Dietary intervention impact on gut microbial gene richt

Nature 500, 585-588 DOI: 10.1038/nature12480

Citation Report

#	Article	IF	CITATIONS
1	Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500, 541-546.	13.7	3,641
2	Wealth management in the gut. Nature, 2013, 500, 538-539.	13.7	33
3	Microbiota-Derived Hydrogen Fuels Salmonella Typhimurium Invasion of the Gut Ecosystem. Cell Host and Microbe, 2013, 14, 641-651.	5.1	145
4	Genome-wide association and sequencing studies on colorectal cancer. Seminars in Cancer Biology, 2013, 23, 502-511.	4.3	14
5	The microbiome and cancer. Nature Reviews Cancer, 2013, 13, 800-812.	12.8	1,338
6	Genomic and epigenomic regulation of adipose tissue inflammation in obesity. Trends in Endocrinology and Metabolism, 2013, 24, 625-634.	3.1	40
7	481 Individualized Responses of Gut Microbiota to Dietary Intervention Modeled in Humanized Mice. Gastroenterology, 2013, 144, S-88.	0.6	1
9	A Key to Understanding the Effects of Food Bioactives in Health, Gut Microbiota. Journal of Agricultural and Food Chemistry, 2013, 61, 9755-9757.	2.4	14
11	Hot topics in gut microbiota. United European Gastroenterology Journal, 2013, 1, 311-318.	1.6	50
12	Slimming down via the microbiota. Nature Medicine, 2013, 19, 1374-1375.	15.2	1
13	Gut Microbiota Signatures Predict Host and Microbiota Responses to Dietary Interventions in Obese Individuals. PLoS ONE, 2014, 9, e90702.	1.1	163
14	Dietary Patterns Differently Associate with Inflammation and Gut Microbiota in Overweight and Obese Subjects. PLoS ONE, 2014, 9, e109434.	1.1	111
15	Sensing risk, fearing uncertainty: systems science approach to change. Frontiers in Computational Neuroscience, 2014, 8, 30.	1.2	1
16	Microbiome Associations of Therapeutic Enteral Nutrition. Nutrients, 2014, 6, 5298-5311.	1.7	11
17	Role of Probiotics Against Mycotoxins and Their Deleterious Effects. Journal of Food Research, 2014, 4, 10.	0.1	20
18	Metagenomics Health Claim: Are you Rich Enough in your Gut Micro biota?. Biology and Medicine (Aligarh), 2014, 07, .	0.3	0
19	Gut-liver axis and probiotics: Their role in non-alcoholic fatty liver disease. World Journal of Gastroenterology, 2014, 20, 15518.	1.4	162
20	Diversity: From Diet to Flora to Life. Global Advances in Health and Medicine, 2014, 3, 6-8.	0.7	2

TATION REPO

#	Article	IF	CITATIONS
21	Metabolic tinkering by the gut microbiome. Gut Microbes, 2014, 5, 369-380.	4.3	105
23	The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiology, 2014, 14, 311.	1.3	178
24	Gut microbiota influences low fermentable substrate diet efficacy in children with irritable bowel syndrome. Gut Microbes, 2014, 5, 165-175.	4.3	121
27	Emerging science of the human microbiome. Gut Microbes, 2014, 5, 446-457.	4.3	46
28	The Semen Microbiome and Its Relationship with Local Immunology and Viral Load in HIV Infection. PLoS Pathogens, 2014, 10, e1004262.	2.1	73
29	Diet and the development of the human intestinal microbiome. Frontiers in Microbiology, 2014, 5, 494.	1.5	391
30	The human intestinal microbiome at extreme ages of life. Dietary intervention as a way to counteract alterations. Frontiers in Genetics, 2014, 5, 406.	1.1	124
31	Gut microbiota: in sickness and in health. Microbial Biotechnology, 2014, 7, 88-89.	2.0	5
32	Provocative Issues in Heart Disease Prevention. Canadian Journal of Cardiology, 2014, 30, S401-S409.	0.8	26
33	Diet and Feeding Pattern Affect the Diurnal Dynamics of the Gut Microbiome. Cell Metabolism, 2014, 20, 1006-1017.	7.2	655
34	Exercise Prevents Weight Gain and Alters the Gut Microbiota in a Mouse Model of High Fat Diet-Induced Obesity. PLoS ONE, 2014, 9, e92193.	1.1	451
35	Breast-fed and bottle-fed infant rhesus macaques develop distinct gut microbiotas and immune systems. Science Translational Medicine, 2014, 6, 252ra120.	5.8	115
36	Application of NMR-based Metabolomics to the Study of Gut Microbiota in Obesity. Journal of Clinical Gastroenterology, 2014, 48, S5-S7.	1.1	20
37	The gut microbiota and the metabolic health of the host. Current Opinion in Gastroenterology, 2014, 30, 120-127.	1.0	117
38	Gut microbiota composition and its effects on obesity and insulin resistance. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17, 312-318.	1.3	51
39	Effect of diet on the intestinal microbiota and its activity. Current Opinion in Gastroenterology, 2014, 30, 189-195.	1.0	74
40	Nutrition, nonalcoholic fatty liver disease and the microbiome. Current Opinion in Lipidology, 2014, 25, 61-66.	1.2	32
41	The Microbiome and Obesity—An Established Risk for Certain Types of Cancer. Cancer Journal (Sudbury, Mass), 2014, 20, 176-180.	1.0	54

#	Article	IF	Citations
42	Identifying Gut Microbe–Host Phenotype Relationships Using Combinatorial Communities in Gnotobiotic Mice. Science Translational Medicine, 2014, 6, 220ra11.	5.8	325
43	The mucosal microbiome in shaping health and disease. F1000prime Reports, 2014, 6, 11.	5.9	24
44	Exploring the influence of the gut microbiota and probiotics on health: a symposium report. British Journal of Nutrition, 2014, 112, S1-S18.	1.2	81
45	Gut microbiota and metabolic syndrome. World Journal of Gastroenterology, 2014, 20, 16079.	1.4	405
46	Diet, the Gut Microbiome and the Metabolome in IBD. Nestle Nutrition Institute Workshop Series, 2014, 79, 73-82.	1.5	18
47	Obesity and the gut microbiome: pathophysiological aspects. Hormone Molecular Biology and Clinical Investigation, 2014, 17, 53-61.	0.3	45
48	Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME Journal, 2014, 8, 2116-2130.	4.4	491
49	Role of the Microbiome in Energy Regulation and Metabolism. Gastroenterology, 2014, 146, 1525-1533.	0.6	354
50	Beneficial modulation of the gut microbiota. FEBS Letters, 2014, 588, 4120-4130.	1.3	204
52	The role of microbiome in central nervous system disorders. Brain, Behavior, and Immunity, 2014, 38, 1-12.	2.0	629
53	Diet and the Intestinal Microbiome: Associations, Functions, and Implications for Health and Disease. Gastroenterology, 2014, 146, 1564-1572.	0.6	486
54	Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nature Protocols, 2014, 9, 1056-1082.	5.5	403
55	Lactic Acid Bacteria. , 2014, , .		29
56	Integrative Weight Management. , 2014, , .		2
57	The gut microbiota manages host metabolism. Nature Reviews Endocrinology, 2014, 10, 74-76.	4.3	125
58	Bioactive Foods and Ingredients for Health. Advances in Nutrition, 2014, 5, 306S-311S.	2.9	63
59	The Human Gut Microbiome and Its Role in Obesity and the Metabolic Syndrome. , 2014, , 71-105.		4
60	Gut microbiota in older subjects: variation, health consequences and dietary intervention prospects. Proceedings of the Nutrition Society, 2014, 73, 441-451.	0.4	33

#	Article	IF	CITATIONS
61	Metabolic Phenotyping and Systems Biology Approaches to Understanding Metabolic Syndrome and Fatty Liver Disease. Gastroenterology, 2014, 146, 46-62.	0.6	153
62	Human Genetics Shape the Gut Microbiome. Cell, 2014, 159, 789-799.	13.5	2,523
63	Î ³ -Butyrobetaine Is a Proatherogenic Intermediate in Gut Microbial Metabolism of L-Carnitine to TMAO. Cell Metabolism, 2014, 20, 799-812.	7.2	416
64	High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nature Communications, 2014, 5, 3889.	5.8	361
65	Diet alters probiotic <scp><i>L</i></scp> <i>actobacillus</i> persistence and function in the intestine. Environmental Microbiology, 2014, 16, 2915-2926.	1.8	51
66	Far from the Eyes, Close to the Heart: Dysbiosis of Gut Microbiota and Cardiovascular Consequences. Current Cardiology Reports, 2014, 16, 540.	1.3	81
67	The Effects of Gastrointestinal Surgery on Gut Microbiota: Potential Contribution to Improved Insulin Sensitivity. Current Atherosclerosis Reports, 2014, 16, 454.	2.0	68
68	Combination of Metagenomics and Culture-Based Methods to Study the Interaction Between Ochratoxin A and Gut Microbiota. Toxicological Sciences, 2014, 141, 314-323.	1.4	80
69	Responsiveness of cardiometabolic-related microbiota to diet is influenced by host genetics. Mammalian Genome, 2014, 25, 583-599.	1.0	66
70	Finding the Missing Links among Metabolites, Microbes, and the Host. Immunity, 2014, 40, 824-832.	6.6	256
71	Alterations of the human gut microbiome in liver cirrhosis. Nature, 2014, 513, 59-64.	13.7	1,782
72	Harnessing the Intestinal Microbiome for Optimal Therapeutic Immunomodulation. Cancer Research, 2014, 74, 4217-4221.	0.4	39
73	The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology, 2014, 12, 661-672.	13.6	2,007
74	Starving our Microbial Self: The Deleterious Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates. Cell Metabolism, 2014, 20, 779-786.	7.2	614
76	Host–microbe interactions shaping the gastrointestinal environment. Trends in Immunology, 2014, 35, 538-548.	2.9	138
77	Modulation of the Gut Microbiota by Nutrients with Prebiotic and Probiotic Properties. Advances in Nutrition, 2014, 5, 624S-633S.	2.9	92
78	Genes and nutrition, is personalised nutrition the next realistic step. Archives of Public Health, 2014, 72, .	1.0	0
79	The human microbiome and bile acid metabolism: dysbiosis, dysmetabolism, disease and intervention. Expert Opinion on Biological Therapy, 2014, 14, 467-482.	1.4	116

#	Article	IF	Citations
80	Microbiota and diabetes: an evolving relationship. Gut, 2014, 63, 1513-1521.	6.1	631
81	Impact of Kamut® Khorasan on gut microbiota and metabolome in healthy volunteers. Food Research International, 2014, 63, 227-232.	2.9	38
82	IRM fonctionnelle cérébrale et régulation de la prise alimentaire chez l'homme. Medecine Des Maladies Metaboliques, 2014, 8, 21-27.	⁵ 0.1	0
83	Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 2014, 63, 1913-1920.	6.1	987
84	Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME Journal, 2014, 8, 2218-2230.	4.4	489
85	Elucidating the interactions between the human gut microbiota and its host through metabolic modeling. Frontiers in Genetics, 2014, 5, 86.	1.1	72
86	Chicory Fructans in Nutrition and the Formulation of Foods Dedicated to Blood Glucose Disorder Management. , 2014, , 278-319.		0
87	Infl uence of the Intestinal Microbiota on the Critically. , 2014, , 301-314.		1
88	Reviews and Perspectives. Canadian Journal of Psychiatry, 2014, 59, 1-2.	0.9	5
89	Dietary modulation of the gut microbiota – a randomised controlled trial in obese postmenopausal women. British Journal of Nutrition, 2015, 114, 406-417.	1.2	131
90	Reduction of butyrate- and methane-producing microorganisms in patients with Irritable Bowel Syndrome. Scientific Reports, 2015, 5, 12693.	1.6	248
91	Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Scientific Reports, 2015, 5, 16643.	1.6	663
92	Diversity of key players in the microbial ecosystems of the human body. Scientific Reports, 2015, 5, 15920.	1.6	30
93	Gut microbiota in hypertension. Current Opinion in Nephrology and Hypertension, 2015, 24, 403-409.	1.0	142
94	Influence of high-fat diet on gut microbiota. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, 18, 515-520.	1.3	387
95	Reciprocal interaction of diet and microbiome in inflammatory bowel diseases. Current Opinion in Gastroenterology, 2015, 31, 464-470.	1.0	31
96	Influence of the human intestinal microbiome on obesity and metabolic dysfunction. Current Opinion in Pediatrics, 2015, 27, 496-501.	1.0	46
97	Intrinsic association between diet and the gut microbiome: current evidence. Nutrition and Dietary Supplements, 2015, 7, 69.	0.7	11

#	Article	IF	CITATIONS
98	Contribution of diet to the composition of the human gut microbiota. Microbial Ecology in Health and Disease, 2015, 26, 26164.	3.8	310
99	The Gut Microbiota as a Therapeutic Target in IBD and Metabolic Disease: A Role for the Bile Acid Receptors FXR and TGR5. Microorganisms, 2015, 3, 641-666.	1.6	61
100	Intestinal Microbiota Signatures Associated with Inflammation History in Mice Experiencing Recurring Colitis. Frontiers in Microbiology, 2015, 6, 1408.	1.5	106
101	Overview of a Surface-Ripened Cheese Community Functioning by Meta-Omics Analyses. PLoS ONE, 2015, 10, e0124360.	1.1	114
102	Changes in Gut Microbiota in Rats Fed a High Fat Diet Correlate with Obesity-Associated Metabolic Parameters. PLoS ONE, 2015, 10, e0126931.	1.1	353
103	Sparse Zero-Sum Games as Stable Functional Feature Selection. PLoS ONE, 2015, 10, e0134683.	1.1	0
104	Adhesion Potential of Intestinal Microbes Predicted by Physico-Chemical Characterization Methods. PLoS ONE, 2015, 10, e0136437.	1.1	45
105	Selective Spectrum Antibiotic Modulation of the Gut Microbiome in Obesity and Diabetes Rodent Models. PLoS ONE, 2015, 10, e0145499.	1.1	39
106	Obesity-Driven Gut Microbiota Inflammatory Pathways to Metabolic Syndrome. Frontiers in Physiology, 2015, 6, 341.	1.3	31
107	Trends in IT Innovation to Build a Next Generation Bioinformatics Solution to Manage and Analyse Biological Big Data Produced by NGS Technologies. BioMed Research International, 2015, 2015, 1-15.	0.9	26
108	The Microbiome: Evolutionary Perspective and Symbiogenesis. Open Life Sciences, 2015, 10, .	0.6	0
109	COMMENTARY: Pre-emptive Nutrition: Refining the Targets of Drugs Targeted to Colorectal Cancer. Current Cancer Drug Targets, 2015, 15, 173-175.	0.8	2
110	Microbiota at Multiple Body Sites during Pregnancy in a Rural Tanzanian Population and Effects of Moringa-Supplemented Probiotic Yogurt. Applied and Environmental Microbiology, 2015, 81, 4965-4975.	1.4	85
111	The Bamboo-Eating Giant Panda Harbors a Carnivore-Like Gut Microbiota, with Excessive Seasonal Variations. MBio, 2015, 6, e00022-15.	1.8	282
112	Metabolic stress-induced joint inflammation and osteoarthritis. Osteoarthritis and Cartilage, 2015, 23, 1955-1965.	0.6	160
113	Probiotics for weight loss: a systematic review and meta-analysis. Nutrition Research, 2015, 35, 566-575.	1.3	125
114	Microbiota and Host Nutrition across Plant and Animal Kingdoms. Cell Host and Microbe, 2015, 17, 603-616.	5.1	628
115	Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environmental Microbiology, 2015, 17, 4954-4964.	1.8	279

#	Article	IF	CITATIONS
116	Review article: dietary fibre-microbiota interactions. Alimentary Pharmacology and Therapeutics, 2015, 42, 158-179.	1.9	430
117	Future Perspectives of Personalized Weight Loss Interventions Based on Nutrigenetic, Epigenetic, and Metagenomic Data. Journal of Nutrition, 2016, 146, 905S-912S.	1.3	57
118	Le microbiote intestinal : un nouvel acteur de la nutrition ?. Cahiers De Nutrition Et De Dietetique, 2015, 50, 6S22-6S29.	0.2	0
120	The microbiome and its pharmacological targets: therapeutic avenues in cardiometabolic diseases. Current Opinion in Pharmacology, 2015, 25, 36-44.	1.7	22
121	High-Throughput Sequencing as a Tool for Exploring the Human Microbiome. , 2015, , 55-66.		3
122	Integrated multi-scale strategies to investigate nutritional compounds and their effect on the gut microbiota. Current Opinion in Biotechnology, 2015, 32, 149-155.	3.3	35
124	Intestinal Microbiota And Diet in IBS: Causes, Consequences, or Epiphenomena?. American Journal of Gastroenterology, 2015, 110, 278-287.	0.2	283
125	Metabolic vs. hedonic obesity: a conceptual distinction and its clinical implications. Obesity Reviews, 2015, 16, 234-247.	3.1	70
126	The influence of diet on the gut microbiota and its consequences for health. Current Opinion in Biotechnology, 2015, 32, 195-199.	3.3	148
127	How informative is the mouse for human gut microbiota research?. DMM Disease Models and Mechanisms, 2015, 8, 1-16.	1.2	990
128	Food, Immunity, and the Microbiome. Gastroenterology, 2015, 148, 1107-1119.	0.6	278
129	Metabolic syndrome and nonalcoholic fatty liver disease: Is insulin resistance the link?. Molecular and Cellular Endocrinology, 2015, 418, 55-65.	1.6	244
130	Dietary effects on human gut microbiome diversity. British Journal of Nutrition, 2015, 113, S1-S5.	1.2	350
131	Are dietary emulsifiers making us fat?. Journal of Hepatology, 2015, 63, 1045-1048.	1.8	4
132	A weighty problem: metabolic perturbations and the obesity-cancer link. Hormone Molecular Biology and Clinical Investigation, 2015, 23, 47-57.	0.3	35
133	Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutrition and Diabetes, 2015, 5, e159-e159.	1.5	206
134	Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome. Cell Metabolism, 2015, 22, 320-331.	7.2	345
135	Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. Cell Metabolism, 2015, 22, 228-238.	7.2	638

#	Article	IF	CITATIONS
136	The gut microbiota in human energy homeostasis and obesity. Trends in Endocrinology and Metabolism, 2015, 26, 493-501.	3.1	350
137	The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nature Medicine, 2015, 21, 895-905.	15.2	1,306
138	Transmissible microbial and metabolomic remodeling by soluble dietary fiber improves metabolic homeostasis. Scientific Reports, 2015, 5, 10604.	1.6	77
139	Microbiota Metabolite Regulation of Host Immune Homeostasis: A Mechanistic Missing Link. Current Allergy and Asthma Reports, 2015, 15, 24.	2.4	54
140	About the gut microbiome as a pharmacological target in atherosclerosis. European Journal of Pharmacology, 2015, 763, 75-78.	1.7	11
141	The role of bile acids in reducing the metabolic complications of obesity after bariatric surgery: a systematic review. International Journal of Obesity, 2015, 39, 1565-1574.	1.6	120
142	Gut–liver axis, nutrition, and non-alcoholic fatty liver disease. Clinical Biochemistry, 2015, 48, 923-930.	0.8	233
143	The New Science of Metagenomics and the Challenges of Its Use in Both Developed and Developing Countries. , 2015, , 191-216.		6
144	Dietary Modulation of Gut Microbiota Contributes to Alleviation of Both Genetic and Simple Obesity in Children. EBioMedicine, 2015, 2, 968-984.	2.7	306
146	Microbe-based approaches for the treatment of diabetes. Diabetes Management, 2015, 5, 139-142.	0.5	1
147	Jejunal T Cell Inflammation in Human Obesity Correlates with Decreased Enterocyte Insulin Signaling. Cell Metabolism, 2015, 22, 113-124.	7.2	130
148	The relationship between phenolic compounds from diet and microbiota: impact on human health. Food and Function, 2015, 6, 2424-2439.	2.1	180
149	Enterolignan-Producing Phenotypes Are Associated with Increased Gut Microbial Diversity and Altered Composition in Premenopausal Women in the United States. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 546-554.	1.1	55
150	Role of Intestinal Microbiome in Lipid and Glucose Metabolism in Diabetes Mellitus. Clinical Therapeutics, 2015, 37, 1172-1177.	1.1	46
152	Quality control of microbiota metagenomics by k-mer analysis. BMC Genomics, 2015, 16, 183.	1.2	22
153	The gut microbiome in cardio-metabolic health. Genome Medicine, 2015, 7, 33.	3.6	92
154	Type 2 diabetes and gut microbiome: at the intersection of known and unknown. Gut Microbes, 2015, 6, 85-92.	4.3	88
155	Comparison of the gut microbiota of people in France and Saudi Arabia. Nutrition and Diabetes, 2015, 5, e153-e153.	1.5	100

#	Article	IF	CITATIONS
156	Mongolians core gut microbiota and its correlation with seasonal dietary changes. Scientific Reports, 2014, 4, 5001.	1.6	126
157	Nutri(meta)genetics and Cardiovascular Disease: Novel Concepts in the Interaction of Diet and Genomic Variation. Current Atherosclerosis Reports, 2015, 17, 505.	2.0	13
158	Obesity and the gastrointestinal microbiota: a review of associations and mechanisms. Nutrition Reviews, 2015, 73, 376-385.	2.6	119
159	The immunity–diet–microbiota axis in the development of metabolic syndrome. Current Opinion in Lipidology, 2015, 26, 73-81.	1.2	41
161	Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends in Microbiology, 2015, 23, 354-366.	3.5	474
163	The gut microbiota of nonalcoholic fatty liver disease: current methods and their interpretation. Hepatology International, 2015, 9, 406-415.	1.9	33
164	A catalog of the mouse gut metagenome. Nature Biotechnology, 2015, 33, 1103-1108.	9.4	422
165	Improving healthspan via changes in gut microbiota and fermentation. Age, 2015, 37, 98.	3.0	33
166	Advances in Intelligent Data Analysis XIV. Lecture Notes in Computer Science, 2015, , .	1.0	0
167	Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterology, 2015, 15, 100.	0.8	436
169	Host–microbe interactions in distal airways: relevance to chronic airway diseases. European Respiratory Review, 2015, 24, 78-91.	3.0	35
170	Probiotic B420 and prebiotic polydextrose improve efficacy of antidiabetic drugs in mice. Diabetology and Metabolic Syndrome, 2015, 7, 75.	1.2	49
171	Stool microbiota composition is associated with the prospective risk of Plasmodium falciparum infection. BMC Genomics, 2015, 16, 631.	1.2	90
172	Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity, 2015, 43, 817-829.	6.6	637
173	Continuous and Discrete Deep Classifiers for Data Integration. Lecture Notes in Computer Science, 2015, , 264-274.	1.0	1
174	The metabolic role of the microbiota. Clinical Liver Disease, 2015, 5, 91-93.	1.0	2
176	The Microbiome and Osteosarcopenic Obesity in Older Individuals in Long-Term Care Facilities. Current Osteoporosis Reports, 2015, 13, 358-362.	1.5	32
177	Gut Microbiota Dysbiosis in Obesity-Linked Metabolic Diseases and Prebiotic Potential of Polyphenol-Rich Extracts. Current Obesity Reports, 2015, 4, 389-400.	3.5	146

		CITATION RE	PORT	
#	Article		IF	CITATIONS
178	Decompensated cirrhosis and microbiome interpretation. Nature, 2015, 525, E1-E2.		13.7	90
179	Qin et al. reply. Nature, 2015, 525, E2-E3.		13.7	3
181	Potential Etiologic Factors of Microbiome Disruption in Autism. Clinical Therapeutics, 2 976-983.	2015, 37,	1.1	48
182	Single-strain starter experimental cheese reveals anti-inflammatory effect of Propioniba freudenreichii CIRM BIA 129 in TNBS-colitis model. Journal of Functional Foods, 2015,	acterium 18, 575-585.	1.6	47
183	Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increase Prevotella. Cell Metabolism, 2015, 22, 971-982.	d Abundance of	7.2	1,190
184	Insights Into the Role of the Microbiome in Obesity and Type 2 Diabetes. Diabetes Car	e, 2015, 38, 159-165.	4.3	519
185	Standardised animal models of host microbial mutualism. Mucosal Immunology, 2015,	, 8, 476-486.	2.7	112
186	TLR4 Expression in Bone Marrow-Derived Cells Is Both Necessary and Sufficient to Proc Resistance Phenotype in Diet-Induced Obesity. Endocrinology, 2015, 156, 103-113.	luce the Insulin	1.4	32
187	Circulating phospholipid profiling identifies portal contribution to NASH signature in o Journal of Hepatology, 2015, 62, 905-912.	besity.	1.8	89
188	Need for gender-specific pre-analytical testing: The dark side of the moon in laboratory International Journal of Cardiology, 2015, 179, 514-535.	testing.	0.8	23
189	A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistan intestinal inflammation in association with increased <i>Akkermansia</i> spp. population microbiota of mice. Gut, 2015, 64, 872-883.	ce and on in the gut	6.1	910
190	Modelling the emergent dynamics and major metabolites of the human colonic microb Environmental Microbiology, 2015, 17, 1615-1630.	iota.	1.8	118
191	Understanding the role of gut microbiome in metabolic disease risk. Pediatric Research 236-244.	ı, 2015, 77,	1.1	123
192	Molecular ecological tools to decipher the role of our microbial mass in obesity. Benefi Microbes, 2015, 6, 61-81.	cial	1.0	28
193	Distinctly altered gut microbiota in the progression of liver disease. Oncotarget, 2016,	7, 19355-19366.	0.8	180
194	Correlating the Gut Microbiome to Health and Disease. , 2016, , 261-291.			5
196	The Microbiome and Mental Health: Looking Back, Moving Forward with Lessons from Diseases. Clinical Psychopharmacology and Neuroscience, 2016, 14, 131-147.	Allergic	0.9	36
198	The gut microbiota: a key regulator of metabolic diseases. BMB Reports, 2016, 49, 536	5-541.	1.1	46

	CITATION R	EPORT	
# 199	ARTICLE Influence of Dietary Factors on Gut Microbiota. , 2016, , 147-154.	IF	CITATIONS
200	Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. Journal of Obesity, 2016, 2016, 1-27.	1.1	202
201	The Microbiome in Aging. , 2016, , 185-222.		1
202	Gut Microbiota Diversity and Human Diseases: Should We Reintroduce Key Predators in Our Ecosystem?. Frontiers in Microbiology, 2016, 7, 455.	1.5	438
203	Diet, Microbiota, Obesity, and NAFLD: A Dangerous Quartet. International Journal of Molecular Sciences, 2016, 17, 481.	1.8	100
205	Characterization of the Gut Microbial Community of Obese Patients Following a Weight-Loss Intervention Using Whole Metagenome Shotgun Sequencing. PLoS ONE, 2016, 11, e0149564.	1.1	229
207	A Simple Dietary Questionnaire Correlates With Formal Dietitian Evaluation and Frequently Identifies Specific Clinical Interventions in an Outpatient Gastroenterology Clinic. Journal of Clinical Gastroenterology, 2016, 50, e71-e76.	1.1	2
208	Metagenome-wide association studies: fine-mining the microbiome. Nature Reviews Microbiology, 2016, 14, 508-522.	13.6	356
209	Survival of lactic acid and propionibacteria in low- and full-fat Dutch-type cheese during human digestion exÂvivo. Letters in Applied Microbiology, 2016, 62, 404-410.	1.0	5
211	Reconstructing single genomes from complex microbial communities. IT - Information Technology, 2016, 58, 133-139.	0.6	7
212	Diet–microbiota interactions as moderators of human metabolism. Nature, 2016, 535, 56-64.	13.7	1,602
213	Microbiome-wide association studies link dynamic microbial consortia to disease. Nature, 2016, 535, 94-103.	13.7	595
214	Gut microbiome and lipid metabolism. Current Opinion in Lipidology, 2016, 27, 216-224.	1.2	72
215	BR 07-2 THE LINKING IN THE HUMAN (OBSERVATIONAL AND CLINICAL STUDY). Journal of Hypertension, 2016, 34, e542.	0.3	0
216	Gut microbiota and type 2 diabetes mellitus. EndocrinologÃa Y Nutrición (English Edition), 2016, 63, 560-568.	0.5	64
217	Beneficial Effects of a Dietary Weight Loss Intervention on Human Gut Microbiome Diversity and Metabolism Are Not Sustained during Weight Maintenance. Obesity Facts, 2016, 9, 379-391.	1.6	48
218	Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Medicine, 2016, 8, 67.	3.6	260
219	Influence of habitual dietary fibre intake on the responsiveness of the gut microbiota to a prebiotic: protocol for a randomised, double-blind, placebo-controlled, cross-over, single-centre study. BMJ Open, 2016, 6, e012504.	0.8	12

#	Article	IF	CITATIONS
220	Gut microbiome and liver diseases. Gut, 2016, 65, 2035-2044.	6.1	443
221	Exploring the Bioactive Landscape of the Gut Microbiota to Identify Metabolites Underpinning Human Health. , 2016, , 49-82.		0
222	Shotgun Metagenomics of 250 Adult Twins Reveals Genetic and Environmental Impacts on the Gut Microbiome. Cell Systems, 2016, 3, 572-584.e3.	2.9	261
224	The Human Intestinal Microbiome in Health and Disease. New England Journal of Medicine, 2016, 375, 2369-2379.	13.9	2,383
225	The role of short-chain fatty acid on blood pressure regulation. Current Opinion in Nephrology and Hypertension, 2016, 25, 379-383.	1.0	98
226	BR 07-1 DEVELOPMENT OF THE CELL MICROARRAY FOR HIGH-THROUGHPUT ANALYSIS OF GUT MICROBIOTA. Journal of Hypertension, 2016, 34, e542.	0.3	0
227	The Gut Bacteria-Driven Obesity Development. Digestive Diseases, 2016, 34, 221-229.	0.8	53
228	The human gut microbiome impacts health and disease. Comptes Rendus - Biologies, 2016, 339, 319-323.	0.1	28
229	Vegetable dietary fibres made with minimal processing improve health-related faecal parameters in a valid rat model. Food and Function, 2016, 7, 2645-2654.	2.1	9
230	The crosstalk between gut microbiota and obesity and related metabolic disorders. Future Microbiology, 2016, 11, 825-836.	1.0	25
231	The metabolic vascular syndrome - guide to an individualized treatment. Reviews in Endocrine and Metabolic Disorders, 2016, 17, 5-17.	2.6	29
232	Reshaping the gut microbiota: Impact of low calorie sweeteners and the link to insulin resistance?. Physiology and Behavior, 2016, 164, 488-493.	1.0	102
233	Gut microbiota, inflammation and colorectal cancer. Genes and Diseases, 2016, 3, 130-143.	1.5	205
234	From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Molecular Psychiatry, 2016, 21, 738-748.	4.1	683
235	Nutrigenomics, the Microbiome, and Gene-Environment Interactions: New Directions in Cardiovascular Disease Research, Prevention, and Treatment. Circulation: Cardiovascular Genetics, 2016, 9, 291-313.	5.1	99
236	Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Medicine, 2016, 8, 42.	3.6	1,000
237	Strain-level dissection of the contribution of the gut microbiome to human metabolic disease. Genome Medicine, 2016, 8, 41.	3.6	86
238	Microbiome sequencing: challenges and opportunities for molecular medicine. Expert Review of	1.5	33

#	Article	IF	CITATIONS
239	Impact of Hypocaloric Hyperproteic Diet on Gut Microbiota in Overweight or Obese Patients with Nonalcoholic Fatty Liver Disease: A Pilot Study. Digestive Diseases and Sciences, 2016, 61, 2721-2731.	1.1	56
241	Deep kernel dimensionality reduction for scalable data integration. International Journal of Approximate Reasoning, 2016, 74, 121-132.	1.9	3
242	Novel perspectives on therapeutic modulation of the gut microbiota. Therapeutic Advances in Gastroenterology, 2016, 9, 580-593.	1.4	63
243	How to Manipulate the Microbiota: Prebiotics. Advances in Experimental Medicine and Biology, 2016, 902, 119-142.	0.8	69
245	Linking the Microbiota, Chronic Disease, and the Immune System. Trends in Endocrinology and Metabolism, 2016, 27, 831-843.	3.1	195
246	Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clinical Science, 2016, 130, 943-986.	1.8	281
247	Microbiota and chronic inflammatory arthritis: an interwoven link. Journal of Translational Medicine, 2016, 14, 233.	1.8	37
248	Microbiota y diabetes mellitus tipo 2. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2016, 63, 560-568.	0.8	111
249	Effect of dietary interventions on the intestinal microbiota of Mongolian hosts. Science Bulletin, 2016, 61, 1605-1614.	4.3	16
250	Engineering Human Microbiota: Influencing Cellular and Community Dynamics for Therapeutic Applications. International Review of Cell and Molecular Biology, 2016, 324, 67-124.	1.6	12
251	Signals from the gut microbiota to distant organs in physiology and disease. Nature Medicine, 2016, 22, 1079-1089.	15.2	952
252	Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity, 2016, 45, 931-943.	6.6	645
253	Adipocyte biology and obesity-mediated adipose tissue remodeling. Obesity Medicine, 2016, 4, 15-20.	0.5	10
254	Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nature Genetics, 2016, 48, 1396-1406.	9.4	533
255	The oesophageal microbiome: an unexplored link in obesity-associated oesophageal adenocarcinoma. FEMS Microbiology Ecology, 2016, 92, fiw161.	1.3	17
256	Gut Microbiota Richness and Composition and Dietary Intake of Overweight Pregnant Women Are Related to Serum Zonulin Concentration, a Marker for Intestinal Permeability. Journal of Nutrition, 2016, 146, 1694-1700.	1.3	105
258	An overview of major metagenomic studies on human microbiomes in health and disease. Quantitative Biology, 2016, 4, 192-206.	0.3	10
259	Association of Intestinal Microbiota with Metabolic Markers and Dietary Habits in Patients with Type 2 Diabetes, Digestion, 2016, 94, 66-72.	1.2	84

#	Article	IF	CITATIONS
260	The Microbiome and Musculoskeletal Conditions of Aging: A Review of Evidence for Impact and Potential Therapeutics. Journal of Bone and Mineral Research, 2016, 31, 261-269.	3.1	81
261	Microbiome and metabolic disorders related to obesity: Which lessons to learn from experimental models?. Trends in Food Science and Technology, 2016, 57, 256-264.	7.8	26
262	Interplay between gut microbiota, its metabolites and human metabolism: Dissecting cause from consequence. Trends in Food Science and Technology, 2016, 57, 233-243.	7.8	22
263	Gut Microbiota: Modulation of Host Physiology in Obesity. Physiology, 2016, 31, 327-335.	1.6	48
264	The gut microbiota: A treasure for human health. Biotechnology Advances, 2016, 34, 1210-1224.	6.0	158
266	Gut microbiome and dietary patterns in different Saudi populations and monkeys. Scientific Reports, 2016, 6, 32191.	1.6	55
267	Individualized Responses of Gut Microbiota to Dietary Intervention Modeled in Humanized Mice. MSystems, 2016, 1, .	1.7	45
269	Helicobacter pylori Infection Aggravates Diet-induced Insulin Resistance in Association With Gut Microbiota of Mice. EBioMedicine, 2016, 12, 247-254.	2.7	29
270	Insulin Resistance, Microbiota, and Fat Distribution Changes by a New Model of Vertical Sleeve Gastrectomy in Obese Rats. Diabetes, 2016, 65, 2990-3001.	0.3	43
272	Fecal Microbiota-based Therapeutics for Recurrent Clostridium difficile Infection, Ulcerative Colitis and Obesity. EBioMedicine, 2016, 13, 37-45.	2.7	65
273	HIV infection results in metabolic alterations in the gut microbiota different from those induced by other diseases. Scientific Reports, 2016, 6, 26192.	1.6	50
274	Insulin resistance as key factor for linking modulation of gut microbiome to health claims and dietary recommendations to tackle obesity. Trends in Food Science and Technology, 2016, 57, 306-310.	7.8	5
275	Deep Self-Organising Maps for efficient heterogeneous biomedical signatures extraction. , 2016, , .		2
277	Future Therapies in Obesity. Gastroenterology Clinics of North America, 2016, 45, 705-714.	1.0	5
278	Novel perspectives on the role of the human microbiota in regenerative medicine and surgery. Biomedical Reports, 2016, 5, 519-524.	0.9	10
282	Microbes and Oxytocin. International Review of Neurobiology, 2016, 131, 91-126.	0.9	59
283	Host genetics affect microbial ecosystems via host immunity. Current Opinion in Allergy and Clinical Immunology, 2016, 16, 413-420.	1.1	9
284	Gut Microbial Diversity Is Reduced in Smokers with Crohn's Disease. Inflammatory Bowel Diseases, 2016, 22, 2070-2077.	0.9	83

#	Article	IF	CITATIONS
285	The Significance of the Enteric Microbiome on the Development of Childhood Disease: A Review of Prebiotic and Probiotic Therapies in Disorders of Childhood. Clinical Medicine Insights Pediatrics, 2016, 10, CMPed.S38338.	0.7	60
286	Establishing a causal link between gut microbes, body weight gain and glucose metabolism in humans – towards treatment with probiotics. Beneficial Microbes, 2016, 7, 11-22.	1.0	63
287	The microbial-mammalian metabolic axis. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 250-256.	1.3	20
288	Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors. Immunity, 2016, 44, 1255-1269.	6.6	797
289	Gut Microbiota Dysbiosis as Risk and Premorbid Factors of IBD and IBS Along the Childhood–Adulthood Transition. Inflammatory Bowel Diseases, 2016, 22, 487-504.	0.9	117
290	Beneficial metabolic effects of selected probiotics on dietâ€induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota. Environmental Microbiology, 2016, 18, 1484-1497.	1.8	127
291	Vegetarian diets and gut microbiota: important shifts in markers of metabolism and cardiovascular disease. Nutrition Reviews, 2016, 74, 444-454.	2.6	29
292	Calcium supplementation modulates gut microbiota in a prebiotic manner in dietary obese mice. Molecular Nutrition and Food Research, 2016, 60, 468-480.	1.5	77
293	Responses of fecal bacterial communities to resistant starch intervention in diabetic rats. Starch/Staerke, 2016, 68, 1008-1015.	1.1	8
294	Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut, 2016, 65, 63-72.	6.1	428
295	Obésité et arthroseÂ: données physiopathologiques. Revue Du Rhumatisme Monographies, 2016, 83, 18-2	240.0	1
296	ls the way we're dieting wrong?. Genome Medicine, 2016, 8, 7.	3.6	3
297	Can We Prevent Obesity-Related Metabolic Diseases by Dietary Modulation of the Gut Microbiota?. Advances in Nutrition, 2016, 7, 90-101.	2.9	112
298	Immune-Microbiota Interactions: Dysbiosis as a Global Health Issue. Current Allergy and Asthma Reports, 2016, 16, 13.	2.4	87
299	Bile Acid Modifications at the Microbe-Host Interface: Potential for Nutraceutical and Pharmaceutical Interventions in Host Health. Annual Review of Food Science and Technology, 2016, 7, 313-333.	5.1	161
301	Functional Redundancy-Induced Stability of Gut Microbiota Subjected to Disturbance. Trends in Microbiology, 2016, 24, 402-413.	3.5	451
302	Perinatal nutrition: How to take care of the gut microbiota?. Clinical Nutrition Experimental, 2016, 6, 3-16.	2.0	17
303	Dysbiosis in intestinal inflammation: Cause or consequence. International Journal of Medical Microbiology, 2016, 306, 302-309.	1.5	121

#	ARTICLE Age, introduction of solid feed and weaning are more important determinants of gut bacterial	IF	CITATIONS
304	The role of bile acids in metabolic regulation. Journal of Endocrinology, 2016, 228, R85-R96.	1.0	104
306	Signatures of early frailty in the gut microbiota. Genome Medicine, 2016, 8, 8.	3.6	297
307	Microbial perturbations and modulation in conditions associated with malnutrition and malabsorption. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 161-172.	1.0	26
308	The Intestinal Immune System in Obesity and Insulin Resistance. Cell Metabolism, 2016, 23, 413-426.	7.2	355
309	Gut Microbiome, Obesity, and Metabolic Syndrome. , 2016, , 447-459.		4
310	Probiotics in prevention and treatment of obesity: a critical view. Nutrition and Metabolism, 2016, 13, 14.	1.3	235
311	Gut Microbiota of Nonalcoholic Fatty Liver Disease. Digestive Diseases and Sciences, 2016, 61, 1268-1281.	1.1	46
312	Capturing the most wanted taxa through cross-sample correlations. ISME Journal, 2016, 10, 2459-2467.	4.4	9
313	Losing weight for a better health: Role for the gut microbiota. Clinical Nutrition Experimental, 2016, 6, 39-58.	2.0	28
315	Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs?. Journal of Ethnopharmacology, 2016, 179, 253-264.	2.0	147
316	A Critical Look at Prebiotics Within the Dietary Fiber Concept. Annual Review of Food Science and Technology, 2016, 7, 167-190.	5.1	149
317	The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nature Reviews Nephrology, 2016, 12, 169-181.	4.1	258
318	Microbiome to Brain: Unravelling the Multidirectional Axes of Communication. Advances in Experimental Medicine and Biology, 2016, 874, 301-336.	0.8	50
319	Prebiotics: why definitions matter. Current Opinion in Biotechnology, 2016, 37, 1-7.	3.3	326
320	High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 2016, 65, 1812-1821.	6.1	1,092
321	Peripheral aetiopathogenic drivers and mediators of Parkinson's disease and co-morbidities: role of gastrointestinal microbiota. Journal of NeuroVirology, 2016, 22, 22-32.	1.0	42
322	Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiology Reviews, 2016, 40, 117-132.	3.9	303

#	Article	IF	CITATIONS
323	The gut microbiota and host health: a new clinical frontier. Gut, 2016, 65, 330-339.	6.1	1,719
324	Talking microbes: When gut bacteria interact with diet and host organs. Molecular Nutrition and Food Research, 2016, 60, 58-66.	1.5	125
325	Gut microbiota and obesity. Cellular and Molecular Life Sciences, 2016, 73, 147-162.	2.4	383
326	<i>Akkermansia muciniphila</i> and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 2016, 65, 426-436.	6.1	1,379
327	Role of Adiposity-Driven Inflammation in Depressive Morbidity. Neuropsychopharmacology, 2017, 42, 115-128.	2.8	124
328	Eat Well, or Get Roommates Who Do. Cell Host and Microbe, 2017, 21, 123-125.	5.1	2
329	Gut microbiota and colorectal cancer. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 757-769.	1.3	157
330	Diet and the Microbiome. Gastroenterology Clinics of North America, 2017, 46, 49-60.	1.0	27
331	Influence of the Gut Microbiome on Autoimmunity in the Central Nervous System. Journal of Immunology, 2017, 198, 596-604.	0.4	52
332	Personalized microbiomeâ€based approaches to metabolic syndrome management and prevention. Journal of Diabetes, 2017, 9, 226-236.	0.8	39
333	Sleeve gastrectomy drives persistent shifts in the gut microbiome. Surgery for Obesity and Related Diseases, 2017, 13, 916-924.	1.0	43
335	The human gut microbiome as source of innovation for health: Which physiological and therapeutic outcomes could we expect?. Therapie, 2017, 72, 21-38.	0.6	28
337	Current state and latest advances in the concept, production and functionality of prebiotic oligosaccharides. Current Opinion in Food Science, 2017, 13, 50-55.	4.1	76
338	Resistant starch can improve insulin sensitivity independently of the gut microbiota. Microbiome, 2017, 5, 12.	4.9	113
339	Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. Physiology and Behavior, 2017, 173, 305-317.	1.0	183
340	Oneâ€year calorie restriction impacts gut microbial composition but not its metabolic performance in obese adolescents. Environmental Microbiology, 2017, 19, 1536-1551.	1.8	54
341	Dysbiosis and the immune system. Nature Reviews Immunology, 2017, 17, 219-232.	10.6	1,102
342	Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 2017, 15, 73.	1.8	1,714

#	Article	IF	CITATIONS
343	Chemical signaling between gut microbiota and host chromatin: What is your gut really saying?. Journal of Biological Chemistry, 2017, 292, 8582-8593.	1.6	41
344	High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice. Microbiome, 2017, 5, 43.	4.9	132
345	Short Term High Fat Diet Induces Obesityâ€Enhancing Changes in Mouse Gut Microbiota That are Partially Reversed by Cessation of the High Fat Diet. Lipids, 2017, 52, 499-511.	0.7	66
346	Intestinal Microbiology and Ecology in Crohn's Disease and Ulcerative Colitis. , 2017, , 67-74.		1
347	Comprehensive evaluation of SCFA production in the intestinal bacteria regulated by berberine using gas-chromatography combined with polymerase chain reaction. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1057, 70-80.	1.2	42
348	Gut–liver axis and sterile signals in the development of alcoholic liver disease. Alcohol and Alcoholism, 2017, 52, 414-424.	0.9	56
349	Ménage à trois in the human gut: interactions between host, bacteria and phages. Nature Reviews Microbiology, 2017, 15, 397-408.	13.6	277
350	Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome. Microbiome, 2017, 5, 49.	4.9	228
352	Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metabolism, 2017, 26, 110-130.	7.2	572
353	Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nature Medicine, 2017, 23, 859-868.	15.2	1,074
354	Weightâ€loss interventions and gut microbiota changes in overweight and obese patients: a systematic review. Obesity Reviews, 2017, 18, 832-851.	3.1	161
355	The Microbiota-Obesity Connection, Part 2. Holistic Nursing Practice, 2017, 31, 204-209.	0.3	Ο
356	Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine, 2017, 23, 850-858.	15.2	1,165
357	Mucosa-associated microbiota signature in colorectal cancer. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 2073-2083.	1.3	91
358	Diet shifts provoke complex and variable changes in the metabolic networks of the ruminal microbiome. Microbiome, 2017, 5, 60.	4.9	38
360	Markers of dietary protein intake are associated with successful weight loss in the <scp>POUNDS</scp> Lost trial. Clinical Obesity, 2017, 7, 166-175.	1.1	25
361	Changes in fruit and vegetable consumption habits from pre-pregnancy to early pregnancy among Norwegian women. BMC Pregnancy and Childbirth, 2017, 17, 107.	0.9	19
365	The Gut Microbiome, Obesity, and Weight Control in Women's Reproductive Health. Western Journal of Nursing Research, 2017, 39, 1094-1119.	0.6	12

#	Article	IF	CITATIONS
367	Emerging role of intestinal microbiota and microbial metabolites in metabolic control. Diabetologia, 2017, 60, 613-617.	2.9	35
368	Prior Dietary Practices and Connections to a Human Gut Microbial Metacommunity Alter Responses to Diet Interventions. Cell Host and Microbe, 2017, 21, 84-96.	5.1	129
369	Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free Radical Biology and Medicine, 2017, 105, 48-67.	1.3	123
370	Ancient wheat and health: a legend or the reality? A review on KAMUT khorasan wheat. International Journal of Food Sciences and Nutrition, 2017, 68, 278-286.	1.3	54
371	Linking dietary patterns with gut microbial composition and function. Gut Microbes, 2017, 8, 113-129.	4.3	137
372	Enteroendocrine Cells: Metabolic Relays between Microbes and Their Host. Endocrine Development, 2017, 32, 139-164.	1.3	30
373	Intestinal Microbiota and Bone Health: The Role of Prebiotics, Probiotics, and Diet. Molecular and Integrative Toxicology, 2017, , 417-443.	0.5	8
374	Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metabolism, 2017, 26, 611-619.e6.	7.2	689
375	Ginsenosides Rb3 and Rd reduce polyps formation while reinstate the dysbiotic gut microbiota and the intestinal microenvironment in ApcMin/+ mice. Scientific Reports, 2017, 7, 12552.	1.6	75
376	The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications, 2017, 8, 845.	5.8	1,029
377	The Microbiota and Energy Balanc. Endocrinology, 2017, , 1-18.	0.1	0
378	Research Gaps in Diet and Nutrition in Inflammatory Bowel Disease. A Topical Review by D-ECCO Working Group [Dietitians of ECCO]. Journal of Crohn's and Colitis, 2017, 11, 1407-1419.	0.6	84
379	Impact of dietary beliefs and practices on patients with inflammatory bowel disease: An observational study from India. JGH Open, 2017, 1, 15-21.	0.7	28
380	Fructooligosaccharide (FOS) and Galactooligosaccharide (GOS) Increase Bifidobacterium but Reduce Butyrate Producing Bacteria with Adverse Glycemic Metabolism in healthy young population. Scientific Reports, 2017, 7, 11789.	1.6	181
381	Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Research Reviews, 2017, 40, 95-119.	5.0	337
382	Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Scientific Reports, 2017, 7, 11955.	1.6	119
383	Metabolic programming of the epigenome: host and gut microbial metabolite interactions with host chromatin. Translational Research, 2017, 189, 30-50.	2.2	34
384	Review article: the human intestinal virome in health and disease. Alimentary Pharmacology and Therapeutics, 2017, 46, 800-815.	1.9	187

#	Article	IF	CITATIONS
385	Single-Subject Studies in Translational Nutrition Research. Annual Review of Nutrition, 2017, 37, 395-422.	4.3	64
386	The role of intestinal bacteria in the development and progression of gastrointestinal tract neoplasms. Surgical Oncology, 2017, 26, 368-376.	0.8	67
387	Strategies to increase the efficacy of using gut microbiota for the modulation of obesity. Obesity Reviews, 2017, 18, 1260-1271.	3.1	24
388	An Interdisciplinary Lens on Consciousness: The Consciousness Continuum and How to (Not) Study It in the Brain and the Gut, A Commentary on Williams and Poehlman. Journal of Consumer Research, 2017, 44, 258-265.	3.5	9
390	IL-17A-dependent gut microbiota is essential for regulating diet-induced disorders in mice. Science Bulletin, 2017, 62, 1052-1063.	4.3	16
392	Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications. Food and Nutrition Research, 2017, 61, 1361780.	1.2	117
394	Exploring the microbiome in health and disease. Toxicology Research and Application, 2017, 1, 239784731774188.	0.7	36
396	Gut microbiota composition may relate to weight loss rate in obese pet dogs. Veterinary Medicine and Science, 2017, 3, 252-262.	0.6	56
397	Dietary Impacts on the Composition of Microbiota in Human Health and Disease. , 2017, , 377-404.		0
398	Microbial-Host Co-metabolites Are Prodromal Markers Predicting Phenotypic Heterogeneity in Behavior, Obesity, and Impaired Glucose Tolerance. Cell Reports, 2017, 20, 136-148.	2.9	78
399	Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Metaâ€Analysis of Prospective Studies. Journal of the American Heart Association, 2017, 6, .	1.6	376
400	Developmental origins of NAFLD: a womb with a clue. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 81-96.	8.2	162
401	Rethinking Diet to Aid Human–Microbe Symbiosis. Trends in Microbiology, 2017, 25, 100-112.	3.5	99
402	Consequences of Small Intestinal Bacterial Overgrowth in Obese Patients Before and After Bariatric Surgery. Obesity Surgery, 2017, 27, 599-605.	1.1	57
403	Patients with inflammatory bowel disease and their treating clinicians have different views regarding diet. Journal of Human Nutrition and Dietetics, 2017, 30, 66-72.	1.3	73
404	Diet-Microbiome Interactions in Health Are Controlled by Intestinal Nitrogen Source Constraints. Cell Metabolism, 2017, 25, 140-151.	7.2	148
405	Nutrigenomics in the modern era. Proceedings of the Nutrition Society, 2017, 76, 265-275.	0.4	65
406	Effect of inulin-type fructans on blood lipid profile and glucose level: a systematic review and meta-analysis of randomized controlled trials. European Journal of Clinical Nutrition_2017.71.9-20.	1.3	114

#	Article	IF	CITATIONS
407	Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nature Reviews Endocrinology, 2017, 13, 11-25.	4.3	273
408	Big Data for Biomedical Research and Personalised Medicine: an Epistemological and Ethical Cross-Analysis. Human and Social Studies, 2017, 6, 13-36.	0.1	0
409	Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiology Reviews, 2017, 41, 182-199.	3.9	182
410	Complementary and Alternative Medicine Strategies for Therapeutic Gut Microbiota Modulation in Inflammatory Bowel Disease and their Next-Generation Approaches. Gastroenterology Clinics of North America, 2017, 46, 689-729.	1.0	27
411	Interindividual variability in gut microbiota and host response to dietary interventions. Nutrition Reviews, 2017, 75, 1059-1080.	2.6	155
412	Bioinformatics in Microbiome Analysis. Methods in Microbiology, 2017, 44, 1-18.	0.4	4
413	Amino acid supplements and metabolic health: a potential interplay between intestinal microbiota and systems control. Genes and Nutrition, 2017, 12, 27.	1.2	40
414	The role of leptin in health and disease. Temperature, 2017, 4, 258-291.	1.7	108
415	Association of Dietary Patterns With Risk of Colorectal Cancer Subtypes Classified by <i>Fusobacterium nucleatum</i> in Tumor Tissue. JAMA Oncology, 2017, 3, 921.	3.4	243
416	5. Endogene Mechanismen. , 2017, , 96-126.		0
417	A Proposal for a Study on Treatment Selection and Lifestyle Recommendations in Chronic Inflammatory Diseases: A Danish Multidisciplinary Collaboration on Prognostic Factors and Personalised Medicine. Nutrients, 2017, 9, 499.	1.7	24
418	Gut–Liver Axis Derangement in Non-Alcoholic Fatty Liver Disease. Children, 2017, 4, 66.	0.6	85
419	Gene-Diet Interaction and Precision Nutrition in Obesity. International Journal of Molecular Sciences, 2017, 18, 787.	1.8	140
420	Host–Microbiota Mutualism in Metabolic Diseases. Frontiers in Endocrinology, 2017, 8, 267.	1.5	20
421	Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review. Frontiers in Microbiology, 2017, 8, 563.	1.5	262
422	The Gut Microbiota of Healthy Chilean Subjects Reveals a High Abundance of the Phylum Verrucomicrobia. Frontiers in Microbiology, 2017, 8, 1221.	1.5	225
423	Bacterial Community and Spoilage Profiles Shift in Response to Packaging in Yellow-Feather Broiler, a Highly Popular Meat in Asia. Frontiers in Microbiology, 2017, 8, 2588.	1.5	43

#	Article	IF	CITATIONS
425	Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats. PLoS ONE, 2017, 12, e0184735.	1.1	80
426	The Pocket-4-Life project, bioavailability and beneficial properties of the bioactive compounds of espresso coffee and cocoa-based confectionery containing coffee: study protocol for a randomized cross-over trial. Trials, 2017, 18, 527.	0.7	13
427	Gut Microbiota and Metabolic Disorders. Journal of Korean Diabetes, 2017, 18, 63.	0.1	0
428	The Influence of Fiber on Gut Microbiota: Butyrate as Molecular Player Involved in theÂBeneficial Interplay BetweenÂDietary Fiber and Cardiovascular Health. , 2017, , 61-71.		4
429	Gut microbiota and obesity: implications for fecal microbiota transplantation therapy. Hormones, 2017, 16, 223-234.	0.9	47
430	The Influence of Microbiota on Mechanisms of Bariatric Surgery. , 2017, , 267-281.		3
431	Extracts from <i>Hericium erinaceus</i> relieve inflammatory bowel disease by regulating immunity and gut microbiota. Oncotarget, 2017, 8, 85838-85857.	0.8	61
432	Dietary choline derived TMAO: new role in thrombosis. AME Medical Journal, 2017, 2, 112-112.	0.4	4
433	Fiber-Rich Dietary Patterns and Colonic Microbiota in Aging and Disease. , 2018, , 119-144.		1
434	The Human Gut Microbiome: From Association to Modulation. Cell, 2018, 172, 1198-1215.	13.5	558
435	Impact of Nutrition on the Gut Microbiota. , 2018, , 105-131.		2
436	Gut-microbiome-related LCT genotype and 2-year changes in body composition and fat distribution: the POUNDS Lost Trial. International Journal of Obesity, 2018, 42, 1565-1573.	1.6	16
437	HLA-B*07, HLA-DRB1*07, HLA-DRB1*12, and HLA-C*03:02 Strongly Associate With BMI: Data From 1.3 Million Healthy Chinese Adults. Diabetes, 2018, 67, 861-871.	0.3	9
438	The Role of Human Gut Microbiota in Obesity. , 2018, , 71-76.		0
439	Systems biology in hepatology: approaches and applications. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 365-377.	8.2	117
440	Richness and ecosystem development across faecal snapshots of the gut microbiota. Nature Microbiology, 2018, 3, 526-528.	5.9	81
441	Impact of dietary gut microbial metabolites on the epigenome. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170359.	1.8	60
442	The development of probiotics therapy to obesity: a therapy that has gained considerable momentum. Hormones, 2018, 17, 141-151.	0.9	23

#	Article	IF	Citations
443	Gut microbiota and obesity. Clinical Nutrition Experimental, 2018, 20, 60-64.	2.0	71
444	Food, microbiome and colorectal cancer. Digestive and Liver Disease, 2018, 50, 647-652.	0.4	43
445	The impact of the intestinal microbiota in therapeutic responses against cancer. Comptes Rendus - Biologies, 2018, 341, 284-289.	0.1	65
446	Specific properties of probiotic strains: relevance and benefits for the host. EPMA Journal, 2018, 9, 205-223.	3.3	68
447	Dietary Interventions to Modulate the Gut Microbiome—How Far Away Are We From Precision Medicine. Inflammatory Bowel Diseases, 2018, 24, 2142-2154.	0.9	61
448	Gut microbiota injury in allogeneic haematopoietic stem cell transplantation. Nature Reviews Cancer, 2018, 18, 283-295.	12.8	204
449	Molecular Paths Linking Metabolic Diseases, Gut Microbiota Dysbiosis and Enterobacteria Infections. Journal of Molecular Biology, 2018, 430, 581-590.	2.0	22
450	Insulin resistance in obesity: an overview of fundamental alterations. Eating and Weight Disorders, 2018, 23, 149-157.	1.2	218
451	A distance-based approach for testing the mediation effect of the human microbiome. Bioinformatics, 2018, 34, 1875-1883.	1.8	43
452	Editorial: Editorial for the virtual issue on microbiome. FEMS Microbiology Reviews, 2018, 42, 113-115.	3.9	2
453	Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans. Endocrine Reviews, 2018, 39, 133-153.	8.9	207
454	The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Science of the Total Environment, 2018, 627, 1018-1038.	3.9	244
455	Understanding the microbiome: Emerging biomarkers for exploiting the microbiota for personalized medicine against cancer. Seminars in Cancer Biology, 2018, 52, 1-8.	4.3	91
456	Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME Journal, 2018, 12, 1642-1657.	4.4	260
457	Obesity in Pregnancy. Medical Clinics of North America, 2018, 102, 87-106.	1.1	51
458	The gut microbiota as a novel regulator of cardiovascular function and disease. Journal of Nutritional Biochemistry, 2018, 56, 1-15.	1.9	122
459	The Impact of the Intestinal Microbiota in Therapeutic Responses Against Cancer. , 2018, , 447-462.		2
460	Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration. Cell Host and Microbe, 2018, 23, 27-40.e7.	5.1	477

#	Article	IF	CITATIONS
461	Maternal metabolic, immune, and microbial systems in late pregnancy vary with malnutrition in miceâ€. Biology of Reproduction, 2018, 98, 579-592.	1.2	26
462	Human microbiota, blood group antigens, and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1413.	6.6	27
463	Diet, Microbiota, and Metabolic Health: Trade-Off Between Saccharolytic and Proteolytic Fermentation. Annual Review of Food Science and Technology, 2018, 9, 65-84.	5.1	93
464	Protection of the Human Gut Microbiome From Antibiotics. Journal of Infectious Diseases, 2018, 217, 628-636.	1.9	124
465	Obese Subjects With Specific Gustatory Papillae Microbiota and Salivary Cues Display an Impairment to Sense Lipids. Scientific Reports, 2018, 8, 6742.	1.6	32
466	Insights into the role of gut microbiota in obesity: pathogenesis, mechanisms, and therapeutic perspectives. Protein and Cell, 2018, 9, 397-403.	4.8	176
467	Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Digestive and Liver Disease, 2018, 50, 421-428.	0.4	377
468	Prebiotic attenuation of olanzapine-induced weight gain in rats: analysis of central and peripheral biomarkers and gut microbiota. Translational Psychiatry, 2018, 8, 66.	2.4	91
469	Effects of sleeve gastrectomy on the composition and diurnal oscillation of gut microbiota related to the metabolic improvements. Surgery for Obesity and Related Diseases, 2018, 14, 731-739.	1.0	15
470	Microbiome-metabolome signatures in mice genetically prone to develop dementia, fed a normal or fatty diet. Scientific Reports, 2018, 8, 4907.	1.6	83
471	The gut microbiota and its potential role in obesity. Future Microbiology, 2018, 13, 589-603.	1.0	32
472	Multivariate modelling of faecal bacterial profiles of patients with IBS predicts responsiveness to a diet low in FODMAPs. Gut, 2018, 67, 872-881.	6.1	176
473	Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. Microbiology Spectrum, 2017, 5, .	1.2	28
474	Impact of dietary fat on gut microbiota and low-grade systemic inflammation: mechanisms and clinical implications on obesity. International Journal of Food Sciences and Nutrition, 2018, 69, 125-143.	1.3	171
475	Effects of probiotics on body weight, body mass index, fat mass and fat percentage in subjects with overweight or obesity: a systematic review and metaâ€analysis of randomized controlled trials. Obesity Reviews, 2018, 19, 219-232.	3.1	174
476	Whole cereal grains and potential health effects: Involvement of the gut microbiota. Food Research International, 2018, 103, 84-102.	2.9	136
477	Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science, 2018, 359, 91-97.	6.0	3,689
478	Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science, 2018, 359, 97-103.	6.0	3,126

#	Article	IF	CITATIONS
479	Calorie Restriction and Insulin Sensitivity in Obesity. , 2018, , 1-12.		0
480	Gut microbiota and hypertension: From pathogenesis to new therapeutic strategies. Clinics and Research in Hepatology and Gastroenterology, 2018, 42, 110-117.	0.7	54
481	Gut Microbiota and Host Metabolism: What Relationship. Neuroendocrinology, 2018, 106, 352-356.	1.2	47
482	Gut microbiota and obesity: Concepts relevant to clinical care. European Journal of Internal Medicine, 2018, 48, 18-24.	1.0	95
483	Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health. Microbiology Spectrum, 2017, 5, .	1.2	125
484	Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis. European Journal of Nutrition, 2018, 57, 861-876.	1.8	102
485	Harnessing Gut Microbes for Mental Health: Getting From Here to There. Biological Psychiatry, 2018, 83, 214-223.	0.7	129
486	Alterations in gut microbiota associated with a cafeteria diet and the physiological consequences in the host. International Journal of Obesity, 2018, 42, 746-754.	1.6	31
487	Timing of food intake impacts daily rhythms of human salivary microbiota: a randomized, crossover study. FASEB Journal, 2018, 32, 2060-2072.	0.2	126
488	Causes and mechanisms of adipocyte enlargement and adipose expansion. Obesity Reviews, 2018, 19, 406-420.	3.1	136
489	Targeted Microbiome Intervention by Microencapsulated Delayed-Release Niacin Beneficially Affects Insulin Sensitivity in Humans. Diabetes Care, 2018, 41, 398-405.	4.3	69
490	How poverty affects diet to shape the microbiota and chronic disease. Nature Reviews Immunology, 2018, 18, 279-287.	10.6	46
491	Connection Between Fiber, Colonic Microbiota, and Health Across the Human Life Cycle. , 2018, , 67-93.		1
492	Body size phenotypes comprehensively assess cardiometabolic risk and refine the association between obesity and gut microbiota. International Journal of Obesity, 2018, 42, 424-432.	1.6	48
493	Combining biological and psychosocial baseline variables did not improve prediction of outcome of a veryâ€lowâ€energy diet in a clinic referral population. Clinical Obesity, 2018, 8, 30-38.	1.1	8
494	Microbiota and HDL metabolism. Current Opinion in Lipidology, 2018, 29, 18-23.	1.2	19
495	Calorie restriction and its impact on gut microbial composition and global metabolism. Frontiers of Medicine, 2018, 12, 634-644.	1.5	49
496	Demystifying Dysbiosis: Can the Gut Microbiome Promote Oral Tolerance Over IgE-mediated Food Allergy?. Current Pediatric Reviews, 2018, 14, 156-163.	0.4	22

CITATION REPORT

#	Article	IF	CITATIONS
497	Impact of a Healthy Dietary Pattern on Gut Microbiota and Systemic Inflammation in Humans. Nutrients, 2018, 10, 1783.	1.7	71
498	The gut microbiota at the intersection of diet and human health. Science, 2018, 362, 776-780.	6.0	683
499	Impact of Individual Traits, Saturated Fat, and Protein Source on the Gut Microbiome. MBio, 2018, 9, .	1.8	70
500	Cordycepin reduces weight through regulating gut microbiota in high-fat diet-induced obese rats. Lipids in Health and Disease, 2018, 17, 276.	1.2	46
501	Dietary Composition and Cardiovascular Risk: A Mediator or a Bystander?. Nutrients, 2018, 10, 1912.	1.7	26
502	Pre-obese children's dysbiotic gut microbiome and unhealthy diets may predict the development of obesity. Communications Biology, 2018, 1, 222.	2.0	65
503	Development of the Gut Microbiome in Children, and Lifetime Implications for Obesity and Cardiometabolic Disease. Children, 2018, 5, 160.	0.6	53
504	Consumption of Mediterranean versus Western Diet Leads to Distinct Mammary Gland Microbiome Populations. Cell Reports, 2018, 25, 47-56.e3.	2.9	114
505	The Microbiotic Highway to Health—New Perspective on Food Structure, Gut Microbiota, and Host Inflammation. Nutrients, 2018, 10, 1590.	1.7	45
506	Metabolic and Microbiota Measures as Peripheral Biomarkers in Major Depressive Disorder. Frontiers in Psychiatry, 2018, 9, 513.	1.3	29
507	Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. Cell, 2018, 175, 947-961.e17.	13.5	517
508	Impact of carbohydrate substrate complexity on the diversity of the human colonic microbiota. FEMS Microbiology Ecology, 2019, 95, .	1.3	28
509	Alterations of Gut Microbiome in the Patients With Severe Fever With Thrombocytopenia Syndrome. Frontiers in Microbiology, 2018, 9, 2315.	1.5	8
510	Fecal microbiota and bile acid interactions with systemic and adipose tissue metabolism in diet-induced weight loss of obese postmenopausal women. Journal of Translational Medicine, 2018, 16, 244.	1.8	78
511	ls gut microbiota a relevant and competitive dietary target for cardio-metabolic health? Proceedings of an expert workshop. Trends in Food Science and Technology, 2018, 81, 146-154.	7.8	4
512	The microbiome and inborn errors of metabolism: Why we should look carefully at their interplay?. Genetics and Molecular Biology, 2018, 41, 515-532.	0.6	14
513	Lifestyle Intervention Decreases Urine Trimethylamine <i>N</i> â€Oxide Levels in Prepubertal Children with Obesity. Obesity, 2018, 26, 1603-1610.	1.5	21
514	The Intricate Relationship between Diabetes, Diet and the Gut Microbiota. , 2018, , .		0

#	Article	IF	CITATIONS
515	Consequences of colonialism: A microbial perspective to contemporary Indigenous health. American Journal of Physical Anthropology, 2018, 167, 423-437.	2.1	12
516	Gut microbiota mediates the anti-obesity effect of calorie restriction in mice. Scientific Reports, 2018, 8, 13037.	1.6	114
517	Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health. , 0, , 453-483.		8
518	Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. , 2018, , 131-148.		0
519	Anti-diabetic effect of baicalein is associated with the modulation of gut microbiota in streptozotocin and high-fat-diet induced diabetic rats. Journal of Functional Foods, 2018, 46, 256-267.	1.6	98
520	Poor feed efficiency in sheep is associated with several structural abnormalities in the community metabolic network of their ruminal microbes1. Journal of Animal Science, 2018, 96, 2113-2124.	0.2	15
521	Gut Microbiota and Human Health: Insights From Ecological Restoration. Quarterly Review of Biology, 2018, 93, 73-90.	0.0	10
522	Personalized Dietary Management of Overweight and Obesity Based on Measures of Insulin and Glucose. Annual Review of Nutrition, 2018, 38, 245-272.	4.3	49
523	Effects of Mediterranean Diet on Endothelial Function. , 2018, , 363-389.		1
524	Mannan-oligosaccharide modulates the obesity and gut microbiota in high-fat diet-fed mice. Food and Function, 2018, 9, 3916-3929.	2.1	88
525	Fermented Soybean Suppresses Visceral Fat Accumulation in Mice. Molecular Nutrition and Food Research, 2018, 62, e1701054.	1.5	26
526	Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nature Medicine, 2018, 24, 1070-1080.	15.2	465
527	A taxonomic signature of obesity in a large study of American adults. Scientific Reports, 2018, 8, 9749.	1.6	192
528	The Gut Microbiome as a Target for the Treatment of Type 2 Diabetes. Current Diabetes Reports, 2018, 18, 55.	1.7	85
529	Neuroimmunophysiology of the gut: advances and emerging concepts focusing on the epithelium. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 765-784.	8.2	82
530	Preventive and Therapeutic Effects of Dietary Fibers Against Cardiovascular Diseases. , 2018, , 365-393.		0
531	Intestinal microbiota lipid metabolism varies across rainbow trout (<i>Oncorhynchus mykiss</i>) phylogeographic divide. Journal of Applied Microbiology, 2018, 125, 1614-1625.	1.4	13
532	Commensal Homeostasis of Gut Microbiota-Host for the Impact of Obesity. Frontiers in Physiology, 2017, 8, 1122.	1.3	29

#	Article	IF	CITATIONS
533	Microbiome Responses to an Uncontrolled Short-Term Diet Intervention in the Frame of the Citizen Science Project. Nutrients, 2018, 10, 576.	1.7	96
534	Genetic and microbiome influence on lipid metabolism and dyslipidemia. Physiological Genomics, 2018, 50, 117-126.	1.0	84
535	Splenectomy Leads to Amelioration of Altered Gut Microbiota and Metabolome in Liver Cirrhosis Patients. Frontiers in Microbiology, 2018, 9, 963.	1.5	38
536	Mucosalâ€associated invariant T (MAIT) cells are depleted and prone to apoptosis in cardiometabolic disorders. FASEB Journal, 2018, 32, 5078-5089.	0.2	37
537	Microbiome and Diseases: Metabolic Disorders. , 2018, , 251-277.		3
538	Dietary Protein and Muscle in Aging People: The Potential Role of the Gut Microbiome. Nutrients, 2018, 10, 929.	1.7	80
539	High Fructose Intake During Pregnancy in Rats Influences the Maternal Microbiome and Gut Development in the Offspring. Frontiers in Genetics, 2018, 9, 203.	1.1	25
540	Impact of a 3-Months Vegetarian Diet on the Gut Microbiota and Immune Repertoire. Frontiers in Immunology, 2018, 9, 908.	2.2	56
541	High-Fat Diet Induces Dysbiosis of Gastric Microbiota Prior to Gut Microbiota in Association With Metabolic Disorders in Mice. Frontiers in Microbiology, 2018, 9, 639.	1.5	104
542	Gut Microbiota Markers in Obese Adolescent and Adult Patients: Age-Dependent Differential Patterns. Frontiers in Microbiology, 2018, 9, 1210.	1.5	139
543	Effects of Oligosaccharides From Morinda officinalis on Gut Microbiota and Metabolome of APP/PS1 Transgenic Mice. Frontiers in Neurology, 2018, 9, 412.	1.1	71
544	Pregestational overweight and obesity are associated with differences in gut microbiota composition and systemic inflammation in the third trimester. PLoS ONE, 2018, 13, e0200305.	1.1	64
545	The Role of Gut Microbiota in Obesity and Type 2 and Type 1 Diabetes Mellitus: New Insights into "Old― Diseases. Medical Sciences (Basel, Switzerland), 2018, 6, 32.	1.3	103
546	Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome, 2018, 6, 89.	4.9	286
547	Thermal processing of food reduces gut microbiota diversity of the host and triggers adaptation of the microbiota: evidence from two vertebrates. Microbiome, 2018, 6, 99.	4.9	42
548	Use of dietary indices to control for diet in human gut microbiota studies. Microbiome, 2018, 6, 77.	4.9	85
549	Influence of dietary protein on Dahl salt-sensitive hypertension: a potential role for gut microbiota. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R907-R914.	0.9	13
550	A pathogen-derived effector modulates host glucose metabolism by arginine GlcNAcylation of HIF-1α protein. PLoS Pathogens, 2018, 14, e1007259.	2.1	29

#	Article	IF	CITATIONS
551	Role of gut microbiota in chronic lowâ€grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obesity Reviews, 2018, 19, 1719-1734.	3.1	169
552	Rebuilding the Gut Microbiota Ecosystem. International Journal of Environmental Research and Public Health, 2018, 15, 1679.	1.2	231
553	Evidence for complete nitrification in enrichment culture of tidal sediments and diversity analysis of clade a comammox Nitrospira in natural environments. Applied Microbiology and Biotechnology, 2018, 102, 9363-9377.	1.7	57
554	Role of nutrition, infection, and the microbiota in the efficacy of oral vaccines. Clinical Science, 2018, 132, 1169-1177.	1.8	16
555	Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut, 2019, 68, 70-82.	6.1	297
556	Treatment with camu camu (<i>Myrciaria dubia</i>) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut, 2019, 68, 453-464.	6.1	200
557	Amalgamation of polyphenols and probiotics induce health promotion. Critical Reviews in Food Science and Nutrition, 2019, 59, 2903-2926.	5.4	29
558	Prevotella-to-Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis. International Journal of Obesity, 2019, 43, 149-157.	1.6	173
559	<i>N</i> â€Acetylcysteine alleviates gut dysbiosis and glucose metabolic disorder in highâ€fat dietâ€fed mice. Journal of Diabetes, 2019, 11, 32-45.	0.8	39
560	Dietary fat and gut microbiota: mechanisms involved in obesity control. Critical Reviews in Food Science and Nutrition, 2019, 59, 3045-3053.	5.4	59
561	Links between environment, diet, and the hunter-gatherer microbiome. Gut Microbes, 2019, 10, 216-227.	4.3	105
562	Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6 J mice by modulating the gut microbiota. Journal of Nutritional Biochemistry, 2019, 64, 88-100.	1.9	199
563	Severe obesity and gut microbiota: does bariatric surgery really reset the system?. Gut, 2019, 68, 5-6.	6.1	34
564	The association between gut microbiota composition and BMI in Chinese male college students, as analysed by next-generation sequencing. British Journal of Nutrition, 2019, 122, 986-995.	1.2	46
565	Short-term dietary restriction in old mice rejuvenates the aging-induced structural imbalance of gut microbiota. Biogerontology, 2019, 20, 837-848.	2.0	27
566	Gut microbiome response to a modern Paleolithic diet in a Western lifestyle context. PLoS ONE, 2019, 14, e0220619.	1.1	62
567	Acyl-CoA-Binding Protein Is a Lipogenic Factor that Triggers Food Intake and Obesity. Cell Metabolism, 2019, 30, 754-767.e9.	7.2	67
568	Twin Registries Moving Forward and Meeting the Future: A Review. Twin Research and Human Genetics, 2019, 22, 201-209.	0.3	4

	CHANNIN	LFUILI	
#	Article	IF	Citations
569	The Gut Microbiome Influences Host Endocrine Functions. Endocrine Reviews, 2019, 40, 1271-1284.	8.9	179
570	Dietâ€derived microbial metabolites in health and disease. Nutrition Bulletin, 2019, 44, 216-227.	0.8	36
571	Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. Advances in Nutrition, 2019, 10, S17-S30.	2.9	255
572	Gut Microbiome: Profound Implications for Diet and Disease. Nutrients, 2019, 11, 1613.	1.7	615
573	A structured weight loss program increases gut microbiota phylogenetic diversity and reduces levels of Collinsella in obese type 2 diabetics: A pilot study. PLoS ONE, 2019, 14, e0219489.	1.1	82
574	Contribution of gut microbiota to metabolism of dietary glycine betaine in mice and in vitro colonic fermentation. Microbiome, 2019, 7, 103.	4.9	65
575	Effect of Synbiotic Supplementation in a Very‣ow alorie Ketogenic Diet on Weight Loss Achievement and Gut Microbiota: A Randomized Controlled Pilot Study. Molecular Nutrition and Food Research, 2019, 63, e1900167.	1.5	48
576	Dysbiosis of intestinal microbiota induced by dietary oxidized fish oil and recovery of diet-induced dysbiosis via taurine supplementation in rice field eel (Monopterus albus). Aquaculture, 2019, 512, 734288.	1.7	40
577	Is there still a place for prebiotics in chronic kidney disease?. Nephrology Dialysis Transplantation, 2019, 34, 1812-1816.	0.4	4
578	A Cross-Sectional Study of Compositional and Functional Profiles of Gut Microbiota in Sardinian Centenarians. MSystems, 2019, 4, .	1.7	95
579	Improvement of nonâ€invasive markers of NAFLD from an individualised, webâ€based exercise program. Alimentary Pharmacology and Therapeutics, 2019, 50, 930-939.	1.9	67
580	Gene–Environment Interactions on Body Fat Distribution. International Journal of Molecular Sciences, 2019, 20, 3690.	1.8	29
581	Fecal Microbial Transplantation for Diseases Beyond Recurrent Clostridium Difficile Infection. Gastroenterology, 2019, 157, 624-636.	0.6	76
582	The gut microbiome in psychiatry: A primer for clinicians. Depression and Anxiety, 2019, 36, 1004-1025.	2.0	27
583	Fecal Microbiota Transplantation: a Future Therapeutic Option for Obesity/Diabetes?. Current Diabetes Reports, 2019, 19, 51.	1.7	91
584	Precision Nutrition and the Microbiome Part II: Potential Opportunities and Pathways to Commercialisation. Nutrients, 2019, 11, 1468.	1.7	50
585	Predicting the Longitudinally and Radially Varying Gut Microbiota Composition Using Multi-Scale Microbial Metabolic Modeling. Processes, 2019, 7, 394.	1.3	18
586	Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Advances in Nutrition, 2020, 11, 77-91.	2.9	382

#	Article	IF	CITATIONS
587	<i>Akkermansia muciniphila</i> abundance is lower in severe obesity, but its increased level after bariatric surgery is not associated with metabolic health improvement. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E446-E459.	1.8	67
588	1-Deoxynojirimycin improves high fat diet-induced nonalcoholic steatohepatitis by restoring gut dysbiosis. Journal of Nutritional Biochemistry, 2019, 71, 16-26.	1.9	20
589	Hematopoietic Npc1 mutation shifts gut microbiota composition in Ldlrâ^'/â^' mice on a high-fat, high-cholesterol diet. Scientific Reports, 2019, 9, 14956.	1.6	3
590	Capsaicin Improves Glucose Tolerance and Insulin Sensitivity Through Modulation of the Gut Microbiotaâ€Bile Acidâ€FXR Axis in Type 2 Diabetic <i>db/db</i> Mice. Molecular Nutrition and Food Research, 2019, 63, e1900608.	1.5	52
591	Curcumin, Gut Microbiota, and Neuroprotection. Nutrients, 2019, 11, 2426.	1.7	134
592	Lactobacillus pentosus S-PT84 prevents LPS-induced low-grade chronic inflammation in a C57BL/6J mouse model. Journal of Functional Foods, 2019, 62, 103526.	1.6	9
593	Elevated serum ceramides are linked with obesity-associated gut dysbiosis and impaired glucose metabolism. Metabolomics, 2019, 15, 140.	1.4	26
594	A Fermented Food Product Containing Lactic Acid Bacteria Protects ZDF Rats from the Development of Type 2 Diabetes. Nutrients, 2019, 11, 2530.	1.7	33
595	Dietary lipids, gut microbiota and lipid metabolism. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 461-472.	2.6	587
596	Protective Effects of Probiotic Consumption in Cardiovascular Disease in Systemic Lupus Erythematosus. Nutrients, 2019, 11, 2676.	1.7	24
597	Mouse Gut Microbiome-Encoded β-Glucuronidases Identified Using Metagenome Analysis Guided by Protein Structure. MSystems, 2019, 4, .	1.7	34
598	The Positive Effects of Grifola frondosa Heteropolysaccharide on NAFLD and Regulation of the Gut Microbiota. International Journal of Molecular Sciences, 2019, 20, 5302.	1.8	41
599	New Insights on Obesity and Diabetes from Gut Microbiome Alterations in Egyptian Adults. OMICS A Journal of Integrative Biology, 2019, 23, 477-485.	1.0	31
600	What is Needed for Evidenceâ€Based Dietary Recommendations for Migraine: A Call to Action for Nutrition and Microbiome Research. Headache, 2019, 59, 1566-1581.	1.8	21
601	From the Table to the Tumor: The Role of Mediterranean and Western Dietary Patterns in Shifting Microbial-Mediated Signaling to Impact Breast Cancer Risk. Nutrients, 2019, 11, 2565.	1.7	35
602	Vulnerability of the industrialized microbiota. Science, 2019, 366, .	6.0	177
603	The Microbiota-Gut-Brain Axis. Physiological Reviews, 2019, 99, 1877-2013.	13.1	2,304
604	Pursuing Human-Relevant Gut Microbiota-Immune Interactions. Immunity, 2019, 51, 225-239.	6.6	105

	CITATION	CITATION REPORT	
# 605	ARTICLE Pancreas–Microbiota Cross Talk in Health and Disease. Annual Review of Nutrition, 2019, 39, 249-266.	IF 4.3	CITATIONS
606	The Gut Microbiota in the First Decade of Life. Trends in Microbiology, 2019, 27, 997-1010.	3.5	368
607	Diet–microbiota interactions and personalized nutrition. Nature Reviews Microbiology, 2019, 17, 742-753.	13.6	514
608	Disturbance in the homeostasis of intestinal microbiota by a high-fat diet in the rice field eel (albus). Aquaculture, 2019, 502, 347-355.	1.7	41
609	Probiotics: How Effective Are They in the Fight against Obesity?. Nutrients, 2019, 11, 258.	1.7	121
610	Loss of function dysbiosis associated with antibiotics and high fat, high sugar diet. ISME Journal, 2019, 13, 1379-1390.	4.4	29
611	Dietary Habits and Intestinal Immunity: From Food Intake to CD4+ TH Cells. Frontiers in Immunology, 2018, 9, 3177.	2.2	33
612	Interactions between Host PPARs and Gut Microbiota in Health and Disease. International Journal of Molecular Sciences, 2019, 20, 387.	1.8	46
613	Spermidine and Voluntary Activity Exert Differential Effects on Sucrose- Compared with Fat-Induced Systemic Changes in Male Mice. Journal of Nutrition, 2019, 149, 451-462.	1.3	15
614	Key Role of Inflammation in Myeloproliferative Neoplasms: Instigator of Disease Initiation, Progression. and Symptoms. Current Hematologic Malignancy Reports, 2019, 14, 145-153.	1.2	31
615	Can Gut Microbiota Composition Predict Response to Dietary Treatments?. Nutrients, 2019, 11, 1134.	1.7	33
616	A Novel View of Human Helicobacter pylori Infections: Interplay between Microbiota and Beta-Defensins. Biomolecules, 2019, 9, 237.	1.8	39
617	The Role of the Gut Microbiome in Predicting Response to Diet and the Development of Precision Nutrition Models. Part II: Results. Advances in Nutrition, 2019, 10, 979-998.	2.9	50
618	Intestinal microbiome and fitness in kidney disease. Nature Reviews Nephrology, 2019, 15, 531-545.	4.1	140
619	Understanding the Role of the Gut Microbiome and Microbial Metabolites in Obesity and Obesity-Associated Metabolic Disorders: Current Evidence and Perspectives. Current Obesity Reports, 2019, 8, 317-332.	3.5	182
620	The gut microbiota perspective for interventions in MS. Autoimmunity Reviews, 2019, 18, 814-824.	2.5	19
621	Effect of gastrointestinal microbiome and its diversity on the expression of tumor‑infiltrating lymphocytes in breast cancer. Oncology Letters, 2019, 17, 5050-5056.	0.8	13
622	Sex, gut microbiome, and cardiovascular disease risk. Biology of Sex Differences, 2019, 10, 29.	1.8	95

#	Article	IF	CITATIONS
623	Gut Microbiota Dysbiosis in Human Obesity: Impact of Bariatric Surgery. Current Obesity Reports, 2019, 8, 229-242.	3.5	85
624	Host–Microbe Interplay in the Cardiometabolic Benefits of Dietary Polyphenols. Trends in Endocrinology and Metabolism, 2019, 30, 384-395.	3.1	34
626	The gut flora modulates intestinal barrier integrity but not progression of chronic kidney disease in hyperoxaluria-related nephrocalcinosis. Nephrology Dialysis Transplantation, 2019, 35, 86-97.	0.4	9
627	Multi-Omic Analysis of the Microbiome and Metabolome in Healthy Subjects Reveals Microbiome-Dependent Relationships Between Diet and Metabolites. Frontiers in Genetics, 2019, 10, 454.	1.1	104
628	Mineral and organic fertilization alters the microbiome of a soil nematode Dorylaimus stagnalis and its resistome. Science of the Total Environment, 2019, 680, 70-78.	3.9	35
629	Evolution of the gut microbiome following acute HIV-1 infection. Microbiome, 2019, 7, 73.	4.9	69
630	Degradation of fibres from fruit by-products allows selective modulation of the gut bacteria in an in vitro model of the proximal colon. Journal of Functional Foods, 2019, 57, 275-285.	1.6	24
631	Impact of bariatric surgery on type 2 diabetes: contribution of inflammation and gut microbiome?. Seminars in Immunopathology, 2019, 41, 461-475.	2.8	27
632	Effects of diet on gut microbiota of soil collembolans. Science of the Total Environment, 2019, 676, 197-205.	3.9	28
633	Structural modulation of gut microbiota reveals Coix seed contributes to weight loss in mice. Applied Microbiology and Biotechnology, 2019, 103, 5311-5321.	1.7	27
634	A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity. Frontiers in Physiology, 2018, 9, 1958.	1.3	39
635	Ligustrum robustum Intake, Weight Loss, and Gut Microbiota: An Intervention Trial. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-11.	0.5	2
636	Associations between usual diet and gut microbiota composition: results from the Milieu Intérieur cross-sectional study. American Journal of Clinical Nutrition, 2019, 109, 1472-1483.	2.2	66
637	Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients, 2019, 11, 923.	1.7	220
638	Interactions Between Food and Gut Microbiota: Impact on Human Health. Annual Review of Food Science and Technology, 2019, 10, 389-408.	5.1	52
639	Viruses and Evolution – Viruses First? A Personal Perspective. Frontiers in Microbiology, 2019, 10, 523.	1.5	50
640	Gut Reactions: Breaking Down Xenobiotic–Microbiome Interactions. Pharmacological Reviews, 2019, 71, 198-224.	7.1	211
641	Epidemiology, Pathophysiology, and Treatment of Diverticulitis. Gastroenterology, 2019, 156, 1282-1298.e1.	0.6	231

#	Article	IF	CITATIONS
642	Contribution of the gut microbiota to the regulation of host metabolism and energy balance: a focus on the gut–liver axis. Proceedings of the Nutrition Society, 2019, 78, 319-328.	0.4	84
643	The microbiome, cancer, and cancer therapy. Nature Medicine, 2019, 25, 377-388.	15.2	712
644	Gastrointestinal Barrier Breakdown and Adipose Tissue Inflammation. Current Obesity Reports, 2019, 8, 165-174.	3.5	34
645	The Gut Microbiome on a Periodized Low-Protein Diet Is Associated With Improved Metabolic Health. Frontiers in Microbiology, 2019, 10, 709.	1.5	14
646	Biotechnology of health-promoting bacteria. Biotechnology Advances, 2019, 37, 107369.	6.0	53
647	Prebiotic supplementation in frail older people affects specific gut microbiota taxa but not global diversity. Microbiome, 2019, 7, 39.	4.9	72
648	Non-Nutritive Sweeteners and Their Implications on the Development of Metabolic Syndrome. Nutrients, 2019, 11, 644.	1.7	52
649	Gut microbiota: a new path to treat obesity. International Journal of Obesity Supplements, 2019, 9, 10-19.	12.5	239
650	Associations of Gut Microbiota With Heat Stress-Induced Changes of Growth, Fat Deposition, Intestinal Morphology, and Antioxidant Capacity in Ducks. Frontiers in Microbiology, 2019, 10, 903.	1.5	59
651	Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials. BMJ Open, 2019, 9, e017995.	0.8	183
652	Defining Dysbiosis in Patients with Urolithiasis. Scientific Reports, 2019, 9, 5425.	1.6	69
653	Gut microbiome and microbial metabolites: a new system affecting metabolic disorders. Journal of Endocrinological Investigation, 2019, 42, 1011-1018.	1.8	31
654	Global Plasma Profiling for Colorectal Cancer-Associated Volatile Organic Compounds: a Proof-of-Principle Study. Journal of Chromatographic Science, 2019, 57, 385-396.	0.7	12
655	Gut Microbiota, Host Organism, and Diet Trialogue in Diabetes and Obesity. Frontiers in Nutrition, 2019, 6, 21.	1.6	139
657	Synbiotic-driven improvement of metabolic disturbances is associated with changes in the gut microbiome in diet-induced obese mice. Molecular Metabolism, 2019, 22, 96-109.	3.0	102
658	Factors Explaining Interpersonal Variation in Plasma Enterolactone Concentrations in Humans. Molecular Nutrition and Food Research, 2019, 63, e1801159.	1.5	37
659	Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut, 2019, 68, 1417-1429.	6.1	422
660	Virome Diversity Correlates with Intestinal Microbiome Diversity in Adult Monozygotic Twins. Cell Host and Microbe, 2019, 25, 261-272.e5.	5.1	159

#	Article	IF	CITATIONS
661	Probiotic or synbiotic alters the gut microbiota and metabolism in a randomised controlled trial of weight management in overweight adults. Beneficial Microbes, 2019, 10, 121-135.	1.0	118
662	The intestinal microbiota regulates host cholesterol homeostasis. BMC Biology, 2019, 17, 94.	1.7	125
663	Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients, 2019, 11, 2862.	1.7	449
664	The Role of the Gut Microbiome in Predicting Response to Diet and the Development of Precision Nutrition Models—Part I: Overview of Current Methods. Advances in Nutrition, 2019, 10, 953-978.	2.9	53
665	The Potential Influence of the Bacterial Microbiome on the Development and Progression of ADHD. Nutrients, 2019, 11, 2805.	1.7	57
667	A place for vitamin supplementation and functional food in bariatric surgery?. Current Opinion in Clinical Nutrition and Metabolic Care, 2019, 22, 442-448.	1.3	3
668	The Role of the Gut Microbiota in Lipid and Lipoprotein Metabolism. Journal of Clinical Medicine, 2019, 8, 2227.	1.0	82
669	The BE GONE trial study protocol: a randomized crossover dietary intervention of dry beans targeting the gut microbiome of overweight and obese patients with a history of colorectal polyps or cancer. BMC Cancer, 2019, 19, 1233.	1.1	12
670	Effect of Short-Term Dietary Intervention and Probiotic Mix Supplementation on the Gut Microbiota of Elderly Obese Women. Nutrients, 2019, 11, 3011.	1.7	47
671	The Gut Microbiome in Inflammatory Bowel Disease: Lessons Learned From Other Immune-Mediated Inflammatory Diseases. American Journal of Gastroenterology, 2019, 114, 1051-1070.	0.2	53
672	Modulatory Mechanisms of the NLRP3 Inflammasomes in Diabetes. Biomolecules, 2019, 9, 850.	1.8	154
673	Low nadir CD4+ T-cell counts predict gut dysbiosis in HIV-1 infection. Mucosal Immunology, 2019, 12, 232-246.	2.7	56
674	Abnormality in Maternal Dietary Calcium Intake During Pregnancy and Lactation Promotes Body Weight Gain by Affecting the Gut Microbiota in Mouse Offspring. Molecular Nutrition and Food Research, 2019, 63, e1800399.	1.5	18
675	Effect of Resistant Starch on the Gut Microbiota and Its Metabolites in Patients with Coronary Artery Disease. Journal of Atherosclerosis and Thrombosis, 2019, 26, 705-719.	0.9	24
676	In vitro digestion under simulated saliva, gastric and small intestinal conditions and fermentation by human gut microbiota of polysaccharides from the fruits of Lycium barbarum. International Journal of Biological Macromolecules, 2019, 125, 751-760.	3.6	174
677	A mix of dietary fermentable fibers improves lipids handling by the liver of overfed minipigs. Journal of Nutritional Biochemistry, 2019, 65, 72-82.	1.9	11
678	Enhancing Clinical Efficacy through the Gut Microbiota: A New Field of Traditional Chinese Medicine. Engineering, 2019, 5, 40-49.	3.2	21
679	Educational intervention improves fruit and vegetable intake in young adults with metabolic syndrome components. Nutrition Research, 2019, 62, 89-100.	1.3	14
#	Article	IF	CITATIONS
-----	---	------	-----------
680	Microbiome and its relation to gestational diabetes. Endocrine, 2019, 64, 254-264.	1.1	102
681	Influence of Early Life, Diet, and the Environment on the Microbiome. Clinical Gastroenterology and Hepatology, 2019, 17, 231-242.	2.4	130
682	Microbiome 101: Studying, Analyzing, and Interpreting Gut Microbiome Data for Clinicians. Clinical Gastroenterology and Hepatology, 2019, 17, 218-230.	2.4	187
683	Impact of Gut Microbiota on Host Glycemic Control. Frontiers in Endocrinology, 2019, 10, 29.	1.5	133
684	Phosphatidylglycerols are induced by gut dysbiosis and inflammation, and favorably modulate adipose tissue remodeling in obesity. FASEB Journal, 2019, 33, 4741-4754.	0.2	27
685	The gut microbiome in anorexia nervosa: relevance for nutritional rehabilitation. Psychopharmacology, 2019, 236, 1545-1558.	1.5	56
686	Microbial regulation of organismal energy homeostasis. Nature Metabolism, 2019, 1, 34-46.	5.1	354
687	The Microbiota and Energy Balance. Endocrinology, 2019, , 109-126.	0.1	2
688	Fecal <i>Fusobacterium nucleatum</i> for the diagnosis of colorectal tumor: A systematic review and metaâ€analysis. Cancer Medicine, 2019, 8, 480-491.	1.3	48
689	Gut microbiota in children and altered profiles in juvenile idiopathic arthritis. Journal of Autoimmunity, 2019, 98, 1-12.	3.0	39
690	The gut microbiome of Mexican children affected by obesity. Anaerobe, 2019, 55, 11-23.	1.0	71
691	Remitted affective disorders and high familial risk of affective disorders associate with aberrant intestinal microbiota. Acta Psychiatrica Scandinavica, 2019, 139, 174-184.	2.2	35
692	Influence of the Human Gut Microbiome on the Metabolic Phenotype. , 2019, , 535-560.		13
693	The gut microbiome: Relationships with disease and opportunities for therapy. Journal of Experimental Medicine, 2019, 216, 20-40.	4.2	547
694	Gut microbiota and obesity: An opportunity to alter obesity through faecal microbiota transplant (FMT). Diabetes, Obesity and Metabolism, 2019, 21, 479-490.	2.2	101
695	Microbiota in cancer development and treatment. Journal of Cancer Research and Clinical Oncology, 2019, 145, 49-63.	1.2	64
696	Microbes: possible link between modern lifestyle transition and the rise of metabolic syndrome. Obesity Reviews, 2019, 20, 407-419.	3.1	35
697	Revealing causality between heterogeneous data sources with deep restricted Boltzmann machines. Information Fusion, 2019, 50, 139-147.	11.7	0

#	Article	IF	Citations
698	Obesity and the microbiome: Big changes on a small scale?. , 2019, , 281-300.		0
699	You are what you eat: diet, health and the gut microbiota. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 35-56.	8.2	980
701	Dietary Directions Against Dementia Disorders. , 2019, , 265-278.		2
702	High-protein diets for weight management: Interactions with the intestinal microbiota and consequences for gut health. A position paper by the my new gut study group. Clinical Nutrition, 2019, 38, 1012-1022.	2.3	82
703	Iron influences on the Gut-Brain axis and development of type 2 diabetes. Critical Reviews in Food Science and Nutrition, 2019, 59, 443-449.	5.4	11
704	Targeting the gut microbiota by dietary nutrients: A new avenue for human health. Critical Reviews in Food Science and Nutrition, 2019, 59, 181-195.	5.4	38
705	Conflicting associations between dietary patterns and changes of anthropometric traits across subgroups of middle-aged women and men. Clinical Nutrition, 2020, 39, 265-275.	2.3	8
706	Gut microbiome and its role in obesity and insulin resistance. Annals of the New York Academy of Sciences, 2020, 1461, 37-52.	1.8	186
707	Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology, 2020, 158, 322-340.	0.6	408
708	Effects of Low FODMAP Diet on Symptoms, Fecal Microbiome, and Markers of Inflammation in Patients With Quiescent Inflammatory Bowel Disease in a Randomized Trial. Gastroenterology, 2020, 158, 176-188.e7.	0.6	209
709	The effect of inulin and resistant maltodextrin on weight loss during energy restriction: a randomised, placebo-controlled, double-blinded intervention. European Journal of Nutrition, 2020, 59, 2507-2524.	1.8	36
710	The intestinal microbiota fuelling metabolic inflammation. Nature Reviews Immunology, 2020, 20, 40-54.	10.6	573
711	Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Molecular Psychiatry, 2020, 25, 2905-2918.	4.1	202
712	Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Critical Reviews in Food Science and Nutrition, 2020, 60, 2174-2211.	5.4	284
713	Structured exercise alters the gut microbiota in humans with overweight and obesity—A randomized controlled trial. International Journal of Obesity, 2020, 44, 125-135.	1.6	76
714	A Crucial Role for Diet in the Relationship Between Gut Microbiota and Cardiometabolic Disease. Annual Review of Medicine, 2020, 71, 149-161.	5.0	38
715	Is a vegan or a vegetarian diet associated with the microbiota composition in the gut? Results of a new cross-sectional study and systematic review. Critical Reviews in Food Science and Nutrition, 2020, 60, 2990-3004.	5.4	47
716	Mucosal microbial load in Crohn's disease: A potential predictor of response to faecal microbiota transplantation. EBioMedicine, 2020, 51, 102611.	2.7	21

#	Article	IF	CITATIONS
717	Spent coffee (Coffea arabica L.) grounds positively modulate indicators of colonic microbial activity. Innovative Food Science and Emerging Technologies, 2020, 60, 102286.	2.7	17
718	Commensal Hafnia alvei strain reduces food intake and fat mass in obese mice—a new potential probiotic for appetite and body weight management. International Journal of Obesity, 2020, 44, 1041-1051.	1.6	55
719	Gut microbiota composition alterations are associated with the onset of diabetes in kidney transplant recipients. PLoS ONE, 2020, 15, e0227373.	1.1	18
720	Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Letters, 2020, 469, 456-467.	3.2	256
721	Nondigestible Oligosaccharides with Anti-Obesity Effects. Journal of Agricultural and Food Chemistry, 2020, 68, 4-16.	2.4	46
722	Consumption of mung bean (Vigna radiata L.) attenuates obesity, ameliorates lipid metabolic disorders and modifies the gut microbiota composition in mice fed a high-fat diet. Journal of Functional Foods, 2020, 64, 103687.	1.6	60
723	Kefir ameliorates hypertension via gut–brain mechanisms in spontaneously hypertensive rats. Journal of Nutritional Biochemistry, 2020, 77, 108318.	1.9	27
724	The Influence of Diet Interventions Using Whole, Plant Food on the Gut Microbiome: A Narrative Review. Journal of the Academy of Nutrition and Dietetics, 2020, 120, 608-623.	0.4	24
725	Characterizing the Composition of the Pediatric Gut Microbiome: A Systematic Review. Nutrients, 2020, 12, 16.	1.7	27
726	Effects of long-term intake of anthocyanins from Lycium ruthenicum Murray on the organism health and gut microbiota in vivo. Food Research International, 2020, 130, 108952.	2.9	71
727	The Potential Mediation of the Effects of Physical Activity on Cognitive Function by the Gut Microbiome. Geriatrics (Switzerland), 2020, 5, 63.	0.6	3
728	Health and disease markers correlate with gut microbiome composition across thousands of people. Nature Communications, 2020, 11, 5206.	5.8	378
729	Butyrate generated by gut microbiota and its therapeutic role in metabolic syndrome. Pharmacological Research, 2020, 160, 105174.	3.1	57
730	A Novel Insight at Atherogenesis: The Role of Microbiome. Frontiers in Cell and Developmental Biology, 2020, 8, 586189.	1.8	19
731	Gut microbiota and old age: Modulating factors and interventions for healthy longevity. Experimental Gerontology, 2020, 141, 111095.	1.2	61
732	Rhubarb Supplementation Prevents Diet-Induced Obesity and Diabetes in Association with Increased Akkermansia muciniphila in Mice. Nutrients, 2020, 12, 2932.	1.7	45
733	Effects of dietary restriction on gut microbiota and CNS autoimmunity. Clinical Immunology, 2022, 235, 108575.	1.4	10
734	Protocol of a multicenter, single-blind, randomised, parallel controlled feeding trial evaluating the effect of a Chinese Healthy Heart (CHH) diet in lowering blood pressure and other cardiovascular risk factors. BMJ Open, 2020, 10, e036394.	0.8	4

ARTICLE IF CITATIONS # Factors affecting weight loss variability in obesity. Metabolism: Clinical and Experimental, 2020, 113, 735 1.5 50 154388. Diet Quality, Food Groups and Nutrients Associated with the Gut Microbiota in a Nonwestern 1.7 24 Population. Nutrients, 2020, 12, 2938. From obesity through gut microbiota to cardiovascular diseases: a dangerous journey. International 737 12.5 40 Journal of Obesity Supplements, 2020, 10, 35-49. Microbiome response to diet: focus on obesity and related diseases. Reviews in Endocrine and Metabolic Disorders, 2020, 21, 369-380. Assessment of fecal DNA extraction protocols for metagenomic studies. GigaScience, 2020, 9, . 739 3.3 35 Interplay between Human Intestinal Microbiota and Gut-to-Brain Axis: Relationship with Autism 740 Spectrum Disorders., 2020,,. Microbiota Transplant in the Treatment of Obesity and Diabetes: Current and Future Perspectives. 741 1.5 40 Frontiers in Microbiology, 2020, 11, 590370. Analysis of the vaginal microbiome of giant pandas using metagenomics sequencing. 1.2 MicrobiologyOpen, 2020, 9, e1131. 743 The Intestinal Microbiota and Colorectal Cancer. Frontiers in Immunology, 2020, 11, 615056. 2.2 258 744 Microbiota and Obesity: Where Are We Now?. Biology, 2020, 9, 415. 1.3 Investigating the Role of Diet and Exercise in Gut Microbe-Host Cometabolism. MSystems, 2020, 5, . 745 1.7 11 Capsaicin and Gut Microbiota in Health and Disease. Molecules, 2020, 25, 5681. 746 Effects of trace mineral supply from rumen boluses on performance, carcass characteristics, and 747 1.1 3 fecal bacterial profile in beef cattle. Animal Feed Science and Technology, 2020, 269, 114626. The "Virtual Digital Twins―Concept in Precision Nutrition. Advances in Nutrition, 2020, 11, 1405-1413. 748 The Relationship between Choline Bioavailability from Diet, Intestinal Microbiota Composition, and Its 749 90 1.7 Modulation of Human Diseases. Nutrients, 2020, 12, 2340. Reduction of gut microbial diversity and short chain fatty acids in BALB/c mice exposure to 14 microcystin-LR. Ecotoxicology, 2020, 29, 1347-1357. Positive metabolic effects of selected probiotic bacteria on dietâ€induced obesity in mice are associated 751 0.2 24 with improvement of dysbiotic gut microbiota. FASEB Journal, 2020, 34, 12289-12307. Systems Biology Approaches to Understand the Hostâ€"Microbiome Interactions in Neurodegenerative 1.4 Diseases. Frontiers in Neuroscience, 2020, 14, 716.

# 753	ARTICLE Impact of Host, Lifestyle and Environmental Factors in the Pathogenesis of MPN. Cancers, 2020, 12, 2038.	IF 1.7	Citations
754	Pre-Eclampsia: Microbiota possibly playing a role. Pharmacological Research, 2020, 155, 104692.	3.1	28
755	Essential oils and microbiota: Implications for diet and weight control. Trends in Food Science and Technology, 2020, 104, 60-71.	7.8	14
756	Impact of Protein Intake in Older Adults with Sarcopenia and Obesity: A Gut Microbiota Perspective. Nutrients, 2020, 12, 2285.	1.7	47
757	Consumption of a Western-Style Diet Modulates the Response of the Murine Gut Microbiome to Ciprofloxacin. MSystems, 2020, 5, .	1.7	23
758	Luteolin cooperated with metformin hydrochloride alleviates lipid metabolism disorders and optimizes intestinal flora compositions of high-fat diet mice. Food and Function, 2020, 11, 10033-10046.	2.1	30
759	Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Frontiers in Immunology, 2020, 11, 571731.	2.2	281
760	The Gut Microbiome and Individual-Specific Responses to Diet. MSystems, 2020, 5, .	1.7	58
761	A High Protein Calorie Restriction Diet Alters the Gut Microbiome in Obesity. Nutrients, 2020, 12, 3221.	1.7	38
762	Helminth Mediated Attenuation of Systemic Inflammation and Microbial Translocation in Helminth-Diabetes Comorbidity. Frontiers in Cellular and Infection Microbiology, 2020, 10, 431.	1.8	5
763	Intestinal microbial metabolites in human metabolism and type 2 diabetes. Diabetologia, 2020, 63, 2533-2547.	2.9	56
764	The gut microbiome in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation. Pediatric Blood and Cancer, 2020, 67, e28711.	0.8	25
765	Does Curcumin Have a Role in the Interaction between Gut Microbiota and Schistosoma mansoni in Mice?. Pathogens, 2020, 9, 767.	1.2	2
766	Compositional and functional differences of the mucosal microbiota along the intestine of healthy individuals. Scientific Reports, 2020, 10, 14977.	1.6	78
767	Combination of <i>Scutellaria baicalensis</i> and Metformin Ameliorates Diet-Induced Metabolic Dysregulation in Mice via the Gut–Liver–Brain Axis. The American Journal of Chinese Medicine, 2020, 48, 1409-1433.	1.5	8
768	Gut microbiota: a perspective of precision medicine in endocrine disorders. Journal of Diabetes and Metabolic Disorders, 2020, 19, 1827-1834.	0.8	11
769	Elucidating the gut microbiota composition and the bioactivity of immunostimulatory commensals for the optimization of immune checkpoint inhibitors. Oncolmmunology, 2020, 9, 1794423.	2.1	7
770	Disease, Drugs and Dysbiosis: Understanding Microbial Signatures in Metabolic Disease and Medical Interventions. Microorganisms, 2020, 8, 1381.	1.6	9

#	Article	IF	CITATIONS
771	Type 2 Diabetes Mellitus Associated with Obesity (Diabesity). The Central Role of Gut Microbiota and Its Translational Applications. Nutrients, 2020, 12, 2749.	1.7	58
772	Prebiotics and Community Composition Influence Gas Production of the Human Gut Microbiota. MBio, 2020, 11, .	1.8	23
773	A comparative study of the gut microbiome in Egyptian patients with Type I and Type II diabetes. PLoS ONE, 2020, 15, e0238764.	1.1	27
774	Interaction between Gut Microbiota and Curcumin: A New Key of Understanding for the Health Effects of Curcumin. Nutrients, 2020, 12, 2499.	1.7	107
775	The effect of Faecalibacterium prausnitzii and its extracellular vesicles on the permeability of intestinal epithelial cells and expression of PPARs and ANGPTL4 in the Caco-2 cell culture model. Journal of Diabetes and Metabolic Disorders, 2020, 19, 1061-1069.	0.8	22
776	Pretreatment of Rapeseed Meal Increases Its Recalcitrant Fiber Fermentation and Alters the Microbial Community in an in vitro Model of Swine Large Intestine. Frontiers in Microbiology, 2020, 11, 588264.	1.5	10
777	Effect of an 8-week Exercise Training on Gut Microbiota in Physically Inactive Older Women. International Journal of Sports Medicine, 2021, 42, 610-623.	0.8	32
778	Applications of gut microbiota in patients with hematopoietic stem-cell transplantation. Experimental Hematology and Oncology, 2020, 9, 35.	2.0	14
779	Associations of the gut microbiome and clinical factors with acute GVHD in allogeneic HSCT recipients. Blood Advances, 2020, 4, 5797-5809.	2.5	42
780	Nutrition, Microbiota and Role of Gut-Brain Axis in Subjects with Phenylketonuria (PKU): A Review. Nutrients, 2020, 12, 3319.	1.7	20
781	Lipid and energy metabolism in Wilson disease. Liver Research, 2020, 4, 5-14.	0.5	17
782	The gut microbiome and frailty. Translational Research, 2020, 221, 23-43.	2.2	22
783	Capsaicin improves glucose homeostasis by enhancing glucagonâ€like peptideâ€1 secretion through the regulation of bile acid metabolism via the remodeling of the gut microbiota in male mice. FASEB Journal, 2020, 34, 8558-8573.	0.2	25
784	Dietary Proteins Regulate Serotonin Biosynthesis and Catabolism by Specific Gut Microbes. Journal of Agricultural and Food Chemistry, 2020, 68, 5880-5890.	2.4	21
785	A synbiotic consisting of Lactobacillus plantarum S58 and hull-less barley β-glucan ameliorates lipid accumulation in mice fed with a high-fat diet by activating AMPK signaling and modulating the gut microbiota. Carbohydrate Polymers, 2020, 243, 116398.	5.1	45
786	Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020, 581, 310-315.	13.7	283
787	Meal Regularity Plays a Role in Shaping the Saliva Microbiota. Frontiers in Microbiology, 2020, 11, 757.	1.5	5
788	Fecal Viral Community Responses to High-Fat Diet in Mice. MSphere, 2020, 5, .	1.3	33

		CITATION REPORT		
#	Article		IF	Citations
789	The athletic gut microbiota. Journal of the International Society of Sports Nutrition, 202	0, 17, 24.	1.7	157
790	Fiber Force: A Fiber Diet Intervention in an Advanced Course-Based Undergraduate Rese (CURE) Course. Journal of Microbiology and Biology Education, 2020, 21, .	arch Experience	0.5	15
791	Dietary inflammatory potential in relation to the gut microbiome: results from a cross-se study. British Journal of Nutrition, 2020, 124, 931-942.	ectional	1.2	61
792	The gallbladder and vermiform appendix influence the assemblage of intestinal microorg Future Microbiology, 2020, 15, 541-555.	anisms.	1.0	4
793	(Poly)phenols and cardiovascular diseases: Looking in to move forward. Journal of Funct 2020, 71, 104013.	ional Foods,	1.6	12
794	The effect of high dietary fiber intake on gestational weight gain, fat accrual, and postpa retention: a randomized clinical trial. BMC Pregnancy and Childbirth, 2020, 20, 319.	artum weight	0.9	15
796	Diet, Digestive Health, and Autoimmunity: The Foundations to an Autoimmune Disease Pyramid—Part 1. Alternative and Complementary Therapies, 2020, 26, 112-118.	Food	0.1	1
797	Human Gut Microbiome Aging Clock Based on Taxonomic Profiling and Deep Learning. I 23, 101199.	Science, 2020,	1.9	117
798	Effects of dietary choline, betaine, and Lâ€carnitine on the generation of trimethylamine healthy mice. Journal of Food Science, 2020, 85, 2207-2215.	?â€Nâ€oxide in	1.5	19
799	The Impact of Diet on Microbiota Evolution and Human Health. Is Diet an Adequate Tool Microbiota Modulation?. Nutrients, 2020, 12, 1654.	l for	1.7	39
800	Comparative metagenomics reveals the microbial diversity and metabolic potentials in t and surrounding seawaters of Qinhuangdao mariculture area. PLoS ONE, 2020, 15, e02	he sediments 34128.	1.1	20
801	Omega-3 Fatty Acids and Adipose Tissue: Inflammation and Browning. Annual Review of 40, 25-49.	Nutrition, 2020,	4.3	31
802	The effect of ultra-processed very low-energy diets on gut microbiota and metabolic out individuals with obesity: A systematic literature review. Obesity Research and Clinical Pra 14, 197-204.	comes in actice, 2020,	0.8	26
803	The food-gut axis: lactic acid bacteria and their link to food, the gut microbiome and hur FEMS Microbiology Reviews, 2020, 44, 454-489.	nan health.	3.9	139
804	Insulin resistance in bariatric surgery. Current Opinion in Clinical Nutrition and Metabolic 2020, 23, 255-261.	c Care,	1.3	16
805	What Should I Eat and Why? The Environmental, Genetic, and Behavioral Determinants of Summary from a Pennington Scientific Symposium. Obesity, 2020, 28, 1386-1396.	of Food Choice:	1.5	12
806	Sex-specific effects of PM2.5 maternal exposure on offspring's serum lipoproteins and g Science of the Total Environment, 2020, 739, 139982.	jut microbiota.	3.9	9
807	Microbiome and Cardiovascular Disease. Handbook of Experimental Pharmacology, 2020	0, , 1.	0.9	8

#	Article	IF	CITATIONS
808	Stress-induced intestinal barrier dysfunction is exacerbated during diet-induced obesity. Journal of Nutritional Biochemistry, 2020, 81, 108382.	1.9	10
809	Interpretable and accurate prediction models for metagenomics data. GigaScience, 2020, 9, .	3.3	34
810	Adipokines and Endotoxemia Correlate with Hepatic Steatosis in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients, 2020, 12, 699.	1.7	33
811	Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 279-297.	8.2	539
812	Preventive Role of Salsalate in Diabetes Is Associated With Reducing Intestinal Inflammation Through Improvement of Gut Dysbiosis in ZDF Rats. Frontiers in Pharmacology, 2020, 11, 300.	1.6	8
813	Diet, inflammation and the gut microbiome: Mechanisms for obesity-associated cognitive impairment. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165767.	1.8	111
814	Dietary Carbohydrate Constituents Related to Gut Dysbiosis and Health. Microorganisms, 2020, 8, 427.	1.6	33
815	Where to Look into the Puzzle of Polyphenols and Health? The Postbiotics and Gut Microbiota Associated with Human Metabotypes. Molecular Nutrition and Food Research, 2020, 64, e1900952.	1.5	170
816	Microbiota Stability and Gastrointestinal Tolerance in Response to a High-Protein Diet with and without a Prebiotic, Probiotic, and Synbiotic: A Randomized, Double-Blind, Placebo-Controlled Trial in Older Women. Journal of the Academy of Nutrition and Dietetics, 2020, 120, 500-516.e10.	0.4	39
817	Effects of gut microbiota on leptin expression and body weight are lessened by high-fat diet in mice. British Journal of Nutrition, 2020, 124, 396-406.	1.2	31
818	Colonic diverticular disease. Nature Reviews Disease Primers, 2020, 6, 20.	18.1	125
819	Bifidobacterium animalis subsp. lactis 420 for Metabolic Health: Review of the Research. Nutrients, 2020, 12, 892.	1.7	40
820	Effect of time restricted feeding on the gut microbiome in adults with obesity: A pilot study. Nutrition and Health, 2020, 26, 79-85.	0.6	54
821	Time-restricted feeding is associated with changes in human gut microbiota related to nutrient intake. Nutrition, 2020, 78, 110797.	1.1	41
822	The Role of the Gut Microbiome in Energy Balance With a Focus on the Gut-Adipose Tissue Axis. Frontiers in Genetics, 2020, 11, 297.	1.1	52
823	Lessons Learned from Faecal Microbiota Transplantation in Cirrhosis. Current Hepatology Reports, 2020, 19, 159-167.	0.4	3
824	Sacha inchi oil alleviates gut microbiota dysbiosis and improves hepatic lipid dysmetabolism in high-fat diet-fed rats. Food and Function, 2020, 11, 5827-5841.	2.1	23
825	Characterization of the gastrointestinal microbiota in paddlefish (Polyodon spathula). Aquaculture Reports, 2020, 17, 100402.	0.7	5

#	Article	IF	CITATIONS
826	High prevalence for obesity in severe COVID-19: Possible links and perspectives towards patient stratification. Biochimie, 2020, 179, 257-265.	1.3	26
827	Metagenomic analysis reveals significant differences in microbiome and metabolic profiles in the rumen of sheep fed low N diet with increased urea supplementation. FEMS Microbiology Ecology, 2020, 96, .	1.3	10
828	Dietary Methionine Restriction Ameliorated Fat Accumulation, Systemic Inflammation, and Increased Energy Metabolism by Altering Gut Microbiota in Middle-Aged Mice Administered Different Fat Diets. Journal of Agricultural and Food Chemistry, 2020, 68, 7745-7756.	2.4	39
829	Nonalcoholic Fatty Liver Disease: Modulating Gut Microbiota to Improve Severity?. Gastroenterology, 2020, 158, 1881-1898.	0.6	123
830	Influence of Exercise on the Human Gut Microbiota of Healthy Adults: A Systematic Review. Clinical and Translational Gastroenterology, 2020, 11, e00126.	1.3	61
831	Emerging Priorities for Microbiome Research. Frontiers in Microbiology, 2020, 11, 136.	1.5	113
832	Calcium Oxalate Nephrolithiasis and Gut Microbiota: Not just a Gut-Kidney Axis. A Nutritional Perspective. Nutrients, 2020, 12, 548.	1.7	50
833	A comprehensive non-redundant gene catalog reveals extensive within-community intraspecies diversity in the human vagina. Nature Communications, 2020, 11, 940.	5.8	86
834	Precision medicine in perinatal depression in light of the human microbiome. Psychopharmacology, 2020, 237, 915-941.	1.5	18
835	Gut microbiota: a promising target against cardiometabolic diseases. Expert Review of Endocrinology and Metabolism, 2020, 15, 13-27.	1.2	35
836	Intermittent cafeteria diet identifies fecal microbiome changes as a predictor of spatial recognition memory impairment in female rats. Translational Psychiatry, 2020, 10, 36.	2.4	27
837	The role of a plant-based diet in the pathogenesis, etiology and management of the inflammatory bowel diseases. Expert Review of Gastroenterology and Hepatology, 2020, 14, 137-145.	1.4	22
838	Diets naturally rich in polyphenols and/or long-chain n-3 polyunsaturated fatty acids differently affect microbiota composition in high-cardiometabolic-risk individuals. Acta Diabetologica, 2020, 57, 853-860.	1.2	40
839	Seabuckthorn (Hippophaë rhamnoides) Freeze-Dried Powder Protects against High-Fat Diet-Induced Obesity, Lipid Metabolism Disorders by Modulating the Gut Microbiota of Mice. Nutrients, 2020, 12, 265.	1.7	35
840	Effects of dietary fibers and prebiotics in adiposity regulation via modulation of gut microbiota. Applied Biological Chemistry, 2020, 63, .	0.7	17
841	Le transfert de microbiote fécalÂ: quel potentiel thérapeutique dans le traitement des maladies métaboliques�. Nutrition Clinique Et Metabolisme, 2020, 34, 108-115.	0.2	1
842	Insights into the role of intestinal microbiota in hematopoietic stem-cell transplantation. Therapeutic Advances in Hematology, 2020, 11, 204062071989696.	1.1	36
843	Bariatric Surgery in Obesity: Effects on Gut Microbiota and Micronutrient Status. Nutrients, 2020, 12, 235.	1.7	74

#	Article	IF	CITATIONS
844	The Epigenetic Connection Between the Gut Microbiome in Obesity and Diabetes. Frontiers in Genetics, 2019, 10, 1329.	1.1	95
845	Impact of smoking cessation, coffee and bread consumption on the intestinal microbial composition among Saudis: A cross-sectional study. PLoS ONE, 2020, 15, e0230895.	1.1	19
846	Diet, nutrients and the microbiome. Progress in Molecular Biology and Translational Science, 2020, 171, 237-263.	0.9	75
847	Modelling the Impact of Chronic Cigarette Smoke Exposure in Obese Mice: Metabolic, Pulmonary, Intestinal, and Cardiac Issues. Nutrients, 2020, 12, 827.	1.7	6
848	Effect of fructans, prebiotics and fibres on the human gut microbiome assessed by 16S rRNA-based approaches: a review. Beneficial Microbes, 2020, 11, 101-129.	1.0	48
849	Intestinal Bacteria Maintain Adult Enteric Nervous System and Nitrergic Neurons via Toll-like Receptor 2-induced Neurogenesis in Mice. Gastroenterology, 2020, 159, 200-213.e8.	0.6	67
850	Wheat Consumption Aggravates Colitis in Mice via Amylase Trypsin Inhibitor–mediated Dysbiosis. Gastroenterology, 2020, 159, 257-272.e17.	0.6	41
851	Gut microbiota of obese subjects with Prader-Willi syndrome is linked to metabolic health. Gut, 2020, 69, 1229-1238.	6.1	33
852	Specific Dietary Components and Gut Microbiota Composition are Associated with Obesity in Children and Adolescents with Prader–Willi Syndrome. Nutrients, 2020, 12, 1063.	1.7	17
853	Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders?. Nutrients, 2020, 12, 1082.	1.7	154
854	You Are What You Eat—The Relationship between Diet, Microbiota, and Metabolic Disorders—A Review. Nutrients, 2020, 12, 1096.	1.7	185
855	Diet and long-term weight loss: what can we learn from our gut microbes?. American Journal of Clinical Nutrition, 2020, 111, 1121-1123.	2.2	3
856	Orlistat-Induced Gut Microbiota Modification in Obese Mice. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-9.	0.5	27
857	Microbiota in cerebrovascular disease: A key player and future therapeutic target. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1368-1380.	2.4	29
858	Bacterial fecal microbiota is only minimally affected by a standardized weight loss plan in obese cats. BMC Veterinary Research, 2020, 16, 112.	0.7	11
859	Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut, 2020, 69, 1796-1806.	6.1	149
860	Unraveling Host-Gut Microbiota Dialogue and Its Impact on Cholesterol Levels. Frontiers in Pharmacology, 2020, 11, 278.	1.6	32
861	Inflammation in Primary and Metastatic Liver Tumorigenesis–Under the Influence of Alcohol and High-Fat Diets. Nutrients, 2020, 12, 933.	1.7	15

#	Article	IF	CITATIONS
862	SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, 2021, 80, 37-49.	0.4	498
863	Interleukin-6 and the Gut Microbiota Influence Melanoma Progression in Obese Mice. Nutrition and Cancer, 2021, 73, 642-651.	0.9	8
864	The obesity treatment dilemma: Why dieting is both the answer and the problem? A mechanistic overview. Diabetes and Metabolism, 2021, 47, 101192.	1.4	26
865	Tripartite relationship between gut microbiota, intestinal mucus and dietary fibers: towards preventive strategies against enteric infections. FEMS Microbiology Reviews, 2021, 45, .	3.9	27
866	Effects of Psychotropics on the Microbiome in Patients With Depression and Anxiety: Considerations in a Naturalistic Clinical Setting. International Journal of Neuropsychopharmacology, 2021, 24, 97-107.	1.0	24
867	CNS and peripheral immunity in cerebral ischemia: partition and interaction. Experimental Neurology, 2021, 335, 113508.	2.0	21
868	Alterations in Gut Microbiome in Cirrhosis as Assessed by Quantitative Metagenomics: Relationship With Acute-on-Chronic Liver Failure and Prognosis. Gastroenterology, 2021, 160, 206-218.e13.	0.6	89
869	L'intelligence artificielle au service des maladies métaboliques. Medecine Des Maladies Metaboliques, 2021, 15, 70-79.	0.1	0
870	Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With Obesity, Lipid Metabolism, and Metabolic Health—Pathophysiology and Therapeutic Strategies. Gastroenterology, 2021, 160, 573-599.	0.6	169
871	Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut, 2021, 70, 1174-1182.	6.1	519
872	Introduction to host microbiome symbiosis in health and disease. Mucosal Immunology, 2021, 14, 547-554.	2.7	95
873	Metagenomic insights into Chinese northeast suancai: Predominance and diversity of genes associated with nitrogen metabolism in traditional household suancai fermentation. Food Research International, 2021, 139, 109924.	2.9	21
874	Bacterial dispersal and drift drive microbiome diversity patterns within a population of feral hindgut fermenters. Molecular Ecology, 2021, 30, 555-571.	2.0	22
875	Analyses of short-chain fatty acids and exhaled breath volatiles in dietary intervention trials for metabolic diseases. Experimental Biology and Medicine, 2021, 246, 778-789.	1.1	7
877	Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology, 2021, 19, 55-71.	13.6	1,960
878	A diet-induced gut microbiota component and related plasma metabolites are associated with depressive-like behaviour in rats. European Neuropsychopharmacology, 2021, 43, 10-21.	0.3	16
879	Gut microbiota: impacts on gastrointestinal cancer immunotherapy. Gut Microbes, 2021, 13, 1-21.	4.3	33
880	Gut Microbiota in Obesity and Bariatric Surgery: Where Do We Stand?. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 183-227.	0.2	0

		15	2
#	ARTICLE	IF	CITATIONS
881	Role of Vitamins in Maintaining Structure and Function of Intestinal Microbiome. , 2021, , .		1
882	Emerging Role of Microbiota in Precision Nutrition Approaches. , 2021, , 220-220.		1
883	Analysis of sex differences in dietary copper-fructose interaction-induced alterations of gut microbial activity in relation to hepatic steatosis. Biology of Sex Differences, 2021, 12, 3.	1.8	7
884	Effects of dietary restriction on neuroinflammation in neurodegenerative diseases. Journal of Experimental Medicine, 2021, 218, .	4.2	47
885	DHA-enriched phospholipids from large yellow croaker roe regulate lipid metabolic disorders and gut microbiota imbalance in SD rats with a high-fat diet. Food and Function, 2021, 12, 4825-4841.	2.1	14
886	Gut microbiota and lipid metabolism and metabolic syndrome. , 2021, , 283-293.		0
887	Bioactive Ingredients and Medicinal Values of Grifola frondosa (Maitake). Foods, 2021, 10, 95.	1.9	71
888	Microbiote et obésité. , 2021, , 209-212.		0
889	Physiological Responses of Post-Dietary Effects: Lessons from Pre-Clinical and Clinical Studies. Metabolites, 2021, 11, 62.	1.3	1
890	Glutaredoxin1 knockout promotes high-fat diet-induced obesity in male mice but not in female ones. Food and Function, 2021, 12, 7415-7427.	2.1	5
891	Common nutrition and health issues of food in the Balkans. , 2021, , 279-297.		0
892	Dynamics of Microbiomes. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 57-99.	0.2	0
893	Mechanisms of weight regain European Journal of Internal Medicine, 2021, 93, 3-7.	1.0	48
894	Le microbiote, un nouvel outil pour le diagnostic. , 2021, , 657-661.		1
895	Modern Understanding of the Gut Microbiotа in Patients with Diabetes Mellitus. Acta Biomedica Scientifica, 2021, 5, 51-57.	0.1	0
896	Metagenomic Insights Into the Microbial Assemblage Capable of Quorum Sensing and Quorum Quenching in Particulate Organic Matter in the Yellow Sea. Frontiers in Microbiology, 2020, 11, 602010.	1.5	7
897	Inulin ameliorates schizophrenia <i>via</i> modulation of the gut microbiota and anti-inflammation in mice. Food and Function, 2021, 12, 1156-1175.	2.1	34
898	Regulation of Gastrointestinal Immunity by Metabolites. Nutrients, 2021, 13, 167.	1.7	26

ARTICLE IF CITATIONS # Carrageenan Oligosaccharides Extend Life Span and Health Span in Male <i>Drosophila Melanogaster </i> by Modulating Antioxidant Activity, Immunity, and Gut Microbiota. Journal of 899 0.8 12 Medicinal Food, 2021, 24, 101-109. Beneficial impacts of fermented celery (<i>Apium graveolens</i> L.) juice on obesity prevention and gut microbiota modulation in high-fat diet fed mice. Food and Function, 2021, 12, 9151-9164. 2.1 28 Diabetogenically beneficial gut microbiota alterations in third trimester of pregnancy. Reproduction 901 3 0.6 and Fertility, 2021, 2, R1-R12 L'intelligence artificielle au service de l'obésité., 2021, , 645-650. 902 Transplantation of an obesity-associated human gut microbiota to mice induces vascular dysfunction 903 4.3 20 and glucose intolerance. Gut Microbes, 2021, 13, 1940791. Diet Leaves a Genetic Signature in a Keystone Member of the Gut Microbiota. SSRN Electronic Journal, 904 0.4 0, , . Lifestyle modifications result in alterations in the gut microbiota in obese children. BMC 905 1.3 28 Microbiology, 2021, 21, 10. The Human Gut Microbiota in all its States: From Disturbance to Resilience., 2022, , 161-178. 906 4 <i>Pediococcus pentosaceus</i> PPO4 improves high-fat diet-induced liver injury by the modulation of 907 2.1 20 gut inflammation and intestinal microbiota in C57BL/6N mice. Food and Function, 2021, 12, 6851-6862. The Gut Microbiome and Abiotic Factors as Potential Determinants of Postprandial Glucose 908 1.6 Responses: A Single-Arm Meal Study. Frontiers in Nutrition, 2020, 7, 594850. New Insights into Stroke Prevention and Treatment: Gut Microbiome. Cellular and Molecular 909 1.7 15 Neurobiology, 2022, 42, 455-472. Nutritional Approach Targeting Gut Microbiota in NAFLDâ€"To Date. International Journal of 1.2 Environmental Research and Public Health, 2021, 18, 1616. Effects of urolithins on obesity-associated gut dysbiosis in rats fed on a high-fat diet. International Journal of Food Sciences and Nutrition, 2021, 72, 923-934. 911 1.3 14 EVALUATION OF MICROBIOCENOSIS OF LARGE INTESTINE AND INTESTINAL PERMEABILITY IN OBESE 0.1 ADOLESCENTS. International Medical Journal, 2021, , 23-26. Supplement of High Protein-Enriched Diet Modulates the Diversity of Gut Microbiota in WT or 913 0.9 4 PD-1H-Depleted Mice. Journal of Microbiology and Biotechnology, 2021, 31, 207-216. Benefits of Iterative Searches of Large Databases to Interpret Large Human Gut Metaproteomic Data 914 1.8 Sets. Journal of Proteome Research, 2021, 20, 1522-1534. Gut Microbiota-Derived Short-Chain Fatty Acids Facilitate Microbiota:Host Cross talk and Modulate 916 1.552 Obesity and Hypertension. Current Hypertension Reports, 2021, 23, 8. Interconnections between the Oral and Gut Microbiomes: Reversal of Microbial Dysbiosis and the 1.6 Balance between Systemic Health and Disease. Microorganisms, 2021, 9, 496.

#	Article	IF	CITATIONS
918	<i>Lycium ruthenicum</i> Anthocyanins Attenuate Highâ€Fat Dietâ€Induced Colonic Barrier Dysfunction and Inflammation in Mice by Modulating the Gut Microbiota. Molecular Nutrition and Food Research, 2021, 65, e2000745.	1.5	85
919	Gut Microbiota in Metabolic-associated Fatty Liver Disease and in Other Chronic Metabolic Diseases. Journal of Clinical and Translational Hepatology, 2021, 000, 000-000.	0.7	17
920	The Comparative Analysis of the Ruminal Bacterial Population in Reindeer (Rangifer tarandus L.) from the Russian Arctic Zone: Regional and Seasonal Effects. Animals, 2021, 11, 911.	1.0	10
921	Microbiota and cancer: In vitro and in vivo models to evaluate nanomedicines. Advanced Drug Delivery Reviews, 2021, 170, 44-70.	6.6	10
923	Angiotensin (1–7) Expressing Probiotic as a Potential Treatment for Dementia. Frontiers in Aging, 2021, 2, .	1.2	2
924	Gut Microbiota-Derived Trimethylamine N-Oxide and Kidney Function: A Systematic Review and Meta-Analysis. Advances in Nutrition, 2021, 12, 1286-1304.	2.9	36
925	Diet and the Microbiota–Gut–Brain Axis: Sowing the Seeds of Good Mental Health. Advances in Nutrition, 2021, 12, 1239-1285.	2.9	125
926	A diet-specific microbiota drives Salmonella Typhimurium to adapt its in vivo response to plant-derived substrates. Animal Microbiome, 2021, 3, 24.	1.5	7
927	Multi-omics approaches for revealing the complexity of cardiovascular disease. Briefings in Bioinformatics, 2021, 22, .	3.2	40
928	Impacts of Maternal Diet and Alcohol Consumption during Pregnancy on Maternal and Infant Gut Microbiota. Biomolecules, 2021, 11, 369.	1.8	15
929	Defined gut microbial communities: promising tools to understand and combat disease. Microbes and Infection, 2021, 23, 104816.	1.0	6
930	Blue poo: impact of gut transit time on the gut microbiome using a novel marker. Gut, 2021, 70, 1665-1674.	6.1	84
931	Metastasis-Initiating Cells and Ecosystems. Cancer Discovery, 2021, 11, 971-994.	7.7	134
932	Dynamics of rumen gene expression, microbiome colonization, and their interplay in goats. BMC Genomics, 2021, 22, 288.	1.2	18
933	The antihypertensive effect and mechanisms of bioactive peptides from Ruditapes philippinarum fermented with Bacillus natto in spontaneously hypertensive rats. Journal of Functional Foods, 2021, 79, 104411.	1.6	27
934	Comparison of Argentinean microbiota with other geographical populations reveals different taxonomic and functional signatures associated with obesity. Scientific Reports, 2021, 11, 7762.	1.6	8
935	Comparison of Behavioral Risk Factors and Cardiometabolic Comorbidities of Psoriatic Arthritis and Psoriasis: A Case–Control Study in Chinese Patients. Therapeutics and Clinical Risk Management, 2021, Volume 17, 397-404.	0.9	3
936	Targeting the Gut Microbiota for Remediating Obesity and Related Metabolic Disorders. Journal of Nutrition, 2021, 151, 1703-1716.	1.3	7

#	Article		CITATIONS
937	How we decide what to eat: Toward an interdisciplinary model of gut–brain interactions. Wiley Interdisciplinary Reviews: Cognitive Science, 2022, 13, e1562.	1.4	9
938	The gut microbiota as a versatile immunomodulator in obesity and associated metabolic disorders. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101542.	2.2	21
939	Effects of Synbiotic Supplementation and Lifestyle Modifications on Women With Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 2566-2573.	1.8	6
940	Implications of SCFAs on the Parameters of the Lipid and Hepatic Profile in Pregnant Women. Nutrients, 2021, 13, 1749.	1.7	20
941	Intestinal microbiota influences clinical outcome and side effects of early breast cancer treatment. Cell Death and Differentiation, 2021, 28, 2778-2796.	5.0	72
942	The microbiome—the revealing of a long time unbeknownst factor for outcome in murine models of graft-versus-host disease. Bone Marrow Transplantation, 2021, 56, 1777-1783.	1.3	0
943	Intestinal microbiota and diabetic kidney diseases: the Role of microbiota and derived metabolites inmodulation of renal inflammation and disease progression. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101484.	2.2	42
944	Can Physical Activity Influence Human Gut Microbiota Composition Independently of Diet? A Systematic Review. Nutrients, 2021, 13, 1890.	1.7	22
945	Identification of tick-borne pathogens by metagenomic next-generation sequencing in Dermacentor nuttalli and Ixodes persulcatus in Inner Mongolia, China. Parasites and Vectors, 2021, 14, 287.	1.0	32
946	Deletion of mucin 2 induces colitis with concomitant metabolic abnormalities in mice. American Journal of Physiology - Renal Physiology, 2021, 320, G791-G803.	1.6	15
947	Dietary restrictions modulate the gut microbiota: Implications for health and disease. Nutrition Research, 2021, 89, 10-22.	1.3	17
948	Human and preclinical studies of the host–gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health. Gut, 2021, 70, 2105-2114.	6.1	58
949	Iron status influences non-alcoholic fatty liver disease in obesity through the gut microbiome. Microbiome, 2021, 9, 104.	4.9	70
950	Gut microbiota changes after metabolic surgery in adult diabetic patients with mild obesity: a randomised controlled trial. Diabetology and Metabolic Syndrome, 2021, 13, 56.	1.2	14
951	Adipose tissue and insulin resistance in obese. Biomedicine and Pharmacotherapy, 2021, 137, 111315.	2.5	240
952	Soil exposure accelerates recovery of the gut microbiota in antibioticâ€treated mice. Environmental Microbiology Reports, 2021, 13, 616-625.	1.0	7
953	Multifaceted modes of action of the anticancer probiotic Enterococcus hirae. Cell Death and Differentiation, 2021, 28, 2276-2295.	5.0	18
954	Circulating bacterial signature is linked to metabolic disease and shifts with metabolic alleviation after bariatric surgery. Genome Medicine, 2021, 13, 105.	3.6	14

#	Article	IF	CITATIONS
955	The relationship between gastrointestinal cancers and the microbiota. The Lancet Gastroenterology and Hepatology, 2021, 6, 498-509.	3.7	25
956	Effect of Fecal Microbiota Transplantation Combined With Mediterranean Diet on Insulin Sensitivity in Subjects With Metabolic Syndrome. Frontiers in Microbiology, 2021, 12, 662159.	1.5	22
957	Beyond the Paradigm of Weight Loss in Non-Alcoholic Fatty Liver Disease: From Pathophysiology to Novel Dietary Approaches. Nutrients, 2021, 13, 1977.	1.7	17
958	Perinatal Nutritional and Metabolic Pathways: Early Origins of Chronic Lung Diseases. Frontiers in Medicine, 2021, 8, 667315.	1.2	18
959	Role of the Gut Microbiota in Regulating Non-alcoholic Fatty Liver Disease in Children and Adolescents. Frontiers in Nutrition, 2021, 8, 700058.	1.6	33
960	Nutritional strategies for mucosal health: the interplay between microbes and mucin glycans. Trends in Microbiology, 2022, 30, 13-21.	3.5	35
961	Gut Microbiota: The Missing Link Between Helicobacter pylori Infection and Metabolic Disorders?. Frontiers in Endocrinology, 2021, 12, 639856.	1.5	29
962	Consuming Different Structural Parts of Bamboo Induce Gut Microbiome Changes in Captive Giant Pandas. Current Microbiology, 2021, 78, 2998-3009.	1.0	9
963	Characterization of the gut microbiota in Chinese children with overweight and obesity using 16S rRNA gene sequencing. PeerJ, 2021, 9, e11439.	0.9	16
964	Unhealthy Lifestyle and Gut Dysbiosis: A Better Understanding of the Effects of Poor Diet and Nicotine on the Intestinal Microbiome. Frontiers in Endocrinology, 2021, 12, 667066.	1.5	82
965	A Multiomic Approach to Investigate the Effects of a Weight Loss Program on the Intestinal Health of Overweight Horses. Frontiers in Veterinary Science, 2021, 8, 668120.	0.9	7
966	Taxonomic Characterization and Short-Chain Fatty Acids Production of the Obese Microbiota. Frontiers in Cellular and Infection Microbiology, 2021, 11, 598093.	1.8	30
967	HumGut: a comprehensive human gut prokaryotic genomes collection filtered by metagenome data. Microbiome, 2021, 9, 165.	4.9	38
968	GC × GC-TOF/MS and UPLC-Q-TOF/MS based untargeted metabolomics coupled with physicochemical properties to reveal the characteristics of different type daqus for making soy sauce aroma and flavor type baijiu. LWT - Food Science and Technology, 2021, 146, 111416.	2.5	45
969	The Effects of Erchen Decoction on Gut Microbiota and Lipid Metabolism Disorders in Zucker Diabetic Fatty Rats. Frontiers in Pharmacology, 2021, 12, 647529.	1.6	27
970	Antiâ€TNFα treatment in Crohn's disease: Impact on hepatic steatosis, gutâ€derived hormones and metaboli status. Liver International, 2021, 41, 2646-2658.	c 1.9	7
971	A review on gut microbiota: a central factor in the pathophysiology of obesity. Lipids in Health and Disease, 2021, 20, 65.	1.2	44
972	Exploring the Gut Microbiota and Cardiovascular Disease. Metabolites, 2021, 11, 493.	1.3	22

#	Article	IF	CITATIONS
" 973	The Role of Short-Chain Fatty Acids and Bile Acids in Intestinal and Liver Function, Inflammation, and Carcinogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 703218.	1.8	55
974	Dysbiosis of Gut Microbiota in Patients With Acute Myocardial Infarction. Frontiers in Microbiology, 2021, 12, 680101.	1.5	45
975	Diet-induced dysbiosis of the maternal gut microbiome in early life programming of neurodevelopmental disorders. Neuroscience Research, 2021, 168, 3-19.	1.0	15
976	Exploring the Prevalence and Distribution Patterns of Antibiotic Resistance Genes in Bovine Gut Microbiota Using a Metagenomic Approach. Microbial Drug Resistance, 2021, 27, 980-990.	0.9	6
977	Therapeutic potential of human umbilical cord mesenchymal stem cells on aortic atherosclerotic plaque in a high-fat diet rabbit model. Stem Cell Research and Therapy, 2021, 12, 407.	2.4	10
978	Molecular and Pathophysiological Links between Metabolic Disorders and Inflammatory Bowel Diseases. International Journal of Molecular Sciences, 2021, 22, 9139.	1.8	18
979	Host–Microbiota Interactions in Liver Inflammation and Cancer. Cancers, 2021, 13, 4342.	1.7	9
980	Gut microbiome and its potential link to personalized nutrition. Current Opinion in Physiology, 2021, 22, 100439.	0.9	7
981	Gut Microbiome Structure and Association with Host Factors in a Korean Population. MSystems, 2021, 6, e0017921.	1.7	14
982	Association between metabolic status and gut microbiome in obese populations. Microbial Genomics, 2021, 7, .	1.0	8
984	Comparative study of gut microbiota from captive and confiscated-rescued wild pangolins. Journal of Genetics and Genomics, 2021, 48, 825-835.	1.7	20
985	Abundance and Compositions of B-Vitamin-Producing Microbes in the Mammalian Gut Vary Based on Feeding Strategies. MSystems, 2021, 6, e0031321.	1.7	7
986	The gut microbiome-immune axis as a target for nutrition-mediated modulation of food allergy. Trends in Food Science and Technology, 2021, 114, 116-132.	7.8	42
987	Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agent. Seminars in Cancer Biology, 2021, 73, 331-346.	4.3	37
988	Protein supplementation during an energy-restricted diet induces visceral fat loss and gut microbiota amino acid metabolism activation: a randomized trial. Scientific Reports, 2021, 11, 15620.	1.6	9
989	Environmental enteric dysfunction induces regulatory TÂcells that inhibit local CD4+ TÂcell responses and impair oral vaccine efficacy. Immunity, 2021, 54, 1745-1757.e7.	6.6	28
990	Integrating Dietary Data into Microbiome Studies: A Step Forward for Nutri-Metaomics. Nutrients, 2021, 13, 2978.	1.7	7
991	Human Microbiota Network: Unveiling Potential Crosstalk between the Different Microbiota Ecosystems and Their Role in Health and Disease. Nutrients, 2021, 13, 2905.	1.7	26

#	Article		CITATIONS
992	Minimal Associations between Short-Term Dietary Intake and Salivary Microbiome Composition. Microorganisms, 2021, 9, 1739.	1.6	2
993	Understanding Choline Bioavailability and Utilization: First Step Toward Personalizing Choline Nutrition. Journal of Agricultural and Food Chemistry, 2021, 69, 10774-10789.	2.4	18
994	Gut-microbiota-targeted diets modulate human immune status. Cell, 2021, 184, 4137-4153.e14.	13.5	482
995	Markers of Gut Barrier Function and Microbial Translocation Associate with Lower Gut Microbial Diversity in People with HIV. Viruses, 2021, 13, 1891.	1.5	17
996	Role of the gut microbiome in chronic diseases: a narrative review. European Journal of Clinical Nutrition, 2022, 76, 489-501.	1.3	168
997	Exploring Semi-Quantitative Metagenomic Studies Using Oxford Nanopore Sequencing: A Computational and Experimental Protocol. Genes, 2021, 12, 1496.	1.0	11
998	Identification of Tick-Borne Pathogens and Genotyping of Coxiella burnetii in Rhipicephalus microplus in Yunnan Province, China. Frontiers in Microbiology, 2021, 12, 736484.	1.5	11
999	The role of precision nutrition in the modulation of microbial composition and function in people with inflammatory bowel disease. The Lancet Gastroenterology and Hepatology, 2021, 6, 754-769.	3.7	27
1000	Fecal Microbiota and Gut Microbe-Derived Extracellular Vesicles in Colorectal Cancer. Frontiers in Oncology, 2021, 11, 650026.	1.3	40
1002	A metagenomic analysis of the effect of antibiotic feed additives on the ovine rumen metabolism. Small Ruminant Research, 2021, 205, 106539.	0.6	3
1003	Prebiotic potential of RG-I pectic polysaccharides from Citrus subcompressa by novel extraction methods. Food Hydrocolloids, 2022, 124, 107213.	5.6	27
1004	The Gut Microbiota during a Behavioral Weight Loss Intervention. Nutrients, 2021, 13, 3248.	1.7	23
1006	Differences in faecal microbiome composition between adult patients with UCD and PKU and healthy control subjects. Molecular Genetics and Metabolism Reports, 2021, 29, 100794.	0.4	2
1007	Drinking Water Source and Intake Are Associated with Distinct Gut Microbiota Signatures in US and UK Populations. Journal of Nutrition, 2022, 152, 171-182.	1.3	24
1008	Microbiota-Gut-Brain Axis. , 2021, , 423-423.		0
1009	Gut Microbiome and Obesity. , 2014, , 73-82.		2
1010	Gut Microbiome and Obesity. , 2014, , 73-82.		3
1011	Insulin Resistance in Pregnancy: Implications for Mother and Offspring. Contemporary Endocrinology, 2020, , 67-94.	0.3	9

#	Article	IF	Citations
1012	Variability and Stability of the Human Gut Microbiome. Fascinating Life Sciences, 2020, , 63-79.	0.5	4
1013	Lactic Acid Bacteria and the Human Gastrointestinal Tract. , 2014, , 375-441.		3
1014	Pro and prebiotics foods that modulate human health. , 2019, , 283-313.		2
1015	The impact of nutrition on intestinal bacterial communities. Current Opinion in Microbiology, 2017, 38, 59-65.	2.3	111
1016	The Role of Intestinal Microbiota and Microbial Metabolites in the Development of Host Metabolic Syndrome. Food Chemistry, Function and Analysis, 2020, , 191-209.	0.1	2
1017	From correlation to causality: the case of <i>Subdoligranulum</i> . Gut Microbes, 2020, 12, 1849998.	4.3	192
1029	Biodiversity, the Human Microbiome and Mental Health: Moving toward a New Clinical Ecology for the 21st Century?. International Journal of Biodiversity, 2016, 2016, 1-18.	0.7	26
1030	The Gut Microbiome, Its Metabolome, and Their Relationship to Health and Disease. Nestle Nutrition Institute Workshop Series, 2016, 84, 103-110.	1.5	20
1031	Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. Journal of Clinical Investigation, 2015, 125, 1752-1762.	3.9	272
1032	Antibiotic effects on gut microbiota and metabolism are host dependent. Journal of Clinical Investigation, 2016, 126, 4430-4443.	3.9	130
1034	Soil is a key factor influencing gut microbiota and its effect is comparable to that exerted by diet for mice. F1000Research, 0, 7, 1588.	0.8	20
1035	Inferring Aggregated Functional Traits from Metagenomic Data Using Constrained Non-negative Matrix Factorization: Application to Fiber Degradation in the Human Gut Microbiota. PLoS Computational Biology, 2016, 12, e1005252.	1.5	16
1036	Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice. PLoS ONE, 2015, 10, e0125091.	1.1	60
1037	Nopal feeding reduces adiposity, intestinal inflammation and shifts the cecal microbiota and metabolism in high-fat fed rats. PLoS ONE, 2017, 12, e0171672.	1.1	28
1038	A 3-dimensional mathematical model of microbial proliferation that generates the characteristic cumulative relative abundance distributions in gut microbiomes. PLoS ONE, 2017, 12, e0180863.	1.1	6
1039	Effects of oral florfenicol and azithromycin on gut microbiota and adipogenesis in mice. PLoS ONE, 2017, 12, e0181690.	1.1	47
1040	Gut microbiota and obesity: implications for fecal microbiota transplantation therapy. Hormones, 2017, 13, 223-234.	0.9	27
1041	The changes of gut microbiota associated with age and lifestyle. Obesity and Metabolism, 2015, 12, 3-9.	0.4	2

#	Article		CITATIONS
1042	Rumen bacterial community of young and adult of reindeer (Rangifer tarandus) from Yamalo-Nenets Autonomous District of Russia. Open Agriculture, 2020, 5, 10-20.		6
1043	Diet, Gut Microbiota and Obesity. Journal of Nutritional Health & Food Science, 2015, 3, 01-06.		4
1044	Intégrer la caractérisation du microbiote digestif dans le phénotypage de l'animal de rente : vers un nouvel outil de maîtrise de la santé en élevage ?. INRA Productions Animales, 2020, 27, 209-222.	0.3	1
1045	The Food-gut Human Axis: The Effects of Diet on Gut Microbiota and Metabolome. Current Medicinal Chemistry, 2019, 26, 3567-3583.	1.2	74
1046	Predictors Linking Obesity and the Gut Microbiome (the PROMISE Study): Protocol and Recruitment Strategy for a Cross-Sectional Study on Pathways That Affect the Gut Microbiome and Its Impact on Obesity. JMIR Research Protocols, 2019, 8, e14529.	0.5	9
1047	Effects of Dietary Interventions on Gut Microbiota in Humans and the Possible Impacts of Foods on Patients' Responses to Cancer Immunotherapy. EFood, 2020, 1, 279-287.	1.7	28
1048	Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice. Microorganisms, 2020, 8, 1500.	1.6	14
1049	Autoimmune liver disease and the enteric microbiome. AIMS Microbiology, 2018, 4, 334-346.	1.0	3
1050	Effects of the long-term consumption of hydrogen-rich water on the antioxidant activity and the gut flora in female juvenile soccer players from Suzhou, China. Medical Gas Research, 2018, 8, 135.	1.2	24
1051	A Review on Underlying Differences in the Prevalence of Metabolic Syndrome in the Middle East, Europe and North America. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2014, 02, .	0.1	7
1052	Diet matters, particularly in pregnancy – Results from MoBa studies of maternal diet and pregnancy outcomes. Norsk Epidemiologi, 2014, 24, .	0.2	10
1053	Natural Compounds in the Modulation of the Intestinal Microbiota: Implications in Human Physiology and Pathology. , 0, , .		2
1054	Low all-cause mortality despite high cardiovascular risk in elderly Greek-born Australians: attenuating potential of diet?. Asia Pacific Journal of Clinical Nutrition, 2014, 23, 532-44.	0.3	17
1055	Partial restoration of normal intestinal microbiota in morbidly obese women six months after bariatric surgery. PeerJ, 2020, 8, e10442.	0.9	4
1056	MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ, 2015, 3, e1165.	0.9	1,546
1057	Fecal microbiota in client-owned obese dogs changes after weight loss with a high-fiber-high-protein diet. PeerJ, 2020, 8, e9706.	0.9	19
1058	Microbiome Diagnostics and Interventions in Health and Disease. , 2021, , 157-215.		1
1059	Early markers of gestational diabetes mellitus. Biochemia Medica, 2021, 31, 416-430.	1.2	5

#	Article		CITATIONS
1061	Multiunit In Vitro Colon Model for the Evaluation of Prebiotic Potential of a Fiber Plus D-Limonene Food Supplement. Foods, 2021, 10, 2371.		13
1062	Novel Noninvasive Approaches to the Treatment of Obesity: From Pharmacotherapy to Gene Therapy. Endocrine Reviews, 2022, 43, 507-557.	8.9	39
1063	Shaping the gut microbiota by bioactive phytochemicals: An emerging approach for the prevention and treatment of human diseases. Biochimie, 2022, 193, 38-63.	1.3	18
1066	Gut Microbiome, Obesity and Metabolic Syndrome. , 2015, , 1-14.		2
1067	Nutrition Issues and Recommendations in the Management of Diabetes and Prediabetes in Older Adults. , 2015, , 399-424.		0
1068	Analysis of Food and Nutrition Information of Diet-related Programs in Comprehensive. Journal of the Korean Society of Food Culture, 2016, 31, 661-674.	0.3	0
1070	Changes in gut microbiome as important risk- factor for development of metabolic diseases. Clinical Endocrinology and Endocrine Surgery, 2017, .	0.1	0
1072	The Microbiota and Energy Balance. Endocrinology, 2018, , 1-18.	0.1	0
1075	Influence of the intestinal microbiota on the formation and development of non-alcoholic fatty liver disease in children. Zdorovʹe Rebenka, 2018, 13, 776-782.	0.0	0
1076	Dietary Screening—Questioning Adolescent Dietary Trends and Providing Evidence-Based Dietary Recommendations. , 2019, , 21-32.		0
1078	Calorie Restriction and Insulin Sensitivity in Obesity. , 2019, , 1127-1138.		0
1079	Obesity: Ethnic and Regional Differences in the Diet and Gut Microbiota (Review). Acta Biomedica Scientifica, 2019, 4, 19-25.	0.1	4
1081	Single strain probiotics for dyslipidemia, fatty liver, and obesity: A systematic review and meta-analysis. World Journal of Meta-analysis, 2019, 7, 323-338.	0.1	0
1083	The Role of the Gut Microbiota in Obesity. Korean Journal of Medicine, 2019, 94, 410-413.	0.1	1
1087	Diabetes mellitus and osteoarthritis. , 2020, , 285-315.		1
1091	Evaluation of Akkermansia muciniphila bacteria in obese and overweight type 2 diabetic patients treated with insulin or oral hypoglycemic agents comparing with healthy subjects. Medical Journal of Tabriz University of Medical Sciences & Health Services, 2020, 42, 303-318.	0.1	0
1092	Anorexia Nervosa—What Has Changed in the State of Knowledge about Nutritional Rehabilitation for Patients over the Past 10 Years? A Review of Literature. Nutrients, 2021, 13, 3819.	1.7	7
1093	Gut microbiome responses to dietary intake of grain-based fibers with the potential to modulate markers of metabolic disease: a systematic literature review. Nutrition Reviews, 2021, 79, 1274-1292.	2.6	4

#	Article		CITATIONS
1094	How Manipulating the Microbiome Can Affect the Outcome Following Bariatric Surgery. Difficult Decisions in Surgery: an Evidence-based Approach, 2021, , 419-429.	0.0	0
1097	Etiopathogenesis of NAFLD: Diet, Gut, and NASH. , 2020, , 73-95.		0
1098	Progress of Intestinal Flora in the Treatment of Autoimmune Liver Disease. Traditional Chinese Medicine, 2020, 09, 348-353.	0.1	0
1099	State of gut microbiota and dietary preferences in obese adolescents. Acta Medica Leopoliensia, 2020, 26, 40-46.	0.0	0
1100	Impact of Human Microbiome on Health. , 2020, , 349-373.		3
1101	The role of the gut microbiota in the regulation of incretin effects. Clinical Endocrinology and Endocrine Surgery, 2020, .	0.1	0
1103	Effect of α-linolenic acid (ALA) on proliferation of probiotics and its adhesion to colonic epithelial cells. Food Science and Technology, 0, 42, .	0.8	4
1105	The intestinal microbiota in psoriasis. Postepy Higieny I Medycyny Doswiadczalnej, 2020, 74, 236-246.	0.1	3
1106	A network approach to investigating the key microbes and stability of gut microbial communities in a mouse neuropathic pain model. BMC Microbiology, 2020, 20, 295.	1.3	10
1108	Natural Selection, The Microbiome, and Public Health. Yale Journal of Biology and Medicine, 2018, 91, 445-455.	0.2	14
1109	The Functional Medicine Approach to COVID-19: Nutrition and Lifestyle Practices for Strengthening Host Defense. Integrative Medicine, 2020, 19, 54-62.	0.1	2
1110	The gut microbiota in retinal diseases. Experimental Eye Research, 2022, 214, 108867.	1.2	17
1111	Effects of vegetarian diet-associated nutrients on gut microbiota and intestinal physiology. Food Science and Human Wellness, 2022, 11, 208-217.	2.2	13
1112	Vasodilator Dysfunction in Human Obesity. Journal of Cardiovascular Pharmacology, 2021, Publish Ahead of Print, .	0.8	1
1113	Implications of Gut Microbiota in Complex Human Diseases. International Journal of Molecular Sciences, 2021, 22, 12661.	1.8	20
1114	Gut microbiota and vitamin status in persons with obesity: A key interplay. Obesity Reviews, 2022, 23, e13377.	3.1	15
1115	Honey bee genetics shape the strain-level structure of gut microbiota in social transmission. Microbiome, 2021, 9, 225.	4.9	33
1116	Subclinical Vascular Damage: Current Insights and Future Potential. Vascular Health and Risk Management, 2021, Volume 17, 729-738.	1.0	3

#	Article	IF	Citations
1117	Bacterial composition of midgut and entire body of laboratory colonies of Aedes aegypti and Aedes albopictus from Southern China. Parasites and Vectors, 2021, 14, 586.	1.0	12
1118	Dietary Regulation of Gut-Brain Axis in Alzheimer's Disease: Importance of Microbiota Metabolites. Frontiers in Neuroscience, 2021, 15, 736814.	1.4	24
1119	Polydextrose with and without Bifidobacterium animalis ssp. lactis 420 drives the prevalence of Akkermansia and improves liver health in a multi-compartmental obesogenic mice study. PLoS ONE, 2021, 16, e0260765.	1.1	7
1120	Possible Benefits of Faecalibacterium prausnitzii for Obesity-Associated Gut Disorders. Frontiers in Pharmacology, 2021, 12, 740636.	1.6	57
1121	Effects of Low Protein Diet on Modulating Gut Microbiota in Patients with Chronic Kidney Disease: A Systematic Review and Meta-analysis of International Studies. International Journal of Medical Sciences, 2021, 18, 3839-3850.	1.1	8
1122	Bariatric Surgery in NAFLD. Digestive Diseases and Sciences, 2022, 67, 408-422.	1.1	21
1123	Apigenin Alleviates Obesity-Associated Metabolic Syndrome by Regulating the Composition of the Gut Microbiome. Frontiers in Microbiology, 2021, 12, 805827.	1.5	30
1124	Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut, 2022, 71, 2463-2480.	6.1	53
1125	Dietary Haematococcus pluvialis promotes growth of red swamp crayfish Procambarus clarkii (Girard, 1852) via positive regulation of the gut microbial co-occurrence network. Aquaculture, 2022, 551, 737900.	1.7	12
1126	Mulberry leaf polysaccharides ameliorate obesity through activation of brown adipose tissue and modulation of the gut microbiota in high-fat diet fed mice. Food and Function, 2022, 13, 561-573.	2.1	19
1127	The Influence of the Western Diet on Microbiota and Gastrointestinal Immunity. Annual Review of Food Science and Technology, 2022, 13, 489-512.	5.1	11
1128	Reduced calorie diet combined with NNMT inhibition establishes a distinct microbiome in DIO mice. Scientific Reports, 2022, 12, 484.	1.6	Ο
1129	Re-aliment regains feed deprivation-induced microflora dysbiosis and immune stress in the gut of red swamp crayfish (Procambarus clarkii). Aquaculture Reports, 2022, 22, 100992.	0.7	4
1130	Diet dependent impact of benzoate on diabetes and obesity in mice. Biochimie, 2022, 194, 35-42.	1.3	2
1132	Gut microbiota and cardiovascular diseases axis. Minerva Medica, 2022, 113, .	0.3	9
1133	A review of Colorectal Cancer and Intestinal Microbiota. , 2021, , .		0
1134	Human Microbiota in Esophageal Adenocarcinoma: Pathogenesis, Diagnosis, Prognosis and Therapeutic Implications. Frontiers in Microbiology, 2021, 12, 791274.	1.5	5
1135	Diet leaves a genetic signature in a keystone member of the gut microbiota. Cell Host and Microbe, 2022, 30, 183-199.e10.	5.1	43

#	Article		CITATIONS
1136	Are We What We Eat? Impact of Diet on the Gut–Brain Axis in Parkinson's Disease. Nutrients, 2022, 14, 380.		32
1137	Intestinal Microbiota and Serum Metabolic Profile Responded to Two Nutritional Different Diets in Mice. Frontiers in Nutrition, 2021, 8, 813757.	1.6	6
1138	The Interaction between the Gut Microbiome and Bile Acids in Cardiometabolic Diseases. Metabolites, 2022, 12, 65.	1.3	16
1139	Farklı Beslenme Şekilleri ve İntestinal Mikrobiyota. , 0, , 164-170.		0
1140	The association of weight loss with changes in the gut microbiota diversity, composition, and intestinal permeability: a systematic review and meta-analysis. Gut Microbes, 2022, 14, 2020068.	4.3	41
1141	Effects of Selenium as a Dietary Source on Performance, Inflammation, Cell Damage, and Reproduction of Livestock Induced by Heat Stress: A Review. Frontiers in Immunology, 2021, 12, 820853.	2.2	18
1142	The Role of the Gut Microbiota in the Pathogenesis of Diabetes. International Journal of Molecular Sciences, 2022, 23, 480.	1.8	55
1144	The Role of Gut Microbiota and Metabolites in Obesity-Associated Chronic Gastrointestinal Disorders. Nutrients, 2022, 14, 624.	1.7	19
1145	Food-gut microbiota interactions. , 2022, , 233-256.		0
1146	Cinnamomum verum-derived bioactives-functionalized gold nanoparticles for prevention of obesity through gut microbiota reshaping. Materials Today Bio, 2022, 13, 100204.	2.6	7
1147	Dietary lipids from body to brain. Progress in Lipid Research, 2022, 85, 101144.	5.3	35
1148	Obesity-Related Adipose Tissue Remodeling in the Light of Extracellular Mitochondria Transfer. International Journal of Molecular Sciences, 2022, 23, 632.	1.8	3
1149	MetaCRS: unsupervised clustering of contigs with the recursive strategy of reducing metagenomic dataset's complexity. BMC Bioinformatics, 2021, 22, 315.	1.2	1
1150	Genetically Predicted Causality of 28 Gut Microbiome Families and Type 2 Diabetes Mellitus Risk. Frontiers in Endocrinology, 2022, 13, 780133.	1.5	10
1151	The gut microbiota–brain axis: Role of the gut microbial metabolites of dietary food in obesity. Food Research International, 2022, 153, 110971.	2.9	16
1152	Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Molecular and Cellular Endocrinology, 2022, 546, 111572.	1.6	117
1153	Circadian Rhythms, the Gut Microbiome, and Metabolic Disorders. , 2022, 1, 93-105.		10
1154	Gut microbiota and obesity: an overview of microbiota to microbial-based therapies. Postgraduate Medical Journal, 2023, 99, 384-402.	0.9	11

#	ARTICLE Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve	IF	CITATIONS
1155	cardiometabolic health. Gut, 2022, 71, 1214-1226.	6.1	50
1156	Microbiota and body weight control: Weight watchers within?. Molecular Metabolism, 2022, 57, 101427.	3.0	25
1157	The links between gut microbiota and obesity and obesity related diseases. Biomedicine and Pharmacotherapy, 2022, 147, 112678.	2.5	86
1158	Diet therapy in patients with metabolically associated fatty liver disease: what is the choice for particular patient?. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2021, , 109-117.	0.1	0
1159	Combinatorial, additive and dose-dependent drug–microbiome associations. Nature, 2021, 600, 500-505.	13.7	102
1161	Modifying dietary amino acids in cancer patients. International Review of Cell and Molecular Biology, 2022, , 1-36.	1.6	1
1162	The Gut Microbiota and Host Metabolism. , 2022, , 141-175.		2
1163	Significant Accumulation of Soluble Organic Nitrogen During Swine Wastewater Storage. SSRN Electronic Journal, 0, , .	0.4	0
1164	Underlying evidence for the health benefits of fermented foods in humans. Food and Function, 2022, 13, 4804-4824.	2.1	16
1165	Microbiota. , 2022, , 21-56.		0
1166	Diet-gut microbiota interactions on cardiovascular disease. Computational and Structural Biotechnology Journal, 2022, 20, 1528-1540.	1.9	34
1167	The Faecal Microbial Taxonomic Composition and Antimicrobial Resistance Gene Profile S ÂOf Three Different Pig Breeds. SSRN Electronic Journal, 0, , .	0.4	0
1168	Differences in Metabolic Profiles of Healthy Dogs Fed a High-Fat vs. a High-Starch Diet. Frontiers in Veterinary Science, 2022, 9, 801863.	0.9	4
1169	The Nutrition-Microbiota-Physical Activity Triad: An Inspiring New Concept for Health and Sports Performance. Nutrients, 2022, 14, 924.	1.7	9
1170	Alcohol-Related Elevation of Liver Transaminase Is Associated With Gut Microbiota in Male. Frontiers in Medicine, 2022, 9, 823898.	1.2	5
1171	Microbiome and metabolome features of the cardiometabolic disease spectrum. Nature Medicine, 2022, 28, 303-314.	15.2	102
1172	An atlas of robust microbiome associations with phenotypic traits based on large-scale cohorts from two continents. PLoS ONE, 2022, 17, e0265756.	1.1	15
1174	Lipopolysaccharide and the gut microbiota: considering structural variation. FEBS Letters, 2022, 596, 849-875.	1.3	38

		Citation R	EPORT	
#	Article		IF	CITATIONS
1175	Nutrition in Spondyloarthritis and Related Immune-Mediated Disorders. Nutrients, 2022	, 14, 1278.	1.7	5
1176	Increasing the diversity of dietary fibers in a daily-consumed bread modifies gut microbic metabolic profile in subjects at cardiometabolic risk. Gut Microbes, 2022, 14, 2044722.	ota and	4.3	28
1177	The Gut Microbiome May Help Address Mental Health Disparities in Hispanics: A Narrativ Microorganisms, 2022, 10, 763.	ve Review.	1.6	3
1178	Efficacy of probiotics on the modulation of gut microbiota in the treatment of diabetic r World Journal of Diabetes, 2022, 13, 150-160.	nephropathy.	1.3	10
1179	Therapeutic Effects of Modified Tempeh on Glycemic Control and Gut Microbiota Divers Rats. Current Nutrition and Food Science, 2022, 18, .	ity in Diabetic	0.3	0
1180	Interplay between diet, the gut microbiome, and atherosclerosis: Role of dysbiosis and metabolites on inflammation and disordered lipid metabolism. Journal of Nutritional Bio 2022, 105, 108991.	nicrobial chemistry,	1.9	36
1181	Nutraceuticals in the Modulation of the Intestinal Microbiota: Current Status and Future Frontiers in Pharmacology, 2022, 13, 841782.	? Directions.	1.6	1
1182	Insights from shotgun metagenomics into bacterial species and metabolic pathways ass NAFLD in obese youth. Hepatology Communications, 2022, 6, 1962-1974.	ociated with	2.0	20
1183	Insights into carbon-fixation pathways through metagonomics in the sediments of deep-sea cold seeps. Marine Pollution Bulletin, 2022, 176, 113458.		2.3	15
1184	Calorie restriction improves metabolic state independently of gut microbiome composit randomized dietary intervention trial. Genome Medicine, 2022, 14, 30.	ion: a	3.6	21
1185	Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Contract therapeutics strategies and future perspectives. Free Radical Biology and Medicine, 202	urrent 2, 184, 114-134.	1.3	158
1186	Diet Supplementation with NUTRIOSE, a Resistant Dextrin, Increases the Abundance of <i>Parabacteroides distasonis</i> in the Human Gut. Molecular Nutrition and Food Rese e2101091.	arch, 2022, 66,	1.5	8
1187	Gut Microbiome: Profound Implications for Diet and Disease. Kompass Nutrition & Diete	tics, 0, , 1-16.	1.0	2
1188	Preliminary Investigation of Microbiome and Dietary Differences in Patients with Phenyll Enzyme Substitution Therapy Compared to Traditional Therapies. Journal of the Academ and Dietetics, 2022, 122, 1283-1295.e3.	retonuria on y of Nutrition	0.4	6
1190	Effect of Chinese Herbal Medicine Mixture 919 Syrup on Regulation of the Ghrelin Pathy Intestinal Microbiota in Rats With Non-alcoholic Fatty Liver Disease. Frontiers in Microbi 12, 793854.	vay and ology, 2021,	1.5	4
1191	Characterization of the Gut Microbiota in Individuals with Overweight or Obesity during Real-World Weight Loss Dietary Program: A Focus on the Bacteroides 2 Enterotype. Bio 10, 16.	a nedicines, 2022,	1.4	8
1192	Nutrition and Microbiome. Handbook of Experimental Pharmacology, 2022, , 57-73.		0.9	4
1193	Effect of Atkins versus a low-fat diet on gut microbiota, and cardiometabolic markers in following an energy-restricted diet: Randomized, crossover trial. Nutrition, Metabolism a Cardiovascular Diseases, 2022, 32, 1734-1741.	obese women nd	1.1	5

#	Apticie	IE	CITATIONS
#	The impact of prebiotic fructooligosaccharides on gut dysbiosis and inflammation in obesity and	IF	CHATIONS
1221	diabetes related kidney disease. Food and Function, 2022, 13, 5925-5945.	2.1	9
1222	Microbiota-Dependent Tryptophan Metabolite Alleviates High-Fat Diet-Induced Insulin Resistance Through Activation of Hepatic AhR/TSC2/mTORC1 Axis. SSRN Electronic Journal, 0, , .	0.4	Ο
1223	Weight loss via a low-carbohydrate diet improved the intestinal permeability marker, zonulin, in prostate cancer patients. Annals of Medicine, 2022, 54, 1221-1225.	1.5	4
1224	Metagenomics Reveals the Diversity and Taxonomy of Carbohydrate-Active Enzymes and Antibiotic Resistance Genes in Suancai Bacterial Communities. Genes, 2022, 13, 773.	1.0	3
1225	Association Between Trajectory Patterns of Body Mass Index Change Up to 10 Months and Early Gut Microbiota in Preterm Infants. Frontiers in Microbiology, 2022, 13, 828275.	1.5	4
1227	The effects ofÂbariatric surgery procedures onÂtheÂgut microbiota, features ofÂgenetically mediated predisposition to obesity, forecasting algorithms forÂsurgical treatment outcomes. Literature review. , 2022, , 71-79.		0
1228	Impact of Food-Based Weight Loss Interventions on Gut Microbiome in Individuals with Obesity: A Systematic Review. Nutrients, 2022, 14, 1953.	1.7	9
1229	Eco-Evolutionary Dynamics of the Human-Gut Microbiota Symbiosis in a Changing Nutritional Environment. Evolutionary Biology, 2022, 49, 255-264.	0.5	3
1230	Integrated analysis of multi-tissues lipidome and gut microbiome reveals microbiota-induced shifts on lipid metabolism in pigs. Animal Nutrition, 2022, 10, 280-293.	2.1	10
1231	Gut microbiota predicts body fat change following a low-energy diet: a PREVIEW intervention study. Genome Medicine, 2022, 14, .	3.6	32
1232	Involvement of Gut Microbial Metabolites Derived from Diet on Host Energy Homeostasis. International Journal of Molecular Sciences, 2022, 23, 5562.	1.8	4
1233	From Gut Microbiota through Low-Grade Inflammation to Obesity: Key Players and Potential Targets. Nutrients, 2022, 14, 2103.	1.7	29
1234	Triglyceride and Triglyceride-Rich Lipoproteins in Atherosclerosis. Frontiers in Molecular Biosciences, 2022, 9, .	1.6	16
1235	Arabinoxylan from rice bran protects mice against high-fat diet-induced obesity and metabolic inflammation by modulating gut microbiota and short-chain fatty acids. Food and Function, 2022, 13, 7707-7719.	2.1	10
1236	Alteration of gut microbiota in highâ€fat dietâ€induced obese mice using carnosic acid from rosemary. Food Science and Nutrition, 2022, 10, 2325-2332.	1.5	7
1237	Prebiotics and the Human Gut Microbiota: From Breakdown Mechanisms to the Impact on Metabolic Health. Nutrients, 2022, 14, 2096.	1.7	25
1238	Effects of enriched seafood sticks (heat-inactivatedÂB. animalis subsp. lactisÂCECT 8145, inulin, omega-3) on cardiometabolic risk factors and gut microbiota in abdominally obese subjects: randomized controlled trial. European Journal of Nutrition, 0, , .	1.8	2
1239	Obese Individuals With and Without Phlegm-Dampness Constitution Show Different Gut Microbial Composition Associated With Risk of Metabolic Disorders. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	9

#	Article	IF	CITATIONS
1240	A Review: Cereals on Modulating the Microbiota/Metabolome for Metabolic Health. Current Nutrition Reports, 2022, 11, 371-385.	2.1	3
1242	The Gut Microbiota Composition of Cnaphalocrocis medinalis and Their Predicted Contribution to Larval Nutrition. Frontiers in Microbiology, 0, 13, .	1.5	3
1243	Dynamic metabolic interactions and trophic roles of human gut microbes identified using a minimal microbiome exhibiting ecological properties. ISME Journal, 2022, 16, 2144-2159.	4.4	16
1244	Mind the Gap: Bridging the Divide from Sequencing Data to Empiric Phenotypes in the Human Gut Microbiota. MSystems, 0, , .	1.7	0
1245	Dietary Influences on Gut Microbiota with a Focus on Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 2022, 20, 429-439.	0.5	16
1246	Mogroside-Rich Extract From Siraitia grosvenorii Fruits Ameliorates High-Fat Diet-Induced Obesity Associated With the Modulation of Gut Microbiota in Mice. Frontiers in Nutrition, 0, 9, .	1.6	6
1247	Implications of Gut Microbiota in Epithelial–Mesenchymal Transition and Cancer Progression: A Concise Review. Cancers, 2022, 14, 2964.	1.7	6
1248	Pathophysiology of Diverticular Disease: From Diverticula Formation to Symptom Generation. International Journal of Molecular Sciences, 2022, 23, 6698.	1.8	15
1249	Role of the Gut Microbiome in Diabetes and Cardiovascular Diseases Including Restoration and Targeting Approaches- A Review. , 2022, 15, 133-149.		1
1250	Protective effects of Lacticaseibacillus rhamnosus Hao9 on dextran sulphate sodium-induced ulcerative colitis in mice. Journal of Applied Microbiology, 2022, 133, 2039-2049.	1.4	12
1251	Vegetarianism, microbiota, and cardiovascular health: looking back, and forward. European Journal of Preventive Cardiology, 2022, 29, 1895-1910.	0.8	11
1252	Obesity and lifestyle-related disorders beyond the stethoscope: Role of botanicals. , 2022, , 423-430.		0
1253	Host and Microbiome Interplay Shapes the Vaginal Microenvironment. Frontiers in Immunology, 0, 13, .	2.2	19
1254	"A designer diet layout for astronauts using a microbiome mediated approach.― FEMS Microbiology Letters, 2022, 369, .	0.7	2
1255	Cross-Talk Between Gut Microbiota and Adipose Tissues in Obesity and Related Metabolic Diseases. Frontiers in Endocrinology, 0, 13, .	1.5	20
1256	Associations of gut microbiota with dyslipidemia based on sex differences in subjects from Northwestern China. World Journal of Gastroenterology, 2022, 28, 3455-3475.	1.4	9
1257	Physical activity induced alterations of gut microbiota in humans: a systematic review. BMC Sports Science, Medicine and Rehabilitation, 2022, 14, .	0.7	37
1258	Grape seed and skin extract, a potential prebiotic with anti-obesity effect through gut microbiota modulation. Gut Pathogens, 2022, 14, .	1.6	9

	CHAIR	JN REPORT	
#	Article	IF	Citations
1259	Microbiota in anorexia nervosa: potential for treatment. Nutrition Research Reviews, 2023, 36, 372-391.	2.1	4
1260	Immunomodulation by foods and microbes: Unravelling the molecular tango. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3513-3526.	2.7	16
1261	Dietary Component-Induced Inflammation and Its Amelioration by Prebiotics, Probiotics, and Synbiotics. Frontiers in Nutrition, 0, 9, .	1.6	15
1262	Gut Microbiota—A Future Therapeutic Target for People with Non-Alcoholic Fatty Liver Disease: A Systematic Review. International Journal of Molecular Sciences, 2022, 23, 8307.	1.8	9
1263	The beneficial role of healthy microbiome in metabolic syndrome and cardiovascular health. , 2022, , 109-124.		1
1265	Intestinal lipid absorption and transport in type 2 diabetes. Diabetologia, 2022, 65, 1587-1600.	2.9	12
1266	Gut microbiome is associated with metabolic syndrome accompanied by elevated gamma-glutamyl transpeptidase in men. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	18
1267	Associations between the Gut Microbiome and Migraines in Children Aged 7-18 Years: An Analysis of the American Gut Project Cohort. Pain Management Nursing, 2023, 24, 35-43.	0.4	7
1268	The impact of dietary nutrient intake on gut microbiota in the progression and complications of chronic kidney disease. Kidney International, 2022, 102, 728-739.	2.6	8
1269	Gut Microbiota Patterns Predicting Long-Term Weight Loss Success in Individuals with Obesity Undergoing Nonsurgical Therapy. Nutrients, 2022, 14, 3182.	1.7	10
1270	First detection of Rickettsia aeschlimannii in Hyalomma marginatum in Tibet, China. Zoonoses, 2022, 2, .	0.5	3
1271	An Energy-Restricted Diet Including Yogurt, Fruit, and Vegetables Alleviates High-Fat Diet–Induced Metabolic Syndrome in Mice by Modulating the Gut Microbiota. Journal of Nutrition, 2022, 152, 2429-2440.	1.3	6
1272	Gut microbiota: A new target for T2DM prevention and treatment. Frontiers in Endocrinology, 0, 13, .	1.5	29
1273	Difference of microbial community and gene composition with saccharification function between Chinese <i>nongxiangxing daqu</i> and <i>jiangxiangxing daqu</i> . Journal of the Science of Food and Agriculture, 2023, 103, 637-647.	1.7	13
1274	Active Peptide AR-9 From Eupolyphaga sinensis Reduces Blood Lipid and Hepatic Lipid Accumulation by Restoring Gut Flora and Its Metabolites in a High Fat Diet–Induced Hyperlipidemia Rat. Frontiers in Pharmacology, 0, 13, .	1.6	6
1275	Cyanidin-3-O-glucoside impacts fecal discharge of polystyrene microplastics in mice: Potential role of microbiota-derived metabolites. Toxicology and Applied Pharmacology, 2022, 453, 116212.	1.3	5
1276	The oral microbiota as part of the human microbiota $\hat{a} \in \hat{a}$ links to general health. , 2020, 131, .		0
1277	Beneficial role of gut microbiome in metabolic syndrome, obesity, and cardiovascular diseases. , 2022, , 149-166.		0

#	Article	IF	Citations
1278	The role of the intestinal microbiota in weight loss in overweight and obese humans. , 2022, , 125-135.		0
1279	Dietary Fatty Acids, Gut Microbiome, and Gut–Brain Communication: A Current Perspective. , 2022, , 121-138.		0
1280	Aging: Impact of Gut Microbiota. , 2022, , 71-82.		0
1281	The effect of resveratrol-mediated gut microbiota remodeling on metabolic disorders. , 2022, , 193-202.		0
1282	Immunological paradox for maintaining normal flora: it is all by design, not by chance. , 2022, , 39-73.		0
1283	A review on the protective effect of active components in Antrodia camphorata against alcoholic liver injury. Journal of Ethnopharmacology, 2023, 300, 115740.	2.0	5
1284	Nutrition and Health in Human Evolution–Past to Present. Nutrients, 2022, 14, 3594.	1.7	14
1285	The Microbiome-Immune Axis Therapeutic Effects in Cancer Treatments. Journal of Microbiology and Biotechnology, 2022, 32, 1086-1097.	0.9	2
1286	Probiotics in bariatric surgery ensure greater lipids and glycemic profile with no effect on anthropometric measurements and inflammatory markers: A systematic review and meta-analysis of RCT. Surgery Open Digestive Advance, 2022, 7, 100061.	0.1	2
1287	Potential associations between alterations in gut microbiome and obesityâ€related traits after the bariatric surgery. Journal of Human Nutrition and Dietetics, 2023, 36, 981-996.	1.3	1
1288	Intersection of Diet and Exercise with the Gut Microbiome and Circulating Metabolites in Male Bodybuilders: A Pilot Study. Metabolites, 2022, 12, 911.	1.3	2
1289	Modulation of gut microbiota: The effects of a fruits and vegetables supplement. Frontiers in Nutrition, 0, 9, .	1.6	3
1290	Dietary Efficacy Evaluation by Applying a Prediction Model Using Clinical Fecal Microbiome Data of Colorectal Disease to a Controlled Animal Model from an Obesity Perspective. Microorganisms, 2022, 10, 1833.	1.6	5
1291	The effects of Aronia berry (poly)phenol supplementation on arterial function and the gut microbiome in middle aged men and women: Results from a randomized controlled trial. Clinical Nutrition, 2022, 41, 2549-2561.	2.3	14
1292	The effects of microbiota on reproductive health: A review. Critical Reviews in Food Science and Nutrition, 2024, 64, 1486-1507.	5.4	5
1293	Diet fuelling inflammatory bowel diseases: preclinical and clinical concepts. Gut, 2022, 71, 2574-2586.	6.1	35
1294	Effects of Auricularia auricula Polysaccharides on Gut Microbiota and Metabolic Phenotype in Mice. Foods, 2022, 11, 2700.	1.9	10
1295	Microbial Tryptophan Metabolism Tunes Host Immunity, Metabolism, and Extraintestinal Disorders. Metabolites, 2022, 12, 834.	1.3	14

		CITATION RE	PORT	
#	Article		IF	Citations
1296	Gut microbiota is a potential goalkeeper of dyslipidemia. Frontiers in Endocrinology, 0,	13, .	1.5	5
1297	Synbiotic Supplementation Modulates Gut Microbiota, Regulates Î ² -Catenin Expression Weight Gain in ob/ob Mice: Preliminary Findings. International Journal of Molecular Sci 10483.	n and Prevents ences, 2022, 23,	1.8	1
1298	The Impact of Obesity on the Fibrostenosis Progression of Eosinophilic Esophagitis in a Cohort. Dysphagia, 2023, 38, 866-873.	ı U.S. Veterans	1.0	2
1300	The influence of different dietary patterns on changes in the intestinal microbiota and weight. Medical Alphabet, 2022, , 29-39.	human body	0.0	0
1301	Reconfiguration of Gut Microbiota and Reprogramming of Liver Metabolism with Phyc Bioactive Peptides to Rehabilitate Obese Rats. Nutrients, 2022, 14, 3635.	obiliproteins	1.7	4
1302	Electroacupuncture reduces blood glucose by regulating intestinal flora in type 2 diabe Journal of Diabetes, 2022, 14, 695-710.	tic mice.	0.8	5
1303	Gut bacteria comparison between wild and captive neotropical otters. Universitas Scie 25, 359-384.	ntiarum, 2020,	0.2	1
1304	The Human Gut Microbiome in Health, Disease, and Therapeutics. , 2022, , 249-260.			0
1305	Commensal gut microbiota-derived acetate and propionate enhance heart adaptation cardiac pressure overload in mice. Theranostics, 2022, 12, 7319-7334.	in response to	4.6	6
1306	Exploratory analysis of one versus two-day intermittent fasting protocols on the gut m plasma metabolome in adults with overweight/obesity. Frontiers in Nutrition, 0, 9, .	icrobiome and	1.6	8
1307	Gut Microbiome and Its Cofactors Are Linked to Lipoprotein Distribution Profiles. Micro 2022, 10, 2156.	oorganisms,	1.6	4
1308	Role of gut microbiota in the pathogenesis and treatment of diabetes mullites: Advanc research-based review. Frontiers in Microbiology, 0, 13, .	ed	1.5	14
1309	The hallmarks of dietary intervention-resilient gut microbiome. Npj Biofilms and Microb	viomes, 2022, 8,	2.9	18
1310	A new method for mining information of gut microbiome with probabilistic topic mode Tools and Applications, 2023, 82, 16081-16104.	ls. Multimedia	2.6	0
1311	The potential of tailoring the gut microbiome to prevent and treat cardiometabolic dis Reviews Cardiology, 2023, 20, 217-235.	ease. Nature	6.1	31
1312	Comparing the taxonomic and functional profiles of gut microbiota from three pig bre metagenomic sequencing. Frontiers in Genetics, 0, 13, .	eds by	1.1	0
1313	Nutritional modulation of the gut microbiome in allogeneic hematopoietic stem cell transference in Nutrition, 0, 9, .	ansplantation	1.6	17
1314	Precise strategies for selecting probiotic bacteria in treatment of intestinal bacterial dy diseases. Frontiers in Immunology, 0, 13, .	sfunctional	2.2	4

#	Article	IF	CITATIONS
1315	Calorie restriction ameliorates hyperglycemia, modulates the disordered gut microbiota, and mitigates metabolic endotoxemia and inflammation in type 2 diabetic rats. Journal of Endocrinological Investigation, 2023, 46, 699-711.	1.8	16
1316	Personalized nutrition, microbiota, and metabolism: A triad for eudaimonia. Frontiers in Molecular Biosciences, 0, 9, .	1.6	0
1317	Dietary pattern interfered with the impacts of pesticide exposure by regulating the bioavailability and gut microbiota. Science of the Total Environment, 2023, 858, 159936.	3.9	6
1318	The Interaction of Gut Microbiota-brain Axis in Relation to Human Health with the Use of Animal Models. , 0, , .		0
1319	Dietary protein and the intestinal microbiota: An understudied relationship. IScience, 2022, 25, 105313.	1.9	22
1320	Interaction of microbiome and immunity in tumorigenesis and clinical treatment. Biomedicine and Pharmacotherapy, 2022, 156, 113894.	2.5	1
1321	Bacillus amyloliquefaciens SC06 attenuated high-fat diet induced anxiety-like behavior and social withdrawal of male mice by improving antioxidant capacity, intestinal barrier function and modulating intestinal dysbiosis. Behavioural Brain Research, 2023, 438, 114172.	1.2	2
1322	Buyang Huanwu decoction affects gut microbiota and lipid metabolism in a ZDF rat model of co-morbid type 2 diabetes mellitus and obesity: An integrated metabolomics analysis. Frontiers in Chemistry, 0, 10, .	1.8	12
1323	Bifidobacterial carbohydrate/nucleoside metabolism enhances oxidative phosphorylation in white adipose tissue to protect against diet-induced obesity. Microbiome, 2022, 10, .	4.9	8
1324	Gut microbiota mediated hypoglycemic effect of Astragalus membranaceus polysaccharides in db/db mice. Frontiers in Pharmacology, 0, 13, .	1.6	10
1325	Personalized Diets based on the Gut Microbiome as a Target for Health Maintenance: from Current Evidence to Future Possibilities. Journal of Microbiology and Biotechnology, 2022, 32, 1497-1505.	0.9	4
1326	Understanding interactions among diet, host and gut microbiota for personalized nutrition. Life Sciences, 2023, 312, 121265.	2.0	5
1327	Gut microbiota and its roles in the pathogenesis and therapy of endocrine system diseases. Microbiological Research, 2023, 268, 127291.	2.5	10
1329	Intake of slow-digesting carbohydrates is related to changes in the microbiome and its functional pathways in growing rats with obesity induced by diet. Frontiers in Nutrition, 0, 9, .	1.6	6
1330	Gut Microbiome Analysis for Personalized Nutrition: The State of Science. Molecular Nutrition and Food Research, 2023, 67, .	1.5	6
1331	Analysis of correlations between gut microbiota, stool short chain fatty acids, calprotectin and cardiometabolic risk factors in postmenopausal women with obesity: a cross-sectional study. Journal of Translational Medicine, 2022, 20, .	1.8	5
1332	Perigestational exposure of a combination of a high-fat diet and pesticide impacts the metabolic and microbiotic status of dams and pups; a preventive strategy based on prebiotics. European Journal of Nutrition, 0, , .	1.8	1
1333	Microbiome-Targeted Therapies as an Adjunct to Traditional Weight Loss Interventions: A Systematic Review and Meta-Analysis. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 0, Volume 15, 3777-3798	1.1	1

#	Apticie	IE	CITATIONS
#	Adeno-associated virus vector intraperitoneal injection induces colonic mucosa and submucosa	IF	CHATIONS
1334	transduction and alters the diversity and composition of the faecal microbiota in rats. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	2
1335	Bacterial Vaginosis in Postmenopausal Women. Current Infectious Disease Reports, 2023, 25, 7-15.	1.3	4
1336	Polyphenols as Drivers of a Homeostatic Gut Microecology and Immuno-Metabolic Traits of Akkermansia muciniphila: From Mouse to Man. International Journal of Molecular Sciences, 2023, 24, 45.	1.8	9
1337	Diverse effects of obesity on antitumor immunity and immunotherapy. Trends in Molecular Medicine, 2022, , .	3.5	2
1338	Precision Nutrition in NAFLD: Effects of a High-Fiber Intervention on the Serum Metabolome of NAFD Patients—A Pilot Study. Nutrients, 2022, 14, 5355.	1.7	7
1339	Fucoidan from Laminaria japonica Ameliorates Type 2 Diabetes Mellitus in Association with Modulation of Gut Microbiota and Metabolites in Streptozocin-Treated Mice. Foods, 2023, 12, 33.	1.9	8
1340	<i>Cordyceps militaris</i> polysaccharides modulate gut microbiota and improve metabolic disorders in mice with <scp>dietâ€induced</scp> obesity. Journal of the Science of Food and Agriculture, 2023, 103, 1885-1894.	1.7	8
1341	Effects of functional oligosaccharide on regulating gut microbiota in obese mice: a short review. Food Science and Technology, 0, 43, .	0.8	0
1342	ASPEN Presidential Address: Fortyâ€fifth ASPEN Presidential Address: Medical Nutrition Therapy, Is it Time to Get Personal?. Journal of Parenteral and Enteral Nutrition, 0, , .	1.3	0
1343	Prebiotic effect of sialylated immunoglobulin G on gut microbiota of patients with inflammatory bowel disease by in vitro fermentation. Food Bioscience, 2023, 52, 102393.	2.0	2
1344	Gut Microbiome in Health and Gastrointestinal Cancer. , 2023, , 5-21.		1
1345	The Interaction between Flavonoids and Intestinal Microbes: A Review. Foods, 2023, 12, 320.	1.9	17
1346	Galactooligosaccharide (GOS) Reduces Branched Short-Chain Fatty Acids, Ammonium, and pH in a Short-Term Colonic Fermentation Model. Applied Microbiology, 2023, 3, 90-103.	0.7	2
1347	Microbiota: ¿Sabemos de qué estamos hablando?. Archivos De ColoproctologÃa, 2021, 4, .	0.0	0
1348	Probiotic Effects on Disease Prevention and Treatment. , 0, , .		0
1349	Mechanisms of Action of Different Bariatric Surgical Procedures. , 2023, , 973-986.		0
1350	Understanding the role of the gut microbiome in gastrointestinal cancer: A review. Frontiers in Pharmacology, 0, 14, .	1.6	55
1351	The regulatory effects of second-generation antipsychotics on lipid metabolism: Potential mechanisms mediated by the gut microbiota and therapeutic implications. Frontiers in Pharmacology, 0, 14, .	1.6	2

CITAT	DEDODT	
CHAL	REPORT	

#	Article	IF	CITATIONS
1352	Research progress on adaptive modifications of the gut microflora and regulation of host glucose and lipid metabolism by cold stimulation. Frigid Zone Medicine, 2023, 3, 13-21.	0.2	1
1353	Curcumin and its Analogs and Carriers: Potential Therapeutic Strategies for Human Osteosarcoma. International Journal of Biological Sciences, 2023, 19, 1241-1265.	2.6	16
1354	Antiobesity effect of L-arabinose via ameliorating insulin resistance and modulating gut microbiota in obese mice. Nutrition, 2023, 111, 112041.	1.1	2
1355	Fecal microbiome transplant from patients with lactation mastitis promotes mastitis in conventional lactating mice. Frontiers in Microbiology, 0, 14, .	1.5	0
1356	Impact of caloric restriction on the gut microbiota. Current Opinion in Microbiology, 2023, 73, 102287.	2.3	4
1357	A review on Impact of dietary interventions, drugs, and traditional herbal supplements on the gut microbiome. Microbiological Research, 2023, 271, 127346.	2.5	3
1358	Effects of several flavonoids on human gut microbiota and its metabolism by in vitro simulated fermentation. Frontiers in Microbiology, 0, 14, .	1.5	10
1359	Pathophysiology-Based Individualized Use of Probiotics and Prebiotics for Metabolic Syndrome: Implementing Predictive, Preventive, and Personalized Medical Approach. Advances in Predictive, Preventive and Personalised Medicine, 2023, , 133-196.	0.6	3
1360	Integrated molecular approaches for fermented food microbiome research. FEMS Microbiology Reviews, 2023, 47, .	3.9	4
1361	Towards early detection of neurodegenerative diseases: A gut feeling. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	7
1362	Effects of levodopa on gut bacterial antibiotic resistance in Parkinson's disease rat. Frontiers in Aging Neuroscience, 0, 15, .	1.7	1
1363	The diet rapidly and differentially affects the gut microbiota and host lipid mediators in a healthy population. Microbiome, 2023, 11, .	4.9	29
1364	Effects of black raspberry extract on gut microbiota, microbial metabolites, and expressions of the genes involved in cholesterol and bile acid metabolisms in rats fed excessive choline with a high-fat diet. Food Science and Biotechnology, 2023, 32, 577-587.	1.2	1
1365	Association of plant-based dietary patterns in first trimester of pregnancy with gestational weight gain: results from a prospective birth cohort. European Journal of Clinical Nutrition, 0, , .	1.3	2
1366	Randomized controlled trial demonstrates response to a probiotic intervention for metabolic syndrome that may correspond to diet. Gut Microbes, 2023, 15, .	4.3	10
1367	Diverticular Disease and Rifaximin: An Evidence-Based Review. Antibiotics, 2023, 12, 443.	1.5	5
1368	Gut microbiota facilitates adaptation of the plateau zokor (Myospalax baileyi) to the plateau living environment. Frontiers in Microbiology, 0, 14, .	1.5	0
1369	Role of the Gut Microbiome in the Development of Atherosclerotic Cardiovascular Disease. International Journal of Molecular Sciences, 2023, 24, 5420.	1.8	10

#	Article	IF	CITATIONS
1370	Short-chain fatty acids as a link between diet and cardiometabolic risk: a narrative review. Lipids in Health and Disease, 2023, 22, .	1.2	3
1371	Effect of different doses of Lacticaseibacillus paracasei K56 on body fat and metabolic parameters in adult individuals with obesity: a pilot study. Nutrition and Metabolism, 2023, 20, .	1.3	1
1372	The Crosstalk between Gut Microbiota and White Adipose Tissue Mitochondria in Obesity. Nutrients, 2023, 15, 1723.	1.7	7
1374	Trimethylamine N-Oxide generation process was influenced by the proportion and source of macronutrients in the diet. , 2023, , 1-15.		0
1375	The effects of chronic unpredicted mild stress on maternal negative emotions and gut microbiota and metabolites in pregnant rats. PeerJ, 0, 11, e15113.	0.9	1
1376	Effect of DHA-Enriched Phospholipids from Fish Roe on Rat Fecal Metabolites: Untargeted Metabolomic Analysis. Foods, 2023, 12, 1687.	1.9	0
1377	The Gut Microbiome and the Imperative of Normalcy. International Journal of Feminist Approaches To Bioethics, 2023, 16, 131-162.	0.1	0
1403	Gut Microbial Mechanisms in Nutrition and Health. , 2023, , 147-177.		0
1407	Gut Microbiota and Obesity. Endocrinology, 2023, , 1-29.	0.1	0
1409	Gut Microbiome, Obesity, and Metabolic Syndrome. , 2023, , 1-12.		0
1417	The Interplay Between Immunity and Gut Microbiota in Colon Cancer. , 2023, , .		0
1440	The Microbiome, Metabolism, and Networks in Precision Nutrition. , 2024, , 91-142.		0
1449	Nutritional Modulation of Gut Microbiota Alleviates Metabolic and Neurological Disorders. , 2023, , 97-125.		0
1459	Gut Microbiota and Type 2 Diabetes Mellitus. Endocrinology, 2023, , 1-31.	0.1	0
1461	Gut Microbiota and Metabolism. , 2024, , 145-159.		0
1462	Gut microbiota and metabolic syndrome: What's new?. , 2024, , 527-541.		0
1463	Correlating the Gut Microbiome to Health and Disease. , 2024, , 1-36.		0
1468	Gut Microbiome, Obesity, and Metabolic Syndrome. , 2023, , 373-384.		0

#	Article	IF	CITATIONS
1469	Gut Microbiota and Type 2 Diabetes Mellitus. Endocrinology, 2024, , 199-229.	0.1	0
1471	Gut Microbiota and Obesity. Endocrinology, 2024, , 129-156.	0.1	0