Photosynthetic enzyme activities and gene expression a and post-drought recovery in Kentucky bluegrass

Environmental and Experimental Botany 89, 28-35

DOI: 10.1016/j.envexpbot.2012.12.001

Citation Report

ARTICLE

IF CITATIONS

Evaluation of some pepper genotypes as rootstocks in water stress conditions. Zahradnictvi (Prague,) Tj ETQq0 0 0 rgBT /Overlock 10 Th

2	Changes in Rubisco activase gene expression and polypeptide content in Brachypodium distachyon. Plant Physiology and Biochemistry, 2014, 81, 61-66.	5.8	16
3	Physiological, Ultrastructural and Proteomic Responses in the Leaf of Maize Seedlings to Polyethylene Glycol-Stimulated Severe Water Deficiency. International Journal of Molecular Sciences, 2015, 16, 21606-21625.	4.1	28
4	Physiological and Proteomic Adaptation of the Alpine Grass Stipa purpurea to a Drought Gradient. PLoS ONE, 2015, 10, e0117475.	2.5	17
5	Combined drought and heat stress in Camellia oleifera cultivars: leaf characteristics, soluble sugar and protein contents, and Rubisco gene expression. Trees - Structure and Function, 2015, 29, 1483-1492.	1.9	24
6	Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxicology and Environmental Safety, 2015, 117, 96-106.	6.0	100
7	Effects of progressive drought on photosynthesis and partitioning of absorbed light in apple trees. Journal of Integrative Agriculture, 2015, 14, 681-690.	3.5	31
8	Photosynthetic performance of maize hybrids to drought stress. Russian Journal of Plant Physiology, 2015, 62, 788-796.	1.1	33
9	Antioxidant responses to waterlogging stress and subsequent recovery in two Kentucky bluegrass (Poa pratensis L.) cultivars. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	19
10	Photoprotective function of energy dissipation by thermal processes and photorespiratory mechanisms in Jatropha curcas plants during different intensities of drought and after recovery. Environmental and Experimental Botany, 2015, 110, 36-45.	4.2	70
11	PHYSIOLOGICAL RESPONSES OF THREE WOODY SPECIES SEEDLINGS UNDER WATER STRESS, IN SOIL WITH AND WITHOUT ORGANIC MATTER. Revista Arvore, 2016, 40, 455-464.	0.5	6
12	Hop (Humulus lupulus L.) response mechanisms in drought stress: Proteomic analysis with physiology. Plant Physiology and Biochemistry, 2016, 105, 67-78.	5.8	20
13	Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis following cold stress in Elymus nutans Griseb Journal of Photochemistry and Photobiology B: Biology, 2016, 163, 30-39.	3.8	13
14	Changes in protein quantities of phosphoenolpyruvate carboxylase and Rubisco activase in various wheat genotypes. Saudi Journal of Biological Sciences, 2017, 24, 1529-1533.	3.8	3
15	Physiological and Fluorescence Reaction of Four Rice Genotypes to Exogenous Application of IAA and Kinetin under Drought Stress. Notulae Scientia Biologicae, 2017, 9, 378-385.	0.4	6
16	AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Scientific Reports, 2018, 8, 2250.	3.3	60
17	Gene expression analysis in Eucalyptus globulus exposed to drought stress in a controlled and a field environment indicates different strategies for short- and longer-term acclimation. Tree Physiology, 2018, 38, 1623-1639.	3.1	3
18	Salicylic acid-induced photosynthetic adaptability of Zea mays L. to polyethylene glycol-simulated water deficit is associated with nitric oxide signaling. Photosynthetica, 2018, 56, 1370-1377.	1.7	21

		CITATION REPORT		
#	Article		IF	CITATIONS
19	Nitric oxide is involved in abscisic acid-induced photosynthesis and antioxidant system of seedlings response to low-light stress. Environmental and Experimental Botany, 2018, 15	tall fescue 5, 226-238.	4.2	29
20	Growth and Physiological Responses of Temperate Pasture Species to Consecutive Heat Stresses. Plants, 2019, 8, 227.	and Drought	3.5	20
21	Comparative iTRAQ-based proteomic analysis provides insight into a complex regulatory Pogostemon cablin in response to exogenous MeJA and Ethrel. Industrial Crops and Prod 140, 111661.	network of ucts, 2019,	5.2	12
22	Impacts of abiotic stresses on the physiology and metabolism of coolâ€season grasses: A and Energy Security, 2019, 8, e00152.	review. Food	4.3	25
23	Response of Photosynthesis in Maize to Drought and Re-Watering. Russian Journal of Pla Physiology, 2019, 66, 424-432.	nt	1.1	10
24	Exogenous melatonin reduces the inhibitory effect of osmotic stress on photosynthesis i PLoS ONE, 2019, 14, e0226542.	n soybean.	2.5	42
25	Integrated proteome analyses of wheat glume and awn reveal central drought response p under water deficit conditions. Journal of Plant Physiology, 2019, 232, 270-283.	proteins	3.5	9
26	Trade-off of within-leaf nitrogen allocation between photosynthetic nitrogen-use efficient water deficit stress acclimation in rice (Oryza sativa L.). Plant Physiology and Biochemistr 41-50.	cy and y, 2019, 135,	5.8	39
27	Melatonin reduces oxidative stress and promotes drought tolerance in young Coffea aral plants. Agricultural Water Management, 2019, 211, 37-47.	bica L.	5.6	119
28	Desiccation avoidance and drought tolerance strategies in bermudagrasses. Environment Experimental Botany, 2020, 171, 103947.	cal and	4.2	24
29	Effects of elevated carbon dioxide on drought tolerance and postâ€drought recovery inverse rhizome growth in Kentucky bluegrass. Crop Science, 2020, 61, 3219.	olving	1.8	6
30	Exogenous chlorogenic acid alleviates oxidative stress in apple leaves by enhancing antio capacity. Scientia Horticulturae, 2020, 274, 109676.	xidant	3.6	34
31	Combined Proteome and Transcriptome Analysis of Heat-Primed Azalea Reveals New Insig Heat Acclimation Memory. Frontiers in Plant Science, 2020, 11, 1278.	ghts Into Plant	3.6	18
32	AhHDA1-mediated AhGLK1 promoted chlorophyll synthesis and photosynthesis regulates growth of peanut leaves after water stress. Plant Science, 2020, 294, 110461.	recovery	3.6	13
33	Single and combined effects of heat and water stress and recovery on cotton (Gossypiun leaf physiology and sucrose metabolism. Plant Physiology and Biochemistry, 2020, 148, 1	n hirsutum L.) 166-179.	5.8	51
34	Assessing drought resistance in seashore paspalum genotypes using leaf gas exchange, c adjustment, and rooting characteristics. Crop Science, 2021, 61, 2121-2134.	osmotic	1.8	4
35	Comparative physiological and proteomic analysis of cultivated and wild safflower respor drought stress and re-watering. Physiology and Molecular Biology of Plants, 2021, 27, 28	ise to 1-295.	3.1	12
36	A Review on Kentucky Bluegrass Responses and Tolerance to Drought Stress. , 0, , .			2

CITATION REPORT

#	Article	IF	CITATIONS
37	Response of Chinese sea buckthorn clonal growth and photosynthetic physiological mechanisms toward a soil moisture gradient. IForest, 2021, 14, 337-343.	1.4	0
38	Comparative Physiological and Proteomic Analysis Reveals the Leaf Response to Cadmium-Induced Stress in Poplar (Populus yunnanensis). PLoS ONE, 2015, 10, e0137396.	2.5	23
39	Epichloe endophyte infection improved drought and heat tolerance of tall fescue through altered antioxidant enzyme activity. European Journal of Horticultural Science, 2017, 82, 90-97.	0.7	20
40	Growth and Physiological Factors Involved in Interspecific Variations in Drought Tolerance and Postdrought Recovery in Warm- and Cool-season Turfgrass Species. Journal of the American Society for Horticultural Science, 2015, 140, 459-465.	1.0	5
41	Chl a fluorescence and proteomics reveal protection of the photosynthetic apparatus to dehydration in tolerant but not in susceptible wheat cultivars. Biologia Plantarum, 2019, 63, 287-297.	1.9	3
42	Adaptation of photosynthesis to water deficit in the reproductive phaseof a maize (Zea mays L.) inbred line. Photosynthetica, 2019, 57, 399-408.	1.7	6
43	Hydrogen sulfide regulates photosynthesis of tall fescue under low-light stress. Photosynthetica, 2019, 57, 714-723.	1.7	18
44	Irrigation Depth and Carnauba (Copernicia prunifera) Straw Increase Water Use Efficiency in the Cherry Tomato in a Semi-Arid Region. Journal of Agricultural Studies, 2020, 8, 629.	0.1	Ο
45	What happens after drought ends: synthesizing terms and definitions. New Phytologist, 2022, 235, 420-431.	7.3	27
46	Transcriptome analysis of Kentucky bluegrass subject to drought and ethephon treatment. PLoS ONE, 2021, 16, e0261472.	2.5	7
50	Effects of Epichloë Endophyte and Transgenerational Effects on Physiology of Achnatherum inebrians under Drought Stress. Agriculture (Switzerland), 2022, 12, 761.	3.1	3
51	Progress and Challenges in China Turfgrass Abiotic Stress Resistance Research. Frontiers in Plant Science, 0, 13, .	3.6	5
52	Melatonin improves nitrogen metabolism during grain filling under drought stress. Physiology and Molecular Biology of Plants, 2022, 28, 1477-1488.	3.1	14
53	Combined analyses of transcriptome and metabolome reveal the mechanism of exogenous strigolactone regulating the response of elephant grass to drought stress. Frontiers in Plant Science, 0, 14, .	3.6	1
54	Combined Cold and Drought Stress-Induced Response of Photosynthesis and Osmotic Adjustment in Elymus nutans Griseb Agronomy, 2023, 13, 2368.	3.0	0
56	Transcriptome Analysis of Native Kentucky Bluegrass (Poa pratensis L.) in Response to Osmotic Stress. Plants, 2023, 12, 3971.	3.5	1
58	Effects of exogenous melatonin on wheat quality underÂdrought stress andÂrehydration. Plant Growth Regulation, 0, , .	3.4	0