The wear of polished and glazed zirconia against ename

Journal of Prosthetic Dentistry 109, 22-29

DOI: 10.1016/s0022-3913(13)60005-0

Citation Report

#	Article	IF	CITATIONS
1	Current status of zirconia restoration. Journal of Prosthodontic Research, 2013, 57, 236-261.	1.1	535
2	Properties and Survival Rate of all Ceramics Dental Crown: A Review. Applied Mechanics and Materials, 0, 465-466, 857-861.	0.2	O
3	Influence of ceramic surface texture on the wear of gold alloy and heat-pressed ceramics. Dental Materials Journal, 2014, 33, 865-873.	0.8	13
4	A Review of the Low-Temperature Degradation of Dental Zirconia. Applied Mechanics and Materials, 2014, 606, 85-88.	0.2	1
5	Enamel wear caused by monolithic zirconia crowns after 6Âmonths of clinical use. Journal of Oral Rehabilitation, 2014, 41, 314-322.	1.3	128
6	Wear behavior of human enamel against lithium disilicate glass ceramic and type III gold. Journal of Prosthetic Dentistry, 2014, 112, 1399-1405.	1.1	39
7	Emerging Ceramic-based Materials for Dentistry. Journal of Dental Research, 2014, 93, 1235-1242.	2.5	343
8	Wear of enamel opposing zirconia and lithium disilicate after adjustment, polishing and glazing. Journal of Dentistry, 2014, 42, 1586-1591.	1.7	142
9	Is the rush to all-ceramic crowns justified?. Journal of the American Dental Association, 2014, 145, 192-194.	0.7	32
10	Esthetic Treatment of a Diffuse <i>Amelogenesis Imperfecta </i> Using Pressed Lithium Disilicate and Feldspathic Ceramic Restorations: 5‥ear Follow Up. Journal of Esthetic and Restorative Dentistry, 2014, 26, 363-373.	1.8	5
11	In Vitro Wear Behavior of Zirconia Opposing Enamel: A Systematic Review. Journal of Prosthodontics, 2014, 23, 593-601.	1.7	80
12	Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontologica Scandinavica, 2014, 72, 145-153.	0.9	126
13	The Effectiveness of Polishing Kits: Influence on Surface Roughness of Zirconia. International Journal of Prosthodontics, 2015, 28, 149-151.	0.7	32
14	Preliminary investigations into finishing of artificial dental crown. International Journal of Precision Technology, 2015, 5, 229.	0.2	11
15	Overload and complication of dental implant treatment. Annals of Japan Prosthodontic Society, 2015, 7, 305-313.	0.0	0
16	Esthetic Prosthetic Restorations: Reliability and Effects on Antagonist Dentition. Open Dentistry Journal, 2015, 9, 473-481.	0.2	11
17	Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns. BioMed Research International, 2015, 2015, 1-7.	0.9	54
18	Clinical study to evaluate the wear of natural enamel antagonist to zirconia and metal ceramic crowns. Journal of Prosthetic Dentistry, 2015, 114, 358-363.	1.1	140

#	Article	IF	Citations
19	Update zirconia restorations. Journal of Prosthodontic Research, 2015, 59, 81-83.	1.1	12
20	Effects of cementation surface modifications on fracture resistance of zirconia. Dental Materials, 2015, 31, 435-442.	1.6	32
21	Clinical and laboratory surface finishing procedures for zirconia on opposing human enamel wear: A laboratory study. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 50, 93-103.	1.5	46
22	Two-body wear comparison of zirconia crown, gold crown, and enamel against zirconia. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 47, 21-28.	1.5	30
24	A comparative study of sliding wear of nonmetallic dental restorative materials with emphasis on micromechanical wear mechanisms., 2015, 103, 925-934.		39
25	Surface properties of monolithic zirconia after dental adjustment treatments and in vitro wear simulation. Journal of Dentistry, 2015, 43, 133-139.	1.7	85
26	Evaluation of Wear and Hardness of Zirconia with Different Surface Treatment Protocols a Systematic Review. Indian Journal of Science and Technology, 2016, 9, .	0.5	3
27	Digital Dentistry Now and Future. Annals of Japan Prosthodontic Society, 2016, 8, 394-399.	0.0	0
28	Influence of Different Post-Plasma Treatment Storage Conditions on the Shear Bond Strength of Veneering Porcelain to Zirconia. Materials, 2016, 9, 43.	1.3	28
29	Effect of Finishing and Polishing on the Surface Roughness of Four Ceramic Materials after Occlusal Adjustment. Journal of Esthetic and Restorative Dentistry, 2016, 28, 382-396.	1.8	37
30	Wear Potential of Dental Ceramics and its Relationship with Microhardness and Coefficient of Friction. Journal of Prosthodontics, 2016, 25, 557-562.	1.7	13
31	In vitro wear of four ceramic materials and human enamel on enamel antagonist. European Journal of Oral Sciences, 2016, 124, 295-300.	0.7	50
32	Wear characteristics of polished and glazed lithium disilicate ceramics opposed to three ceramic materials. Journal of Oral Science, 2016, 58, 117-123.	0.7	12
33	Evaluation of various polishing systems and the phase transformation of monolithic zirconia. Journal of Prosthetic Dentistry, 2016, 116, 440-449.	1.1	49
35	Dentist material selection for single-unit crowns: Findings from the National Dental Practice-Based Research Network. Journal of Dentistry, 2016, 55, 40-47.	1.7	101
37	Effect of polishing instruments and polishing regimens on surface topography and phase transformation of monolithic zirconia: An evaluation with XPS and XRD analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64, 104-112.	1.5	42
38	Zirconia in biomedical applications. Expert Review of Medical Devices, 2016, 13, 945-963.	1.4	145
39	Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dental Materials, 2016, 32, e275-e283.	1.6	244

#	ARTICLE	IF	CITATIONS
41	Fullâ€Arch, Implantâ€Supported Monolithic Zirconia Rehabilitations: Pilot Clinical Evaluation of Wear Against Natural or Composite Teeth. Journal of Prosthodontics, 2016, 25, 629-633.	1.7	25
42	An overview of monolithic zirconia in dentistry. Biotechnology and Biotechnological Equipment, 2016, 30, 644-652.	0.5	57
43	Two-body wear performance of dental colored zirconia after different surface treatments. Journal of Prosthetic Dentistry, 2016, 116, 584-590.	1.1	31
44	Effect of Polishing Systems on Surface Roughness and Topography of Monolithic Zirconia. Operative Dentistry, 2016, 41, 417-423.	0.6	29
45	Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: A comparison of numerical predictions with experimental data after 2 years of aging. Dental Materials, 2016, 32, 394-402.	1.6	52
46	Effect of different dental ceramic systems on the wear of human enamel: An inÂvitro study. Journal of Prosthetic Dentistry, 2016, 115, 230-237.	1.1	39
47	Cycle-dependent in vitro wear performance of dental ceramics after clinical surface treatments. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53, 49-58.	1.5	37
48	Evaluation of Different Polishing Systems and Speeds for Dental Zirconia. Journal of Prosthodontics, 2017, 26, 410-418.	1.7	26
49	Restoration of the Worn Dentition: Basic Prosthodontic Principles and Current Rehabilitation Techniques. Current Oral Health Reports, 2017, 4, 124-130.	0.5	2
50	Effects of artificial aging on the biaxial flexural strength of Ce-TZP/Al2O3 and Y-TZP after various occlusal adjustments. Ceramics International, 2017, 43, 9951-9959.	2.3	8
51	Speed sintering translucent zirconia for chairside one-visit dental restorations: Optical, mechanical, and wear characteristics. Ceramics International, 2017, 43, 10999-11005.	2.3	86
52	Effect of coarse grinding, overglazing, and 2 polishing systems on the flexural strength, surface roughness, and phase transformation of yttrium-stabilized tetragonal zirconia. Journal of Prosthetic Dentistry, 2017, 118, 658-665.	1.1	52
53	A comparative study on the wear behavior of a polymer infiltrated ceramic network (PICN) material and tooth enamel. Dental Materials, 2017, 33, 1351-1361.	1.6	37
54	The effect of surface treatment on the friction and wear behavior of dental Y-TZP ceramic against human enamel. Tribology International, 2017, 116, 192-198.	3.0	36
55	Fatigue behaviours of the zirconia dental restorations prepared by two manufacturing methods. Advances in Applied Ceramics, 2017, 116, 368-375.	0.6	24
56	Effect of polishing procedures and hydrothermal aging on wear characteristics and phase transformation of zirconium dioxide. Journal of Prosthetic Dentistry, 2017, 117, 545-551.	1.1	17
57	Evaluation of Surface Roughness of Monolithic Zirconia after Using Different Polishing Kits. Pesquisa Brasileira Em Odontopediatria E Clinica Integrada, 2017, 17, 1-7.	0.7	5
58	Polishing of Monolithic Zirconia Crownsâ€"Results of Different Dental Practitioner Groups. Dentistry Journal, 2017, 5, 30.	0.9	11

#	ARTICLE	IF	CITATIONS
59	Comparison of the mechanical properties of translucent zirconia and lithium disilicate. Journal of Prosthetic Dentistry, 2018, 120, 132-137.	1.1	175
60	A Study on Topographical Properties and Surface Wettability of Monolithic Zirconia after Use of Diverse Polishing Instruments with Different Surface Coatings. Journal of Prosthodontics, 2018, 27, 429-442.	1.7	14
61	Randomized clinical study of wear of enamel antagonists against polished monolithic zirconia crowns. Journal of Dentistry, 2018, 68, 19-27.	1.7	73
62	Effect of brushing and thermocycling on the shade and surface roughness of CAD-CAM ceramic restorations. Journal of Prosthetic Dentistry, 2018, 119, 1000-1006.	1.1	58
63	Evaluation of hardness and wear of surface treated zirconia on enamel wear. An in-vitro study. Future Dental Journal, 2018, 4, 76-83.	0.1	12
64	Wear Evaluation of Prosthetic Materials Opposing Themselves. Operative Dentistry, 2018, 43, 38-50.	0.6	30
65	Mechanical properties of resin-ceramic CAD-CAM materials after accelerated aging. Journal of Prosthetic Dentistry, 2018, 119, 954-958.	1.1	36
66	Restaurações cerâmicas multicamadas e monolÃticas: uma revisão de literatura. Revista Da Faculdade De Odontologia (Universidade De Passo Fundo), 2018, 23, 353-360.	0.2	0
67	Wear performance of self-glazed zirconia crowns with different amount of occlusal adjustment after 6 months of clinical use. Advances in Applied Ceramics, 2018, 117, 445-451.	0.6	11
68	The effect of heat treatments applied to superstructure porcelain on the mechanical properties and microstructure of lithium disilicate glass ceramics. Dental Materials Journal, 2018, 37, 24-32.	0.8	16
69	The effect of surface treatments on dental zirconia: An analysis of biaxial flexural strength, surface roughness and phase transformation. Journal of Dentistry, 2018, 75, 65-73.	1.7	34
70	Recent advances in understanding the fatigue and wear behavior of dental composites and ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 504-533.	1.5	94
71	Wear resistance and abrasiveness of CAD-CAM monolithic materials. Journal of Prosthetic Dentistry, 2018, 120, 318.e1-318.e8.	1.1	91
72	An evidence-based evaluation of contemporary dental ceramics. Dental Update, 2018, 45, 541-546.	0.1	4
73	Simulated occlusal adjustments and their effects on zirconia and antagonist artificial enamel. Journal of Advanced Prosthodontics, 2019, 11, 162.	1.1	3
74	Monolithic Zirconia: An Update to Current Knowledge. Optical Properties, Wear, and Clinical Performance. Dentistry Journal, 2019, 7, 90.	0.9	82
75	In vitro wear of a zirconium-reinforced lithium silicate ceramic against different restorative materials. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 100, 103403.	1.5	7
76	Wear Characteristics of Dental Ceramic CAD/CAM Materials Opposing Various Dental Composite Resins. Materials, 2019, 12, 1839.	1.3	16

#	Article	IF	Citations
77	What is the Optimal Material for Implant Prosthesis?. Dental Clinics of North America, 2019, 63, 515-530.	0.8	9
78	Effect of grinding and polishing on the roughness and fracture resistance of cemented CAD-CAM monolithic materials submitted to mechanical aging. Journal of Prosthetic Dentistry, 2019, 121, 866.e1-866.e8.	1.1	14
79	The progressive wear and abrasiveness of novel graded glass/zirconia materials relative to their dental ceramic counterparts. Dental Materials, 2019, 35, 763-771.	1.6	21
80	Two-body wear behavior of human enamel versus monolithic zirconia, lithium disilicate, ceramometal and composite resin. Journal of Advanced Prosthodontics, 2019, 11, 23.	1.1	25
81	Demystifying Modern Dental Ceramics. Primary Dental Journal, 2019, 8, 28-33.	0.3	5
82	High-translucent yttria-stabilized zirconia ceramics are wear-resistant and antagonist-friendly. Dental Materials, 2019, 35, 1776-1790.	1.6	61
83	Wear of ceramic-based dental materials. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 92, 144-151.	1.5	57
84	Comparative evaluation of surface roughness of posterior primary zirconia crowns. European Archives of Paediatric Dentistry: Official Journal of the European Academy of Paediatric Dentistry, 2019, 20, 33-40.	0.7	11
85	Enamel wear and aging of translucent zirconias: InÂvitro and clinical studies. Journal of Prosthetic Dentistry, 2019, 121, 417-425.	1.1	16
86	Effect of finishing condition on fracture strength of monolithic zirconia crowns. Dental Materials Journal, 2019, 38, 203-210.	0.8	12
87	Antagonist enamel wear of tooth-supported monolithic zirconia posterior crowns inÂvivo: A systematic review. Journal of Prosthetic Dentistry, 2019, 121, 598-603.	1.1	35
88	Tribological behavior evaluation of dental fluorapatite glass ceramic. Journal of the Australian Ceramic Society, 2019, 55, 363-370.	1.1	3
89	Wear Characteristics and Volume Loss of CAD/CAM Ceramic Materials. Journal of Prosthodontics, 2019, 28, e510-e518.	1.7	13
90	Different polishing methods for zirconia: impact on surface, optical, and mechanical properties. Clinical Oral Investigations, 2020, 24, 395-403.	1.4	11
91	Clinical factors affecting the translucency of monolithic Y-TZP ceramics. Odontology / the Society of the Nippon Dental University, 2020, 108, 526-531.	0.9	13
92	The application of 3D printed self-glazed zirconia for full-mouth rehabilitation in a patient with severely worn dentition: a case report. Advances in Applied Ceramics, 2020, 119, 305-311.	0.6	3
93	Influence of different surface treatments on two-body wear and fracture load of monolithic CAD/CAM ceramics. Clinical Oral Investigations, 2020, 24, 3049-3060.	1.4	18
94	Novel methodology for measuring intraoral wear in enamel and dental restorative materials. Clinical and Experimental Dental Research, 2020, 6, 677-685.	0.8	11

#	Article	IF	CITATIONS
95	Effects of the ratio of silane to 10-methacryloyloxydecyl dihydrogenphosphate (MDP) in primer on bonding performance of silica-based and zirconia ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 104026.	1.5	24
96	Rapid fabrication of ultra-smooth Y-TZP bioceramic surfaces by dual-axis wheel polishing: process development and tribological characterization. Journal of Manufacturing Processes, 2020, 55, 276-287.	2.8	7
97	Evaluation of the wear of glazed and polished zirconia crowns and the opposing natural teeth: A clinical pilot study. Journal of Prosthetic Dentistry, 2021, 126, 52-57.	1.1	12
98	Effect of finishing/polishing techniques and low temperature degradation on the surface topography, phase transformation and flexural strength of ultra-translucent ZrO2 ceramic. Dental Materials, 2020, 36, e126-e139.	1.6	40
99	Tribological Characterization of Dental Restorative Materials. Biotribology, 2020, 23, 100140.	0.9	8
100	Simulated clinical adjustment and intra-oral polishing of two translucent, monolithic zirconia dental ceramics: An in vitro investigation of surface roughness. Journal of Dentistry, 2020, 101, 103447.	1.7	19
101	A State-of-the-Art Review on the Wear of the Occlusal Surfaces of Natural Teeth and Prosthetic Crowns. Materials, 2020, 13, 3525.	1.3	23
102	Evaluation of the Milling Accuracy of Zirconia-Reinforced Lithium Silicate Crowns Fabricated Using the Dental Medical Device System: A Three-Dimensional Analysis. Materials, 2020, 13, 4680.	1.3	6
103	Effects of Khat on Surface Roughness and Color of Feldspathic and Zirconia Porcelain Materials under Simulated Oral Cavity Conditions. Medicina (Lithuania), 2020, 56, 234.	0.8	11
104	Degradation of Computer-aided Design/Computer-aided Manufacturing Composites by Dietary Solvents: An Optical Three-dimensional Surface Analysis. Operative Dentistry, 2020, 45, E176-E184.	0.6	8
105	Wear analysis and topographical properties of monolithic zirconia and CoCr against human enamel after polishing and glazing procedures. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 105, 103712.	1.5	11
106	Digital Workflow for Implant Rehabilitation with Double Fullâ€Arch Monolithic Zirconia Prostheses. Journal of Prosthodontics, 2020, 29, 460-465.	1.7	39
107	In vitro adherence of <i>Candida albicans</i> to zirconia surfaces. Oral Diseases, 2020, 26, 1072-1080.	1.5	13
108	Tribology, Characterization, and Surface Roughness Study of a CAD/CAM-Fabricated Zirconia. Journal of Bio- and Tribo-Corrosion, 2020, 6, 1.	1.2	4
109	Wear of resin teeth opposing zirconia. Journal of Prosthetic Dentistry, 2020, 124, 488-493.	1.1	16
110	Wear behavior of dental glass-ceramics: a scoping review on the damage of opposing tooth enamel surfaces. Biotribology, 2020, 21, 100116.	0.9	9
111	Suitability of 3D printed pieces of nanocrystalline zirconia for dental applications. Dental Materials, 2020, 36, 442-455.	1.6	57
112	Wear in Antagonist Teeth Produced by Monolithic Zirconia Crowns: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 2020, 9, 997.	1.0	17

#	ARTICLE	IF	Citations
113	Microstructure and mechanical properties of fully sintered zirconia glazed with an experimental glass. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 113, 104093.	1.5	11
114	Monolithic Zirconia Partial Coverage Restorations: An In Vitro Mastication Simulation Study. Journal of Prosthodontics, 2021, 30, 76-82.	1.7	13
115	Zirconia restorations. Journal of the American Dental Association, 2021, 152, 80-81.e2.	0.7	14
116	Dental Ultrasound in Periodontology and Implantology. , 2021, , .		7
117	Comparison of surface topography and roughness in different yttrium oxide compositions of dental zirconia after grinding and polishing. Journal of Advanced Prosthodontics, 2021, 13, 258.	1.1	6
118	Effect of ionizing radiation and chewing simulation on human enamel and zirconia. Journal of Prosthodontic Research, 2021, 65, 67-72.	1.1	0
119	Fracture toughness of different monolithic zirconia upon post-sintering processes. Journal of Clinical and Experimental Dentistry, 2021, 13, e1006-e1014.	0.5	2
120	Irradiation therapy and chewing simulation: effect on zirconia and human enamel. Journal of Prosthodontic Research, 2021, 65, 249-254.	1.1	0
121	Wear Resistance of 3D Printed and Prefabricated Denture Teeth Opposing Zirconia. Journal of Prosthodontics, 2021, 30, 804-810.	1.7	11
122	Quantitative analysis on the wear of monolithic zirconia crowns on antagonist teeth. BMC Oral Health, 2021, 21, 94.	0.8	13
123	Recent Progress on Wearâ€Resistant Materials: Designs, Properties, and Applications. Advanced Science, 2021, 8, e2003739.	5.6	199
124	Effect of surface treatment and glazing in the two-body wear resistance of a hybrid ceramic after polymeric staining application. Journal of Adhesion Science and Technology, 2021, 35, 2625-2635.	1.4	0
125	Wear resistance and surface roughness of two types of monolithic glass ceramics: An in vitro study. Egyptian Dental Journal, 2021, 67, 1537-1547.	0.1	0
126	The Wear Behavior of Various Monolithic Ceramics after Wear Simulation against Human Enamel Egyptian Dental Journal, 2021, 67, 1435-1451.	0.1	0
127	Zirconia crowns for children: A systematic review. International Journal of Paediatric Dentistry, 2022, 32, 66-81.	1.0	22
129	The need for polishing and occlusal adjustment of zirconia prostheses for wear on antagonist teeth. Dental Materials Journal, 2021, 40, 650-656.	0.8	7
130	Wear of monolithic zirconia against different CAD-CAM and indirect restorative materials. Journal of Prosthetic Dentistry, 2022, 128, 505-511.	1.1	3
131	UV-Mediated Photofunctionalization of Indirect Restorative Materials Enhances Bonding to a Resin-Based Luting Agent. BioMed Research International, 2021, 2021, 1-8.	0.9	3

#	Article	IF	CITATIONS
132	Clinical Feasibility of Fully Sintered (Y, Nb)-TZP for CAD-CAM Single-Unit Restoration: A Pilot Study. Materials, 2021, 14, 2762.	1.3	3
133	Use of zirconia onlays in a maxillary removable implant-supported denture: A clinical report. Journal of Prosthetic Dentistry, 2023, 129, 251-256.	1.1	2
134	Effect of surface treatments on wear and surface properties of different CAD-CAM materials and their enamel antagonists. Journal of Prosthetic Dentistry, 2023, 129, 495-506.	1.1	10
135	Influence of 10-methacryloyloxydecyl dihydrogen phosphate (MDP) incorporated experimental cleaners on the bonding performance of saliva-contaminated zirconia ceramic. Clinical Oral Investigations, 2022, 26, 1785-1795.	1.4	8
136	Classification and Properties of Dental Zirconia as Implant Fixtures and Superstructures. Materials, 2021, 14, 4879.	1.3	32
137	Effect of Grinding and Subsequent Various Surface Treatments on the Surface Roughness of Full Contour Monolithic Zirconia. Journal of Evolution of Medical and Dental Sciences, 2021, 10, 2624-2628.	0.1	0
138	Effects of surface roughness on the time-dependent wear performance of lithium disilicate glass ceramic for dental applications. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104638.	1.5	4
139	Impact of high-speed sintering, layer thickness and artificial aging on the fracture load and two-body wear of zirconia crowns. Dental Materials, 2020, 36, 846-853.	1.6	20
140	Zirconia Use in Dentistry - Manufacturing and Properties. Current Health Sciences Journal, 2019, 45, 28-35.	0.2	23
141	Zirconia: The Material of Choice in Implant Dentistry? An Update. Journal of Dental Health, Oral Disorders & Therapy, 2017, 6, .	0.0	5
142	Surface roughness and hardness of yttria stabilized zirconia (Y-TZP) after 10 years of simulated brushing. Universidade Estadual Paulista Revista De Odontologia, 2014, 43, 379-383.	0.3	15
143	Analysis of enamel and material wear by digital microscope: an in-vitro study. Brazilian Oral Research, 2020, 33, e121.	0.6	6
144	Optical properties of translucent zirconia: A review of the literature. The EuroBiotech Journal, 2019, 3, 45-51.	0.5	31
145	A study on the wear of enamel caused by monolithic zirconia and the subsequent phase transformation compared to two other ceramic systems. Journal of Indian Prosthodontic Society, The, 2017, 17, 8.	0.3	31
146	Comparison the degree of enamel wear behavior opposed to Polymer-infiltrated ceramic and feldspathic porcelain. Dental Research Journal, 2019, 16, 71.	0.2	8
147	Effect of different coloring techniques and surface treatment methods on the surface roughness of monolithic zirconia. Dental Research Journal, 2020, 17, 152.	0.2	10
148	Comparison of the effect of monolithic and layered zirconia on natural teeth wear: An in vitro study. Journal of Indian Prosthodontic Society, The, 2018, 18, 336.	0.3	14
149	An in vitro study to compare the surface roughness of glazed and chairside polished dental monolithic zirconia using two polishing systems. Journal of Indian Prosthodontic Society, The, 2020, 20, 186.	0.3	10

#	ARTICLE	IF	Citations
150	Clinical performance of monolithic CAD/CAM tooth-supported zirconia restorations: systematic review and meta-analysis. Journal of Prosthodontic Research, 2022, 66, 374-384.	1.1	23
151	Effects of the test method on wear measurements in dental enamel/ceramic tribosystems. Ceramics International, 2022, 48, 2744-2754.	2.3	4
153	Enamel wear against monolithic zirconia restorations: A metaâ€analysis and systematic review of in vitro studies. Journal of Esthetic and Restorative Dentistry, 2022, 34, 473-489.	1.8	18
154	Biomechanical consideration for coexistence of implant and natural teeth. Annals of Japan Prosthodontic Society, 2014, 6, 144-148.	0.0	1
155	Implant and prosthetic concept in consideration of the performance of a natural tooth and life stages. Annals of Japan Prosthodontic Society, 2014, 6, 155-160.	0.0	0
156	Contactslijtage in relatie tot kronen en bruggen. Nederlands Tijdschrift Voor Tandheelkunde, 2014, 121, 343-349.	0.1	0
157	Considerations on ceramic restoration's polishing method. Daehan Simmi Chi'gwa Haghoeji, 2015, 24, 78-85.	0.0	0
158	Practicality and prospect of full-zirconia restoration. Daehan Simmi Chi'gwa Haghoeji, 2015, 24, 101-121.	0.0	1
159	Three Considerations when using Zirconia for Implant-Retained Prostheses. Annals of Japan Prosthodontic Society, 2016, 8, 400-405.	0.0	0
160	Challenging Maxillary Anterior Implant-Supported Restorations: Creating Predictable Outcomes with Zirconia., 2017,, 383-403.		0
161	Farklı Yüzey İşlemleri ve Hızlandırılmış Yapay Yaşlandırmanın Monolitik Seramik Sistemlerir Pürüzlülüğü ve Topografisi Üzerine Etkileri. Selcuk Dental Journal, 0, , .	n Yýzey	1
162	Clinical study on the comparison of gold and zirconia wear in animplant-supported fixed prosthesis. Journal of Dental Rehabilitation and Applied Science, 2017, 33, 252-259.	0.1	1
163	Surface characteristics of Zirconia Crown by the polishing method. Korean Journal of Dental Materials, 2017, 44, 349-358.	0.2	0
164	COMPARATIVE TRIBOLOGICAL STUDY OF TWO PROSTHETIC DENTAL MATERIALS: ZIRCONIA AND VITA ENAMIC. , 0, , .		О
165	Artificial Enamel Wear after Prolonged Chewing Simulation against Monolithic Y-TZP Crowns. Materials Sciences and Applications, 2018, 09, 381-392.	0.3	3
166	Surface Roughness of Monolithic Zirconia and Gold Alloy After Wear Simulation Against Human Enamel. Egyptian Dental Journal, 2018, 64, 681-691.	0.1	О
167	MONOLİTİK ZİRKONYA SERAMİK SİSTEMLERİNİN ÜRETİM TİPLERİ İLE AŞINMA, OPTİK VE E Üniversitesi Diş Hekimliği Fakültesi Dergisi, 0, , 263-270.	STETİK Ã	√_ZELLİKLE
168	Fitting and Cementation. BDJ Clinician's Guides, 2019, , 421-444.	0.1	0

#	Article	IF	CITATIONS
169	Evaluation of the Fracture resistance of Machinable Versus Copy Milling Zirconia Restoration after Cyclic Loading. Al-Azhar Journal of Dental Science, 2018, 21, 481-484.	0.0	0
170	Implant treatment as a multidisciplinary therapy. Annals of Japan Prosthodontic Society, 2019, 11, 116-121.	0.0	0
171	Surface roughness of monolithic zirconia ceramic submitted to different polishing systems. Brazilian Journal of Oral Sciences, 0, 18, e191643.	0.1	0
172	Wear Resistance, Color Stability and Displacement Resistance of Milled PEEK Crowns Compared to Zirconia Crowns under Stimulated Chewing and High-Performance Aging. Polymers, 2021, 13, 3761.	2.0	34
173	Comparison the degree of enamel wear behavior opposed to Polymer-infiltrated ceramic and feldspathic porcelain. Dental Research Journal, 2019, 16, 71-75.	0.2	2
174	Effect of different coloring techniques and surface treatment methods on the surface roughness of monolithic zirconia. Dental Research Journal, 2020, 17, 152-161.	0.2	4
175	Wear behavior of silica-infiltrated monolithic zirconia: Effects on the mechanical properties and surface characterization. Ceramics International, 2022, 48, 6649-6656.	2.3	1
176	Effect of Two Brands of Glaze Material on the Flexural Strength and Probability of Failure of High Translucent Monolithic Zirconia. Materials, 2021, 14, 7022.	1.3	4
177	Wear of Ceramics Systems with Different Surface Applications in a Chewing Simulator. Medical Science and Discovery, 2020, 7, 670-679.	0.1	0
178	Three-dimensional fit of self-glazed zirconia monolithic crowns fabricated by wet deposition. Dental Materials Journal, 2022, 41, 363-367.	0.8	7
179	Biaxial Flexural Strength of Different Monolithic Zirconia upon Post-Sintering Processes. European Journal of Dentistry, 2022, 16, 585-593.	0.8	2
180	MDP Salts: A New Bonding Strategy for Zirconia. Journal of Dental Research, 2022, , 002203452110707.	2.5	6
181	Long-term effect of gastric juice alternating with brushing on the surface roughness, topography, and staining susceptibility of CAD-CAM monolithic materials. Journal of Prosthetic Dentistry, 2022, 127, 659.e1-659.e11.	1.1	2
182	Improving wear resistance of acrylic resin denture teeth by using zirconia complete crowns fabricated with a CAD-CAM double-scanning method: A clinical report. Journal of Prosthetic Dentistry, 2022, , .	1.1	0
183	Biomaterials for dental composite applications: A comprehensive review of physical, chemical, mechanical, thermal, tribological, and biological properties. Polymers for Advanced Technologies, 2022, 33, 1762-1781.	1.6	29
184	Ekstraoral Parlatma İşlemlerinin Translüsent Monolitik Zirkonyanın Yüzey Pürüzlülüğüne B 11, 123-131.	Etkisi. , 201	²² 1
185	Wear Behavior of Different Generations of Zirconia: Present Literature. International Journal of Dentistry, 2022, 2022, 1-17.	0.5	18
186	The effect of adjustment and finishing procedure on roughness, strength, and phase transformation of monolithic zirconia. Clinical Oral Investigations, 2022, 26, 4761-4768.	1.4	4

#	Article	IF	CITATIONS
187	Do you know your ceramics? Part 5: zirconia. British Dental Journal, 2022, 232, 311-316.	0.3	6
188	Wear of Polymer-Infiltrated Ceramic Network Materials against Enamel. Materials, 2022, 15, 2435.	1.3	10
189	The effect of aging on the wear performance of monolithic zirconia. Dental Materials, 2022, 38, e136-e146.	1.6	11
190	Evaluation of intaglio surface trueness, wear, and fracture resistance of zirconia crown under simulated mastication: a comparative analysis between subtractive and additive manufacturing. Journal of Advanced Prosthodontics, 2022, 14, 122.	1.1	11
191	Review on synthesis, properties and multifarious therapeutic applications of nanostructured zirconia in dentistry. RSC Advances, 2022, 12, 12773-12793.	1.7	22
192	A novel alumina-ceria polishing paste demonstrated superior polishing of lithium disilicate compared with diamond paste. Dental Materials Journal, 2022, , .	0.8	0
193	Friction and wear behavior of bioinspired composites with nacre-like lamellar and brick-and-mortar architectures against human enamel. Journal of Materials Science and Technology, 2022, 128, 133-141.	5.6	5
194	Patient satisfaction and clinical assessment of surface roughness and wear of enamel antagonists for polished versus glazed posterior lithium disilicate glass ceramic crowns. International Journal of Health Sciences, 0, , 2785-2803.	0.0	0
195	The Correlation of Surface Roughness Parameters of Zirconia and Lithium Disilicate with Steatite Wear. Journal of Prosthodontics, 0 , , .	1.7	0
196	Twenty-four months in vivo wear of enamel antagonists to lithium disilicate implant crowns – a pilot study. Journal of Dentistry, 2022, 124, 104215.	1.7	5
197	Wear behavior and abrasiveness of monolithic CAD/CAM ceramics after simulated mastication. Clinical Oral Investigations, 2022, 26, 6593-6605.	1.4	6
198	3-D Surface Morphological Characterization of CAD/CAM Milled Dental Zirconia: An In Vitro Study of the Effect of Post-Fabrication Processes. Materials, 2022, 15, 4685.	1.3	3
199	Study on the surface properties of different commercially available <scp>CAD</scp> / <scp>CAM</scp> materials for implantâ€supported restorations. Journal of Esthetic and Restorative Dentistry, 2022, 34, 1132-1141.	1.8	5
200	Wear Behaviour of Monolithic Zirconia Against Human Enamel – A Literature Review. Biotribology, 2022, 32, 100224.	0.9	1
201	Comparative evaluation of enamel wear against monolithic zirconia and layered zirconia after polishing and glazing: An in vitro study. Journal of Indian Prosthodontic Society, The, 2022, 22, 354.	0.3	2
202	Wear of various restorative materials against 5Y-ZP zirconia. Journal of Prosthetic Dentistry, 2022, 128, 814.e1-814.e10.	1,1	3
203	Advances in Ceramics for Dental Applications. Dental Clinics of North America, 2022, 66, 591-602.	0.8	6
204	Effect of thermocycling on the mechanical properties, inorganic particle release and low temperature degradation of glazed high translucent monolithic 3Y-TZP dental restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 136, 105495.	1.5	0

#	Article	IF	CITATIONS
205	BaTiO3 modified 3Y-TZP with self-lubricating property for dental application. Ceramics International, 2023, 49, 8361-8372.	2.3	2
206	Natural teeth wear opposite to glazed and polished ceramic crowns: A systematic review. Dental Research Journal, 2022, 19, 108.	0.2	3
207	Assessing Enamel Wear of Monolithic Ceramics With Micro-CT and Intra-oral Scanner. International Dental Journal, 2023, 73, 496-502.	1.0	1
208	Effect of Successive In-office Bleaching Sessions on the Surface Properties, Substance Loss, Biaxial Flexural Strength, and Reliability of CAD-CAM Monolithic Materials. Operative Dentistry, 2022, , .	0.6	0
210	Silica infiltration on translucent zirconia restorations: Effects on the antagonist wear and survivability. Dental Materials, 2022, 38, 2084-2095.	1.6	5
211	Metallic Dental Implants Wear Mechanisms, Materials, and Manufacturing Processes: A Literature Review. Materials, 2023, 16, 161.	1.3	11
212	Analysis of surface characteristics of (Y, Nb)-TZP after finishing and polishing. Journal of Advanced Prosthodontics, 2022, 14, 335.	1.1	0
213	Comparison of treatments for maxillary full denture and mandibular implant-supported fixed prosthesis in completely edentulous patients: A case report. The Journal of Korean Academy of Prosthodontics, 2023, 61, 73.	0.0	0
214	Wear Behavior of Monolithic Zirconia after Staining, Glazing, and Polishing Opposing Dental Restorative Materials: An In Vitro Study. Coatings, 2023, 13, 466.	1.2	1
215	The Influence of Polishing on the Mechanical Properties of Zirconia—A Systematic Review. Oral, 2023, 3, 101-122.	0.6	0
216	Influence of Finishing Procedures on Surface Roughness and Biaxial Flexural Strength of High-translucent 4Y-PSZ, 5Y-PSZ, and 6Y-PSZ Monolithic Zirconia. Clinical and Experimental Health Sciences, 0, , .	0.1	0
217	Infiltration OF 5Y-PSZ with thermally compatible glass: Strength, microstructure and failure mode analyses. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 142, 105812.	1.5	O