Timing and periodicity of paraglacial rock-slope failure

Geomorphology 186, 150-161 DOI: 10.1016/j.geomorph.2012.12.030

Citation Report

#	Article	IF	CITATIONS
1	Supporting Evidence for a 9.6 Â 1 ka Rock Fall Originating from Glacier Point in Yosemite Valley, California. Environmental and Engineering Geoscience, 2013, 19, 345-361.	0.3	11
2	Lateglacial Rock-Slope Failures in the Scottish Highlands. Scottish Geographical Journal, 2013, 129, 67-84.	0.4	32
3	Lateglacial rock slope failures in northâ€west Ireland: age, causes and implications. Journal of Quaternary Science, 2013, 28, 789-802.	1.1	31
4	Impacts of postâ€glacial rebound on landslide spatial distribution at a regional scale in northern Iceland (Skagafjörður). Earth Surface Processes and Landforms, 2014, 39, 336-350.	1.2	54
5	Mountain glacial and paraglacial environments under global climate change: lessons from the past, future directions and policy implications. Geografiska Annaler, Series A: Physical Geography, 2014, 96, 245-264.	0.6	79
6	Largeâ€scale rock slope failures in the eastern pyrenees: identifying a sparse but significant population in paraglacial and parafluvial contexts. Geografiska Annaler, Series A: Physical Geography, 2014, 96, 357-391.	0.6	47
7	Focusing on the spatial non-stationarity of landslide predisposing factors in northern Iceland. Progress in Physical Geography, 2014, 38, 354-377.	1.4	41
8	Rock slope instability and erosion: toward improved process understanding. Earth Surface Processes and Landforms, 2014, 39, 1273-1278.	1.2	32
9	Rock-slope failure following Late Pleistocene deglaciation on tectonically stable mountainous terrain. Quaternary Science Reviews, 2014, 86, 144-157.	1.4	156
10	Enhanced rockâ€ s lope failure following iceâ€sheet deglaciation: timing and causes. Earth Surface Processes and Landforms, 2014, 39, 900-913.	1.2	77
11	Recent (Late Amazonian) enhanced backweathering rates on Mars: Paracratering evidence from gully alcoves. Journal of Geophysical Research E: Planets, 2015, 120, 2169-2189.	1.5	34
12	Catastrophic mass wasting in high mountains. , 2015, , 127-146.		2
13	Glacier- and permafrost-related slope instabilities. , 2015, , 147-165.		10
14	Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs. Earth's Future, 2015, 3, 220-251.	2.4	98
15	Coupling patterns between paraâ€glacial and permafrost degradation responses in Antarctica. Earth Surface Processes and Landforms, 2015, 40, 1227-1238.	1.2	62
16	³⁶ Cl terrestrial cosmogenic nuclide dating suggests Late Pleistocene to Early Holocene mass movements on the south face of Aconcagua mountain and in the Las Cuevas–Horcones valleys, Central Andes, Argentina. Geological Society Special Publication, 2015, 399, 345-368.	0.8	15
17	Cosmogenic dating of rock avalanches constraining Quaternary stratigraphy and regional neotectonics in the Argentine Central Andes (32° S). Quaternary Science Reviews, 2015, 112, 45-58.	1.4	31
18	Post-glacial rock avalanches in the Obersee Valley, Glarner Alps, Switzerland. Geomorphology, 2015, 238, 94-111.	1.1	24

#	Article	IF	CITATIONS
19	Analyses of past and present rock slope instabilities in a fjord valley: Implications for hazard estimations. Geomorphology, 2015, 248, 464-474.	1.1	37
20	Deglaciation constraints in the Parâng Mountains, Southern Romania, using surface exposure dating. Quaternary International, 2015, 388, 156-167.	0.7	33
21	Gravitational spreading of mountain ridges coeval with Late Weichselian deglaciation: impact on glacial landscapes in Tröllaskagi, northern Iceland. Quaternary Science Reviews, 2015, 107, 197-213.	1.4	36
22	Recent progress in landslide dating. Progress in Physical Geography, 2015, 39, 168-198.	1.4	103
23	An early Holocene age for the Vatn landslide (Skagafjörúur, central northern Iceland): Insights into the role of postglacial landsliding on slope development. Holocene, 2016, 26, 1304-1318.	0.9	22
24	Implications of 36Cl exposure ages from Skye, northwest Scotland for the timing of ice stream deglaciation and deglacial ice dynamics. Quaternary Science Reviews, 2016, 150, 130-145.	1.4	17
25	Late readvance and rapid final deglaciation of the last ice sheet in the Grampian Mountains, Scotland. Journal of Quaternary Science, 2016, 31, 869-878.	1.1	13
26	A Special Issue Celebrating the Career of Professor Colin Ballantyne, MA, MSc, PhD, DSc, FRSE, FRSGS, a Uniquely Scottish Geomorphologist. Scottish Geographical Journal, 2016, 132, 119-129.	0.4	Ο
27	Catastrophic Rock-Slope Failures in NW Scotland: Quantitative Analysis and Implications. Scottish Geographical Journal, 2016, 132, 185-209.	0.4	24
28	Regional-scale controls on the spatial activity of rockfalls (Turtmann Valley, Swiss Alps) — A multivariate modeling approach. Geomorphology, 2017, 287, 29-45.	1.1	50
29	Short-term geomorphological evolution of proglacial systems. Geomorphology, 2017, 287, 3-28.	1.1	89
30	Age evaluation and causation of rock-slope failures along the western margin of the Antrim Lava Group (ALG), Northern Ireland, based on cosmogenic isotope (36Cl) surface exposure dating. Geomorphology, 2017, 285, 235-246.	1.1	8
31	The Benner pass rock avalanche cluster suggests a close relation between long-term slope deformation (DSGSDs and translational rock slides) and catastrophic failure. Geomorphology, 2017, 289, 44-59.	1.1	34
32	Are Icelandic rock-slope failures paraglacial? Age evaluation of seventeen rock-slope failures in the Skagafjörður area, based on geomorphological stacking, radiocarbon dating and tephrochronology. Geomorphology, 2017, 296, 45-58.	1.1	25
33	Chapter 5 Periglacial and permafrost ground models for Great Britain. Geological Society Engineering Geology Special Publication, 2017, 28, 501-597.	0.2	24
34	Periglacial and Paraglacial Processes, Landforms and Sediments. , 2017, , 217-254.		5
36	Large-scale slope remodelling by landslides – Geomorphic diversity and geological controls, Kamienne Mts., Central Europe. Geomorphology, 2017, 289, 134-151.	1.1	44
37	Rock avalanche and rock glacier: A compound landform study from Hornsund, Svalbard. Geomorphology, 2017, 276, 244-256.	1.1	15

#	Article	IF	Citations
38	Thermomechanical Stresses Drive Damage of Alpine Valley Rock Walls During Repeat Glacial Cycles. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2620-2646.	1.0	56
39	Glacially moulded landslide runout debris in the Scottish Highlands. Scottish Geographical Journal, 2018, 134, 224-236.	0.4	8
40	Multiple rock-slope failures from Mannen in Romsdal Valley, western Norway, revealed from Quaternary geological mapping and ¹⁰ Be exposure dating. Holocene, 2018, 28, 1841-1854.	0.9	29
41	Timing of paraglacial rockâ€slope failures and denudation signatures in the <scp>Cantabrian Mountains</scp> (<scp>North Iberian Peninsula</scp>). Land Degradation and Development, 2018, 29, 3159-3173.	1.8	10
42	Transience in cascading paraglacial systems. Land Degradation and Development, 2018, 29, 1991-2001.	1.8	43
43	Small rockâ€slope failures conditioned by Holocene permafrost degradation: a new approach and conceptual model based on Schmidtâ€hammer exposureâ€age dating, Jotunheimen, southern Norway. Boreas, 2018, 47, 1144-1169.	1.2	30
44	Topographic, lithologic and glaciation style influences on paraglacial processes in the upper Sil and Luna catchments, Cantabrian Mountains, NW Spain. Geomorphology, 2018, 319, 133-146.	1.1	8
45	The coastal landslides of Shetland. Scottish Geographical Journal, 2018, 134, 71-96.	0.4	10
46	Investigations on blockfields and related landforms at BlÃ¥hÃ, (Southern Norway) using Schmidt-hammer exposure-age dating: palaeoclimatic and morphodynamic implications. Geografiska Annaler, Series A: Physical Geography, 2018, 100, 285-306.	0.6	20
47	After the ice: Lateglacial and Holocene landforms and landscape evolution in Scotland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2019, 110, 133-171.	0.3	12
48	Relict landslide development as inferred from speleothem deformation, tectonic data, and geoelectrics. Geomorphology, 2019, 330, 116-128.	1.1	21
49	Advances in Quaternary studies and geomorphology in Scotland: implications for geoconservation. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2019, 110, 257-278.	0.3	9
50	Landslides and Quaternary climate changes—The state of the art. Earth-Science Reviews, 2019, 196, 102871.	4.0	35
51	Examining the geometry, age and genesis of buried Quaternary valley systems in the Midland Valley of Scotland, UK. Boreas, 2019, 48, 658-677.	1.2	8
52	Patterns of spatio-temporal paraglacial response in the Antarctic Peninsula region and associated ecological implications. Earth-Science Reviews, 2019, 192, 379-402.	4.0	28
53	Block stream characteristics in Southern Carpathians (Romania). Catena, 2019, 178, 20-31.	2.2	8
54	A comparison of glacial and paraglacial denudation responses to rapid glacial retreat. Annals of Glaciology, 2019, 60, 151-164.	2.8	19
55	Schmidt-hammer exposure-age dating (SHD) performed on periglacial and related landforms in Opplendskedalen, Geirangerfjellet, Norway: Implications for mid- and late-Holocene climate variability. Holocene, 2019, 29, 97-109.	0.9	9

#	Article	IF	CITATIONS
56	Rock Slope Instability in the Proglacial Zone: State of the Art. Geography of the Physical Environment, 2019, , 119-141.	0.2	28
57	Quaternary sea level change in Scotland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2019, 110, 219-256.	0.3	20
58	Paraglacial history and structure of the Moosfluh Landslide (1850–2016), Switzerland. Geomorphology, 2020, 355, 106677.	1.1	24
59	Geomorphology and geological controls of an active paraglacial rockslide in the New Zealand Southern Alps. Landslides, 2020, 17, 755-776.	2.7	19
60	Chapter 4 Landslide and slope stability hazard in the UK. Geological Society Engineering Geology Special Publication, 2020, 29, 81-162.	0.2	2
61	Timing and seismic origin of Nixu rock avalanche in southern Tibet and its implications on Nimu active fault. Engineering Geology, 2020, 268, 105522.	2.9	12
62	The Time-Dependent Failure Mechanism of Rocks and Associated Application in Slope Engineering: An Explanation Based on Numerical Investigation. Mathematical Problems in Engineering, 2020, 2020, 1-19.	0.6	6
63	Polygenetic Landscapes: Approaches and Concepts. , 2021, , .		Ο
64	Rock-Slope Failures in the North West Highlands. World Geomorphological Landscapes, 2021, , 271-287.	0.1	1
65	Landslide Distribution and Contributing Factors in a Mountain Basin of Argentinean Central Andes (31źS). Springer Earth System Sciences, 2021, , 154-173.	0.1	0
66	The Quaternary in Scotland. World Geomorphological Landscapes, 2021, , 53-96.	0.1	4
67	Repeated high flows drive morphological change in rivers in recently deglaciated catchments. Earth Surface Processes and Landforms, 2021, 46, 1294-1310.	1.2	8
68	Retrospective Modeling of a Large Paleo-Landslide Related to Deglaciation in the Sierra de Urbión, Cordillera Ibérica, Spain. Applied Sciences (Switzerland), 2021, 11, 4277.	1.3	0
69	Back analysis of a coastal cliff failure along the Forkastningsfjellet coastline, Svalbard: Implications for controlling and triggering factors. Geomorphology, 2021, 389, 107850.	1.1	3
70	Multiple drivers of Late Holocene paraglacial sediment reworking in Ireland. Boreas, 0, , .	1.2	2
71	Wester Ross. World Geomorphological Landscapes, 2021, , 251-269.	0.1	0
72	Paraglacial Rock-Slope Failure Following Deglaciation in Western Norway. World Geomorphological Landscapes, 2021, , 97-130.	0.1	5
73	Novel Cosmogenic Datings in Landslide Deposits, San Juan, Argentina. ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 361-370.	0.3	1

#	Article	IF	Citations
74	Anomalous terrain at Dove Crags â€~cirqueform' and Gasgale Gill asymmetric valley, English Lake District, attributed to large-scale rock slope failure of pre-LGM origins. Proceedings of the Yorkshire Geological Society, 2015, 60, 243-257.	0.2	6
75	A paraglacial rock-slope failure origin for cirques: a case study from Northern Iceland. Geomorphologie Relief, Processus, Environnement, 2019, 25, 117-136.	0.7	9
76	Quaternary faulting in the Western Carpathians: Insights into paleoseismology from cave deformations and damaged speleothems (DemÃ ¤ ovA¡ Cave System, Low Tatra Mts). Tectonophysics, 2021, 820, 229111.	0.9	7
77	MEASURING SURFACE DEFORMATION IN GLACIER RETREATED AREAS BASED ON PS-INSAR – GELADANDONG GLACIER AS A CASE STUDY. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3, 1285-1289.	0.2	2
78	Early late-glacial rock avalanche and its lasting effects on drainage and sediment dispersal (Strassberg valley catchment, Northern Calcareous Alps, Austria). Austrian Journal of Earth Sciences, 2018, 111, 180-203.	0.9	2
79	Age, origin and palaeoclimatic implications of peri- and paraglacial boulder-dominated landforms in Rondane, South Norway. Geomorphology, 2022, 408, 108251.	1.1	1
80	Measurement and Region Identification in Deep Displacement of Slopes Based on Rod-Fiber Coupling Structure. Sensors, 2022, 22, 3623.	2.1	1
81	A Study on the Freeze–Thaw Damage and Deterioration Mechanism of Slope Rock Mass Based on Model Testing and Numerical Simulation. Applied Sciences (Switzerland), 2022, 12, 6545.	1.3	2
82	Assessing the utility of regionalized rock-mass geomechanical properties in rockfall susceptibility modelling in an alpine environment. Geomorphology, 2022, 415, 108401.	1.1	4
83	The glacial legacy of the EISC during the Younger Dryas Stadial. , 2023, , 425-435.		1
84	Britain and Ireland: glacial landforms during the Younger Dryas Stadial. , 2023, , 481-493.		0
85	Rock slope failure in the Lake District, NW England: an overview. Geografiska Annaler, Series A: Physical Geography, 2022, 104, 201-225.	0.6	2
86	Litho-structural control on rock slope failures at Garmaksla, Billefjorden coastline, Svalbard Quarterly Journal of Engineering Geology and Hydrogeology, 0, , .	0.8	0
87	Great Britain and Ireland. , 2022, , 325-363.		0
88	Age and recurrence of coseismic rock avalanches in Sierra de la Sobia (Cantabrian Mountains, Spain). Catena, 2023, 223, 106931.	2.2	0
89	Estimating <i>P</i> (event): statistical methods. , 2023, , 153-184.		0