reward does not modulate the preview benefit in visual search. Visual Cognition, 2021, 29, 248-262	1.8	
77	Differing Time Courses of Reward-Related Attentional Processing: An EEG Source-Space Analysis. <i>Brain Topography</i> , 2021 , 34, 283-296	4.3	1
76	Awareness is necessary for attentional biases by location-reward association. <i>Attention, Perception, and Psychophysics</i> , 2021 , 83, 2002-2016	2	3
75	Connecting sleep, the neurocognitive memory system, and Bourdieus habitus concept: Is sleep a generative force of the habitus?. <i>Journal for the Theory of Social Behaviour</i> , 2021 , 51, 104-123	1.2	O
74	Selective memory disrupted in intra-modal dual-task encoding conditions. <i>Memory and Cognition</i> , 2021 , 49, 1453-1472	2.2	1
73	Reward expectation modulates N2pc for target selection: Electrophysiological evidence. <i>Psychophysiology</i> , 2021 , 58, e13837	4.1	O
72	Contextual Cueing Accelerated and Enhanced by Monetary Reward: Evidence From Event-Related Brain Potentials. <i>Frontiers in Human Neuroscience</i> , 2021 , 15, 623931	3.3	
71	Neural Mechanisms of Reward-by-Cueing Interactions: ERP Evidence. <i>Frontiers in Human Neuroscience</i> , 2021 , 15, 608427	3.3	1
70	Value Associations Modulate Visual Attention and Response Selection. <i>Frontiers in Psychology</i> , 2021 , 12, 656185	3.4	1
69	Bottom-up but not Top-down Attention Dominates the Value Representation in the Orbitofrontal Cortex.		
68	A Combined Effect of Self and Reward: Relationship of Self- and Reward-Bias on Associative Learning. <i>Frontiers in Psychology</i> , 2021 , 12, 647443	3.4	0
67	Reducing Generalization of Conditioned Fear: Beneficial Impact of Fear Relevance and Feedback in Discrimination Training. <i>Frontiers in Psychology</i> , 2021 , 12, 665711	3.4	O
66	Dynamic interplay between reward and voluntary attention determines stimulus processing in visual cortex.		
65	Search strategies improve with practice, but not with time pressure or financial incentives. <i>Journal of Experimental Psychology: Human Perception and Performance</i> , 2021 , 47, 1009-1021	2.6	1
64	Experimental Tests for Measuring Individual Attentional Characteristics in Songbirds. <i>Animals</i> , 2021 , 11,	3.1	
63	In the hands of the beholder: Wearing a COVID-19 mask is associated with its attractiveness. <i>Quarterly Journal of Experimental Psychology</i> , 2021 , 17470218211037128	1.8	1

62	Disruptions of Sustained Spatial Attention Can Be Resistant to the Distractor's Prior Reward Associations. <i>Frontiers in Human Neuroscience</i> , 2021 , 15, 666731	3.3		
61	Statistical learning of target selection and distractor suppression shape attentional priority according to different timeframes. <i>Scientific Reports</i> , 2021 , 11, 13761	4.9	3	
60	Dynamic Interplay between Reward and Voluntary Attention Determines Stimulus Processing in Visual Cortex. <i>Journal of Cognitive Neuroscience</i> , 2021 , 33, 2357-2371	3.1	1	
59	Throwing open the doors of perception: The role of dopamine in visual processing. <i>European Journal of Neuroscience</i> , 2021 , 54, 6135-6146	3.5	O	
58	InfantsSSelective Visual Attention Is Dependent on Maternal Affect and Emotional Context. <i>Frontiers in Psychology</i> , 2021 , 12, 700272	3.4	3	
57	Within and beyond an integrated framework of attentional capture: A perspective from cognitive-affective neuroscience. <i>Visual Cognition</i> , 1-4	1.8		
56	Local and global context repetitions in contextual cueing. <i>Journal of Vision</i> , 2021 , 21, 9	0.4	О	
55	Hippocampus maintains a flexible and coherent map under reward flavor-landmark cue conflict.			
54	Differential effects of intra-modal and cross-modal reward value on visual perception: ERP evidence.		1	
53	Internal manipulation of perceptual representations in human flexible cognition: A computational model. <i>Neural Networks</i> , 2021 , 143, 572-594	9.1	1	
52	Attentional Selection: Top-Down, Bottom-Up and History-Based Biases. 2020,		7	
51	Cognitive-motivational interactions: beyond boxes-and-arrows models of the mind-brain. <i>Motivation Science</i> , 2017 , 3, 287-303	3.4	12	
50	Selection and suppression of visual information in the macaque prefrontal cortex.		4	
49	Cross-Modal Integration of Reward Value during Oculomotor Planning. <i>ENeuro</i> , 2020 , 7,	3.9	3	
48	Social Smartphone Apps Do Not Capture Attention Despite Their Perceived High Reward Value. <i>Collabra: Psychology</i> , 2019 , 5,	2.8	14	
47	Visual Selection: Usually Fast and Automatic; Seldom Slow and Volitional. <i>Journal of Cognition</i> , 2018 , 1, 29	3.2	77	
46	The Time Constant of Attentional Control: Short, Medium and Long (Infinite?). <i>Journal of Cognition</i> , 2018 , 1, 27	3.2	7	
45	The Development of Motor and Perceptual Skills in Young Athletes.			

44	Does feature intertrial priming guide attention? The jury is still out. <i>Psychonomic Bulletin and Review</i> , 2021 , 1	4.1	2
43	Dynamics of Reward Based Decision Making: A Computational Study. <i>Lecture Notes in Computer Science</i> , 2016 , 322-329	0.9	2
42	Implicit reward associations impact face processing: Time-resolved evidence from event-related brain potentials and pupil dilations.		
41	The role of working memory representation in visual search: The perspective of non-target template. <i>Advances in Psychological Science</i> , 2018 , 26, 1608	0.9	1
40	Hemispheric asymmetry of globus pallidus relates to alpha modulation in reward-related attentional tasks.		
39	Chapter 12. The impact of AVT mode on audience reception. <i>Benjamins Translation Library</i> , 259-286	0.7	O
38	Cross-modal integration of reward value during oculomotor planning.		1
37	Previously reward-associated stimuli capture spatial attention in the absence of changes in the corresponding sensory representations as measured with MEG.		
36	Reward modulates behaviour and neural responses in motor cortex during action observation.		
35	The role of the vestibular system in value attribution to positive and negative reinforcers.		
34	Testing reward-cue attentional salience: Attainment and dynamic changes. <i>British Journal of Psychology</i> , 2021 ,	4	0
33	Scarcity Mindset Neuro Network Decoding With Reward: A Tree-Based Model and Functional Near-Infrared Spectroscopy Study <i>Frontiers in Human Neuroscience</i> , 2021 , 15, 736415	3.3	
32	Poza centrum uwagi: dolwiadczenie uczenia w szkole i w laboratorium neurobiologa. 2021,		
31	Diminishing sensitivity and absolute difference in value-driven attention <i>Journal of Vision</i> , 2022 , 22, 12	0.4	O
30	An EEG study of the combined effects of top-down and bottom-up attentional selection under varying task difficulty <i>Psychophysiology</i> , 2022 , e14002	4.1	1
29	Reward Weakened Inhibition of Return (IOR) in the Near Depth Plane <i>Perception</i> , 2022 , 51, 114-130	1.2	O
28	Current Progress and Future Directions for Theory and Research on Savoring <i>Frontiers in Psychology</i> , 2021 , 12, 771698	3.4	2
27	Epidermal growth factor receptor-mutated lung adenocarcinoma diagnosed from endometrial polyp metastasis: A case report and literature review Tark Jinekoloji Ve Obstetrik Dernei Dergisi, 2022, 19, 81-86	1.1	O

26	Reward and Loss Incentives Improve Spatial Working Memory by Shaping Trial-by-Trial Posterior Frontoparietal Signals <i>NeuroImage</i> , 2022 , 119139	7.9	
25	How the value of the environment controls persistence in visual search <i>PLoS Computational Biology</i> , 2021 , 17, e1009662	5	O
24	Guiding spatial attention by multimodal reward cues <i>Attention, Perception, and Psychophysics</i> , 2021 , 84, 655	2	О
23	Reward reduces the fission illusion in the sound-induced flash illusion <i>Perception</i> , 2022 , 30100662210	93479	1
22	Data_Sheet_1.docx. 2018 ,		
21	Hippocampus Maintains a Coherent Map Under Reward Feature-Landmark Cue Conflict <i>Frontiers in Neural Circuits</i> , 2022 , 16, 878046	3.5	O
20	Integrating unsupervised and reinforcement learning in human categorical perception: A computational model <i>PLoS ONE</i> , 2022 , 17, e0267838	3.7	О
19	Pupil size as a robust marker of attentional capture by nicotine-related stimuli in smokers.		
18	Effects of selective attention on the C1 ERP component: A systematic review and meta-analysis. <i>Psychophysiology</i> ,	4.1	О
17	Pop-in: the inversion of pop-out for a feature dimension during visual search in area V4 of the monkey cortex.		
16	Expectations of immediate and delayed reward differentially affect cognitive task performance. 2022 , 262, 119582		
15	Semantic Network Model for Sign Language Comprehension. 2022 , 16, 1-19		O
14	Pupil size as a robust marker of attentional bias toward nicotine-related stimuli in smokers.		O
13	Reward salience but not spatial attention dominates the value representation in the orbitofrontal cortex. 2022 , 13,		O
12	Attention to stimuli of learned versus innate biological value rely on separate neural systems. JN-RM-0)925-22	2 o
11	Enriched environments enhance the development of explicit memory in an incidental learning task. 2022 , 12,		Ο
10	Individual differences in self- and value-based reward processing. 2023, 4, 100095		О
9	Reducing anxiety and attentional bias with reward association learning and attentional bias modification. 13,		О

8	Control over reward gain unlocks the reward cue motivational salience.	O
7	Value-driven modulation of visual perception by visual and auditory reward cues: The role of performance-contingent delivery of reward. 16,	O
6	Learned value modulates the access to visual awareness during continuous flash suppression. 2023 , 13,	О
5	Bilingual toddlers show increased attention capture by static faces compared to monolinguals. 1-10	O
4	Distinct mechanisms underlie value-driven modulation of visual cortex by previously rewarded visual and auditory stimuli.	O
3	Learned cognitive control counteracts value-driven attentional capture.	O
2	Value-directed learning: Schematic reward structure facilitates learning.	O
1	Reward prospect affects strategic adjustments in stop signal task. 14,	O