Cerebral organoids model human brain development ar

Nature 501, 373-379

DOI: 10.1038/nature12517

Citation Report

#	Article	IF	CITATIONS
1	237.Transgenic Expression of Dp116 in Muscle Does Not Ameliorate Dystrophy in mdx Mice. Molecular Therapy, 2004, 9, S91.	3.7	1
2	Miniature human brains. Nature, 2013, 501, 319-320.	13.7	9
3	Precocious Acquisition of Neuroepithelial Character in the Eye Field Underlies the Onset of Eye Morphogenesis. Developmental Cell, 2013, 27, 293-305.	3.1	86
4	Build-a-Brain. Cell Stem Cell, 2013, 13, 377-378.	5.2	20
5	Artificial three-dimensional niches deconstruct pancreas development <i>in vitro</i> . Development (Cambridge), 2013, 140, 4452-4462.	1.2	233
6	Cortical Evolution: Judge the Brain by Its Cover. Neuron, 2013, 80, 633-647.	3.8	444
7	Neural Stem Cells: Generating and Regenerating the Brain. Neuron, 2013, 80, 588-601.	3.8	479
8	Evolving Concepts of Gliogenesis: A Look Way Back and Ahead to the Next 25 Years. Neuron, 2013, 80, 613-623.	3.8	161
9	Engineering Approaches to Illuminating Brain Structure and Dynamics. Neuron, 2013, 80, 568-577.	3.8	116
10	Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cellâ \in derived neocortex. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20284-20289.	3.3	778
11	Small but beautiful. Nature Reviews Neuroscience, 2013, 14, 665-665.	4.9	15
12	The developing human brain—modeled in a dish. Nature Methods, 2013, 10, 929-929.	9.0	4
13	Modeling human brain development with cerebral organoids. Stem Cell Research and Therapy, 2013, 4, 154.	2.4	13
14	What Are Mini-Brains?. Science, 2013, 342, 200-201.	6.0	15
15	Progress in the Genetics of Polygenic Brain Disorders: Significant New Challenges for Neurobiology. Neuron, 2013, 80, 578-587.	3.8	74
16	Biomedical briefing. Nature Medicine, 2013, 19, 1198-1199.	15.2	0
17	Adenovirus-Mediated Efficient Gene Transfer into Cultured Three-Dimensional Organoids. PLoS ONE, 2014, 9, e93608.	1.1	63
18	A method to investigate radial glia cell behavior using two-photon time-lapse microscopy in an ex vivo model of spinal cord development. Frontiers in Neuroanatomy, 2014, 8, 22.	0.9	13

#	Article	IF	CITATIONS
19	Optimizing neuronal differentiation from induced pluripotent stem cells to model ASD. Frontiers in Cellular Neuroscience, 2014, 8, 109.	1.8	62
20	Fate of graft cells: what should be clarified for development of mesenchymal stem cell therapy for ischemic stroke?. Frontiers in Cellular Neuroscience, 2014, 8, 322.	1.8	11
21	Comparative genomics of brain size evolution. Frontiers in Human Neuroscience, 2014, 8, 345.	1.0	14
22	Modeling physiological and pathological human neurogenesis in the dish. Frontiers in Neuroscience, 2014, 8, 183.	1.4	31
23	Induced Pluripotent Stem Cells Derived from Alzheimer's Disease Patients: The Promise, the Hope and the Path Ahead. Journal of Clinical Medicine, 2014, 3, 1402-1436.	1.0	17
24	Human iPSC Models: A Platform for Investigating Neurodevelopmental Diseases. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2014, 08, .	0.1	O
25	ESNATS Conference â€" The use of Human Embryonic Stem Cells for Novel Toxicity Testing Approaches. ATLA Alternatives To Laboratory Animals, 2014, 42, 97-113.	0.7	13
27	Monitoring neurogenesis in the cerebral cortex: an update. Future Neurology, 2014, 9, 323-340.	0.9	3
28	Solving the puzzle of Parkinson's disease using induced pluripotent stem cells. Experimental Biology and Medicine, 2014, 239, 1421-1432.	1.1	16
29	Characterization of Human Hippocampal Neural Stem/Progenitor Cells and Their Application to Physiologically Relevant Assays for Multiple Ionotropic Glutamate Receptors. Journal of Biomolecular Screening, 2014, 19, 1174-1184.	2.6	7
30	In vitro organogenesis from pluripotent stem cells. Organogenesis, 2014, 10, 159-163.	0.4	29
31	Concise Review: Drug Discovery in the Age of the Induced Pluripotent Stem Cell. Stem Cells Translational Medicine, 2014, 3, 500-509.	1.6	65
32	New Methods in Tissue Engineering: Improved Models for Viral Infection. Annual Review of Virology, 2014, 1, 475-499.	3.0	23
33	In vitro clinical trials: the future of cell-based profiling. Frontiers in Pharmacology, 2014, 5, 121.	1.6	16
34	State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 441-477.	0.9	166
35	FRA2A Is a CGG Repeat Expansion Associated with Silencing of AFF3. PLoS Genetics, 2014, 10, e1004242.	1.5	41
36	The Billion Cell Construct: Will Three-Dimensional Printing Get Us There?. PLoS Biology, 2014, 12, e1001882.	2.6	162
37	Human iPSC-Derived Miniature Organs: A Tool for Drug Studies. Clinical Pharmacology and Therapeutics, 2014, 96, 310-313.	2.3	16

#	Article	IF	Citations
38	3D tissue-engineered model of Ewing's sarcoma. Advanced Drug Delivery Reviews, 2014, 79-80, 155-171.	6.6	39
39	Human Stem Cells for Craniomaxillofacial Reconstruction. Stem Cells and Development, 2014, 23, 1437-1451.	1.1	9
40	Engineered Cell Manipulation for Biomedical Application. Nanomedicine and Nanotoxicology, 2014, , .	0.1	3
41	Nucleaseâ€mediated genome editing: At the frontâ€line of functional genomics technology. Development Growth and Differentiation, 2014, 56, 2-13.	0.6	60
42	Regulation of the neural stem cell compartment by extracellular matrix constituents. Progress in Brain Research, 2014, 214, 3-28.	0.9	56
43	The Future of Neuroepigenetics in the Human Brain. Progress in Molecular Biology and Translational Science, 2014, 128, 199-228.	0.9	14
44	New strategies in kidney regeneration and tissue engineering. Current Opinion in Nephrology and Hypertension, 2014, 23, 399-405.	1.0	49
45	In Vitro Toxicology Systems. Methods in Pharmacology and Toxicology, 2014, , .	0.1	8
46	Cytoskeletal Regulation by AUTS2 in Neuronal Migration and Neuritogenesis. Cell Reports, 2014, 9, 2166-2179.	2.9	109
47	Three-dimensional bioprinting: new horizon for cardiac surgery. European Journal of Cardio-thoracic Surgery, 2014, 46, 339-341.	0.6	23
48	A brief perspective on neural cell therapy. Molecular and Cellular Therapies, 2014, 2, 2.	0.2	1
49	In vitro neurogenesis: development and functional implications of iPSC technology. Cellular and Molecular Life Sciences, 2014, 71, 1623-1639.	2.4	39
50	Rethinking Differentiation: Stem Cells, Regeneration, and Plasticity. Cell, 2014, 157, 110-119.	13.5	217
51	The human side of microglia. Trends in Neurosciences, 2014, 37, 125-135.	4.2	206
52	Assembly of Functional Threeâ€Dimensional Neuronal Networks on a Microchip. Small, 2014, 10, 2530-2536.	5.2	20
53	The Human Condition—A Molecular Approach. Cell, 2014, 157, 216-226.	13.5	175
54	On the road to bioartificial organs. Pflugers Archiv European Journal of Physiology, 2014, 466, 1847-1857.	1.3	20
55	Selfâ€organization of neural tissue architectures from pluripotent stem cells. Journal of Comparative Neurology, 2014, 522, 2831-2844.	0.9	22

#	Article	IF	CITATIONS
56	Human CLP1 Mutations Alter tRNA Biogenesis, Affecting Both Peripheral and Central Nervous System Function. Cell, 2014, 157, 636-650.	13.5	189
57	Differentiation, polarization, and migration of human induced pluripotent stem cell-derived neural progenitor cells co-cultured with a human glial cell line with radial glial-like characteristics. Biochemical and Biophysical Research Communications, 2014, 447, 683-688.	1.0	18
58	Modeling Neurodevelopmental Disorders Using Human Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2014, 10, 494-511.	5 . 6	36
59	Bioengineering approaches to guide stem cell-based organogenesis. Development (Cambridge), 2014, 141, 1794-1804.	1.2	116
60	Cortical neurogenesis from pluripotent stem cells: complexity emerging from simplicity. Current Opinion in Neurobiology, 2014, 27, 151-157.	2.0	35
61	Boosting the Power of Schizophrenia Genetics by Leveraging New Statistical Tools. Schizophrenia Bulletin, 2014, 40, 13-17.	2.3	84
62	Lab generated retina: Realizing the dream. Visual Neuroscience, 2014, 31, 317-332.	0.5	12
63	Congenital microcephaly. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2014, 166, 124-139.	0.7	105
64	Drug discovery through stem cell-based organoid models. Advanced Drug Delivery Reviews, 2014, 69-70, 19-28.	6.6	172
65	Brains in metamorphosis: reprogramming cell identity within the central nervous system. Current Opinion in Neurobiology, 2014, 27, 208-214.	2.0	28
66	Using genetic findings in autism for the development of new pharmaceutical compounds. Psychopharmacology, 2014, 231, 1063-1078.	1.5	27
67	iPSC-derived neurons as a higher-throughput readout for autism: promises and pitfalls. Trends in Molecular Medicine, 2014, 20, 91-104.	3.5	42
68	Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nature Reviews Genetics, 2014, 15, 82-92.	7.7	403
69	Development-Inspired Reprogramming of the Mammalian Central Nervous System. Science, 2014, 343, 1239882.	6.0	87
70	Engineering Three-Dimensional Stem Cell Morphogenesis for the Development of Tissue Models and Scalable Regenerative Therapeutics. Annals of Biomedical Engineering, 2014, 42, 352-367.	1.3	71
71	Self-organizing stem cells. Nature Methods, 2014, 11, 31-31.	9.0	2
72	2013: Signaling Breakthroughs of the Year. Science Signaling, 2014, 7, eg1.	1.6	2
73	Human Pluripotent Stem Cell Culture: Considerations for Maintenance, Expansion, and Therapeutics. Cell Stem Cell, 2014, 14, 13-26.	5.2	297

#	ARTICLE	IF	CITATIONS
74	Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2506-2519.	1.1	1,017
75	In situ-forming injectable hydrogels for regenerative medicine. Progress in Polymer Science, 2014, 39, 1973-1986.	11.8	435
76	Modeling human carcinomas: Physiologically relevant 3D models to improve anti-cancer drug development. Advanced Drug Delivery Reviews, 2014, 79-80, 50-67.	6.6	129
77	Modeling human development in 3D culture. Current Opinion in Cell Biology, 2014, 31, 23-28.	2.6	76
78	Analytical tools and current challenges in the modern era of neuroepigenomics. Nature Neuroscience, 2014, 17, 1476-1490.	7.1	100
79	Toward in vitro models of brain structure and function. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13682-13683.	3.3	26
80	Integration of microstructured scaffolds, neurons, and multielectrode arrays. Progress in Brain Research, 2014, 214, 415-442.	0.9	9
81	Generation of cerebral organoids from human pluripotent stem cells. Nature Protocols, 2014, 9, 2329-2340.	5.5	1,189
82	The Cell Biology of Neurogenesis: Toward an Understanding of the Development and Evolution of the Neocortex. Annual Review of Cell and Developmental Biology, 2014, 30, 465-502.	4.0	616
83	Generation of Functional Neurons from Feeder-Free, Keratinocyte-Derived Equine Induced Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 1524-1534.	1.1	44
84	Pituitary cell differentiation from stem cells and other cells: toward restorative therapy for hypopituitarism?. Regenerative Medicine, 2014, 9, 513-534.	0.8	16
85	To Simulate or Not to Simulate: What Are the Questions?. Neuron, 2014, 84, 254-261.	3.8	62
86	Luminal signalling links cell communication to tissue architecture during organogenesis. Nature, 2014, 515, 120-124.	13.7	129
87	Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development (Cambridge), 2014, 141, 4231-4242.	1.2	346
88	Wnt/ \hat{l}^2 -catenin and FGF signalling direct the specification and maintenance of a neuromesodermal axial progenitor in ensembles of mouse embryonic stem cells. Development (Cambridge), 2014, 141, 4243-4253.	1.2	141
89	The generation of kidney organoids by differentiation of human pluripotent cells to ureteric bud progenitor–like cells. Nature Protocols, 2014, 9, 2693-2704.	5.5	86
90	Small organelle, big responsibility: the role of centrosomes in development and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130468.	1.8	128
91	Microfabrication and microfluidics for muscle tissue models. Progress in Biophysics and Molecular Biology, 2014, 115, 279-293.	1.4	43

#	Article	IF	CITATIONS
92	Gyrification from constrained cortical expansion. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12667-12672.	3.3	332
93	Adult neurogenesis: bridging the gap between mice and humans. Trends in Cell Biology, 2014, 24, 558-563.	3.6	117
94	Tissue-culture light sheet fluorescence microscopy (TC-LSFM) allows long-term imaging of three-dimensional cell cultures under controlled conditions. Integrative Biology (United Kingdom), 2014, 6, 988-998.	0.6	39
95	Investigating human disease using stem cell models. Nature Reviews Genetics, 2014, 15, 625-639.	7.7	225
97	Bioengineered functional brain-like cortical tissue. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13811-13816.	3.3	255
98	Microfluidic organs-on-chips. Nature Biotechnology, 2014, 32, 760-772.	9.4	2,468
99	A three-dimensional human neural cell culture model of Alzheimer's disease. Nature, 2014, 515, 274-278.	13.7	950
100	Human stem cell models of dementia. Human Molecular Genetics, 2014, 23, R35-R39.	1.4	23
101	Biological and medical applications of a brain-on-a-chip. Experimental Biology and Medicine, 2014, 239, 1096-1107.	1.1	103
102	Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nature Reviews Molecular Cell Biology, 2014, 15, 647-664.	16.1	626
103	Mouse models of human evolution. Current Opinion in Genetics and Development, 2014, 29, 75-80.	1.5	15
104	Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 2014, 345, 1247125.	6.0	1,937
105	Neural stem cells: are they the hope of a better life for patients with fetal-onset hydrocephalus?. Fluids and Barriers of the CNS, 2014, 11, 7.	2.4	18
106	Central nervous system regenerationwhere are we?. QJM - Monthly Journal of the Association of Physicians, 2014, 107, 335-339.	0.2	19
107	Epigenetic Regulation of Pluripotency and Differentiation. Circulation Research, 2014, 115, 311-324.	2.0	205
108	A Quantitative Framework to Evaluate Modeling of Cortical Development by Neural Stem Cells. Neuron, 2014, 83, 69-86.	3.8	184
109	Skin deep: from dermal fibroblasts to pancreatic beta cells. Immunologic Research, 2014, 59, 279-286.	1.3	2
110	Microcephaly genes evolved adaptively throughout the evolution of eutherian mammals. BMC Evolutionary Biology, 2014, 14, 120.	3.2	28

#	Article	IF	CITATIONS
111	3D mouse embryonic stem cell culture for generating inner ear organoids. Nature Protocols, 2014, 9, 1229-1244.	5.5	124
112	Generating Human Neurons In Vitro and Using Them to Understand Neuropsychiatric Disease. Annual Review of Neuroscience, 2014, 37, 479-501.	5.0	58
113	A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nature Methods, 2014, 11, 847-854.	9.0	680
114	Bioelectrical Mechanisms for Programming Growth and Form: Taming Physiological Networks for Soft Body Robotics. Soft Robotics, 2014, 1, 169-191.	4.6	44
115	Acrylamide alters neurotransmitter induced calcium responses in murine ESC-derived and primary neurons. NeuroToxicology, 2014, 43, 117-126.	1.4	34
116	Thinking out of the dish: what to learn about cortical development using pluripotent stem cells. Trends in Neurosciences, 2014, 37, 334-342.	4.2	89
117	Stem Cells on the Brain: Modeling Neurodevelopmental and Neurodegenerative Diseases Using Human Induced Pluripotent Stem Cells. Journal of Neurogenetics, 2014, 28, 5-29.	0.6	52
118	Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nature Protocols, 2014, 9, 1514-1531.	5.5	281
119	Role of mesenchymal stem cells in cell life and their signaling. World Journal of Stem Cells, 2014, 6, 24.	1.3	19
120	In Vitro Pancreas Organogenesis from Dispersed Mouse Embryonic Progenitors. Journal of Visualized Experiments, 2014, , .	0.2	20
121	The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation. Journal of Clinical Medicine, 2014, 3, 373-387.	1.0	8
122	Evolving Marine Biomimetics for Regenerative Dentistry. Marine Drugs, 2014, 12, 2877-2912.	2.2	32
123	A CGG-Repeat Expansion Mutation in <i>ZNF713</i> Causes FRA7A: Association with Autistic Spectrum Disorder in two Families. Human Mutation, 2014, 35, n/a-n/a.	1.1	28
124	Mesenchymal Wnt \hat{I}^2 -Catenin Signaling Controls Epithelial Stem Cell Homeostasis in Teeth by Inhibiting the Antiapoptotic Effect of Fgf10. Stem Cells, 2015, 33, 1670-1681.	1.4	26
125	Can a few nonâ€coding mutations make a human brain?. BioEssays, 2015, 37, 1054-1061.	1.2	17
126	Mutations in <i> <scp>CDK</scp> 5 <scp>RAP</scp> 2 </i> cause Seckel syndrome. Molecular Genetics & amp; Genomic Medicine, 2015, 3, 467-480.	0.6	55
127	Simultaneous MR imaging for tissue engineering in a rat model of stroke. Scientific Reports, 2015, 5, 14597.	1.6	26
128	The proteome of schizophrenia. NPJ Schizophrenia, 2015, 1, 14003.	2.0	96

#	ARTICLE	IF	CITATIONS
129	Quantitative high-throughput gene expression profiling of human striatal development to screen stem cell–derived medium spiny neurons. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15030.	1.8	18
130	Generation of retinal ganglion cells with functional axons from human induced pluripotent stem cells. Scientific Reports, 2015, 5, 8344.	1.6	105
131	Advances in 3D neuronal cell culture. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	0.6	18
132	Stem Cells and Progenitor Cells for Tissue-Engineered Solutions to Congenital Heart Defects. Biomarker Insights, 2015, 10s1, BMI.S20058.	1.0	7
133	Generation of Aggregates of Mouse Embryonic Stem Cells that Show Symmetry Breaking, Polarization and Emergent Collective Behaviour & lt;em & gt; In Vitro & lt;/em & gt;. Journal of Visualized Experiments, 2015, , .	0.2	51
134	In vitro-ex vivo model systems for nanosafety assessment. European Journal of Nanomedicine, 2015, 7, .	0.6	22
135	Understanding the molecular basis of autism in a dish using hiPSCs-derived neurons from ASD patients. Molecular Brain, 2015, 8, 57.	1.3	14
136	The GIPC1-Akt1 Pathway Is Required for the Specification of the Eye Field in Mouse Embryonic Stem Cells. Stem Cells, 2015, 33, 2674-2685.	1.4	15
137	Fabrication of three-dimensional hydrogel scaffolds for modeling shunt failure by tissue obstruction in hydrocephalus. Fluids and Barriers of the CNS, 2015, 12, 26.	2.4	15
138	A reproducible and versatile system for the dynamic expansion of human pluripotent stem cells in suspension. Biotechnology Journal, 2015, 10, 1589-1599.	1.8	31
139	Cryopreservation of embryonic stem cellâ€derived multicellular neural aggregates labeled with micronâ€sized particles of iron oxide for magnetic resonance imaging. Biotechnology Progress, 2015, 31, 510-521.	1.3	15
140	Building blocks of the cerebral cortex: from development to the dish. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 529-544.	5.9	4
141	Alzheimer's in 3D culture: Challenges and perspectives. BioEssays, 2015, 37, 1139-1148.	1.2	83
142	Neural Cell Fate Determination. , 2015, , 283-296.		3
143	Neurobiology collides with moral and criminal responsibility: the result is double vision., 0,, 231-250.		0
144	A new technique for modeling neuronal connectivity using human pluripotent stem cells. Restorative Neurology and Neuroscience, 2015, 33, 347-356.	0.4	2
145	Recent Patents and Advances in Regenerative Medicine and Stem Cell Therapies for Diabetes, Cardiovascular and Neurodegenerative Diseases. Recent Patents on Regenerative Medicine, 2015, 5, 36-54.	0.4	0
146	An Advocacy for the Use of 3D Stem Cell Culture Systems for the Development of Regenerative Medicine: An Emphasis on Photoreceptor Generation. Journal of Stem Cell Research & Therapy, 2015, 05,	0.3	0

#	Article	IF	CITATIONS
147	Assembling Kidney Tissues from Cells: The Long Road from Organoids to Organs. Frontiers in Cell and Developmental Biology, 2015, 3, 70.	1.8	13
148	Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges. International Journal of Molecular Sciences, 2015, 16, 28614-28634.	1.8	19
149	Morphological and functional aspects of progenitors perturbed in cortical malformations. Frontiers in Cellular Neuroscience, 2015, 9, 30.	1.8	42
150	MCPH1: a window into brain development and evolution. Frontiers in Cellular Neuroscience, 2015, 9, 92.	1.8	36
151	Impact of prenatal environmental stress on cortical development. Frontiers in Cellular Neuroscience, 2015, 9, 207.	1.8	28
152	Lost highway(s): barriers to postnatal cortical neurogenesis and implications for brain repair. Frontiers in Cellular Neuroscience, 2015, 9, 216.	1.8	7
153	Recapitulating the Tumor Ecosystem Along the Metastatic Cascade Using 3D Culture Models. Frontiers in Oncology, 2015, 5, 170.	1.3	27
154	Sustained Pax6 Expression Generates Primate-like Basal Radial Glia in Developing Mouse Neocortex. PLoS Biology, 2015, 13, e1002217.	2.6	93
155	Transdifferentiation-Induced Neural Stem Cells Promote Recovery of Middle Cerebral Artery Stroke Rats. PLoS ONE, 2015, 10, e0137211.	1.1	22
156	In vitro generation of human pluripotent stem cell derived lung organoids. ELife, 2015, 4, .	2.8	605
157	Microendophenotypes of Psychiatric Disorders: Phenotypes of Psychiatric Disorders at the Level of Molecular Dynamics, Synapses, Neurons, and Neural Circuits. Current Molecular Medicine, 2015, 15, 111-118.	0.6	14
158	Polymeric Nanovehicle Regulated Spatiotemporal Real-Time Imaging of the Differentiation Dynamics of Transplanted Neural Stem Cells after Traumatic Brain Injury. ACS Nano, 2015, 9, 6683-6695.	7.3	31
159	Human Evolution: Enhancing the Brain. Current Biology, 2015, 25, R421-R423.	1.8	3
160	Probing disorders of the nervous system using reprogramming approaches. EMBO Journal, 2015, 34, 1456-1477.	3.5	45
161	Programming and Reprogramming Cellular Age in the Era of Induced Pluripotency. Cell Stem Cell, 2015, 16, 591-600.	5.2	147
162	How to make a midbrain dopaminergic neuron. Development (Cambridge), 2015, 142, 1918-1936.	1.2	286
163	Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nature Methods, 2015, 12, 671-678.	9.0	1,220
164	Addressing the Genetics of Human Mental Health Disorders in Model Organisms. Annual Review of Genomics and Human Genetics, 2015, 16, 173-197.	2.5	28

#	ARTICLE	IF	CITATIONS
165	Epigenetic changes in the developing brain: Effects on behavior. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6789-6795.	3.3	52
166	Creating Patient-Specific Neural Cells for the InÂVitro Study of Brain Disorders. Stem Cell Reports, 2015, 5, 933-945.	2.3	72
167	Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15672-15677.	3.3	870
168	Studying Lineage Decision-Making In Vitro: Emerging Concepts and Novel Tools. Annual Review of Cell and Developmental Biology, 2015, 31, 317-345.	4.0	41
169	Generation of Neural Progenitor Spheres from Human Pluripotent Stem Cells in a Suspension Bioreactor. Methods in Molecular Biology, 2015, 1502, 119-128.	0.4	7
170	A high-throughput platform for stem cell niche co-cultures and downstream gene expression analysis. Nature Cell Biology, 2015, 17, 340-349.	4.6	133
171	Stem Cell-Derived Systems in Toxicology Assessment. Stem Cells and Development, 2015, 24, 1284-1296.	1.1	49
172	Micropatterned, clickable culture substrates enable in situ spatiotemporal control of human PSC-derived neural tissue morphology. Chemical Communications, 2015, 51, 5238-5241.	2.2	25
173	Mathematical modelling of fluid transport and its regulation at multiple scales. BioSystems, 2015, 130, 1-10.	0.9	6
174	Engineering Living Functional Materials. ACS Synthetic Biology, 2015, 4, 8-11.	1.9	119
175	A practical guide to induced pluripotent stem cell research using patient samples. Laboratory Investigation, 2015, 95, 4-13.	1.7	58
176	Engineered In Vitro Disease Models. Annual Review of Pathology: Mechanisms of Disease, 2015, 10, 195-262.	9.6	442
177	Path from schizophrenia genomics to biology: gene regulation and perturbation in neurons derived from induced pluripotent stem cells and genome editing. Neuroscience Bulletin, 2015, 31, 113-127.	1.5	12
178	The Microenvironment of Embryoid Bodies Modulated the Commitment to Neural Lineage Postcryopreservation. Tissue Engineering - Part C: Methods, 2015, 21, 356-366.	1.1	8
179	Modeling human lung development and disease using pluripotent stem cells. Development (Cambridge), 2015, 142, 13-16.	1.2	40
180	Imaging oxygen in neural cell and tissue models by means of anionic cell-permeable phosphorescent nanoparticles. Cellular and Molecular Life Sciences, 2015, 72, 367-381.	2.4	49
181	Concise Review: Modeling Multiple Sclerosis With Stem Cell Biological Platforms: Toward Functional Validation of Cellular and Molecular Phenotypes in Inflammation-Induced Neurodegeneration. Stem Cells Translational Medicine, 2015, 4, 252-260.	1.6	20
182	Nanoengineered Surfaces for Focal Adhesion Guidance Trigger Mesenchymal Stem Cell Self-Organization and Tenogenesis. Nano Letters, 2015, 15, 1517-1525.	4.5	54

#	Article	IF	CITATIONS
183	On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology. Biomaterials, 2015, 52, 26-43.	5.7	105
184	Reprogramming patient-derived cells to study the epilepsies. Nature Neuroscience, 2015, 18, 360-366.	7.1	46
185	Genetic Changes Shaping the Human Brain. Developmental Cell, 2015, 32, 423-434.	3.1	115
186	LightÂsheet-based fluorescence microscopy (LSFM) for the quantitative imaging of cells and tissues. Cell and Tissue Research, 2015, 360, 129-141.	1.5	66
188	The nanoparticle biomolecule corona: lessons learned – challenge accepted?. Chemical Society Reviews, 2015, 44, 6094-6121.	18.7	539
189	Cell reprogramming and neuronal differentiation applied to neurodegenerative diseases: Focus on Parkinson's disease. FEBS Letters, 2015, 589, 3396-3406.	1.3	5
190	The bio-corona and its impact on nanomaterial toxicity. European Journal of Nanomedicine, 2015, 7, .	0.6	27
191	Organoid Models and Applications in Biomedical Research. Nephron, 2015, 130, 191-199.	0.9	2,247
192	The Renaissance of Developmental Biology. PLoS Biology, 2015, 13, e1002149.	2.6	26
193	CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination. Nature Communications, 2015, 6, 7676.	5.8	96
194	From One-Cell to Tissue: Reprogramming, Cell Differentiation and Tissue Engineering. BioScience, 2015, 65, 468-475.	2.2	10
195	FOXG1-Dependent Dysregulation of GABA/Glutamate Neuron Differentiation in Autism Spectrum Disorders. Cell, 2015, 162, 375-390.	13.5	894
196	Organs from the lab. Nature, 2015, 522, 373-377.	13.7	87
197	Being human: The role of pluripotent stem cells in regenerative medicine and humanizing Alzheimer's disease models. Molecular Aspects of Medicine, 2015, 43-44, 54-65.	2.7	24
198	Spatial and temporal control of cell aggregation efficiently directs human pluripotent stem cells towards neural commitment. Biotechnology Journal, 2015, 10, 1612-1624.	1.8	35
199	Advances in Reprogramming-Based Study of Neurologic Disorders. Stem Cells and Development, 2015, 24, 1265-1283.	1.1	20
200	Current Methods and Challenges in the Comprehensive Characterization of Human Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2015, 11, 357-372.	5.6	10
201	Beyond 3D culture models of cancer. Science Translational Medicine, 2015, 7, 283ps9.	5.8	80

#	Article	IF	CITATIONS
202	An Ethics Toolbox for Neurotechnology. Neuron, 2015, 86, 34-37.	3.8	48
203	Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2725-34.	3.3	317
204	Induced Pluripotent Stem Cell Models to Enable In Vitro Models for Screening in the Central Nervous System. Stem Cells and Development, 2015, 24, 1852-1864.	1.1	34
205	Fundamentals of Neurogenesis and Neural Stem Cell Development. , 2015, , 1-13.		1
206	Seeking the right context for evaluating nanomedicine: from tissue models in petri dishes to microfluidic organs-on-a-chip. Nanomedicine, 2015, 10, 685-688.	1.7	65
207	Consciousness: here, there and everywhere?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140167.	1.8	394
208	Switching roles: the functional plasticity of adult tissue stem cells. EMBO Journal, 2015, 34, 1164-1179.	3.5	77
209	The extracellular matrix compartment of neural stem and glial progenitor cells. Glia, 2015, 63, 1330-1349.	2.5	102
210	<i>Rbm8a</i> Haploinsufficiency Disrupts Embryonic Cortical Development Resulting in Microcephaly. Journal of Neuroscience, 2015, 35, 7003-7018.	1.7	75
211	Kidney regeneration using developing xenoembryo. Current Opinion in Organ Transplantation, 2015, 20, 160-164.	0.8	5
212	Shaping of biological tubes by mechanical interaction of cell and extracellular matrix. Current Opinion in Genetics and Development, 2015, 32, 129-134.	1.5	30
213	The route to spinal cord cell types: a tale of signals and switches. Trends in Genetics, 2015, 31, 282-289.	2.9	104
214	Organoid development in cancer genome discovery. Current Opinion in Genetics and Development, 2015, 30, 42-48.	1.5	58
215	Generating a self-organizing kidney from pluripotent cells. Current Opinion in Organ Transplantation, 2015, 20, 178-186.	0.8	16
216	Analysing human neural stem cell ontogeny by consecutive isolation of Notch active neural progenitors. Nature Communications, 2015, 6, 6500.	5.8	73
217	Direct somatic lineage conversion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140368.	1.8	26
218	Three-Dimensional Neural Spheroid Culture: An <i>In Vitro</i> Model for Cortical Studies. Tissue Engineering - Part C: Methods, 2015, 21, 1274-1283.	1.1	111
219	Genomic approaches to studying human-specific developmental traits. Development (Cambridge), 2015, 142, 3100-3112.	1.2	26

#	Article	IF	CITATIONS
220	Proliferation control in neural stem and progenitor cells. Nature Reviews Neuroscience, 2015, 16, 647-659.	4.9	318
221	Monoamine neurotransmitter disorders—clinical advances and future perspectives. Nature Reviews Neurology, 2015, 11, 567-584.	4.9	221
222	Modeling mouse and human development using organoid cultures. Development (Cambridge), 2015, 142, 3113-3125.	1.2	386
223	Is this a brain which I see before me? Modeling human neural development with pluripotent stem cells. Development (Cambridge), 2015, 142, 3138-3150.	1.2	91
224	Chromosomal Rearrangements as Barriers to Genetic Homogenization between Archaic and Modern Humans. Molecular Biology and Evolution, 2015, 32, msv204.	3.5	24
225	Functional genomics of human brain development and implications for autism spectrum disorders. Translational Psychiatry, 2015, 5, e665-e665.	2.4	24
226	Neural retina identity is specified by lens-derived BMP signals. Development (Cambridge), 2015, 142, 1850-1859.	1.2	36
227	Challenges in understanding psychiatric disorders and developing therapeutics: a role for zebrafish. DMM Disease Models and Mechanisms, 2015, 8, 647-656.	1.2	38
228	RASopathies: unraveling mechanisms with animal models. DMM Disease Models and Mechanisms, 2015, 8, 769-782.	1.2	66
229	Using human induced pluripotent stem cells to model cerebellar disease: Hope and hype. Journal of Neurogenetics, 2015, 29, 95-102.	0.6	10
230	Quantitative multivariate analysis of dynamic multicellular morphogenic trajectories. Integrative Biology (United Kingdom), 2015, 7, 825-833.	0.6	15
231	Human Neural Development and Human Embryonic Stem Cell Neural Differentiation. Translational Medicine Research, 2015, , 189-199.	0.0	0
232	Vascular diseases await translation of blood vessels engineered from stem cells. Science Translational Medicine, 2015, 7, 309rv6.	5.8	24
233	Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nature Biotechnology, 2015, 33, 1193-1200.	9.4	694
234	Utilizing induced pluripotent stem cells (iPSCs) to understand the actions of estrogens in human neurons. Hormones and Behavior, 2015, 74, 228-242.	1.0	21
235	In vitro bioengineered model of cortical brain tissue. Nature Protocols, 2015, 10, 1362-1373.	5.5	87
236	Challenges and opportunities toward enabling phenotypic screening of complex and 3D cell models. Future Medicinal Chemistry, 2015, 7, 513-525.	1.1	18
237	The stability of memories during brain remodeling: A perspective. Communicative and Integrative Biology, 2015, 8, e1073424.	0.6	36

#	Article	IF	CITATIONS
238	Using Patient-Derived Induced Pluripotent Stem Cells to Model and Treat Epilepsies. Current Neurology and Neuroscience Reports, 2015, 15, 71.	2.0	30
239	Centrosome function and assembly in animal cells. Nature Reviews Molecular Cell Biology, 2015, 16, 611-624.	16.1	445
240	Modeling psychiatric disorders for developing effective treatments. Nature Medicine, 2015, 21, 979-988.	15.2	127
241	Pluripotent stem cell-based disease modeling: current hurdles and future promise. Current Opinion in Cell Biology, 2015, 37, 102-110.	2.6	66
242	Human stem cell-based disease modeling: prospects and challenges. Current Opinion in Cell Biology, 2015, 37, 84-90.	2.6	31
243	Organotypic brain slice cultures: A review. Neuroscience, 2015, 305, 86-98.	1.1	324
244	Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nature Communications, 2015, 6, 8896.	5.8	404
245	Toward biomanufacturing of pluripotent stem cell derived products: scale out and scale up. Pharmaceutical Bioprocessing, 2015, 3, 25-33.	0.8	1
246	Biological Networks Governing the Acquisition, Maintenance, and Dissolution of Pluripotency: Insights from Functional Genomics Approaches. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 189-198.	2.0	2
248	Natural photoreceptors and their application to synthetic biology. Trends in Biotechnology, 2015, 33, 80-91.	4.9	44
249	Human pluripotent stem cellâ€derived products: Advances towards robust, scalable and costâ€effective manufacturing strategies. Biotechnology Journal, 2015, 10, 83-95.	1.8	82
250	3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials, 2015, 41, 122-131.	5.7	75
251	Intracellular labeling of mouse embryonic stem cell–derived neural progenitor aggregates with micron-sized particles of iron oxide. Cytotherapy, 2015, 17, 98-111.	0.3	22
252	Multi-parametric O2 Imaging in Three-Dimensional Neural Cell Models with the Phosphorescent Probes. Methods in Molecular Biology, 2015, 1254, 55-71.	0.4	13
253	Cell Polarity and Neurogenesis in Embryonic Stem Cell-Derived Neural Rosettes. Stem Cells and Development, 2015, 24, 1022-1033.	1.1	27
254	3D in vitro modeling of the central nervous system. Progress in Neurobiology, 2015, 125, 1-25.	2.8	196
255	Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases. New Biotechnology, 2015, 32, 212-228.	2.4	34
256	Convergence of Advances in Genomics, Team Science, and Repositories as Drivers of Progress in Psychiatric Genomics. Biological Psychiatry, 2015, 77, 6-14.	0.7	18

#	Article	IF	Citations
257	Concise Reviews: In Vitro-Produced Pancreas Organogenesis Models in Three Dimensions: Self-Organization From Few Stem Cells or Progenitors. Stem Cells, 2015, 33, 8-14.	1.4	14
258	Application and Assessment of Optical Clearing Methods for Imaging of Tissue-Engineered Neural Stem Cell Spheres. Tissue Engineering - Part C: Methods, 2015, 21, 292-302.	1.1	44
259	Derivation of Endodermal Progenitors From Pluripotent Stem Cells. Journal of Cellular Physiology, 2015, 230, 246-258.	2.0	25
260	Modelling Neurodegenerative Diseases Using Human Pluripotent Stem Cells., 2016,,.		1
261	Heterozygous STXBP1 Mutations Associated with Ohtahara Syndrome: Two Littles Make a Lot. Epilepsy Currents, 2016, 16, 330-332.	0.4	0
262	Human-Organoid Models: Accomplishments to Salvage Test-Animals. Journal of Biomedical Engineering and Medical Devices, 2016, 01, .	0.1	2
263	The cytoskeletal arrangements necessary to neurogenesis. Oncotarget, 2016, 7, 19414-19429.	0.8	44
264	From stem cells to comparative corticogenesis: a bridge too far?. Stem Cell Investigation, 2016, 3, 39-39.	1.3	8
265	iPSCs: A Minireview from Bench to Bed, including Organoids and the CRISPR System. Stem Cells International, 2016, 2016, 1-9.	1.2	16
266	Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 272-321.	0.9	214
267	Are stem cellâ€derived neural cells physiologically credible?. Journal of Physiology, 2016, 594, 6569-6572.	1.3	6
268	Mini-Brains Make Big Leaps for Studying Human Neural Development and Disease. Epilepsy Currents, 2016, 16, 402-404.	0.4	1
269	The Application of Human iPSCs in Neurological Diseases: From Bench to Bedside. Stem Cells International, 2016, 2016, 1-10.	1.2	15
270	Bioreactors., 2016,,.		0
271	Insights into the Biology and Therapeutic Applications of Neural Stem Cells. Stem Cells International, 2016, 2016, 1-18.	1.2	21
272	Advances in Stem Cell Research- A Ray of Hope in Better Diagnosis and Prognosis in Neurodegenerative Diseases. Frontiers in Molecular Biosciences, 2016, 3, 72.	1.6	11
273	Utility of Induced Pluripotent Stem Cells for the Study and Treatment of Genetic Diseases: Focus on Childhood Neurological Disorders. Frontiers in Molecular Neuroscience, 2016, 9, 78.	1.4	29
274	Neural Substrate Expansion for the Restoration of Brain Function. Frontiers in Systems Neuroscience, $2016, 10, 1.$	1.2	85

#	Article	IF	CITATIONS
275	iPS Cellsâ€"The Triumphs and Tribulations. Dentistry Journal, 2016, 4, 19.	0.9	8
276	Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials. PLoS ONE, 2016, 11, e0157894.	1.1	164
277	Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer's Disease Phenotypes. PLoS ONE, 2016, 11, e0161969.	1.1	405
278	Functional Evaluations of Genes Disrupted in Patients with Tourette's Disorder. Frontiers in Psychiatry, 2016, 7, 11.	1.3	14
279	Expectations for the Methodology and Translation of Animal Research: A Survey of the General Public, Medical Students and Animal Researchers in North America. ATLA Alternatives To Laboratory Animals, 2016, 44, 361-381.	0.7	6
280	Targeting Nicotinamide Phosphoribosyltransferase as a Potential Therapeutic Strategy to Restore Adult Neurogenesis. CNS Neuroscience and Therapeutics, 2016, 22, 431-439.	1.9	28
281	Biology of lung cancer: genetic mutation, epithelial-mesenchymal transition, and cancer stem cells. General Thoracic and Cardiovascular Surgery, 2016, 64, 517-523.	0.4	13
282	De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data. Cell Stem Cell, 2016, 19, 266-277.	5.2	484
283	Differentiation Induction of Mouse Neural Stem Cells in Hydrogel Tubular Microenvironments with Controlled Tube Dimensions. Advanced Healthcare Materials, 2016, 5, 1104-1111.	3.9	31
284	3D-Biodruck von Gewebe- und Organmodellen. Angewandte Chemie, 2016, 128, 4728-4743.	1.6	2
285	Functional Kidney Bioengineering with Pluripotent Stemâ€Cellâ€Derived Renal Progenitor Cells and Decellularized Kidney Scaffolds. Advanced Healthcare Materials, 2016, 5, 2080-2091.	3.9	51
286	Human Inducible Pluripotent Stem Cells and Autism Spectrum Disorder: Emerging Technologies. Autism Research, 2016, 9, 513-535.	2.1	26
287	Tissue culture on a chip: Developmental biology applications of selfâ€organized capillary networks in microfluidic devices. Development Growth and Differentiation, 2016, 58, 505-515.	0.6	17
288	Toward Organs on Demand: Breakthroughs and Challenges in Models of Organogenesis. Current Pathobiology Reports, 2016, 4, 77-85.	1.6	21
289	Pluripotent stem cell-derived kidney organoids: An in vivo-like in vitro technology. European Journal of Pharmacology, 2016, 790, 12-20.	1.7	35
290	A Method for Sectioning and Immunohistochemical Analysis of Stem Cell–Derived 3â€D Organoids. Current Protocols in Stem Cell Biology, 2016, 37, 1C.19.1-1C.19.11.	3.0	11
291	A syndrome of microcephaly, short stature, polysyndactyly, and dental anomalies caused by a homozygous <i>KATNB1</i> mutation. American Journal of Medical Genetics, Part A, 2016, 170, 728-733.	0.7	13
292	Advances in Zika Virus Research: Stem Cell Models, Challenges, and Opportunities. Cell Stem Cell, 2016, 19, 690-702.	5.2	103

#	ARTICLE	IF	CITATIONS
293	3D culture models of tissues under tension. Journal of Cell Science, 2017, 130, 63-70.	1.2	40
294	Tissue chips to aid drug development and modeling for rare diseases. Expert Opinion on Orphan Drugs, 2016, 4, 1113-1121.	0.5	36
295	Molecular mechanisms of asymmetric divisions in mammary stem cells. EMBO Reports, 2016, 17, 1700-1720.	2.0	63
296	Sonic hedgehog signaling: A conserved mechanism for the expansion of outer radial glia and intermediate progenitor cells and for the growth and folding of the neocortex. Neurogenesis (Austin, Tex), 2016, 3, e1242957.	1.5	3
297	<scp>CPAP</scp> promotes timely cilium disassembly to maintain neural progenitor pool. EMBO Journal, 2016, 35, 803-819.	3.5	208
299	Zika virus infection induces mitosis abnormalities and apoptotic cell death of human neural progenitor cells. Scientific Reports, 2016, 6, 39775.	1.6	181
300	Cerebral Organoids Recapitulate Epigenomic Signatures of the Human Fetal Brain. Cell Reports, 2016, 17, 3369-3384.	2.9	296
301	3D culture models of Alzheimer's disease: a road map to a "cure-in-a-dish― Molecular Neurodegeneration, 2016, 11, 75.	4.4	109
302	Modeling Cancer with Pluripotent Stem Cells. Trends in Cancer, 2016, 2, 485-494.	3.8	30
303	High-throughput compound evaluation on 3D networks of neurons and glia in a microfluidic platform. Scientific Reports, 2016, 6, 38856.	1.6	113
304	Using Induced Pluripotent Stem Cells to Investigate Complex Genetic Psychiatric Disorders. Current Behavioral Neuroscience Reports, 2016, 3, 275-284.	0.6	6
305	A morphospace for synthetic organs and organoids: the possible and the actual. Integrative Biology (United Kingdom), 2016, 8, 485-503.	0.6	48
306	Human induced pluripotent stem cells: A disruptive innovation. Current Research in Translational Medicine, 2016, 64, 91-96.	1.2	18
308	High-throughput platforms for the screening of new therapeutic targets for neurodegenerative diseases. Drug Discovery Today, 2016, 21, 1355-1366.	3.2	16
309	Role of Sodium Channels in Epilepsy. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a022814.	2.9	78
310	Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nature Reviews Neuroscience, 2016, 17, 424-437.	4.9	239
311	Better models for brain disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5461-5464.	3.3	5
312	Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex. Nature Neuroscience, 2016, 19, 888-896.	7.1	150

#	Article	IF	Citations
313	Complex Tissue and Disease Modeling using hiPSCs. Cell Stem Cell, 2016, 18, 309-321.	5.2	121
314	Advancing the understanding of autism disease mechanisms through genetics. Nature Medicine, 2016, 22, 345-361.	15.2	684
315	Generating Mini-Organs in Culture. Current Pathobiology Reports, 2016, 4, 59-68.	1.6	1
316	Engineering human cells and tissues through pluripotent stem cells. Current Opinion in Biotechnology, 2016, 40, 133-138.	3.3	12
317	Microcephaly and Zika virus: a clinical and epidemiological analysis of the current outbreak in Brazil. Jornal De Pediatria, 2016, 92, 230-240.	0.9	94
318	The emerging role of in vitro electrophysiological methods in CNS safety pharmacology. Journal of Pharmacological and Toxicological Methods, 2016, 81, 47-59.	0.3	43
319	Zika virus impairs growth in human neurospheres and brain organoids. Science, 2016, 352, 816-818.	6.0	1,016
320	Engineering of Adult Neurogenesis and Gliogenesis. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018861.	2.3	13
321	Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure. Cell, 2016, 165, 1238-1254.	13.5	1,680
322	Consequences of Numerical Centrosome Defects in Development and Disease. , 2016, , 117-149.		2
323	Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3. Cell Stem Cell, 2016, 19, 258-265.	5,2	629
324	Induced Pluripotent Stem Cells in Regenerative Medicine. , 2016, , 51-75.		2
326	Loss of function of PCDH12 underlies recessive microcephaly mimicking intrauterine infection. Neurology, 2016, 86, 2016-2024.	1.5	32
327	Bioengineered cell culture systems of central nervous system injury and disease. Drug Discovery Today, 2016, 21, 1456-1463.	3.2	5
328	Self-organization of the human embryo in the absence of maternal tissues. Nature Cell Biology, 2016, 18, 700-708.	4.6	516
329	Three-dimensional models for studying development and disease: moving on from organisms to organs-on-a-chip and organoids. Integrative Biology (United Kingdom), 2016, 8, 672-683.	0.6	94
330	Induced Pluripotent Stem Cells Meet Genome Editing. Cell Stem Cell, 2016, 18, 573-586.	5.2	398
331	Utilization of stem cells to model Parkinson's disease – current state and future challenges. Future Neurology, 2016, 11, 171-186.	0.9	9

#	ARTICLE	IF	CITATIONS
332	The Brazilian Zika virus strain causes birth defects in experimental models. Nature, 2016, 534, 267-271.	13.7	1,132
333	Stage-specific roles of FGF2 signaling in human neural development. Stem Cell Research, 2016, 17, 330-341.	0.3	22
334	Stem Cell-Mediated Regeneration of the Adult Brain. Transfusion Medicine and Hemotherapy, 2016, 43, 321-327.	0.7	15
335	hPSC-derived lung and intestinal organoids as models of human fetal tissue. Developmental Biology, 2016, 420, 230-238.	0.9	56
336	Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis. Genes and Development, 2016, 30, 2158-2172.	2.7	106
337	Generation of improved human cerebral organoids from single copy <i>DYRK1A</i> knockout induced pluripotent stem cells in trisomy 21: hypothetical solutions for neurodevelopmental models and therapeutic alternatives in down syndrome. Cell Biology International, 2016, 40, 1256-1270.	1.4	4
338	Modeling neurodegenerative disorders in adult somatic cells: A critical review. Frontiers in Biology, 2016, 11, 232-245.	0.7	5
339	Organoids: Modeling Development and the Stem Cell Niche in a Dish. Developmental Cell, 2016, 38, 590-600.	3.1	334
340	The development of anatomy: from macroscopic body dissections to stem cell–derived organoids. Histochemistry and Cell Biology, 2016, 146, 647-650.	0.8	3
341	Microcarrier-based platforms for in vitro expansion and differentiation of human pluripotent stem cells in bioreactor culture systems. Journal of Biotechnology, 2016, 234, 71-82.	1.9	51
342	A 3D Toolbox to Enhance Physiological Relevance of Human Tissue Models. Trends in Biotechnology, 2016, 34, 757-769.	4.9	57
343	In vitro models of medulloblastoma: Choosing the right tool for the job. Journal of Biotechnology, 2016, 236, 10-25.	1.9	165
344	Looking to the future following 10 years of induced pluripotent stem cell technologies. Nature Protocols, 2016, 11, 1579-1585.	5 . 5	31
345	Building brains in a dish: Prospects for growing cerebral organoids from stem cells. Neuroscience, 2016, 334, 105-118.	1.1	49
346	Modeling human disease using organotypic cultures. Current Opinion in Cell Biology, 2016, 43, 22-29.	2.6	48
347	Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. Cell Stem Cell, 2016, 19, 248-257.	5. 2	628
348	CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish. Developmental Dynamics, 2016, 245, 788-806.	0.8	20
349	Concise Review: Progress and Challenges in Using Human Stem Cells for Biological and Therapeutics Discovery: Neuropsychiatric Disorders. Stem Cells, 2016, 34, 523-536.	1.4	23

#	Article	IF	CITATIONS
351	hi <scp>PSC</scp> â€derived <scp>iMSC</scp> s: NextGen <scp>MSC</scp> s as an advanced therapeutically active cell resource for regenerative medicine. Journal of Cellular and Molecular Medicine, 2016, 20, 1571-1588.	1.6	86
352	Organoids and the genetically encoded selfâ€assembly of embryonic stem cells. BioEssays, 2016, 38, 181-191.	1.2	99
353	Concise Review: Exciting Cells: Modeling Genetic Epilepsies with Patient-Derived Induced Pluripotent Stem Cells. Stem Cells, 2016, 34, 27-33.	1.4	38
354	Encoding and decoding time in neural development. Development Growth and Differentiation, 2016, 58, 59-72.	0.6	22
355	Cerebral cortex expansion and folding: what have we learned?. EMBO Journal, 2016, 35, 1021-1044.	3.5	262
356	Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nature Protocols, 2016, 11, 1724-1743.	5.5	527
357	A strategy for generating kidney organoids: Recapitulating the development in human pluripotent stem cells. Developmental Biology, 2016, 420, 210-220.	0.9	42
358	Rapid Induction of Cerebral Organoids From Human Induced Pluripotent Stem Cells Using a Chemically Defined Hydrogel and Defined Cell Culture Medium. Stem Cells Translational Medicine, 2016, 5, 970-979.	1.6	116
359	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions 1 April 2016– 31 May 2016. Regenerative Medicine, 2016, 11, 499-505.	0.8	1
360	Derivation of Intestinal Organoids from Human Induced Pluripotent Stem Cells for Use as an Infection System. Methods in Molecular Biology, 2016, 1576, 157-169.	0.4	11
361	A decade of progress in tissue engineering. Nature Protocols, 2016, 11, 1775-1781.	5.5	570
362	Generation of kidney organoids from human pluripotent stem cells. Nature Protocols, 2016, 11, 1681-1692.	5.5	243
363	A High Proliferation Rate is Critical for Reproducible and Standardized Embryoid Body Formation from Laminin-521-Based Human Pluripotent Stem Cell Cultures. Stem Cell Reviews and Reports, 2016, 12, 721-730.	5.6	8
364	Engineering in vitro complex pathophysiologies for drug discovery purposes. Drug Discovery Today, 2016, 21, 1341-1344.	3.2	5
365	TALEN-based generation of a cynomolgus monkey disease model for human microcephaly. Cell Research, 2016, 26, 1048-1061.	5.7	36
366	A CEP215–HSET complex links centrosomes with spindle poles and drives centrosome clustering in cancer. Nature Communications, 2016, 7, 11005.	5.8	66
367	3D Biomimetic Cultures: The Next Platform for Cell Biology. Trends in Cell Biology, 2016, 26, 798-800.	3.6	28
368	Transcriptional Dynamics at Brain Enhancers: from Functional Specialization to Neurodegeneration. Current Neurology and Neuroscience Reports, 2016, 16, 94.	2.0	4

#	Article	IF	CITATIONS
369	Mammalian cell cultures as models for Mycobacterium tuberculosis –human immunodeficiency virus (HIV) interaction studies: A review. Asian Pacific Journal of Tropical Medicine, 2016, 9, 832-838.	0.4	5
370	Intelligent Nanosystems for Energy, Information and Biological Technologies. , 2016, , .		2
371	Transformation of the Radial Glia Scaffold Demarcates Two Stages of Human Cerebral Cortex Development. Neuron, 2016, 91, 1219-1227.	3.8	264
372	Reconstructed cell fate–regulatory programs in stem cells reveal hierarchies and key factors of neurogenesis. Genome Research, 2016, 26, 1505-1519.	2.4	25
373	Chapter 11 Medicine and Biology: Technologies Operating at Extremely Low Temperatures. , 2016, , 349-394.		0
374	Threeâ€dimensional pancreas organogenesis models. Diabetes, Obesity and Metabolism, 2016, 18, 33-40.	2.2	33
375	Dishing out mini-brains: Current progress and future prospects in brain organoid research. Developmental Biology, 2016, 420, 199-209.	0.9	256
376	Entangled active matter: From cells to ants. European Physical Journal: Special Topics, 2016, 225, 629-649.	1.2	35
377	Pluripotent stem cells as a model for embryonic patterning: From signaling dynamics to spatial organization in a dish. Developmental Dynamics, 2016, 245, 976-990.	0.8	27
378	Direct neuronal reprogramming: learning from and for development. Development (Cambridge), 2016, 143, 2494-2510.	1.2	112
379	Proteomics and molecular tools for unveiling missing links in the biochemical understanding of schizophrenia. Proteomics - Clinical Applications, 2016, 10, 1148-1158.	0.8	14
380	Brain in a Dish. , 2016, , 117-132.		2
381	Steering Organoids Toward Discovery: Self-Driving Stem Cells Are Opening a World of Possibilities, Including Drug Testing and Tissue Sourcing. IEEE Pulse, 2016, 7, 18-23.	0.1	1
382	A small molecule-based strategy for endothelial differentiation and three-dimensional morphogenesis from human embryonic stem cells. Heliyon, 2016, 2, e00133.	1.4	1
383	Self-organization of human embryonic stem cells on micropatterns. Nature Protocols, 2016, 11, 2223-2232.	5 . 5	119
384	Neural tube morphogenesis in synthetic 3D microenvironments. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6831-E6839.	3.3	186
385	Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells. Stem Cell Research and Therapy, 2016, 7, 166.	2.4	74
386	High-Throughput Toxicity and Phenotypic Screening of 3D Human Neural Progenitor Cell Cultures on a Microarray Chip Platform. Stem Cell Reports, 2016, 7, 970-982.	2.3	55

#	Article	IF	CITATIONS
387	Challenges in long-term imaging and quantification of single-cell dynamics. Nature Biotechnology, 2016, 34, 1137-1144.	9.4	178
388	Schizophrenia patient-derived olfactory neurosphere-derived cells do not respond to extracellular reelin. NPJ Schizophrenia, 2016, 2, 16027.	2.0	9
389	Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells. Nature Communications, 2016, 7, 10774.	5.8	21
390	Efficient Generation of Corticofugal Projection Neurons from Human Embryonic Stem Cells. Scientific Reports, 2016, 6, 28572.	1.6	17
391	The promises and challenges of human brain organoids as models of neuropsychiatric disease. Nature Medicine, 2016, 22, 1220-1228.	15.2	224
396	CNS disease models with human pluripotent stem cells in the CRISPR age. Current Opinion in Cell Biology, 2016, 43, 96-103.	2.6	19
397	Intermittent high oxygen influences the formation of neural retinal tissue from human embryonic stem cells. Scientific Reports, 2016, 6, 29944.	1.6	26
398	Neural Subtype Specification from Human Pluripotent Stem Cells. Cell Stem Cell, 2016, 19, 573-586.	5.2	225
399	Functional properties of in vitro excitatory cortical neurons derived from human pluripotent stem cells. Journal of Physiology, 2016, 594, 6573-6582.	1.3	23
400	Multi-compartmental biomaterial scaffolds for patterning neural tissue organoids in models of neurodevelopment and tissue regeneration. Journal of Tissue Engineering, 2016, 7, 204173141667192.	2.3	8
401	The Ex Vivo Culture and Pattern Recognition Receptor Stimulation of Mouse Intestinal Organoids. Journal of Visualized Experiments, 2016, , .	0.2	4
402	Modeling Brain Development Using Human Cells for the Study and Treatment of Zika Virus Infections. Current Behavioral Neuroscience Reports, 2016, 3, 381-383.	0.6	0
403	Making new kidneys. Current Opinion in Organ Transplantation, 2016, 21, 574-580.	0.8	7
404	Genomic divergence and brain evolution: How regulatory DNA influences development of the cerebral cortex. BioEssays, 2016, 38, 162-171.	1.2	37
405	Synthetic Morphogenesis. Cold Spring Harbor Perspectives in Biology, 2016, 8, a023929.	2.3	84
406	Stem Cell Models of Human Brain Development. Cell Stem Cell, 2016, 18, 736-748.	5.2	290
407	Modeling Development and Disease with Organoids. Cell, 2016, 165, 1586-1597.	13.5	2,022
408	The positional identity of iPSC-derived neural progenitor cells along the anterior-posterior axis is controlled in a dosage-dependent manner by bFGF and EGF. Differentiation, 2016, 92, 183-194.	1.0	10

#	Article	IF	CITATIONS
409	Modeling psychiatric disorders: from genomic findings to cellular phenotypes. Molecular Psychiatry, 2016, 21, 1167-1179.	4.1	92
410	Voltage-Gated Na ⁺ Channels: Not Just for Conduction. Cold Spring Harbor Perspectives in Biology, 2016, 8, a029264.	2.3	43
411	Biomaterial-engineering and neurobiological approaches for regenerating the injured cerebral cortex. Regenerative Therapy, 2016, 3, 63-67.	1.4	3
412	Translational Research in Life Sciences. , 2016, , 1-10.		0
413	North Carolina Macular Dystrophy Is Caused by Dysregulation of the Retinal Transcription Factor PRDM13. Ophthalmology, 2016, 123, 9-18.	2.5	105
414	A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies. Stem Cell Reports, 2016, 6, 228-242.	2.3	22
415	Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Research, 2016, 18, 19.	2.2	99
416	Stem Cells: A Renaissance in Human Biology Research. Cell, 2016, 165, 1572-1585.	13.5	87
417	Large-Scale Production of Mature Neurons from Human Pluripotent Stem Cells in a Three-Dimensional Suspension Culture System. Stem Cell Reports, 2016, 6, 993-1008.	2.3	78
418	Design Principles for Engineering of Tissues from Human Pluripotent Stem Cells. Current Stem Cell Reports, 2016, 2, 43-51.	0.7	19
419	Linking adult hippocampal neurogenesis with human physiology and disease. Developmental Dynamics, 2016, 245, 702-709.	0.8	14
420	Organâ€onâ€aâ€Chip Systems: Microengineering to Biomimic Living Systems. Small, 2016, 12, 2253-2282.	5.2	245
421	Stem cellâ€derived astrocytes: are they physiologically credible?. Journal of Physiology, 2016, 594, 6595-6606.	1.3	17
422	Neural patterning of human induced pluripotent stem cells in 3-D cultures for studying biomolecule-directed differential cellular responses. Acta Biomaterialia, 2016, 42, 114-126.	4.1	43
423	Physiologically relevant human tissue models for infectious diseases. Drug Discovery Today, 2016, 21, 1540-1552.	3.2	42
424	Mechanisms of Zika Virus Infection and Neuropathogenesis. DNA and Cell Biology, 2016, 35, 367-372.	0.9	40
425	3D Bioprinting of Tissue/Organ Models. Angewandte Chemie - International Edition, 2016, 55, 4650-4665.	7.2	215
426	Design and demonstration of a pumpless 14 compartment microphysiological system. Biotechnology and Bioengineering, 2016, 113, 2213-2227.	1.7	192

#	Article	IF	CITATIONS
427	Pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Molecular Cell Biology, 2016, 17, 170-182.	16.1	488
428	Disease signatures for schizophrenia and bipolar disorder using patient-derived induced pluripotent stem cells. Molecular and Cellular Neurosciences, 2016, 73, 96-103.	1.0	31
429	The Cellular and Molecular Landscapes of the Developing Human Central Nervous System. Neuron, 2016, 89, 248-268.	3.8	571
430	Live imaging of microtubule dynamics in organotypic hippocampal slice cultures. Methods in Cell Biology, 2016, 131, 107-126.	0.5	11
431	In vivo modeling of neuronal function, axonal impairment and connectivity in neurodegenerative and neuropsychiatric disorders using induced pluripotent stem cells. Molecular and Cellular Neurosciences, 2016, 73, 3-12.	1.0	19
432	Crosslinking of extracellular matrix scaffolds derived from pluripotent stem cell aggregates modulates neural differentiation. Acta Biomaterialia, 2016, 30, 222-232.	4.1	52
433	Massively parallel <i>cis</i> regulatory analysis in the mammalian central nervous system. Genome Research, 2016, 26, 238-255.	2.4	106
434	Fetal Brain Extracellular Matrix Boosts Neuronal Network Formation in 3D Bioengineered Model of Cortical Brain Tissue. ACS Biomaterials Science and Engineering, 2016, 2, 131-140.	2.6	100
435	A LUHMES 3D dopaminergic neuronal model for neurotoxicity testing allowing long-term exposure and cellular resilience analysis. Archives of Toxicology, 2016, 90, 2725-2743.	1.9	90
436	Analytic Models of Oxygen and Nutrient Diffusion, Metabolism Dynamics, and Architecture Optimization in Three-Dimensional Tissue Constructs with Applications and Insights in Cerebral Organoids. Tissue Engineering - Part C: Methods, 2016, 22, 221-249.	1.1	151
437	The Janus soul of centrosomes: a paradoxical role in disease?. Chromosome Research, 2016, 24, 127-144.	1.0	8
438	Neurodevelopmental origins of bipolar disorder: iPSC models. Molecular and Cellular Neurosciences, 2016, 73, 63-83.	1.0	90
439	Modeling Alzheimer's disease with human induced pluripotent stem (iPS) cells. Molecular and Cellular Neurosciences, 2016, 73, 13-31.	1.0	100
440	A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human Neuronal Stem Cells (hNSC). Lab on A Chip, 2016, 16, 1593-1604.	3.1	121
441	Regulation of neuronal migration, an emerging topic in autism spectrum disorders. Journal of Neurochemistry, 2016, 136, 440-456.	2.1	89
442	Using human pluripotent stem cells to study Friedreich ataxia cardiomyopathy. International Journal of Cardiology, 2016, 212, 37-43.	0.8	5
443	Recapitulating Cell–Cell Interactions for Organoid Construction – Are Biomaterials Dispensable?. Trends in Biotechnology, 2016, 34, 711-721.	4.9	50
444	The use of human neurons for novel drug discovery in dementia research. Expert Opinion on Drug Discovery, 2016, 11, 355-367.	2.5	12

#	Article	IF	CITATIONS
445	Organoids as Model Systems for Gastrointestinal Diseases: Tissue Engineering Meets Genetic Engineering. Current Pathobiology Reports, 2016, 4, 1-9.	1.6	25
446	Utilizing stem cells for three-dimensional neural tissue engineering. Biomaterials Science, 2016, 4, 768-784.	2.6	60
447	Adhesion modification of neural stem cells induced by nanoscale ripple patterns. Nanotechnology, 2016, 27, 125301.	1.3	13
448	Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain. Journal of Neural Engineering, 2016, 13, 016019.	1.8	57
449	A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found <i>In Vivo</i> . Cancer Research, 2016, 76, 2465-2477.	0.4	453
450	Silk as a Biomaterial to Support Long-Term Three-Dimensional Tissue Cultures. ACS Applied Materials & Long: Interfaces, 2016, 8, 21861-21868.	4.0	90
451	Advancing multiscale structural mapping of the brain through fluorescence imaging and analysis across length scales. Interface Focus, 2016, 6, 20150081.	1.5	8
452	Establishment of Functional Genomics Pipeline in Mouse Epiblast-Like Tissue by Combining Transcriptomic Analysis and Gene Knockdown/Knockin/Knockout, Using RNA Interference and CRISPR/Cas9. Human Gene Therapy, 2016, 27, 436-450.	1.4	11
453	Advancing drug discovery for neuropsychiatric disorders using patient-specific stem cell models. Molecular and Cellular Neurosciences, 2016, 73, 104-115.	1.0	49
454	Organoids as an in vitro model of human development and disease. Nature Cell Biology, 2016, 18, 246-254.	4.6	1,090
455	Wnt-YAP interactions in the neural fate of human pluripotent stem cells and the implications for neural organoid formation. Organogenesis, 2016, 12, 1-15.	0.4	13
456	Reprogramming psychiatry: stem cells and bipolar disorder. Lancet, The, 2016, 387, 823-825.	6.3	11
457	Organoids as Models for Neoplastic Transformation. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 199-220.	9.6	64
458	Missing link: Animal models to study whether Zika causes birth defects. Nature Medicine, 2016, 22, 225-227.	15.2	17
459	Reverse Engineering Human Pathophysiology with Organs-on-Chips. Cell, 2016, 164, 1105-1109.	13.5	170
460	Transcriptomics analysis of iPSC-derived neurons and modeling of neuropsychiatric disorders. Molecular and Cellular Neurosciences, 2016, 73, 32-42.	1.0	33
461	Organoids as a model system for studying human lung development and disease. Biochemical and Biophysical Research Communications, 2016, 473, 675-682.	1.0	83
462	Stem Cells in Neurotoxicology/Developmental Neurotoxicology: Current Scenario and Future Prospects. Molecular Neurobiology, 2016, 53, 6938-6949.	1.9	15

#	Article	IF	CITATIONS
463	Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain. Neuron, 2016, 89, 83-99.	3.8	156
464	Modeling psychiatric disorders with patient-derived iPSCs. Current Opinion in Neurobiology, 2016, 36, 118-127.	2.0	72
465	Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nature Communications, 2016, 7, 10243.	5.8	128
466	Engineering Stem Cell Organoids. Cell Stem Cell, 2016, 18, 25-38.	5.2	654
467	3D high throughput screening and profiling of embryoid bodies in thermoformed microwell plates. Lab on A Chip, 2016, 16, 734-742.	3.1	63
468	A novel homozygous splicing mutation of CASC5 causes primary microcephaly in a large Pakistani family. Human Genetics, 2016, 135, 157-170.	1.8	31
469	Building a Terminal. Neuroscientist, 2016, 22, 372-391.	2.6	29
470	Reverse engineering human neurodegenerative disease using pluripotent stem cell technology. Brain Research, 2016, 1638, 30-41.	1.1	20
471	Modeling developmental neuropsychiatric disorders with iPSC technology: challenges and opportunities. Current Opinion in Neurobiology, 2016, 36, 66-73.	2.0	29
472	Clinical Trials in a Dish: The Potential of Pluripotent Stem Cells to Develop Therapies for Neurodegenerative Diseases. Annual Review of Pharmacology and Toxicology, 2016, 56, 489-510.	4.2	72
473	Bioengineering Hematopoietic Stem Cell Niche toward Regenerative Medicine. Advanced Drug Delivery Reviews, 2016, 99, 212-220.	6.6	19
474	Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Neurobiology of Disease, 2016, 92, 18-45.	2.1	82
475	iPSC-based drug screening for Huntington×3s disease. Brain Research, 2016, 1638, 42-56.	1.1	26
476	Patient-Specific Induced Pluripotent Stem Cells for Disease Modeling and Phenotypic Drug Discovery. Journal of Medicinal Chemistry, 2016, 59, 2-15.	2.9	31
477	Evaluation of steroidomics by liquid chromatography hyphenated to mass spectrometry as a powerful analytical strategy for measuring human steroid perturbations. Journal of Chromatography A, 2016, 1430, 97-112.	1.8	80
478	Human neural stem cell-derived cultures in three-dimensional substrates form spontaneously functional neuronal networks. Journal of Tissue Engineering and Regenerative Medicine, $2017, 11, 1022-1033$.	1.3	20
479	Modeling autism spectrum disorders with human neurons. Brain Research, 2017, 1656, 49-54.	1.1	17
480	Back and forth in time: Directing age in iPSC-derived lineages. Brain Research, 2017, 1656, 14-26.	1.1	38

#	Article	lF	Citations
481	Induced pluripotent stem cells as a discovery tool for Alzheimer \times^3 s disease. Brain Research, 2017, 1656, 98-106.	1.1	35
482	New approaches for direct conversion of patient fibroblasts into neural cells. Brain Research, 2017, 1656, 2-13.	1.1	23
483	Modeling Huntington×3s disease with patient-derived neurons. Brain Research, 2017, 1656, 76-87.	1.1	31
484	Characterization of 3D pluripotent stem cell aggregates and the impact of their properties on bioprocessing. Process Biochemistry, 2017, 59, 276-288.	1.8	13
485	Concise Review: Induced Pluripotent Stem Cell Research in the Era of Precision Medicine. Stem Cells, 2017, 35, 545-550.	1.4	67
486	Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell, 2017, 20, 435-449.e4.	5.2	463
487	Genome engineering of stem cell organoids for disease modeling. Protein and Cell, 2017, 8, 315-327.	4.8	30
488	Optical Barcoding for Single-Clone Tracking to Study Tumor Heterogeneity. Molecular Therapy, 2017, 25, 621-633.	3.7	32
489	Zika virus disrupts molecular fingerprinting of human neurospheres. Scientific Reports, 2017, 7, 40780.	1.6	120
490	Division modes and physical asymmetry in cerebral cortex progenitors. Current Opinion in Neurobiology, 2017, 42, 75-83.	2.0	44
491	A Rapid Pipeline to Model Rare Neurodevelopmental Disorders with Simultaneous CRISPR/Cas9 Gene Editing. Stem Cells Translational Medicine, 2017, 6, 886-896.	1.6	19
492	Systematic time-dependent visualization and quantitation of the neurogenic rate in brain organoids. Biochemical and Biophysical Research Communications, 2017, 483, 94-100.	1.0	3
493	Probing human brain evolution and development in organoids. Current Opinion in Cell Biology, 2017, 44, 36-43.	2.6	90
494	Anisotropically organized three-dimensional culture platform for reconstruction of a hippocampal neural network. Nature Communications, 2017, 8, 14346.	5.8	90
495	Cellular self-assembly and biomaterials-based organoid models of development and diseases. Acta Biomaterialia, 2017, 53, 29-45.	4.1	45
496	Understanding Parkinson's Disease through the Use of Cell Reprogramming. Stem Cell Reviews and Reports, 2017, 13, 151-169.	5.6	26
497	Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip. Journal of Neurophysiology, 2017, 117, 1320-1341.	0.9	95
498	RB controls growth, survival, and neuronal migration in human cerebral organoids. Development (Cambridge), 2017, 144, 1025-1034.	1.2	31

#	Article	IF	CITATIONS
499	Recent Zika Virus Isolates Induce Premature Differentiation of Neural Progenitors in Human Brain Organoids. Cell Stem Cell, 2017, 20, 397-406.e5.	5.2	267
500	Interspecies organogenesis generates autologous functional islets. Nature, 2017, 542, 191-196.	13.7	238
501	Integrin suppresses neurogenesis and regulates brain tissue assembly in planarian regeneration. Development (Cambridge), 2017, 144, 784-794.	1.2	24
502	Dawn of the organoid era. BioEssays, 2017, 39, 1600244.	1.2	50
503	Bioengineered 3D Glial Cell Culture Systems and Applications for Neurodegeneration and Neuroinflammation. SLAS Discovery, 2017, 22, 583-601.	1.4	55
504	Organoid technologies meet genome engineering. EMBO Reports, 2017, 18, 367-376.	2.0	52
505	Genetics of Migraine: Insights into the Molecular Basis of Migraine Disorders. Headache, 2017, 57, 537-569.	1.8	88
506	Cell migration in schizophrenia: Patient-derived cells do not regulate motility in response to extracellular matrix. Molecular and Cellular Neurosciences, 2017, 80, 111-122.	1.0	17
507	Cancer systems biology: Live imaging of intestinal tissue in health and disease. Current Opinion in Systems Biology, 2017, 2, 19-28.	1.3	4
508	Selfâ€organized developmental patterning and differentiation in cerebral organoids. EMBO Journal, 2017, 36, 1316-1329.	3.5	300
510	Scaffolds for 3D in vitro culture of neural lineage cells. Acta Biomaterialia, 2017, 54, 1-20.	4.1	136
511	Diencephalic Size Is Restricted by a Novel Interplay Between GCN5 Acetyltransferase Activity and Retinoic Acid Signaling. Journal of Neuroscience, 2017, 37, 2565-2579.	1.7	19
512	Design and fabrication of a scalable liver-lobule-on-a-chip microphysiological platform. Biofabrication, 2017, 9, 015014.	3.7	105
513	Self-organisation after embryonic kidney dissociation is driven via selective adhesion of ureteric epithelial cells Development (Cambridge), 2017, 144, 1087-1096.	1.2	22
514	Clinical potentials of human pluripotent stem cells. Cell Biology and Toxicology, 2017, 33, 351-360.	2.4	55
515	Kidney Organoids: A Translational Journey. Trends in Molecular Medicine, 2017, 23, 246-263.	3.5	114
516	A process engineering approach to increase organoid yield. Development (Cambridge), 2017, 144, 1128-1136.	1.2	51
517	Simplified 3D protocol capable of generating early cortical neuroepithelium. Biology Open, 2017, 6, 402-406.	0.6	5

#	ARTICLE	IF	CITATIONS
518	Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science, 2017, 356, .	6.0	318
519	Modeling neurodevelopmental and psychiatric diseases with human iPSCs. Journal of Neuroscience Research, 2017, 95, 1097-1109.	1.3	11
520	Brain imaging genetics in ADHD and beyond – Mapping pathways from gene to disorder at different levels of complexity. Neuroscience and Biobehavioral Reviews, 2017, 80, 115-155.	2.9	83
521	Drug discovery using induced pluripotent stem cell models of neurodegenerative and ocular diseases. , 2017, 177, 32-43.		36
522	Stem cell-derived organoids and their application for medical research and patient treatment. Journal of Molecular Medicine, 2017, 95, 729-738.	1.7	147
523	Application of induced pluripotent stem cells to understand neurobiological basis of bipolar disorder and schizophrenia. Psychiatry and Clinical Neurosciences, 2017, 71, 579-599.	1.0	15
524	Paving the Way Toward Complex Blood-Brain Barrier Models Using Pluripotent Stem Cells. Stem Cells and Development, 2017, 26, 857-874.	1.1	40
525	Derivation of Human Midbrain-Specific Organoids from Neuroepithelial StemÂCells. Stem Cell Reports, 2017, 8, 1144-1154.	2.3	321
526	Ethical issues in human organoid and gastruloid research. Development (Cambridge), 2017, 144, 942-945.	1.2	80
527	From organoids to organs: Bioengineering liver grafts fromÂhepatic stem cells and matrix. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2017, 31, 151-159.	1.0	36
528	Development and Bioengineering of Lung Regeneration., 2017,, 237-257.		0
529	MicroRNAs as biomarkers for psychiatric disorders with a focus on autism spectrum disorder: Current progress in genetic association studies, expression profiling, and translational research. Autism Research, 2017, 10, 1184-1203.	2.1	49
530	Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nature Reviews Neurology, 2017, 13, 265-278.	4.9	135
531	iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron, 2017, 94, 278-293.e9.	3.8	730
532	Stem Cell Technologies in Neuroscience. Neuromethods, 2017, , .	0.2	0
534	Revealing the inner workings of organoids. EMBO Journal, 2017, 36, 1299-1301.	3.5	9
535	Fused cerebral organoids model interactions between brain regions. Nature Methods, 2017, 14, 743-751.	9.0	574
536	Emulating Host-Microbiome Ecosystem of Human Gastrointestinal Tract in Vitro. Stem Cell Reviews and Reports, 2017, 13, 321-334.	5.6	66

#	ARTICLE	IF	CITATIONS
537	Harnessing the Potential of Human Pluripotent Stem Cells and Gene Editing for the Treatment of Retinal Degeneration. Current Stem Cell Reports, 2017, 3, 112-123.	0.7	27
538	Interactions of early-life stress with the genome and epigenome: from prenatal stress to psychiatric disorders. Current Opinion in Behavioral Sciences, 2017, 14, 167-171.	2.0	18
539	Dopamine Induces Oscillatory Activities in Human Midbrain Neurons with Parkin Mutations. Cell Reports, 2017, 19, 1033-1044.	2.9	27
540	Advances in mini-brain technology. Nature, 2017, 545, 39-40.	13.7	15
542	Trends in Scientific Discovery. , 2017, , 31-64.		0
543	Cell diversity and network dynamics in photosensitive human brain organoids. Nature, 2017, 545, 48-53.	13.7	933
544	Assembly of functionally integrated human forebrain spheroids. Nature, 2017, 545, 54-59.	13.7	931
545	Organoid and Organ-on-a-Chip Systems: New Paradigms for Modeling Neurological and Gastrointestinal Disease. Current Stem Cell Reports, 2017, 3, 98-111.	0.7	22
547	Pseudostratified epithelia – cell biology, diversity and roles in organ formation at a glance. Journal of Cell Science, 2017, 130, 1859-1863.	1.2	59
548	Human pluripotent stem cells in modeling human disorders: the case of fragile X syndrome. Regenerative Medicine, 2017, 12, 53-68.	0.8	4
549	Toward modeling the human nervous system in a dish: recent progress and outstanding challenges. Regenerative Medicine, 2017, 12, 15-23.	0.8	2
550	Drug discovery for remyelination and treatment of MS. Glia, 2017, 65, 1565-1589.	2.5	41
551	Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nature Medicine, 2017, 23, 878-884.	15.2	285
552	Minibrain Storm : Cerebral Organoids Aren't Real Brains?But They Provide a Powerful Platform for Modeling Brain Diseases Like Zika Infection, Alzheimer's, and Even Autism. IEEE Pulse, 2017, 8, 31-34.	0.1	3
553	3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation. Advanced Healthcare Materials, 2017, 6, 1700175.	3.9	164
554	Concise Review: Induced Pluripotent Stem Cell-Based Drug Discovery for Mitochondrial Disease. Stem Cells, 2017, 35, 1655-1662.	1.4	29
555	3D Primary Culture Model to Study Human Mammary Development. Methods in Molecular Biology, 2017, 1612, 139-147.	0.4	17
556	Modeling neurodegenerative diseases with patient-derived induced pluripotent cells: Possibilities and challenges. New Biotechnology, 2017, 39, 190-198.	2.4	42

#	Article	IF	Citations
557	Cell Division Machinery and Disease. Advances in Experimental Medicine and Biology, 2017, , .	0.8	4
558	Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells. Stem Cell Reports, 2017, 8, 1743-1756.	2.3	28
559	Progress in human pluripotent stem cell-based modeling systems for neurological diseases. Neurogenesis (Austin, Tex), 2017, 4, e1324258.	1.5	0
560	Application of CRISPR/Cas9 to the study of brain development and neuropsychiatric disease. Molecular and Cellular Neurosciences, 2017, 82, 157-166.	1.0	25
561	Organoids: a better in vitro model. Nature Methods, 2017, 14, 559-562.	9.0	24
562	Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS Discovery, 2017, 22, 456-472.	1.4	617
563	Guided self-organization and cortical plate formation in human brain organoids. Nature Biotechnology, 2017, 35, 659-666.	9.4	606
564	Uniform neural tissue models produced on synthetic hydrogels using standard culture techniques. Experimental Biology and Medicine, 2017, 242, 1679-1689.	1.1	31
565	Consequences of Centrosome Dysfunction During Brain Development. Advances in Experimental Medicine and Biology, 2017, 1002, 19-45.	0.8	41
566	In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nature Communications, 2017, 8, 15680.	5.8	82
567	Deriving, regenerating, and engineering CNS tissues using human pluripotent stem cells. Current Opinion in Biotechnology, 2017, 47, 36-42.	3.3	7
568	Stem cell models of Alzheimer's disease: progress and challenges. Alzheimer's Research and Therapy, 2017, 9, 42.	3.0	112
569	A Simple Method of Generating 3D Brain Organoids Using Standard Laboratory Equipment. Methods in Molecular Biology, 2017, 1576, 1-12.	0.4	24
570	Generation of Various Telencephalic Regions from Human Embryonic Stem Cells in Three-Dimensional Culture. Methods in Molecular Biology, 2017, 1597, 1-16.	0.4	3
571	Demethylation of induced pluripotent stem cells from type 1 diabetic patients enhances differentiation into functional pancreatic l^2 cells. Journal of Biological Chemistry, 2017, 292, 14066-14079.	1.6	38
572	Telencephalic Tissue Formation in 3D Stem Cell Culture. , 2017, , 1-24.		0
573	An Organoid-Based Model of Cortical Development Identifies Non-Cell-Autonomous Defects in Wnt Signaling Contributing to Miller-Dieker Syndrome. Cell Reports, 2017, 19, 50-59.	2.9	223
574	Architecture in 3D cell culture: An essential feature for in vitro toxicology. Toxicology in Vitro, 2017, 45, 287-295.	1.1	47

#	Article	IF	CITATIONS
576	Pluripotent stem cells in neuropsychiatric disorders. Molecular Psychiatry, 2017, 22, 1241-1249.	4.1	113
577	CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Molecular Autism, 2017, 8, 11.	2.6	214
578	CRISPR/Cas 9 genome editing and its applications in organoids. American Journal of Physiology - Renal Physiology, 2017, 312, G257-G265.	1.6	105
579	Testicular organoid generation by a novel inÂvitro three-layer gradient system. Biomaterials, 2017, 130, 76-89.	5.7	109
580	Katanin p80, NuMA and cytoplasmic dynein cooperate to control microtubule dynamics. Scientific Reports, 2017, 7, 39902.	1.6	25
581	Derivation of Functional Human Astrocytes from Cerebral Organoids. Scientific Reports, 2017, 7, 45091.	1.6	75
582	An update on stem cell biology and engineering for brain development. Molecular Psychiatry, 2017, 22, 808-819.	4.1	27
583	Potential mechanisms of Zikaâ€linked microcephaly. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e273.	5.9	38
584	Liver Regeneration Using Cultured Liver Bud., 2017,, 223-235.		0
585	Of Mice and Men: Species-Specific Organoid Models of Neocortical Malformation. Cell Stem Cell, 2017, 20, 421-422.	5.2	2
586	TLRgeting Evasion of Immune Pathways in Glioblastoma. Cell Stem Cell, 2017, 20, 422-424.	5.2	16
588	Organ Regeneration Based on Developmental Biology. , 2017, , .		2
589	Enhanced generation of human induced pluripotent stem cells by ectopic expression of Connexin 45. Scientific Reports, 2017, 7, 458.	1.6	11
590	Using brain organoids to understand Zika virus-induced microcephaly. Development (Cambridge), 2017, 144, 952-957.	1.2	201
591	Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development (Cambridge), 2017, 144, 958-962.	1.2	230
592	Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis. Development (Cambridge), 2017, 144, 976-985.	1.2	153
593	The physics of organoids: a biophysical approach to understanding organogenesis. Development (Cambridge), 2017, 144, 946-951.	1.2	55
594	The hope and the hype of organoid research. Development (Cambridge), 2017, 144, 938-941.	1.2	303

#	Article	IF	CITATIONS
595	Editing the genome of hiPSC with CRISPR/Cas9: disease models. Mammalian Genome, 2017, 28, 348-364.	1.0	72
596	Neurodevelopmental Abnormalities and Congenital Heart Disease. Circulation Research, 2017, 120, 960-977.	2.0	141
597	Induced pluripotent stem cells from patients with focal cortical dysplasia and refractory epilepsy. Molecular Medicine Reports, 2017, 15, 2049-2056.	1.1	12
598	Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS Discovery, 0, , 247255521769679.	1.4	10
599	The case for applying tissue engineering methodologies to instruct human organoid morphogenesis. Acta Biomaterialia, 2017, 54, 35-44.	4.1	51
600	Disease Modeling in Stem Cell-Derived 3D Organoid Systems. Trends in Molecular Medicine, 2017, 23, 393-410.	3.5	575
601	Genetic heterogeneity in Pakistani microcephaly families revisited. Clinical Genetics, 2017, 92, 62-68.	1.0	28
602	Stem cell-derived kidney cells and organoids: Recent breakthroughs and emerging applications. Biotechnology Advances, 2017, 35, 150-167.	6.0	32
603	Down syndrome and the complexity of genome dosage imbalance. Nature Reviews Genetics, 2017, 18, 147-163.	7.7	234
604	Organoids: A historical perspective of thinking in three dimensions. Journal of Cell Biology, 2017, 216, 31-40.	2.3	442
605	Induction of Expansion and Folding in Human Cerebral Organoids. Cell Stem Cell, 2017, 20, 385-396.e3.	5.2	346
606	Human-specific genomic signatures of neocortical expansion. Current Opinion in Neurobiology, 2017, 42, 33-44.	2.0	77
607	Ex Vivo Engineering of the Tumor Microenvironment. Cancer Drug Discovery and Development, 2017, , .	0.2	4
608	Organoid Culture: Applications in Development and Cancer. Cancer Drug Discovery and Development, 2017, , 41-54.	0.2	1
609	Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche. Nature Materials, 2017, 16, 419-425.	13.3	189
610	Genome and Epigenome Editing in Mechanistic Studies of Human Aging and Aging-Related Disease. Gerontology, 2017, 63, 103-117.	1.4	11
611	Control of signaling molecule range during developmental patterning. Cellular and Molecular Life Sciences, 2017, 74, 1937-1956.	2.4	19
612	oRGs and mitotic somal translocation — a role in development and disease. Current Opinion in Neurobiology, 2017, 42, 61-67.	2.0	46

#	ARTICLE	IF	CITATIONS
613	Induced pluripotent stem cell technology: a decade of progress. Nature Reviews Drug Discovery, 2017, 16, 115-130.	21.5	1,076
614	Controlled Self-assembly of Stem Cell Aggregates Instructs Pluripotency and Lineage Bias. Scientific Reports, 2017, 7, 14070.	1.6	31
615	Murine pluripotent stem cells with a homozygous knockout of Foxg1 show reduced differentiation towards cortical progenitors in vitro. Stem Cell Research, 2017, 25, 50-60.	0.3	10
616	Comparative performance analysis of human iPSC-derived and primary neural progenitor cells (NPC) grown as neurospheres in vitro. Stem Cell Research, 2017, 25, 72-82.	0.3	61
617	Challenges for intraventricular hemorrhage research and emerging therapeutic targets. Expert Opinion on Therapeutic Targets, 2017, 21, 1111-1122.	1.5	55
618	Three-Dimensional Tissue Models and Available Probes for Multi-Parametric Live Cell Microscopy: A Brief Overview. Advances in Experimental Medicine and Biology, 2017, 1035, 49-67.	0.8	10
619	Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidneyÂdisease. Nature Materials, 2017, 16, 1112-1119.	13.3	225
620	Replication of early and recent Zika virus isolates throughout mouse brain development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12273-12278.	3.3	44
621	Skeletal Muscle Development. Methods in Molecular Biology, 2017, , .	0.4	3
622	Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT. Scientific Reports, 2017, 7, 12863.	1.6	87
623	Modelling Zika Virus Infection of the Developing Human Brain In Vitro Using Stem Cell Derived Cerebral Organoids. Journal of Visualized Experiments, 2017, , .	0.2	23
624	Human Cerebrospinal fluid promotes long-term neuronal viability and network function in human neocortical organotypic brain slice cultures. Scientific Reports, 2017, 7, 12249.	1.6	58
625	Self-Organized Cerebral Organoids with Human-Specific Features Predict Effective Drugs to Combat Zika Virus Infection. Cell Reports, 2017, 21, 517-532.	2.9	305
626	Concise Review: Induced Pluripotent Stem Cell Models for Neuropsychiatric Diseases. Stem Cells Translational Medicine, 2017, 6, 2062-2070.	1.6	19
627	Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease. Protein and Cell, 2017, 8, 823-833.	4.8	124
628	Cryoinjury Model for Tissue Injury and Repair in Bioengineered Human Striated Muscle. Methods in Molecular Biology, 2017, 1668, 209-224.	0.4	7
629	Li–Fraumeni Syndrome Disease Model: A Platform to Develop Precision Cancer Therapy Targeting Oncogenic p53. Trends in Pharmacological Sciences, 2017, 38, 908-927.	4.0	35
630	Complexity of the Wnt/β‑catenin pathway: Searching for an activation model. Cellular Signalling, 2017, 40, 30-43.	1.7	78

#	Article	IF	Citations
631	Engineering Organoid Systems to Model Health and Disease. Molecular and Translational Medicine, 2017, , 197-226.	0.4	0
632	Lab-grown mini-brains upgraded. Nature Cell Biology, 2017, 19, 1010-1012.	4.6	4
633	Compartmentalized embryoid body culture for induction of spatially patterned differentiation. Biomicrofluidics, 2017, 11, 041101.	1.2	1
634	Deciphering Cell Intrinsic Properties: A Key Issue for Robust Organoid Production. Trends in Biotechnology, 2017, 35, 1035-1048.	4.9	18
635	A microfluidic trap array for longitudinal monitoring and multi-modal phenotypic analysis of individual stem cell aggregates. Lab on A Chip, 2017, 17, 3634-3642.	3.1	18
636	Organoid technology for brain and therapeutics research. CNS Neuroscience and Therapeutics, 2017, 23, 771-778.	1.9	49
637	Mutations of <i>KIF14</i> cause primary microcephaly by impairing cytokinesis. Annals of Neurology, 2017, 82, 562-577.	2.8	62
638	Induced Pluripotent Stem Cell Therapy and Safety Concerns in Age-Related Chronic Neurodegenerative Diseases. Stem Cells in Clinical Applications, 2017, , 23-65.	0.4	0
639	Fast wide-volume functional imaging of engineered in vitro brain tissues. Scientific Reports, 2017, 7, 8499.	1.6	26
640	Biomimicry, Biofabrication, and Biohybrid Systems: The Emergence and Evolution of Biological Design. Advanced Healthcare Materials, 2017, 6, 1700496.	3.9	49
641	Putting Two Heads Together to Build a Better Brain. Cell Stem Cell, 2017, 21, 289-290.	5.2	8
642	The use of brain organoids to investigate neural development and disease. Nature Reviews Neuroscience, 2017, 18, 573-584.	4.9	528
643	Mimicking Parkinson's Disease in a Dish: Merits and Pitfalls of the Most Commonly used Dopaminergic In Vitro Models. NeuroMolecular Medicine, 2017, 19, 241-255.	1.8	25
644	In situ generation of human brain organoids on a micropillar array. Lab on A Chip, 2017, 17, 2941-2950.	3.1	106
645	Generation of iPSC-derived Human Brain Organoids to Model Early Neurodevelopmental Disorders. Journal of Visualized Experiments, 2017, , .	0.2	23
646	Roles of Diffusion Dynamics in Stem Cell Signaling and Three-Dimensional Tissue Development. Stem Cells and Development, 2017, 26, 1293-1303.	1.1	31
647	The need for advanced three-dimensional neural models and developing enabling technologies. MRS Communications, 2017, 7, 309-319.	0.8	7
648	Inspiration from heart development: Biomimetic development of functional human cardiac organoids. Biomaterials, 2017, 142, 112-123.	5.7	109

#	Article	IF	CITATIONS
649	Visualization of migration of human cortical neurons generated from induced pluripotent stem cells. Journal of Neuroscience Methods, 2017, 289, 57-63.	1.3	9
650	Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain Development and Interneuron Migration. Cell Stem Cell, 2017, 21, 383-398.e7.	5.2	508
651	Depolarization signatures map gold nanorods within biological tissue. Nature Photonics, 2017, 11, 583-588.	15.6	25
652	A pathologist's perspective on induced pluripotent stem cells. Laboratory Investigation, 2017, 97, 1126-1132.	1.7	13
653	Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications. Biofabrication, 2017, 9, 032001.	3.7	26
654	Ethical Issues in the Use of Animal Models for Tissue Engineering: Reflections on Legal Aspects, Moral Theory, Three Rs Strategies, and Harm–Benefit Analysis. Tissue Engineering - Part C: Methods, 2017, 23, 850-862.	1.1	22
655	Differentiation of neural stem cells regulated by three-dimensional tissue shape. , 2017, , .		0
656	A Little Bit of Guidance: Mini Brains on Their Route to Adolescence. Cell Stem Cell, 2017, 21, 157-158.	5.2	1
657	Reprogramming to developmental plasticity in cancer stem cells. Developmental Biology, 2017, 430, 266-274.	0.9	38
659	3D Differentiation of LUHMES Cell Line to Study Recovery and Delayed Neurotoxic Effects. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2017, 73, 11.23.1-11.23.28.	1.1	21
660	Organoid culture systems to study host–pathogen interactions. Current Opinion in Immunology, 2017, 48, 15-22.	2.4	131
661	Tissue chips – innovative tools for drug development and disease modeling. Lab on A Chip, 2017, 17, 3026-3036.	3.1	103
662	Spatiotemporal hydrogel biomaterials for regenerative medicine. Chemical Society Reviews, 2017, 46, 6532-6552.	18.7	317
663	A novel mutation in CDK5RAP2 gene causes primary microcephaly with speech impairment and sparse eyebrows in a consanguineous Pakistani family. European Journal of Medical Genetics, 2017, 60, 627-630.	0.7	10
664	A hollow fiber system for simple generation of human brain organoids. Integrative Biology (United) Tj ETQq0 0 0	rgBT/Ove	erlock 10 Tf 5
665	Wnt/βâ€catenin signaling during early vertebrate neural development. Developmental Neurobiology, 2017, 77, 1239-1259.	1.5	58
666	Safety, Ethics and Regulations. Stem Cells in Clinical Applications, 2017, , .	0.4	1
667	Paper-based patterned 3D neural cultures as a tool to study network activity on multielectrode arrays. RSC Advances, 2017, 7, 39359-39371.	1.7	11

#	Article	IF	CITATIONS
668	Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nature Materials, 2017, 16, 1038-1046.	13.3	295
669	Integrated Experimental and Theoretical Studies of Stem Cells. Current Stem Cell Reports, 2017, 3, 248-252.	0.7	1
670	A pluripotent stem cell-based model for post-implantation human amniotic sac development. Nature Communications, 2017, 8, 208.	5.8	203
671	Present and future of modeling human brain development in 3D organoids. Current Opinion in Cell Biology, 2017, 49, 47-52.	2.6	88
672	New technologies for engineering neural tissue from stem cells., 2017,, 181-204.		1
673	Novel gene function and regulation in neocortex expansion. Current Opinion in Cell Biology, 2017, 49, 22-30.	2.6	22
674	Genetic maps and patterns of cerebral cortex folding. Current Opinion in Cell Biology, 2017, 49, 31-37.	2.6	26
675	Towards a holistic and mechanistic understanding of tumourigenesis via genetically engineered mouse models. Current Opinion in Systems Biology, 2017, 6, 74-79.	1.3	2
676	Convergence of microengineering and cellular self-organization towards functional tissue manufacturing. Nature Biomedical Engineering, 2017, 1, 939-956.	11.6	90
677	Cerebral cortex development: an outsideâ€in perspective. FEBS Letters, 2017, 591, 3978-3992.	1.3	75
678	<i>In Vivo</i> Imaging of CNS Injury and Disease. Journal of Neuroscience, 2017, 37, 10808-10816.	1.7	24
679	Scalable Production and Cryostorage of Organoids Using Core–Shell Decoupled Hydrogel Capsules. Advanced Biology, 2017, 1, 1700165.	3.0	38
680	Generation of "Off-the-Shelf―Natural Killer Cells from Peripheral Blood Cell-Derived Induced Pluripotent Stem Cells. Stem Cell Reports, 2017, 9, 1796-1812.	2.3	105
681	Cerebral organoids reveal early cortical maldevelopment in schizophreniaâ€"computational anatomy and genomics, role of FGFR1. Translational Psychiatry, 2017, 7, 6.	2.4	140
682	Mechanisms of radial glia progenitor cell lineage progression. FEBS Letters, 2017, 591, 3993-4008.	1.3	92
683	Clinically Amendable, Defined, and Rapid Induction of Human Brain Organoids from Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2017, 1576, 13-22.	0.4	6
684	Probing impaired neurogenesis in human brain organoids exposed to alcohol. Integrative Biology (United Kingdom), 2017, 9, 968-978.	0.6	61
685	Generation of a Motor Nerve Organoid with Human Stem Cell-Derived Neurons. Stem Cell Reports, 2017, 9, 1441-1449.	2.3	87

#	Article	IF	CITATIONS
686	On-demand optogenetic activation of human stem-cell-derived neurons. Scientific Reports, 2017, 7, 14450.	1.6	23
687	Phenotypic Analysis of Organoids by Proteomics. Proteomics, 2017, 17, 1700023.	1.3	29
688	Aqueous cigarette tar extracts disrupt corticogenesis from human embryonic stem cells in vitro. Environmental Research, 2017, 158, 194-202.	3.7	4
689	New neurons in adult brain: distribution, molecular mechanisms and therapies. Biochemical Pharmacology, 2017, 141, 4-22.	2.0	61
690	Alzheimer's Disease: Insights from Genetic Mouse Models and Current Advances in Human IPSC-Derived Neurons. Advances in Neurobiology, 2017, 15, 3-29.	1.3	4
692	Non-model model organisms. BMC Biology, 2017, 15, 55.	1.7	164
693	Modeling schizophrenia pathogenesis using patient-derived induced pluripotent stem cells (iPSCs). Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2382-2387.	1.8	23
694	A model of auto immune response. BMC Immunology, 2017, 18, 24.	0.9	2
695	Programming microphysiological systems for children's health protection. Experimental Biology and Medicine, 2017, 242, 1586-1592.	1.1	13
696	21st Century Cell Culture for 21st Century Toxicology. Chemical Research in Toxicology, 2017, 30, 43-52.	1.7	86
697	Autism genetics – an overview. Prenatal Diagnosis, 2017, 37, 14-30.	1.1	49
698	Intelligent biohybrid systems for functional brain repair. European Journal of Molecular and Clinical Medicine, 2017, 3, 162.	0.5	9
699	Pluripotent stem cell expansion and neural differentiation in 3-D scaffolds of tunable Poisson's ratio. Acta Biomaterialia, 2017, 49, 192-203.	4.1	49
700	Neural progenitor cells and their role in the development and evolutionary expansion of the neocortex. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e256.	5.9	102
701	A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development. Cell Stem Cell, 2017, 20, 120-134.	5.2	118
702	In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities. Archives of Toxicology, 2017, 91, 1-33.	1.9	132
703	CYP3A5 Mediates Effects of Cocaine on Human Neocorticogenesis: Studies using an In Vitro 3D Self-Organized hPSC Model with a Single Cortex-Like Unit. Neuropsychopharmacology, 2017, 42, 774-784.	2.8	68
704	Human astrocytes are distinct contributors to the complexity of synaptic function. Brain Research Bulletin, 2017, 129, 66-73.	1.4	32

#	Article	IF	Citations
705	Development and characterization of a human embryonic stem cell-derived 3D neural tissue model for neurotoxicity testing. Toxicology in Vitro, 2017, 38, 124-135.	1.1	50
706	Are reprogrammed cells a useful tool for studying dopamine dysfunction in psychotic disorders? A review of the current evidence. European Journal of Neuroscience, 2017, 45, 45-57.	1.2	4
707	Protein bio-corona: critical issue in immune nanotoxicology. Archives of Toxicology, 2017, 91, 1031-1048.	1.9	182
708	Modeling of Autism Using Organoid Technology. Molecular Neurobiology, 2017, 54, 7789-7795.	1.9	17
709	Nutrigenomics in the modern era. Proceedings of the Nutrition Society, 2017, 76, 265-275.	0.4	65
710	Zika Virus Infection in Pregnancy, Microcephaly, and Maternal and Fetal Health: What We Think, What We Know, and What We Think We Know. Archives of Pathology and Laboratory Medicine, 2017, 141, 26-32.	1.2	114
711	Concise Review: Organ Engineering: Design, Technology, and Integration. Stem Cells, 2017, 35, 51-60.	1.4	48
712	Regeneration of complex oral organs using 3D cell organization technology. Current Opinion in Cell Biology, 2017, 49, 84-90.	2.6	5
713	Passive pumping for the parallel trapping of single neurons onto a microsieve electrode array. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, .	0.6	5
714	1. Human pluripotent stem-cell-derived vascular cells: in vitro model for angiogenesis and drug discovery. , 2017, , 1-34.		2
715	Immune Checkpoint in Glioblastoma: Promising and Challenging. Frontiers in Pharmacology, 2017, 8, 242.	1.6	133
716	Microgravity, Stem Cells, and Embryonic Development: Challenges and Opportunities for 3D Tissue Generation. Frontiers in Astronomy and Space Sciences, 2017, 4, .	1.1	9
717	CpG and Non-CpG Methylation in Epigenetic Gene Regulation and Brain Function. Genes, 2017, 8, 148.	1.0	269
718	Biofunctional Hydrogels for Three-Dimensional Stem Cell Culture. , 2017, , 345-362.		1
719	Trace elements during primordial plexiform network formation in human cerebral organoids. PeerJ, 2017, 5, e2927.	0.9	17
720	Genetic Epilepsy Modeling With Human Pluripotent Stem Cells. , 2017, , 247-260.		0
721	3-D Bioprinting of Neural Tissue for Applications in Cell Therapy and Drug Screening. Frontiers in Bioengineering and Biotechnology, 2017, 5, 69.	2.0	56
722	Metabolic Reprogramming in Glioma. Frontiers in Cell and Developmental Biology, 2017, 5, 43.	1.8	242

#	Article	IF	CITATIONS
723	The Role of Microfluidics for Organ on Chip Simulations. Bioengineering, 2017, 4, 39.	1.6	56
724	Microdevice Platform for In Vitro Nervous System and Its Disease Model. Bioengineering, 2017, 4, 77.	1.6	15
725	Driver or Passenger: Epigenomes in Alzheimer's Disease. Epigenomes, 2017, 1, 5.	0.8	2
726	Employing Microfluidic Devices to Induce Concentration Gradients. , 2017, , 429-442.		4
727	Human Organ Culture: Updating the Approach to Bridge the Gap from In Vitro to In Vivo in Inflammation, Cancer, and Stem Cell Biology. Frontiers in Medicine, 2017, 4, 148.	1.2	37
728	Humans in a Dish: The Potential of Organoids in Modeling Immunity and Infectious Diseases. Frontiers in Microbiology, 2017, 8, 2402.	1.5	42
729	Port d'Entrée for Respiratory Infections – Does the Influenza A Virus Pave the Way for Bacteria?. Frontiers in Microbiology, 2017, 8, 2602.	1.5	33
730	Human iPSC-Derived Cerebellar Neurons from a Patient with Ataxia-Telangiectasia Reveal Disrupted Gene Regulatory Networks. Frontiers in Cellular Neuroscience, 2017, 11, 321.	1.8	22
731	Mechanisms of Long Non-Coding RNAs in the Assembly and Plasticity of Neural Circuitry. Frontiers in Neural Circuits, 2017, 11, 76.	1.4	37
732	Tranylcypromine Causes Neurotoxicity and Represses BHC110/LSD1 in Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoids Model. Frontiers in Neurology, 2017, 8, 626.	1.1	27
733	Versatile Roles of the Chromatin Remodeler CHD7 during Brain Development and Disease. Frontiers in Molecular Neuroscience, 2017, 10, 309.	1.4	25
734	The Role of the Central Nervous System Microenvironment in Pediatric Acute Lymphoblastic Leukemia. Frontiers in Pediatrics, 2017, 5, 90.	0.9	21
735	Nuclear Receptor TLX in Development and Diseases. Current Topics in Developmental Biology, 2017, 125, 257-273.	1.0	18
736	Three-Dimensional Organoid System Transplantation Technologies in Future Treatment of Central Nervous System Diseases. Stem Cells International, 2017, 2017, 1-14.	1.2	7
737	Preventing Neurodegenerative Memory Loss in Hopfield Neuronal Networks Using Cerebral Organoids or External Microelectronics. Computational and Mathematical Methods in Medicine, 2017, 2017, 1-13.	0.7	5
738	Effects of Propofol Treatment in Neural Progenitors Derived from Human-Induced Pluripotent Stem Cells. Neural Plasticity, 2017, 2017, 1-12.	1.0	7
739	The Human Brain. , 2017, , 125-149.		15
7 40	Generation of Functional Lentoid Bodies From Human Induced Pluripotent Stem Cells Derived From Urinary Cells., 2017, 58, 517.		51

#	Article	IF	CITATIONS
741	2.9 Materials as Artificial Stem Cell Microenvironments $\hat{a}^{\sim} \! \! \uparrow \! \! \! \! \! \! \uparrow \! \! \! \! \! \! \! \! \! $		0
742	In vivo differentiation of induced pluripotent stem cells into neural stem cells by chimera formation. PLoS ONE, 2017, 12, e0170735.	1.1	13
743	On the adhesion-cohesion balance and oxygen consumption characteristics of liver organoids. PLoS ONE, 2017, 12, e0173206.	1.1	33
744	Where There's Life There's Intelligence. , 2017, , 236-259.		2
745	3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders. Journal of Biomedical Science, 2017, 24, 59.	2.6	129
746	Factors involved in cancer metastasis: a better understanding to "seed and soil―hypothesis. Molecular Cancer, 2017, 16, 176.	7.9	211
747	Human pluripotent stem cell differentiation to functional pancreatic cells for diabetes therapies: Innovations, challenges and future directions. Journal of Biological Engineering, 2017, 11, 21.	2.0	29
748	Ips Progression a Decade Devoted. Journal of Cell Science & Therapy, 2017, 08, .	0.3	0
749	Regeneration of Kidney From Human Reprogrammed Stem Cells. , 2017, , 937-955.		0
750	Advances in Organoid Culturing of Patient-Derived Tumors. , 2017, , 365-375.		0
751	Neocortex Expansion in Development and Evolution: The Cell Biology ofÂNeural Stem and Progenitor Cells and the Impact of Human-Specific Gene Expression. , 2017, , 73-89.		6
752	3D High-Content Screening of Organoids for Drug Discovery. , 2017, , 388-415.		13
754	Validated and Nonvalidated Mechanism-Based Methods for Testing Developmental Toxicity. , 2017, , 193-209.		1
755	Six-month cultured cerebral organoids from human ES cells contain matured neural cells. Neuroscience Letters, 2018, 670, 75-82.	1.0	49
756	Pluripotent Stem Cells for Uncovering the Role of Mitochondria in Human Brain Function and Dysfunction. Journal of Molecular Biology, 2018, 430, 891-903.	2.0	5
757	In vitro 3D regeneration-like growth of human patient brain tissue. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1247-1260.	1.3	15
758	Out of the Cave, Into the Light? Modeling Mental Illness With Organoids. Biological Psychiatry, 2018, 83, e43-e44.	0.7	3
7 59	Translational potential of human brain organoids. Annals of Clinical and Translational Neurology, 2018, 5, 226-235.	1.7	31

#	Article	IF	CITATIONS
760	Generation of human brain region–specific organoids using a miniaturized spinning bioreactor. Nature Protocols, 2018, 13, 565-580.	5 . 5	335
761	Retrograde interferonâ€gamma signaling induces major histocompatibility class I expression in humanâ€induced pluripotent stem cellâ€derived neurons. Annals of Clinical and Translational Neurology, 2018, 5, 172-185.	1.7	14
762	The Use of Ex Vivo Organ Cultures in Tick-Borne Virus Research. ACS Infectious Diseases, 2018, 4, 247-256.	1.8	15
764	Replicating and Cycling Stores of Information Perpetuate Life. BioEssays, 2018, 40, e1700161.	1.2	7
765	Cerebral organoids: ethical issues and consciousness assessment. Journal of Medical Ethics, 2018, 44, 606-610.	1.0	101
766	New tools for old drugs: Functional genetic screens to optimize current chemotherapy. Drug Resistance Updates, 2018, 36, 30-46.	6.5	33
767	Organs-on-a-Chip: A Fast Track for Engineered Human Tissues in Drug Development. Cell Stem Cell, 2018, 22, 310-324.	5.2	479
769	Enteroid Monolayers Reveal an Autonomous WNT and BMP Circuit Controlling Intestinal Epithelial Growth and Organization. Developmental Cell, 2018, 44, 624-633.e4.	3.1	128
771	Engineering Human Neural Tissue by 3D Bioprinting. Methods in Molecular Biology, 2018, 1758, 129-138.	0.4	21
772	Epigenetics and epitranscriptomics in temporal patterning of cortical neural progenitor competence. Journal of Cell Biology, 2018, 217, 1901-1914.	2.3	69
773	Perfusable Vascular Network with a Tissue Model in a Microfluidic Device. Journal of Visualized Experiments, 2018, , .	0.2	6
774	Vascularized microfluidic organ-chips for drug screening, disease models and tissue engineering. Current Opinion in Biotechnology, 2018, 52, 116-123.	3.3	95
775	An in vivo model of functional and vascularized human brain organoids. Nature Biotechnology, 2018, 36, 432-441.	9.4	826
776	Can mutationâ€mediated effects occurring early in development cause longâ€term seizure susceptibility in genetic generalized epilepsies?. Epilepsia, 2018, 59, 915-922.	2.6	7
777	Materials for Neural Differentiation, Transâ€Differentiation, and Modeling of Neurological Disease. Advanced Materials, 2018, 30, e1705684.	11.1	30
778	Selfâ€organization of human <scp>iPS</scp> cells into trophectoderm mimicking cysts induced by adhesion restriction using microstructured mesh scaffolds. Development Growth and Differentiation, 2018, 60, 183-194.	0.6	11
779	Coordinated Control of mRNA and rRNA Processing Controls Embryonic Stem Cell Pluripotency and Differentiation. Cell Stem Cell, 2018, 22, 543-558.e12.	5.2	55
780	Organoids have opened avenues into investigating numerous diseases. But how well do they mimic the real thing?. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3507-3509.	3.3	13

#	Article	IF	Citations
781	Cortical progenitor biology: key features mediating proliferation versus differentiation. Journal of Neurochemistry, 2018, 146, 500-525.	2.1	77
782	hPSC-Derived Striatal Cells Generated Using a Scalable 3D Hydrogel Promote Recovery in a Huntington Disease Mouse Model. Stem Cell Reports, 2018, 10, 1481-1491.	2.3	46
783	Effects of 3D culturing conditions on the transcriptomic profile of stem-cell-derived neurons. Nature Biomedical Engineering, 2018, 2, 540-554.	11.6	78
784	Directing neuronal cell fate in vitro: Achievements and challenges. Progress in Neurobiology, 2018, 168, 42-68.	2.8	28
785	Human organoid cultures: transformative new tools for human virus studies. Current Opinion in Virology, 2018, 29, 79-86.	2.6	78
786	Tissue engineering: Still facing a long way ahead. Journal of Controlled Release, 2018, 279, 181-197.	4.8	34
787	Shared effects of DISC1 disruption and elevated WNT signaling in human cerebral organoids. Translational Psychiatry, 2018, 8, 77.	2.4	52
788	Generation of Standardized and Reproducible Forebrain-type Cerebral Organoids from Human Induced Pluripotent Stem Cells. Journal of Visualized Experiments, 2018, , .	0.2	30
789	Human brain organoids on a chip reveal the physics of folding. Nature Physics, 2018, 14, 515-522.	6.5	311
790	Circulating tumor cell-derived organoids: Current challenges and promises in medical research and precision medicine. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1869, 117-127.	3.3	106
791	The road to synthetic multicellularity. Current Opinion in Systems Biology, 2018, 7, 60-67.	1.3	14
792	<i>CDK5RAP2</i> gene and tau pathophysiology in lateâ€onset sporadic Alzheimer's disease. Alzheimer's and Dementia, 2018, 14, 787-796.	0.4	15
793	Relative biological effectiveness in proton beam therapy – Current knowledge and future challenges. Clinical and Translational Radiation Oncology, 2018, 9, 35-41.	0.9	96
794	Human-cell-derived organoids as a new ex vivo model for drug assays in oncology. Drug Discovery Today, 2018, 23, 857-863.	3.2	26
795	Human iPSC-Derived Posterior Gut Progenitors Are Expandable and Capable of Forming Gut and Liver Organoids. Stem Cell Reports, 2018, 10, 780-793.	2.3	60
796	Rotenone exerts developmental neurotoxicity in a human brain spheroid model. Toxicology and Applied Pharmacology, 2018, 354, 101-114.	1.3	102
797	Zika Virus Alters DNA Methylation of Neural Genes in an Organoid Model of the Developing Human Brain. MSystems, 2018, 3, .	1.7	53
798	Looking into the Future: Toward Advanced 3D Biomaterials for Stemâ€Cellâ€Based Regenerative Medicine. Advanced Materials, 2018, 30, e1705388.	11.1	120

#	Article	IF	CITATIONS
799	Folic Acid Exposure Rescues Spina Bifida Aperta Phenotypes in Human Induced Pluripotent Stem Cell Model. Scientific Reports, 2018, 8, 2942.	1.6	18
800	Biomimetic fetal rotation bioreactor for engineering bone tissues—Effect of cyclic strains on upregulation of osteogenic gene expression. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e2039-e2050.	1.3	16
801	Same but different: pleiotropy in centrosome-related microcephaly. Molecular Biology of the Cell, 2018, 29, 241-246.	0.9	34
802	Dynamic Changes of the Mitochondria in Psychiatric Illnesses: New Mechanistic Insights From Human Neuronal Models. Biological Psychiatry, 2018, 83, 751-760.	0.7	41
803	The Current Landscape of 3D In Vitro Tumor Models: What Cancer Hallmarks Are Accessible for Drug Discovery?. Advanced Healthcare Materials, 2018, 7, 1701174.	3.9	66
804	Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab on A Chip, 2018, 18, 851-860.	3.1	227
805	Is Parkinson's Disease a Neurodevelopmental Disorder and Will Brain Organoids Help Us to Understand It?. Stem Cells and Development, 2018, 27, 968-975.	1.1	45
806	In Vivo Imaging of Single Mammalian Cells in Development and Disease. Trends in Molecular Medicine, 2018, 24, 278-293.	3.5	10
807	Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors. Genes and Development, 2018, 32, 165-180.	2.7	28
808	Development and disease in a dish: the epigenetics of neurodevelopmental disorders. Epigenomics, 2018, 10, 219-231.	1.0	15
809	Integrated biocircuits: engineering functional multicellular circuits and devices. Journal of Neural Engineering, 2018, 15, 023001.	1.8	8
810	Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nature Reviews Molecular Cell Biology, 2018, 19, 297-312.	16.1	367
811	How Cells Fold the Cerebral Cortex. Journal of Neuroscience, 2018, 38, 776-783.	1.7	99
812	The rise of three-dimensional human brain cultures. Nature, 2018, 553, 437-445.	13.7	373
813	Modeling Neurodegenerative Microenvironment Using Cortical Organoids Derived from Human Stem Cells. Tissue Engineering - Part A, 2018, 24, 1125-1137.	1.6	55
814	Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation. Journal of Lipid Research, 2018, 59, 550-563.	2.0	82
815	Disease modeling and functional screening using engineered heart tissue. Current Opinion in Physiology, 2018, 1, 80-88.	0.9	17
816	Erythrosin B is a potent and broad-spectrum orthosteric inhibitor of the flavivirus NS2B-NS3 protease. Antiviral Research, 2018, 150, 217-225.	1.9	61

#	ARTICLE	IF	Citations
817	Virus stamping for targeted single-cell infection in vitro and in vivo. Nature Biotechnology, 2018, 36, 81-88.	9.4	39
818	Engineering stem cell-derived 3D brain organoids in a perfusable organ-on-a-chip system. RSC Advances, 2018, 8, 1677-1685.	1.7	134
819	Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E762-E771.	3.3	117
820	Testicular organoids: a new model to study the testicular microenvironment in vitro?. Human Reproduction Update, 2018, 24, 176-191.	5.2	64
821	Five steps to form neural rosettes: structure and function. Journal of Cell Science, 2018, 131, .	1.2	40
822	Imaging organoids: a bright future ahead. Nature Methods, 2018, 15, 24-26.	9.0	118
823	Human Accelerated Regions and Other Human-Specific Sequence Variations in the Context of Evolution and Their Relevance for Brain Development. Genome Biology and Evolution, 2018, 10, 166-188.	1.1	61
824	Modeling rare diseases with induced pluripotent stem cell technology. Molecular and Cellular Probes, 2018, 40, 52-59.	0.9	26
825	CRISPR/Cas9â€based Targeted Genome Editing for the Development of Monogenic Diseases Models with Human Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2018, 45, e50.	3.0	11
826	Somatic mutations in neurons during aging and neurodegeneration. Acta Neuropathologica, 2018, 135, 811-826.	3.9	35
827	Efficient Generation of CA3 Neurons from Human Pluripotent Stem Cells Enables Modeling of Hippocampal Connectivity InÂVitro. Cell Stem Cell, 2018, 22, 684-697.e9.	5.2	118
828	Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation. Fluids and Barriers of the CNS, 2018, 15, 7.	2.4	83
829	Crinkle-Cut Brain Organoids. Cell Stem Cell, 2018, 22, 616-618.	5.2	5
830	Building three-dimensional human brain organoids. Nature Neuroscience, 2018, , .	7.1	23
831	Biology Explaining Tooth Repair and Regeneration: A Mini-Review. Gerontology, 2018, 64, 382-388.	1.4	43
832	Generation of spatial-patterned early-developing cardiac organoids using human pluripotent stem cells. Nature Protocols, 2018, 13, 723-737.	5.5	121
833	Spontaneous Clioblastoma Spheroid Infiltration of Early-Stage Cerebral Organoids Models Brain Tumor Invasion. SLAS Discovery, 2018, 23, 862-868.	1.4	73
834	Engineering Brain Organoids to Probe Impaired Neurogenesis Induced by Cadmium. ACS Biomaterials Science and Engineering, 2018, 4, 1908-1915.	2.6	25

#	Article	IF	Citations
835	Coordination of Cell Polarity, Mechanics and Fate in Tissue Self-organization. Trends in Cell Biology, 2018, 28, 541-550.	3.6	38
836	3D tissue engineering, an emerging technique for pharmaceutical research. Acta Pharmaceutica Sinica B, 2018, 8, 756-766.	5.7	49
837	Human iPSC-Derived Endothelial Cells and Microengineered Organ-Chip Enhance Neuronal Development. Stem Cell Reports, 2018, 10, 1222-1236.	2.3	125
838	Generation of human vascularized brain organoids. NeuroReport, 2018, 29, 588-593.	0.6	351
839	Design and validation of an ontology-driven animal-free testing strategy for developmental neurotoxicity testing. Toxicology and Applied Pharmacology, 2018, 354, 136-152.	1.3	23
840	Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development (Cambridge), 2018, 145, .	1.2	182
841	Adult Mouse DRG Explant and Dissociated Cell Models to Investigate Neuroplasticity and Responses to Environmental Insults Including Viral Infection. Journal of Visualized Experiments, 2018, , .	0.2	18
842	Mechanical stabilization of proteolytically degradable polyethylene glycol dimethacrylate hydrogels through peptide interaction. Acta Biomaterialia, 2018, 71, 271-278.	4.1	9
843	MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Molecular Psychiatry, 2018, 23, 1051-1065.	4.1	206
844	A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells. Molecular Psychiatry, 2018, 23, 1336-1344.	4.1	166
845	Human stem cell modeling in neurofibromatosis type 1 (NF1). Experimental Neurology, 2018, 299, 270-280.	2.0	20
846	Threeâ€dimensional patterning in biomedicine: Importance and applications in neuropharmacology. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1369-1382.	1.6	20
847	CRISPR-engineered genome editing for the next generation neurological disease modeling. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 459-467.	2.5	11
848	Automated Cell Culture Systems and Their Applications to Human Pluripotent Stem Cell Studies. SLAS Technology, 2018, 23, 315-325.	1.0	48
849	Toward a CRISPR Picture: Use of CRISPR/Cas9 to Model Diseases in Human Stem Cells In Vitro. Journal of Cellular Biochemistry, 2018, 119, 62-68.	1.2	11
850	Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells. Tissue Engineering - Part A, 2018, 24, 546-558.	1.6	25
851	Novel fluid shearâ€based dissociation device for improved single cell dissociation of spheroids and cell aggregates. Biotechnology Progress, 2018, 34, 293-298.	1.3	1
852	Next generation organoids for biomedical research and applications. Biotechnology Advances, 2018, 36, 132-149.	6.0	91

#	ARTICLE	IF	CITATIONS
853	The state of the art in stem cell biology and regenerative medicine: the end of the beginning. Pediatric Research, 2018, 83, 191-204.	1.1	6
854	Understanding the role of steroids in typical and atypical brain development: Advantages of using a "brain in a dish―approach. Journal of Neuroendocrinology, 2018, 30, e12547.	1.2	28
855	Stem cells and genome editing: approaches to tissue regeneration and regenerative medicine. Journal of Human Genetics, 2018, 63, 165-178.	1.1	18
856	Genetics and mechanisms leading to human cortical malformations. Seminars in Cell and Developmental Biology, 2018, 76, 33-75.	2.3	87
857	The pathogenesis of microcephaly resulting from congenital infections: why is my baby's head so small?. European Journal of Clinical Microbiology and Infectious Diseases, 2018, 37, 209-226.	1.3	28
858	In Vitro Microfluidic Models for Neurodegenerative Disorders. Advanced Healthcare Materials, 2018, 7, 1700489.	3.9	98
859	Threeâ€Dimensional Models of the Human Brain Development and Diseases. Advanced Healthcare Materials, 2018, 7, 1700723.	3.9	73
860	Infectious causes of microcephaly: epidemiology, pathogenesis, diagnosis, and management. Lancet Infectious Diseases, The, 2018, 18, e1-e13.	4.6	92
861	Enhancing our brains: Genomic mechanisms underlying cortical evolution. Seminars in Cell and Developmental Biology, 2018, 76, 23-32.	2.3	28
862	Derivation of Cortical Spheroids from Human Induced Pluripotent Stem Cells in a Suspension Bioreactor. Tissue Engineering - Part A, 2018, 24, 418-431.	1.6	35
863	Neural stem cells and epilepsy: functional roles and disease-in-a-dish models. Cell and Tissue Research, 2018, 371, 47-54.	1.5	20
864	Controlling Differentiation of Stem Cells for Developing Personalized Organâ€onâ€Chip Platforms. Advanced Healthcare Materials, 2018, 7, 1700426.	3.9	65
865	Creating Scaffolds for 3D Neuronal Tissue Models. Irbm, 2018, 39, 4-8.	3.7	1
866	Organ-on-a-chip Systems., 2018,, 55-78.		0
867	Single-cell analysis of diversity in human stem cell-derived neurons. Cell and Tissue Research, 2018, 371, 171-179.	1.5	9
868	Differential Expression of Cholinergic System Components in Human Induced Pluripotent Stem Cells, Bone Marrow-Derived Multipotent Stromal Cells, and Induced Pluripotent Stem Cell-Derived Multipotent Stromal Cells. Stem Cells and Development, 2018, 27, 166-183.	1.1	3
869	Concise Review: The Cellular Conspiracy of Amyotrophic Lateral Sclerosis. Stem Cells, 2018, 36, 293-303.	1.4	39
870	The Emergence of Structured, Living, and Conscious Matter in the Evolution of the Universe: A Theory of Structural Evolution and Interaction of Matter., 2018, , 231-262.		1

#	Article	IF	CITATIONS
871	Multiorgan Microphysiological Systems for Drug Development: Strategies, Advances, and Challenges. Advanced Healthcare Materials, 2018, 7, 1701000.	3.9	100
872	3D axon growth by exogenous electrical stimulus and soluble factors. Brain Research, 2018, 1678, 288-296.	1.1	31
873	Transplantation of feederâ€free human induced pluripotent stem cell–derived cortical neuron progenitors in adult male Wistar rats with focal brain ischemia. Journal of Neuroscience Research, 2018, 96, 863-874.	1.3	15
874	3D neural tissue models: From spheroids to bioprinting. Biomaterials, 2018, 154, 113-133.	5.7	207
875	Mechanisms of dietary flavonoid action in neuronal function and neuroinflammation. Molecular Aspects of Medicine, 2018, 61, 50-62.	2.7	59
876	Psychiatry in a Dish: Stem Cells and Brain Organoids Modeling Autism Spectrum Disorders. Biological Psychiatry, 2018, 83, 558-568.	0.7	48
877	Synthetic AAV/CRISPR vectors for blocking HIVâ€1 expression in persistently infected astrocytes. Glia, 2018, 66, 413-427.	2.5	55
878	The promise of induced pluripotent stem cells for neurodevelopmental disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 382-391.	2.5	19
879	Interdisciplinary Advances Towards Understanding and Enhancing the Therapeutic Potential of Stem Cell-Based Therapies for Ischaemic Stroke. Springer Series in Translational Stroke Research, 2018, , 21-45.	0.1	0
880	Morphological alterations of cultured human colorectal matched tumour and healthy organoids. Oncotarget, 2018, 9, 10572-10584.	0.8	18
883	Photoreceptor Cell Replacement Therapy from Stem Cells. Fundamental Biomedical Technologies, 2018, , 1-16.	0.2	0
884	hiPSC-Based Tissue Organoid Regeneration. , 0, , .		2
885	Vascularization and Engraftment of Transplanted Human Cerebral Organoids in Mouse Cortex. ENeuro, 2018, 5, ENEURO.0219-18.2018.	0.9	162
886	Modeling Pediatric Epilepsy through iPSC-Based Technologies. Epilepsy Currents, 2018, 18, 240-245.	0.4	18
887	<i>In situ</i> differentiation and generation of functional liver organoids from human iPSCs in a 3D perfusable chip system. Lab on A Chip, 2018, 18, 3606-3616.	3.1	147
888	Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 306-352.	0.9	121
890	Mutations in MAST1 Cause Mega-Corpus-Callosum Syndrome with Cerebellar Hypoplasia and Cortical Malformations. Neuron, 2018, 100, 1354-1368.e5.	3.8	35
891	Single-Cell Transcriptomics Reveals Heterogeneity and Drug Response of Human Colorectal Cancer Organoids., 2018, 2018, 2378-2381.		21

#	Article	IF	CITATIONS
892	Modular approach for resolving and mapping complex neural and other cellular structures and their associated deformation fields in three dimensions. Nature Protocols, 2018, 13, 3042-3064.	5.5	10
893	Stem cell models of human synapse development and degeneration. Molecular Biology of the Cell, 2018, 29, 2913-2921.	0.9	26
894	Studying and modulating schizophrenia-associated dysfunctions of oligodendrocytes with patient-specific cell systems. NPJ Schizophrenia, 2018, 4, 23.	2.0	31
895	Best Practices for Translational Disease Modeling Using Human iPSC-Derived Neurons. Neuron, 2018, 100, 783-797.	3.8	94
896	Exploring landscapes of brain morphogenesis with organoids. Development (Cambridge), 2018, 145, .	1.2	20
897	Review: Synthetic scaffolds to control the biochemical, mechanical, and geometrical environment of stem cell-derived brain organoids. APL Bioengineering, 2018, 2, 041501.	3.3	43
898	Microglia Increase Inflammatory Responses in iPSC-Derived Human BrainSpheres. Frontiers in Microbiology, 2018, 9, 2766.	1.5	88
899	Modeling Inflammation in Autism Spectrum Disorders Using Stem Cells. Frontiers in Pediatrics, 2018, 6, 394.	0.9	11
900	Small-molecule induction of A \hat{I}^2 -42 peptide production in human cerebral organoids to model Alzheimer's disease associated phenotypes. PLoS ONE, 2018, 13, e0209150.	1.1	53
901	Three-Dimensional Organoids in Cancer Research: The Search for the Holy Grail of Preclinical Cancer Modeling. OMICS A Journal of Integrative Biology, 2018, 22, 733-748.	1.0	26
902	ShinyCortex: Exploring Single-Cell Transcriptome Data From the Developing Human Cortex. Frontiers in Neuroscience, 2018, 12, 315.	1.4	8
903	<i>VRK2</i> , a Candidate Gene for Psychiatric and Neurological Disorders. Molecular Neuropsychiatry, 2018, 4, 119-133.	3.0	28
904	Screening-Based Chemical Approaches to Unravel Stem Cell Biology. Stem Cell Reports, 2018, 11, 1312-1323.	2.3	7
905	Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science, 2018, 362, .	6.0	220
906	From Neuronal Differentiation of iPSCs to 3D Neuro-Organoids: Modelling and Therapy of Neurodegenerative Diseases. International Journal of Molecular Sciences, 2018, 19, 3972.	1.8	44
907	Human Models Are Needed for Studying Human Neurodevelopmental Disorders. American Journal of Human Genetics, 2018, 103, 829-857.	2.6	103
908	Cell-Biological Requirements for the Generation of Dentate Gyrus Granule Neurons. Frontiers in Cellular Neuroscience, 2018, 12, 402.	1.8	16
909	Patient-Derived Induced Pluripotent Stem Cells and Organoids for Modeling Alpha Synuclein Propagation in Parkinson's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 413.	1.8	9

#	Article	IF	Citations
910	Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Experimental Hematology and Oncology, 2018, 7, 30.	2.0	119
911	An Onâ€Chip Method for Longâ€Term Growth and Realâ€Time Imaging of Brain Organoids. Current Protocols in Cell Biology, 2018, 81, e62.	2.3	14
912	Parkinson's disease research: adopting a more human perspective to accelerate advances. Drug Discovery Today, 2018, 23, 1950-1961.	3.2	15
913	InÂVitro Systems in Neurotoxicological Studies. , 2018, , 451-461.		0
914	Functional and Sustainable 3D Human Neural Network Models from Pluripotent Stem Cells. ACS Biomaterials Science and Engineering, 2018, 4, 4278-4288.	2.6	40
915	Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature, 2018, 562, 272-276.	13.7	347
916	Molecular characterization and prospective isolation of human fetal cochlear hair cell progenitors. Nature Communications, 2018, 9, 4027.	5.8	70
917	Research Models of Neurodegenerative Diseases: Major Considerations for Translatability. , 2018, , 99-101.		0
918	In vitro Models for Seizure-Liability Testing Using Induced Pluripotent Stem Cells. Frontiers in Neuroscience, 2018, 12, 590.	1.4	64
919	Pluripotent Stem Cell-Based Approaches to Explore and Treat Optic Neuropathies. Frontiers in Neuroscience, 2018, 12, 651.	1.4	26
920	Artificial niche microarrays for identifying extrinsic cell-fate determinants. Methods in Cell Biology, 2018, 148, 51-69.	0.5	6
921	Advances and Current Challenges Associated with the Use of Human Induced Pluripotent Stem Cells in Modeling Neurodegenerative Disease. Cells Tissues Organs, 2018, 205, 331-349.	1.3	42
922	In vivo modeling of human neuron dynamics and Down syndrome. Science, 2018, 362, .	6.0	87
923	Microcephaly Modeling of Kinetochore Mutation Reveals a Brain-Specific Phenotype. Cell Reports, 2018, 25, 368-382.e5.	2.9	34
924	Pluripotent stem cell-derived interneuron progenitors mature and restore memory deficits but do not suppress seizures in the epileptic mouse brain. Stem Cell Research, 2018, 33, 83-94.	0.3	15
925	Spinal cord organogenesis model reveals role of $Flk1+$ cells in self-organization of neural progenitor cells into complex spinal cord tissue. Stem Cell Research, 2018, 33, 156-165.	0.3	1
926	Human Huntington's Disease iPSC-Derived Cortical Neurons Display Altered Transcriptomics, Morphology, and Maturation. Cell Reports, 2018, 25, 1081-1096.e6.	2.9	77
927	Brain Organoids and the Study of Neurodevelopment. Trends in Molecular Medicine, 2018, 24, 982-990.	3.5	83

#	Article	IF	CITATIONS
928	Tubular organotypic culture model of human kidney. PLoS ONE, 2018, 13, e0206447.	1.1	19
929	Modelling Sporadic Alzheimer's Disease Using Induced Pluripotent Stem Cells. Neurochemical Research, 2018, 43, 2179-2198.	1.6	27
930	Research Models and Tools for the Identification of Antivirals and Therapeutics against Zika Virus Infection. Viruses, 2018, 10, 593.	1.5	16
931	Differential Effects of Heparin and Hyaluronic Acid on Neural Patterning of Human Induced Pluripotent Stem Cells. ACS Biomaterials Science and Engineering, 2018, 4, 4354-4366.	2.6	30
932	Building Models of Brain Disorders with Three-Dimensional Organoids. Neuron, 2018, 100, 389-405.	3.8	237
933	Application of chemical reaction engineering principles to "bodyâ€onâ€aâ€chip―systems. AICHE Journal, 201 64, 4351-4360.	1.8 1.8	15
934	Perspective: The promise of multi-cellular engineered living systems. APL Bioengineering, 2018, 2, 040901.	3.3	110
935	Organotypic 3D Culture in Nanoscaffold Microwells Supports Salivary Gland Stem-Cell-Based Organization. ACS Biomaterials Science and Engineering, 2018, 4, 4311-4320.	2.6	37
936	Stem Cells, Genome Editing, and the Path to Translational Medicine. Cell, 2018, 175, 615-632.	13.5	105
937	Cell cycle inhibitors protect motor neurons in an organoid model of Spinal Muscular Atrophy. Cell Death and Disease, 2018, 9, 1100.	2.7	72
938	Neuroscience models: choose your dimension. Nature Methods, 2018, 15, 863-866.	9.0	5
939	The Elegance of Sonic Hedgehog: Emerging Novel Functions for a Classic Morphogen. Journal of Neuroscience, 2018, 38, 9338-9345.	1.7	42
940	Porous and responsive hydrogels for cell therapy. Current Opinion in Colloid and Interface Science, 2018, 38, 135-157.	3.4	35
941	Commentary: Human brain organoid-on-a-chip to model prenatal nicotine exposure. Frontiers in Bioengineering and Biotechnology, 2018, 6, 138.	2.0	6
942	Human Cortical Neuron Generation Using Cell Reprogramming: A Review of Recent Advances. Stem Cells and Development, 2018, 27, 1674-1692.	1.1	14
943	Generation and Fusion of Human Cortical and Medial Ganglionic Eminence Brain Organoids. Current Protocols in Stem Cell Biology, 2018, 47, e61.	3.0	21
944	Neural Stem Cell Dysfunction in Human Brain Disorders. Results and Problems in Cell Differentiation, 2018, 66, 283-305.	0.2	7
945	Engineering Neural Tissue from Human Pluripotent Stem Cells Using Novel Small Molecule Releasing Microspheres. Advanced Biology, 2018, 2, 1800133.	3.0	15

#	Article	IF	CITATIONS
946	The Use of Stem Cell-Derived Neurons for Understanding Development and Disease of the Cerebellum. Frontiers in Neuroscience, 2018, 12, 646.	1.4	5
947	Modeling Host-Pathogen Interactions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age. Infection and Immunity, 2018, 86, .	1.0	108
948	Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models. Open Biology, 2018, 8, .	1.5	126
949	Towards Three-Dimensional Dynamic Regulation and In Situ Characterization of Single Stem Cell Phenotype Using Microfluidics. Molecular Biotechnology, 2018, 60, 843-861.	1.3	5
950	Human Neural Stem Cells. Results and Problems in Cell Differentiation, 2018, , .	0.2	3
951	Progress and potential in organoid research. Nature Reviews Genetics, 2018, 19, 671-687.	7.7	693
952	Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab on A Chip, 2018, 18, 3172-3183.	3.1	108
953	Genome Editing in Human Neural Stem and Progenitor Cells. Results and Problems in Cell Differentiation, 2018, 66, 163-182.	0.2	1
954	Brain Organoids: Expanding Our Understanding of Human Development and Disease. Results and Problems in Cell Differentiation, 2018, 66, 183-206.	0.2	16
955	Bioengineering of the Human Neural Stem Cell Niche: A Regulatory Environment for Cell Fate and Potential Target for Neurotoxicity. Results and Problems in Cell Differentiation, 2018, 66, 207-230.	0.2	4
956	Inactivation of PLK4-STIL Module Prevents Self-Renewal and Triggers p53-Dependent Differentiation in Human Pluripotent Stem Cells. Stem Cell Reports, 2018, 11, 959-972.	2.3	8
957	Generation and assembly of human brain region–specific three-dimensional cultures. Nature Protocols, 2018, 13, 2062-2085.	5.5	262
958	Using mouse transgenic and human stem cell technologies to model genetic mutations associated with schizophrenia and autism. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170037.	1.8	20
959	Modeling amyloid beta and tau pathology in human cerebral organoids. Molecular Psychiatry, 2018, 23, 2363-2374.	4.1	249
960	Single-cell genomics to guide human stem cell and tissue engineering. Nature Methods, 2018, 15, 661-667.	9.0	52
961	3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform. Biomaterials, 2018, 177, 27-39.	5.7	110
962	Strategies to improve the regulatory assessment of developmental neurotoxicity (DNT) using in vitro methods. Toxicology and Applied Pharmacology, 2018, 354, 7-18.	1.3	105
963	Perspective: The role of mechanobiology in the etiology of brain metastasis. APL Bioengineering, 2018, 2, 031801.	3.3	13

#	Article	IF	CITATIONS
964	Concise Review: Current Status of Three-Dimensional Organoids as Preclinical Models. Stem Cells, 2018, 36, 1329-1340.	1.4	116
965	The Neurogenesis of Thought. Cell, 2018, 173, 1059-1061.	13.5	0
966	High-Throughput Screening Enhances Kidney Organoid Differentiation from Human Pluripotent Stem Cells and Enables Automated Multidimensional Phenotyping. Cell Stem Cell, 2018, 22, 929-940.e4.	5.2	328
967	Consent for governance in the ethical use of organoids. Nature Cell Biology, 2018, 20, 642-645.	4.6	39
968	Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nature Materials, 2018, 17, 633-641.	13.3	174
969	Three-dimensional cell culture: from evolution to revolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170216.	1.8	60
970	Use and application of 3D-organoid technology. Human Molecular Genetics, 2018, 27, R99-R107.	1.4	143
971	An integrated biomanufacturing platform for the large-scale expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells. Acta Biomaterialia, 2018, 74, 168-179.	4.1	9
972	Mary Jane Hogue (1883–1962): A pioneer in human brain tissue culture. Journal of the History of the Neurosciences, 2018, 27, 333-354.	0.1	0
973	Combining Induced Pluripotent Stem Cells and Genome Editing Technologies for Clinical Applications. Cell Transplantation, 2018, 27, 379-392.	1.2	30
974	Cellular Models: HD Patient-Derived Pluripotent Stem Cells. Methods in Molecular Biology, 2018, 1780, 41-73.	0.4	7
975	Simple Synthetic Molecular Hydrogels from Self-Assembling Alkylgalactonamides as Scaffold for 3D Neuronal Cell Growth. ACS Applied Materials & Samp; Interfaces, 2018, 10, 17004-17017.	4.0	30
976	Drug screening for human genetic diseases using iPSC models. Human Molecular Genetics, 2018, 27, R89-R98.	1.4	99
977	Induced pluripotent stem cells (iPSCs) as model to study inherited defects of neurotransmission in inborn errors of metabolism. Journal of Inherited Metabolic Disease, 2018, 41, 1103-1116.	1.7	3
978	Live cell-lineage tracing and machine learning reveal patterns of organ regeneration. ELife, 2018, 7, .	2.8	35
979	Elements of organoid design. , 2018, , 27-42.		2
980	MTOR pathway in focal cortical dysplasia type 2: What do we know?. Epilepsy and Behavior, 2018, 85, 157-163.	0.9	9
981	Constrained spheroids/organoids in perfusion culture. Methods in Cell Biology, 2018, 146, 43-65.	0.5	6

#	Article	IF	CITATIONS
982	Polymeric gels for tissue engineering applications. , 2018, , 305-330.		0
983	Mechanics-guided developmental fate patterning. Nature Materials, 2018, 17, 571-572.	13.3	3
984	Patient-derived tumor organoids for prediction of cancer treatment response. Seminars in Cancer Biology, 2018, 53, 258-264.	4.3	122
985	Cerebral organoids. , 2018, , 157-174.		1
986	Organoids for Modeling Genetic Diseases. International Review of Cell and Molecular Biology, 2018, 337, 49-81.	1.6	13
989	From Human Pluripotent Stem Cells to Cortical Circuits. Current Topics in Developmental Biology, 2018, 129, 67-98.	1.0	16
990	Three-Dimensional In Vitro Brain Tissue Models. Neuromethods, 2018, , 15-36.	0.2	1
991	Advances in organ-on-a-chip engineering. Nature Reviews Materials, 2018, 3, 257-278.	23.3	690
992	Transcriptional regulation of cell shape during organ morphogenesis. Journal of Cell Biology, 2018, 217, 2987-3005.	2.3	11
993	Modeling gene-regulatory networks to describe cell fate transitions and predict master regulators. Npj Systems Biology and Applications, 2018, 4, 29.	1.4	15
994	Use of bioreactors for culturing human retinal organoids improves photoreceptor yields. Stem Cell Research and Therapy, 2018, 9, 156.	2.4	85
995	Gene Editing of Stem Cells to Model and Treat Disease. Current Stem Cell Reports, 2018, 4, 253-263.	0.7	0
996	Organoids for modeling kidney disease. , 2018, , 227-245.		2
997	Deconstructing and reconstructing the mouse and human early embryo. Nature Cell Biology, 2018, 20, 878-887.	4.6	161
998	Genetically engineered cerebral organoids model brain tumor formation. Nature Methods, 2018, 15, 631-639.	9.0	286
999	A Modular Assembly of Spinal Cord–Like Tissue Allows Targeted Tissue Repair in the Transected Spinal Cord. Advanced Science, 2018, 5, 1800261.	5.6	34
1000	Human iPS derived progenitors bioengineered into liver organoids using an inverted colloidal crystal poly (ethylene glycol) scaffold. Biomaterials, 2018, 182, 299-311.	5.7	93
1001	The role of connexins during early embryonic development: pluripotent stem cells, gene editing, and artificial embryonic tissues as tools to close the knowledge gap. Histochemistry and Cell Biology, 2018, 150, 327-339.	0.8	12

#	Article	IF	CITATIONS
1002	Induction of myelinating oligodendrocytes in human cortical spheroids. Nature Methods, 2018, 15, 700-706.	9.0	242
1003	Rett Syndrome and Stem Cell Research. , 2018, , 27-41.		0
1004	Heterocellular molecular contacts in the mammalian stem cell niche. European Journal of Cell Biology, 2018, 97, 442-461.	1.6	15
1005	Generation of three-dimensional human neuronal cultures: application to modeling CNS viral infections. Stem Cell Research and Therapy, 2018, 9, 134.	2.4	36
1006	Recent Advances: Decoding Alzheimer's Disease With Stem Cells. Frontiers in Aging Neuroscience, 2018, 10, 77.	1.7	26
1007	Mob2 Insufficiency Disrupts Neuronal Migration in the Developing Cortex. Frontiers in Cellular Neuroscience, 2018, 12, 57.	1.8	23
1008	Uncovering True Cellular Phenotypes: Using Induced Pluripotent Stem Cell-Derived Neurons to Study Early Insults in Neurodevelopmental Disorders. Frontiers in Neurology, 2018, 9, 237.	1.1	19
1009	Representing Diversity in the Dish: Using Patient-Derived in Vitro Models to Recreate the Heterogeneity of Neurological Disease. Frontiers in Neuroscience, 2018, 12, 56.	1.4	29
1010	Estradiol and the Development of the Cerebral Cortex: An Unexpected Role?. Frontiers in Neuroscience, 2018, 12, 245.	1.4	43
1011	Image-Based Profiling of Synaptic Connectivity in Primary Neuronal Cell Culture. Frontiers in Neuroscience, 2018, 12, 389.	1.4	30
1012	Modeling Neurological Diseases With Human Brain Organoids. Frontiers in Synaptic Neuroscience, 2018, 10, 15.	1.3	136
1013	2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Molecular Neurodegeneration, 2018, 13, 27.	4.4	157
1014	Towards Multi-Organoid Systems for Drug Screening Applications. Bioengineering, 2018, 5, 49.	1.6	45
1015	In vitro generation of mouse polarized embryo-like structures from embryonic and trophoblast stem cells. Nature Protocols, 2018, 13, 1586-1602.	5 . 5	30
1016	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions 1 January –28 February 28 2018. Regenerative Medicine, 2018, 13, 361-370.	0.8	2
1017	Microfabrication-Based Three-Dimensional (3-D) Extracellular Matrix Microenvironments for Cancer and Other Diseases. International Journal of Molecular Sciences, 2018, 19, 935.	1.8	16
1018	Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2018, 19, 936.	1.8	118
1019	Bioprocesses for Cell Therapies. , 2018, , 899-930.		5

#	Article	IF	Citations
1020	Quantum materials for brain sciences and artificial intelligence. MRS Bulletin, 2018, 43, 534-540.	1.7	10
1021	Modelling Alzheimer's disease: Insights from (i>in vivo (i>to (i>in vitro (i>three-dimensional culture platforms. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1944-1958.	1.3	18
1022	Pluripotent Stem Cell Platforms for Drug Discovery. Trends in Molecular Medicine, 2018, 24, 805-820.	3.5	33
1023	Brain organoids as models to study human neocortex development and evolution. Current Opinion in Cell Biology, 2018, 55, 8-16.	2.6	59
1024	Embryonic Stem Cells., 2018,, 1-51.		1
1025	Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells. Frontiers in Pediatrics, 2018, 6, 82.	0.9	16
1026	Stem Cells to Inform the Neurobiology of Mental Illness. Current Topics in Behavioral Neurosciences, 2018, 40, 13-43.	0.8	4
1027	Advancing insights into stem cell niche complexities with next-generation technologies. Current Opinion in Cell Biology, 2018, 55, 87-95.	2.6	24
1028	Rett syndrome: insights into genetic, molecular and circuit mechanisms. Nature Reviews Neuroscience, 2018, 19, 368-382.	4.9	164
1029	Boosting the power of single-cell analysis. Nature Biotechnology, 2018, 36, 408-409.	9.4	43
1030	Brain organoids get vascularized. Nature Biotechnology, 2018, 36, 407-408.	9.4	34
1031	Human neural stem cells dispersed in artificial ECM form cerebral organoids when grafted inÂvivo. Journal of Anatomy, 2018, 233, 155-166.	0.9	13
1032	Development and Characterization of Human Cerebral Organoids. Cell Transplantation, 2018, 27, 393-406.	1.2	38
1033	Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease. Current Topics in Developmental Biology, 2018, 129, 99-122.	1.0	27
1034	Synaptic Microcircuit Modeling with 3D Cocultures of Astrocytes and Neurons from Human Pluripotent Stem Cells. Journal of Visualized Experiments, 2018, , .	0.2	13
1035	Current Availability of Stem Cell-Based In Vitro Methods for Developmental Neurotoxicity (DNT) Testing. Toxicological Sciences, 2018, 165, 21-30.	1.4	43
1036	Mammalian body plan engineering: Lessons and challenges. Current Opinion in Systems Biology, 2018, 11, 50-56.	1.3	2
1037	Studying tissue macrophages in vitro: are iPSC-derived cells the answer?. Nature Reviews Immunology, 2018, 18, 716-725.	10.6	92

#	Article	IF	CITATIONS
1039	Direct Generation of Human Cortical Organoids from Primary Cells. Stem Cells and Development, 2018, 27, 1549-1556.	1.1	9
1040	Microglia support neural stem cell maintenance and growth. Biochemical and Biophysical Research Communications, 2018, 503, 1880-1884.	1.0	24
1041	Recapitulation of Human Neural Microenvironment Signatures in iPSC-Derived NPC 3D Differentiation. Stem Cell Reports, 2018, 11, 552-564.	2.3	59
1042	Neural precursor cells form integrated brain-like tissue when implanted into rat cerebrospinal fluid. Communications Biology, 2018, 1, 114.	2.0	2
1043	Hydrolytic Degradation and Mechanical Stability of Poly(ε-Caprolactone)/Reduced Graphene Oxide Membranes as Scaffolds for In Vitro Neural Tissue Regeneration. Membranes, 2018, 8, 12.	1.4	62
1045	Investigating pediatric disorders with induced pluripotent stem cells. Pediatric Research, 2018, 84, 499-508.	1.1	9
1046	Stem cell bioengineering: building from stem cell biology. Nature Reviews Genetics, 2018, 19, 595-614.	7.7	76
1047	Comprehensive review on the molecular genetics of autosomal recessive primary microcephaly (MCPH). Genetical Research, 2018, 100, e7.	0.3	54
1048	Genomics in neurodevelopmental disorders: an avenue to personalized medicine. Experimental and Molecular Medicine, 2018, 50, 1-7.	3.2	57
1049	Regenerative medicine in the retina: from stem cells to cell replacement therapy. Therapeutic Advances in Ophthalmology, 2018, 10, 251584141877443.	0.8	36
1050	Assessing functional connectivity across 3D tissue engineered axonal tracts using calcium fluorescence imaging. Journal of Neural Engineering, 2018, 15, 056008.	1.8	16
1051	Organ regeneration based on developmental biology: past and future. Current Opinion in Genetics and Development, 2018, 52, 42-47.	1.5	19
1052	Culture of human neurospheres in 3D scaffolds for developmental neurotoxicity testing. Toxicology in Vitro, 2018, 52, 106-115.	1.1	11
1053	Induced Pluripotent Stem Cells. Cell Transplantation, 2018, 27, 1588-1602.	1.2	26
1054	Generation of Liver Organoids and Their Potential Applications. , 2018, , 115-144.		0
1055	Cortical organoids: why all this hype?. Current Opinion in Genetics and Development, 2018, 52, 22-28.	1.5	13
1056	Engineering a second brain in a dish. Brain Research, 2018, 1693, 165-168.	1.1	6
1057	CRISPR therapeutic tools for complex genetic disorders and cancer (Review). International Journal of Oncology, 2018, 53, 443-468.	1.4	28

#	Article	IF	CITATIONS
1058	hPSC Modeling Reveals that Fate Selection of Cortical Deep Projection Neurons Occurs in the Subplate. Cell Stem Cell, 2018, 23, 60-73.e6.	5.2	59
1059	Generation of Scaffold-free, Three-dimensional Insulin Expressing Pancreatoids from Mouse Pancreatic Progenitors In Vitro . Journal of Visualized Experiments, 2018, , .	0.2	5
1060	Modeling the Neurovascular Unit InÂVitro and In Silico. , 2018, , 127-142.		0
1061	Human 3D In Vitro Models for Developmental Neurotoxicity. , 2018, , 163-172.		1
1062	Stem Cells, Patterning and Regeneration in Planarians: Self-Organization at the Organismal Scale. Methods in Molecular Biology, 2018, 1774, 57-172.	0.4	40
1063	Differential antiviral immunity to Japanese encephalitis virus in developing cortical organoids. Cell Death and Disease, 2018, 9, 719.	2.7	40
1064	Stem cell-based retina models. Advanced Drug Delivery Reviews, 2019, 140, 33-50.	6.6	57
1065	Induced Pluripotent Stem Cells. , 2019, , 169-180.		0
1066	Mechanical Determinants of Tissue Development. , 2019, , 391-404.		0
1067	Applications of Human Brain Organoids to Clinical Problems. Developmental Dynamics, 2019, 248, 53-64.	0.8	88
1068	The effect of age-related risk factors and comorbidities on white matter injury and repair after ischemic stroke. Neurobiology of Disease, 2019, 126, 13-22.	2.1	14
1069	Contribution of induced pluripotent stem cell technologies to the understanding of cellular phenotypes in schizophrenia. Neurobiology of Disease, 2019, 131, 104162.	2.1	24
1070	Advances in exÂvivo models and lab-on-a-chip devices for neural tissue engineering. Biomaterials, 2019, 198, 146-166.	5.7	49
1071	Liver Buds and Liver Organoids: New Tools for Liver Development, Disease and Medical Application. Stem Cell Reviews and Reports, 2019, 15, 774-784.	1.7	10
1072	Construction of 3D in vitro models by bioprinting human pluripotent stem cells: Challenges and opportunities. Brain Research, 2019, 1723, 146393.	1.1	64
1073	The Evolving Neural Tissue Engineering Landscape of India. ACS Applied Bio Materials, 2019, 2, 5446-5459.	2.3	3
1074	3D printing with peptide–polymer conjugates for single-step fabrication of spatially functionalized scaffolds. Biomaterials Science, 2019, 7, 4237-4247.	2.6	38
1075	Brain Organoids as Tools for Modeling Human Neurodevelopmental Disorders. Physiology, 2019, 34, 365-375.	1.6	32

#	Article	IF	CITATIONS
1076	Mouse induced pluripotent stem cells-derived Alzheimer's disease cerebral organoid culture and neural differentiation disorders. Neuroscience Letters, 2019, 711, 134433.	1.0	15
1077	Advanced bioengineering technologies for preclinical research. Advances in Physics: X, 2019, 4, 1622451.	1.5	6
1078	Medicinal Biotechnology for Disease Modeling, Clinical Therapy, and Drug Discovery and Development., 2019,, 89-128.		6
1079	Disease Modeling of Neuropsychiatric Brain Disorders Using Human Stem Cell-Based Neural Models. Current Topics in Behavioral Neurosciences, 2019, 42, 159-183.	0.8	9
1080	Introduction to Biotech Entrepreneurship: From Idea to Business. , 2019, , .		0
1081	Allometric Scaling of physiologically-relevant organoids. Scientific Reports, 2019, 9, 11890.	1.6	12
1082	Modelling mitochondrial dysfunction in Alzheimer's disease using human induced pluripotent stem cells. World Journal of Stem Cells, 2019, 11, 236-253.	1.3	13
1084	Engineered materials for organoid systems. Nature Reviews Materials, 2019, 4, 606-622.	23.3	251
1085	Functionalization of Brain Region-specific Spheroids with Isogenic Microglia-like Cells. Scientific Reports, 2019, 9, 11055.	1.6	119
1086	Recent advances in the applications of iPSC technology. Current Opinion in Biotechnology, 2019, 60, 250-258.	3.3	53
1087	Toward the formation of neural circuits in human brain organoids. Current Opinion in Cell Biology, 2019, 61, 86-91.	2.6	13
1088	Proteomics in the World of Induced Pluripotent Stem Cells. Cells, 2019, 8, 703.	1.8	10
1089	Single-cell multimodal transcriptomics to study neuronal diversity in human stem cell-derived brain tissue and organoid models. Journal of Neuroscience Methods, 2019, 325, 108350.	1.3	26
1090	Connecting environmental exposure and neurodegeneration using cheminformatics and high resolution mass spectrometry: potential and challenges. Environmental Sciences: Processes and Impacts, 2019, 21, 1426-1445.	1.7	13
1091	Distinct Vulnerability and Resilience of Human Neuroprogenitor Subtypes in Cerebral Organoid Model of Prenatal Hypoxic Injury. Frontiers in Cellular Neuroscience, 2019, 13, 336.	1.8	38
1092	Stem cells in tissues, organoids, and cancers. Cellular and Molecular Life Sciences, 2019, 76, 4043-4070.	2.4	44
1093	All Together Now: Modeling the Interaction of Neural With Non-neural Systems Using Organoid Models. Frontiers in Neuroscience, 2019, 13, 582.	1.4	39
1094	Liver organoids: from basic research to therapeutic applications. Gut, 2019, 68, 2228-2237.	6.1	222

#	Article	IF	CITATIONS
1095	Advances in Hydrogels in Organoids and Organsâ€onâ€aâ€Chip. Advanced Materials, 2019, 31, e1902042.	11.1	212
1096	Pathophysiology and Mechanisms of Zika Virus Infection in the Nervous System. Annual Review of Neuroscience, 2019, 42, 249-269.	5.0	41
1097	Presynaptic Dysfunction in Neurons Derived from Tay–Sachs iPSCs. Neuroscience, 2019, 414, 128-140.	1.1	19
1098	Malformations of Human Neocortex in Development – Their Progenitor Cell Basis and Experimental Model Systems. Frontiers in Cellular Neuroscience, 2019, 13, 305.	1.8	32
1099	In vitro and in silico Models to Study Mosquito-Borne Flavivirus Neuropathogenesis, Prevention, and Treatment. Frontiers in Cellular and Infection Microbiology, 2019, 9, 223.	1.8	10
1100	Interfacing cells with microengineered scaffolds for neural tissue reconstruction. Brain Research Bulletin, 2019, 152, 202-211.	1.4	25
1101	Microporous scaffolds support assembly and differentiation of pancreatic progenitors into \hat{l}^2 -cell clusters. Acta Biomaterialia, 2019, 96, 111-122.	4.1	34
1102	Self-Organized Synchronous Calcium Transients in a Cultured Human Neural Network Derived from Cerebral Organoids. Stem Cell Reports, 2019, 13, 458-473.	2.3	92
1103	Neural layer self-assembly in geometrically confined rat and human 3D cultures. Biofabrication, 2019, 11, 045011.	3.7	12
1104	Downâ€regulation of ATF1 leads to early neuroectoderm differentiation of human embryonic stem cells by increasing the expression level of SOX2. FASEB Journal, 2019, 33, 10577-10592.	0.2	4
1105	Microfluidic Brain-on-a-Chip: Perspectives for Mimicking Neural System Disorders. Molecular Neurobiology, 2019, 56, 8489-8512.	1.9	84
1106	The Convergence of Stem Cell Technologies and Phenotypic Drug Discovery. Cell Chemical Biology, 2019, 26, 1050-1066.	2.5	31
1107	The Emergence of Stem Cellâ€Based Brain Organoids: Trends and Challenges. BioEssays, 2019, 41, e1900011.	1.2	29
1108	Smart polymers for cell therapy and precision medicine. Journal of Biomedical Science, 2019, 26, 73.	2.6	60
1109	Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Research, 2019, 29, 1009-1026.	5.7	118
1110	Building Bridges Between the Clinic and the Laboratory: A Meeting Review – Brain Malformations: A Roadmap for Future Research. Frontiers in Cellular Neuroscience, 2019, 13, 434.	1.8	3
1111	Cerebral Organoid Models for Neurotropic Viruses. ACS Infectious Diseases, 2019, 5, 1976-1979.	1.8	13
1112	The Dynamic Partnership of Polycomb and Trithorax in Brain Development and Diseases. Epigenomes, 2019, 3, 17.	0.8	12

#	Article	IF	CITATIONS
1113	Human Cortical Organoids Expose a Differential Function of GSK3 on Cortical Neurogenesis. Stem Cell Reports, 2019, 13, 847-861.	2.3	48
1114	Building brains: using brain organoids to study neural development and disease. Brain, 2019, 142, e65-e65.	3.7	1
1115	Patient-derived organoids (PDOs) as a novel in vitro model for neuroblastoma tumours. BMC Cancer, 2019, 19, 970.	1.1	27
1116	Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells. Scientific Reports, 2019, 9, 15663.	1.6	153
1117	Human Cerebral Organoids and Fetal Brain Tissue Share Proteomic Similarities. Frontiers in Cell and Developmental Biology, 2019, 7, 303.	1.8	58
1118	Cystatin B Involvement in Synapse Physiology of Rodent Brains and Human Cerebral Organoids. Frontiers in Molecular Neuroscience, 2019, 12, 195.	1.4	47
1119	Probing the Functional Role of Physical Motion in Development. Developmental Cell, 2019, 51, 135-144.	3.1	3
1120	3-D geometry and irregular connectivity dictate neuronal firing in frequency domain and synchronization. Biomaterials, 2019, 197, 171-181.	5.7	8
1121	Long-Term Developmental Process of the Human Cortex Revealed In Vitro by Axon-Targeted Recording Using a Microtunnel-Augmented Microelectrode Array. IEEE Transactions on Biomedical Engineering, 2019, 66, 2538-2545.	2.5	17
1122	Recent advances in organoid culture for insulin production and diabetes therapy: methods and challenges. BMB Reports, 2019, 52, 295-303.	1.1	20
1123	Pluripotent Stem Cells for Brain Repair: Protocols and Preclinical Applications in Cortical and Hippocampal Pathologies. Frontiers in Neuroscience, 2019, 13, 684.	1.4	9
1124	Mathematical Models of Organoid Cultures. Frontiers in Genetics, 2019, 10, 873.	1.1	42
1125	Convergence of human cellular models and genetics to study neural stem cell signaling to enhance central nervous system regeneration and repair. Seminars in Cell and Developmental Biology, 2019, 95, 84-92.	2.3	4
1126	Organ-on-e-chip: Three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Science Advances, 2019, 5, eaax0729.	4.7	132
1127	Differential Effects of Extracellular Vesicles of Lineage-Specific Human Pluripotent Stem Cells on the Cellular Behaviors of Isogenic Cortical Spheroids. Cells, 2019, 8, 993.	1.8	29
1128	Fast 3-D Imaging of Brain Organoids With a New Single-Objective Planar-Illumination Two-Photon Microscope. Frontiers in Neuroanatomy, 2019, 13, 77.	0.9	48
1129	Genes and Mechanisms Involved in the Generation and Amplification of Basal Radial Glial Cells. Frontiers in Cellular Neuroscience, 2019, 13, 381.	1.8	65
1130	Getting to the Cores of Autism. Cell, 2019, 178, 1287-1298.	13.5	204

#	Article	IF	CITATIONS
1131	Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Science Advances, 2019, 5, eaaw2459.	4.7	563
1132	Glucocerebrosidase and its relevance to Parkinson disease. Molecular Neurodegeneration, 2019, 14, 36.	4.4	197
1133	Mouse vs man: Organoid models of brain development & Samp; disease. Brain Research, 2019, 1724, 146427.	1.1	40
1134	Complex Oscillatory Waves Emerging from Cortical Organoids Model Early Human Brain Network Development. Cell Stem Cell, 2019, 25, 558-569.e7.	5.2	520
1135	Self-organizing neuruloids model developmental aspects of Huntington's disease in the ectodermal compartment. Nature Biotechnology, 2019, 37, 1198-1208.	9.4	116
1136	Mechanobiology of cells and cell systems, such as organoids. Biophysical Reviews, 2019, 11, 721-728.	1.5	22
1137	The Ethics of Cerebral Organoid Research: Being Conscious of Consciousness. Stem Cell Reports, 2019, 13, 440-447.	2.3	56
1138	Modeling cell-cell interactions in the brain using cerebral organoids. Brain Research, 2019, 1724, 146458.	1.1	12
1139	Human GLB1 knockout cerebral organoids: A model system for testing AAV9-mediated GLB1 gene therapy for reducing GM1 ganglioside storage in GM1 gangliosidosis. Molecular Genetics and Metabolism Reports, 2019, 21, 100513.	0.4	41
1140	The Applications of Lattice Light-sheet Microscopy for Functional Volumetric Imaging of Hippocampal Neurons in a Three-Dimensional Culture System. Micromachines, 2019, 10, 599.	1.4	7
1141	Experimental models and tools to tackle glioblastoma. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	70
1142	Nanogroove-Enhanced Hydrogel Scaffolds for 3D Neuronal Cell Culture: An Easy Access Brain-on-Chip Model. Micromachines, 2019, 10, 638.	1.4	14
1143	The functional microscopic neuroanatomy of the human subthalamic nucleus. Brain Structure and Function, 2019, 224, 3213-3227.	1.2	20
1144	Exploiting nanogroove-induced cell culture anisotropy to advance in vitro brain models. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 061802.	0.6	7
1145	Patient-Derived Glioma Models: From Patients to Dish to Animals. Cells, 2019, 8, 1177.	1.8	86
1146	Neuroglia in Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2019, , .	0.8	18
1147	3D Bioprinted Human Cortical Neural Constructs Derived from Induced Pluripotent Stem Cells. Journal of Clinical Medicine, 2019, 8, 1595.	1.0	43
1148	Layer-By-Layer: The Case for 3D Bioprinting Neurons to Create Patient-Specific Epilepsy Models. Materials, 2019, 12, 3218.	1.3	32

#	Article	IF	CITATIONS
1149	Transplantation of Human Brain Organoids: Revisiting the Science and Ethics of Brain Chimeras. Cell Stem Cell, 2019, 25, 462-472.	5.2	62
1150	Kidney organoids: accurate models or fortunate accidents. Genes and Development, 2019, 33, 1319-1345.	2.7	97
1151	Single-cell RNA-Sequencing in Neuroscience. Neuroforum, 2019, 25, 251-258.	0.2	2
1152	Bundled Three-Dimensional Human Axon Tracts Derived from Brain Organoids. IScience, 2019, 21, 57-67.	1.9	37
1153	Engineering of human brain organoids with a functional vascular-like system. Nature Methods, 2019, 16, 1169-1175.	9.0	551
1154	Brain-on-a-chip Devices for Drug Screening and Disease Modeling Applications. Current Pharmaceutical Design, 2019, 24, 5419-5436.	0.9	33
1155	Pathological Progression Induced by the Frontotemporal Dementia-Associated R406W Tau Mutation in Patient-Derived iPSCs. Stem Cell Reports, 2019, 13, 684-699.	2.3	46
1156	Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. International Journal of Molecular Sciences, 2019, 20, 4628.	1.8	160
1157	Human brain development through the lens of cerebral organoid models. Brain Research, 2019, 1725, 146470.	1.1	22
1158	Vascularizing organogenesis: Lessons from developmental biology and implications for regenerative medicine. Current Topics in Developmental Biology, 2019, 132, 177-220.	1.0	23
1159	Human iPSC application in Alzheimer's disease and Tau-related neurodegenerative diseases. Neuroscience Letters, 2019, 699, 31-40.	1.0	27
1160	REST and Neural Gene Network Dysregulation in iPSC Models of Alzheimer's Disease. Cell Reports, 2019, 26, 1112-1127.e9.	2.9	150
1161	A New Era with Cerebral Organoids. Neuroscience, 2019, 404, 529.	1.1	0
1162	Broad applicability of a streamlined Ethyl Cinnamate-based clearing procedure. Development (Cambridge), 2019, 146, .	1.2	92
1163	Shared and derived features of cellular diversity in the human cerebral cortex. Current Opinion in Neurobiology, 2019, 56, 117-124.	2.0	61
1164	Engineering human islet organoids from iPSCs using an organ-on-chip platform. Lab on A Chip, 2019, 19, 948-958.	3.1	140
1165	Brain Organoidsâ€"A Bottom-Up Approach for Studying Human Neurodevelopment. Bioengineering, 2019, 6, 9.	1.6	45
1166	Decoding epigenetic cell signaling in neuronal differentiation. Seminars in Cell and Developmental Biology, 2019, 95, 12-24.	2.3	10

#	Article	IF	CITATIONS
1167	Developmental changes in interkinetic nuclear migration dynamics with respect to cellâ€eycle progression in the mouse cerebral cortex ventricular zone. Journal of Comparative Neurology, 2019, 527, 1545-1557.	0.9	7
1168	Are we listening to everything the PARK genes are telling us?. Journal of Comparative Neurology, 2019, 527, 1527-1540.	0.9	13
1169	Insights into GBA Parkinson's disease pathology and therapy with induced pluripotent stem cell model systems. Neurobiology of Disease, 2019, 127, 1-12.	2.1	13
1170	One-Hit Wonders and 2-Hit Tubers: A Second-Hit to TSC2 Causes Tuber-Like Cells in Spheroids. Epilepsy Currents, 2019, 19, 49-50.	0.4	5
1171	Making NSC and Neurons from Patient-Derived Tissue Samples. Methods in Molecular Biology, 2019, 1919, 9-24.	0.4	13
1172	Functional Cortical Axon Tracts Generated from Human Stem Cell-Derived Neurons. Tissue Engineering - Part A, 2019, 25, 736-745.	1.6	10
1173	Induced pluripotent stem cellâ€based modeling of mutant <scp>LRRK</scp> 2â€associated Parkinson's disease. European Journal of Neuroscience, 2019, 49, 561-589.	1.2	20
1174	Differentiating human pluripotent stem cells into vascular smooth muscle cells in three dimensional thermoreversible hydrogels. Biomaterials Science, 2019, 7, 347-361.	2.6	7
1175	A Human Induced Pluripotent Stem Cell-Derived Tissue Model of a Cerebral Tract Connecting Two Cortical Regions. IScience, 2019, 14, 301-311.	1.9	30
1176	Modeling Alzheimer's disease with human iPS cells: advancements, lessons, and applications. Neurobiology of Disease, 2019, 130, 104503.	2.1	24
1177	Optogenetics in the Era of Cerebral Organoids. Trends in Biotechnology, 2019, 37, 1282-1294.	4.9	28
1178	Modeling of Fibrotic Lung Disease Using 3D Organoids Derived from Human Pluripotent Stem Cells. Cell Reports, 2019, 27, 3709-3723.e5.	2.9	175
1179	Engineering a 3D functional human peripheral nerve in vitro using the Nerve-on-a-Chip platform. Scientific Reports, 2019, 9, 8921.	1.6	52
1180	Human Cytomegalovirus Disruption of Calcium Signaling in Neural Progenitor Cells and Organoids. Journal of Virology, 2019, 93, .	1.5	45
1181	Human Cytomegalovirus Compromises Development of Cerebral Organoids. Journal of Virology, 2019, 93, .	1.5	59
1182	Advances in genetics of migraine. Journal of Headache and Pain, 2019, 20, 72.	2.5	136
1183	Apathetic pathogens. Microbes and Infection, 2019, 21, 419-422.	1.0	1
1184	Lzts1 controls both neuronal delamination and outer radial glial-like cell generation during mammalian cerebral development. Nature Communications, 2019, 10, 2780.	5.8	27

#	Article	IF	CITATIONS
1185	Effects of astrocyte on neuronal outgrowth in a layered 3D structure. BioMedical Engineering OnLine, 2019, 18, 74.	1.3	9
1186	Tyroxine Hydroxylase-Positive Neuronal Cell Population is Increased by Temporal Dioxin Exposure at Early Stage of Differentiation from Human Embryonic Stem Cells. International Journal of Molecular Sciences, 2019, 20, 2687.	1.8	2
1187	Cancer modeling meets human organoid technology. Science, 2019, 364, 952-955.	6.0	577
1188	Organoids-on-a-chip. Science, 2019, 364, 960-965.	6.0	495
1189	Multi-cellular engineered living systems: building a community around responsible research on emergence. Biofabrication, 2019, 11, 043001.	3.7	13
1190	Microengineered human amniotic ectoderm tissue array for high-content developmental phenotyping. Biomaterials, 2019, 216, 119244.	5.7	22
1191	Breakthrough Moments: Yoshiki Sasai's Discoveries in the Third Dimension. Cell Stem Cell, 2019, 24, 837-838.	5.2	8
1192	Design Approaches for Generating Organ Constructs. Cell Stem Cell, 2019, 24, 877-894.	5.2	26
1193	The use of iPSC technology for modeling Autism Spectrum Disorders. Neurobiology of Disease, 2019, 130, 104483.	2.1	22
1194	The Need for Physiological Micro-Nanofluidic Systems of the Brain. Frontiers in Bioengineering and Biotechnology, 2019, 7, 100.	2.0	22
1195	Using Human Induced Pluripotent Stem Cell-derived Intestinal Organoids to Study and Modify Epithelial Cell Protection Against Salmonella and Other Pathogens. Journal of Visualized Experiments, 2019, , .	0.2	9
1196	At the Intersection of Epigenetics and Regeneration: An Analysis of the Experimental Outlook of Organoid Technology. , 2019, , 385-402.		3
1197	iPSC- and Organoid-Based Biomedicine at the Intersection of Epigenetics and Regeneration: Charting the Normative Contours of Emerging Biomedical Platforms., 2019,, 493-509.		3
1198	Human cerebral organoids and neural 3D tissues in basic research, and their application to study neurological diseases. Future Neurology, 2019, 14, FNL3.	0.9	6
1199	Copper Transport and Disease: What Can We Learn from Organoids?. Annual Review of Nutrition, 2019, 39, 75-94.	4.3	46
1200	Genetic basis for primordial germ cells specification in mouse and human: Conserved and divergent roles of PRDM and SOX transcription factors. Current Topics in Developmental Biology, 2019, 135, 35-89.	1.0	31
1201	Suitability of 3D human brain spheroid models to distinguish toxic effects of gold and poly-lactic acid nanoparticles to assess biocompatibility for brain drug delivery. Particle and Fibre Toxicology, 2019, 16, 22.	2.8	67
1202	Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature, 2019, 570, 523-527.	13.7	649

#	Article	IF	CITATIONS
1203	Analysis of Synapses in Cerebral Organoids. Cell Transplantation, 2019, 28, 1173-1182.	1.2	12
1204	Use of human pluripotent stem cell-derived cells for neurodegenerative disease modeling and drug screening platform. Future Medicinal Chemistry, 2019, 11, 1305-1322.	1.1	23
1205	3D bioprinting models of neural tissues: The current state of the field and future directions. Brain Research Bulletin, 2019, 150, 240-249.	1.4	32
1206	Sporadic Creutzfeldt-Jakob disease prion infection of human cerebral organoids. Acta Neuropathologica Communications, 2019, 7, 90.	2.4	67
1207	Preclinical Modelling of PDA: Is Organoid the New Black?. International Journal of Molecular Sciences, 2019, 20, 2766.	1.8	14
1208	Modeling microcephaly with cerebral organoids reveals a WDR62–CEP170–KIF2A pathway promoting cilium disassembly in neural progenitors. Nature Communications, 2019, 10, 2612.	5.8	125
1209	Tissue regeneration and the epididymal stem cell. Andrology, 2019, 7, 618-630.	1.9	17
1210	Biomimetic Spiking Neural Network (SNN) Systems for †In Vitro†Cells Stimulation. , 2019, , .		0
1211	Engineering biomaterials to control the neural differentiation of stem cells. Brain Research Bulletin, 2019, 150, 50-60.	1.4	17
1212	Explaining Pathogenicity of Congenital Zika and Guillain–Barré Syndromes: Does Dysregulation of RNA Editing Play a Role?. BioEssays, 2019, 41, 1800239.	1.2	14
1213	Assessing drug response in engineered brain microenvironments. Brain Research Bulletin, 2019, 150, 21-34.	1.4	10
1214	Bioengineering an Artificial Human Blood–Brain Barrier in Rodents. Bioengineering, 2019, 6, 38.	1.6	6
1215	Past, Present, and Future of Neuronal Models In Vitro. Advances in Neurobiology, 2019, 22, 3-17.	1.3	24
1216	A Novel 3D In Vitro Platform for Pre-Clinical Investigations in Drug Testing, Gene Therapy, and Immuno-oncology. Scientific Reports, 2019, 9, 7154.	1.6	50
1217	Integrated cancer tissue engineering models for precision medicine. PLoS ONE, 2019, 14, e0216564.	1.1	57
1218	Organoid technology in cancer precision medicine. Cancer Letters, 2019, 457, 20-27.	3.2	40
1219	Cell Culture Techniques. Neuromethods, 2019, , .	0.2	3
1220	Biologically inspired approaches to enhance human organoid complexity. Development (Cambridge), 2019, 146, .	1.2	68

#	Article	IF	CITATIONS
1221	Integration of biological systems with electronic-mechanical assemblies. Acta Biomaterialia, 2019, 95, 91-111.	4.1	23
1222	Modelling Protein Synthesis as A Biomarker in Fragile X Syndrome Patient-Derived Cells. Brain Sciences, 2019, 9, 59.	1.1	8
1223	A Cleared View on Retinal Organoids. Cells, 2019, 8, 391.	1.8	39
1224	Filling the Gap: Neural Stem Cells as A Promising Therapy for Spinal Cord Injury. Pharmaceuticals, 2019, 12, 65.	1.7	64
1225	High-resolution 3D imaging of fixed and cleared organoids. Nature Protocols, 2019, 14, 1756-1771.	5.5	317
1226	Human organoids: a new dimension in cell biology. Molecular Biology of the Cell, 2019, 30, 1129-1137.	0.9	83
1227	Design Principles for Pluripotent Stem Cell-Derived Organoid Engineering. Stem Cells International, 2019, 2019, 1-17.	1,2	25
1228	Brain organoids: advances, applications and challenges. Development (Cambridge), 2019, 146, .	1.2	385
1229	Organs to Cells and Cells to Organoids: The Evolution of in vitro Central Nervous System Modelling. Frontiers in Cellular Neuroscience, 2019, 13, 129.	1.8	66
1230	Fibronectin-conjugated thermoresponsive nanobridges generate three dimensional human pluripotent stem cell cultures for differentiation towards the neural lineages. Stem Cell Research, 2019, 38, 101441.	0.3	5
1231	Epigenetic Regulations in Neuropsychiatric Disorders. Frontiers in Genetics, 2019, 10, 268.	1.1	116
1232	Microfluidic Devices for Eye Irritation Tests of Cosmetics and Cosmetic Ingredients. Biochip Journal, 2019, 13, 142-150.	2.5	1
1233	Micro-injection molded, poly(vinyl alcohol)-calcium salt templates for precise customization of 3D hydrogel internal architecture. Acta Biomaterialia, 2019, 95, 258-268.	4.1	22
1234	The complexity of tau in Alzheimer's disease. Neuroscience Letters, 2019, 705, 183-194.	1.0	200
1235	Generation of Vestibular Tissue-Like Organoids From Human Pluripotent Stem Cells Using the Rotary Cell Culture System. Frontiers in Cell and Developmental Biology, 2019, 7, 25.	1.8	30
1236	Fragile X Syndrome Pre-Clinical Research: Comparing Mouse- and Human-Based Models. Methods in Molecular Biology, 2019, 1942, 155-162.	0.4	4
1237	Glioblastoma heterogeneity and the tumour microenvironment: implications for preclinical research and development of new treatments. Biochemical Society Transactions, 2019, 47, 625-638.	1.6	104
1238	The Use of Pluripotent Stem Cell-Derived Organoids to Study Extracellular Matrix Development during Neural Degeneration. Cells, 2019, 8, 242.	1.8	14

#	Article	IF	CITATIONS
1239	Determinants of Zika virus host tropism uncovered by deep mutational scanning. Nature Microbiology, 2019, 4, 876-887.	5.9	50
1240	Cerebral organoids at the air–liquid interface generate diverse nerve tracts with functional output. Nature Neuroscience, 2019, 22, 669-679.	7.1	398
1241	Modeling Patient-Derived Glioblastoma with Cerebral Organoids. Cell Reports, 2019, 26, 3203-3211.e5.	2.9	293
1243	Functional ectodermal organ regeneration as the next generation of organ replacement therapy. Open Biology, 2019, 9, 190010.	1.5	8
1244	Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms. BMC Developmental Biology, 2019, 19, 3.	2.1	31
1245	Kidney micro-organoids in suspension culture as a scalable source of human pluripotent stem cell-derived kidney cells. Development (Cambridge), 2019, 146, .	1.2	97
1246	Endothelial-neurosphere crosstalk in microwell arrays regulates self-renewal and differentiation of human neural stem cells. Journal of Industrial and Engineering Chemistry, 2019, 74, 148-157.	2.9	6
1247	Engineering Microfluidic Organoid-on-a-Chip Platforms. Micromachines, 2019, 10, 165.	1.4	153
1248	How the extracellular matrix shapes neural development. Open Biology, 2019, 9, 180216.	1.5	166
1249	3D-3 Tumor Models in Drug Discovery for Analysis of Immune Cell Infiltration. Methods in Molecular Biology, 2019, 1953, 151-162.	0.4	19
1250	When 3 Rs meet a forth R: Replacement, reduction and refinement of animals in research on reproduction. Journal of Reproductive Immunology, 2019, 132, 54-59.	0.8	15
1251	The moral status of cerebral organoids. Regenerative Therapy, 2019, 10, 118-122.	1.4	32
1252	Modeling Human Brain Circuitry Using Pluripotent Stem Cell Platforms. Frontiers in Pediatrics, 2019, 7, 57.	0.9	20
1253	Altered neuronal migratory trajectories in human cerebral organoids derived from individuals with neuronal heterotopia. Nature Medicine, 2019, 25, 561-568.	15.2	135
1254	Cell migration promotes dynamic cellular interactions to control cerebral cortex morphogenesis. Nature Reviews Neuroscience, 2019, 20, 318-329.	4.9	88
1255	Grow your own brain. BioTechniques, 2019, 66, 108-112.	0.8	1
1256	Studying Human Neurological Disorders Using Induced Pluripotent Stem Cells: From 2D Monolayer to 3D Organoid and Blood Brain Barrier Models. , 2019, 9, 565-611.		88
1257	hESC-Derived Thalamic Organoids Form Reciprocal Projections When Fused with Cortical Organoids. Cell Stem Cell, 2019, 24, 487-497.e7.	5.2	305

#	Article	IF	CITATIONS
1258	Modeling Parkinson's disease in midbrain-like organoids. Npj Parkinson's Disease, 2019, 5, 5.	2.5	204
1259	Opportunities and challenges for the use of induced pluripotent stem cells in modelling neurodegenerative disease. Open Biology, 2019, 9, 180177.	1.5	59
1260	Organoid Models of Development and Disease Towards Therapy. Current Human Cell Research and Applications, 2019, , 149-168.	0.1	0
1261	Therapeutic Potential of Patient iPSC-Derived iMelanocytes in Autologous Transplantation. Cell Reports, 2019, 27, 455-466.e5.	2.9	32
1262	Engineering three-dimensional microenvironments towards <i>in vitro</i> disease models of the central nervous system. Biofabrication, 2019, 11, 032003.	3.7	37
1263	Derivation of adult canine intestinal organoids for translational research in gastroenterology. BMC Biology, 2019, 17, 33.	1.7	82
1264	Minocycline mitigates the effect of neonatal hypoxic insult on human brain organoids. Cell Death and Disease, 2019, 10, 325.	2.7	27
1265	Assembly of Human Stem Cell-Derived Cortical Spheroids and Vascular Spheroids to Model 3-D Brain-like Tissues. Scientific Reports, 2019, 9, 5977.	1.6	104
1266	Multifunctionalized hydrogels foster hNSC maturation in 3D cultures and neural regeneration in spinal cord injuries. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7483-7492.	3.3	77
1267	"Necessity Is the Mother of Invention―or Inexpensive, Reliable, and Reproducible Protocol for Generating Organoids. Biochemistry (Moscow), 2019, 84, 321-328.	0.7	8
1268	Specification of positional identity in forebrain organoids. Nature Biotechnology, 2019, 37, 436-444.	9.4	226
1269	Medical Applications of iPS Cells. Current Human Cell Research and Applications, 2019, , .	0.1	0
1270	Studying Heterotypic Cell–Cell Interactions in the Human Brain Using Pluripotent Stem Cell Models for Neurodegeneration. Cells, 2019, 8, 299.	1.8	15
1271	Integrated Microphysiological Systems: Transferable Organ Models and Recirculating Flow. Advanced Biology, 2019, 3, 1900018.	3.0	15
1272	Distinct gene-selective roles for a network of core promoter factors in <i>Drosophila </i> neural stem cell identity. Biology Open, 2019, 8, .	0.6	7
1273	Telomere-dependent and telomere-independent roles of RAP1 in regulating human stem cell homeostasis. Protein and Cell, 2019, 10, 649-667.	4.8	35
1274	Stress-induced precocious aging in PD-patient iPSC-derived NSCs may underlie the pathophysiology of Parkinson's disease. Cell Death and Disease, 2019, 10, 105.	2.7	23
1275	Organoids â€" Preclinical Models of Human Disease. New England Journal of Medicine, 2019, 380, 569-579.	13.9	212

#	Article	IF	CITATIONS
1276	Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution. Cell, 2019, 176, 743-756.e17.	13.5	423
1277	Induced pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Genetics, 2019, 20, 377-388.	7.7	411
1278	Temporal Impact of Substrate Anisotropy on Differentiating Cardiomyocyte Alignment and Functionality. Tissue Engineering - Part A, 2019, 25, 1426-1437.	1.6	17
1279	Chasing the Paradigm: Clinical Translation of 25 Years of Tissue Engineering. Tissue Engineering - Part A, 2019, 25, 679-687.	1.6	77
1280	Important advances in Alzheimer's disease from the use of induced pluripotent stem cells. Journal of Biomedical Science, 2019, 26, 15.	2.6	9
1281	One Step Into the Future: New iPSC Tools to Advance Research in Parkinson's Disease and Neurological Disorders. Journal of Parkinson's Disease, 2019, 9, 265-281.	1.5	19
1282	A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature, 2019, 567, 234-238.	13.7	153
1283	Brains Emerging: On Modularity and Self-organisation of Neural Development In Vivo and In Vitro. , 2019, , 145-169.		4
1284	Modeling neuronopathic storage diseases with patient-derived culture systems. Neurobiology of Disease, 2019, 127, 147-162.	2.1	14
1285	Experimental and Computational Methods for the Study of Cerebral Organoids: A Review. Frontiers in Neuroscience, 2019, 13, 162.	1.4	32
1286	Grow with the Flow: When Morphogenesis Meets Microfluidics. Advanced Materials, 2019, 31, e1805764.	11.1	42
1287	There are Actual Brains in Vats Now. Logos and Episteme, 2019, 10, 135-145.	0.1	1
1288	Acute Lengthening of Progenitor Mitosis Influences Progeny Fate during Cortical Development in vivo. Developmental Neuroscience, 2019, 41, 300-317.	1.0	18
1289	Disease in a Dish: Cellular Models to Understand Human Conditions. , 2019, , 19-47.		0
1290	Next-Generation Liver Medicine Using Organoid Models. Frontiers in Cell and Developmental Biology, 2019, 7, 345.	1.8	48
1291	New approaches to model glioblastoma in vitro using brain organoids: implications for precision oncology. Translational Cancer Research, 2019, 8, S606-S611.	0.4	11
1292	Inner ear organoids: new tools to understand neurosensory cell development, degeneration and regeneration. Development (Cambridge), 2019, 146, .	1.2	50
1293	Human Pluripotent Stem Cells: Applications and Challenges for Regenerative Medicine and Disease Modeling. Advances in Biochemical Engineering/Biotechnology, 2019, 171, 189-224.	0.6	2

#	Article	IF	CITATIONS
1294	Neuronal maturation reduces the type I IFN response to orthobunyavirus infection and leads to increased apoptosis of human neurons. Journal of Neuroinflammation, 2019, 16, 229.	3.1	22
1295	IPL Sublamination in Chicken Retinal Spheroids Is Initiated via MüIIer Cells and Cholinergic Differentiation, and Is Disrupted by NMDA Signaling. , 2019, 60, 4759.		6
1296	Neural microphysiological systems for <i>in vitro</i> modeling of peripheral nervous system disorders. Bioelectronics in Medicine, 2019, 2, 101-117.	2.0	7
1297	iPSCs-Based Neural 3D Systems: A Multidimensional Approach for Disease Modeling and Drug Discovery. Cells, 2019, 8, 1438.	1.8	41
1298	The Use of Human Induced Pluripotent Stem Cells for Testing Neuroprotective Activity of Pharmacological Compounds. Biochemistry (Moscow), 2019, 84, 1296-1305.	0.7	2
1300	Synapse alterations precede neuronal damage and storage pathology in a human cerebral organoid model of CLN3-juvenile neuronal ceroid lipofuscinosis. Acta Neuropathologica Communications, 2019, 7, 222.	2.4	49
1301	Modeling Brain Somatic Mosaicism With Cerebral Organoids, Including a Note on Mutant Microglia. Frontiers in Molecular Neuroscience, 2019, 12, 277.	1.4	4
1302	Derivation of familial iPSC lines from three ASD patients carrying NRXN1α and two controls (NUIGi022-A, NUIGi022-B; NUIGi023-A, NUIGi023-B; NUIGi023-B; NUIGi025-A, NUIGi025-B; NUIGi024-A, NUIGi024-B;) Tj ETQq1	b.g. 7843	1 : 4 rgBT /O
1303	Functional maturation of human neural stem cells in a 3D bioengineered brain model enriched with fetal brain-derived matrix. Scientific Reports, 2019, 9, 17874.	1.6	46
1304	High-throughput micropatterning platform reveals Nodal-dependent bisection of peri-gastrulation–associated versus preneurulation-associated fate patterning. PLoS Biology, 2019, 17, e3000081.	2.6	34
1305	Disease modelling in human organoids. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	254
1306	Modeling Polyglutamine Expansion Diseases with Induced Pluripotent Stem Cells. Neurotherapeutics, 2019, 16, 979-998.	2.1	21
1307	Neural Lineage Differentiation From Pluripotent Stem Cells to Mimic Human Brain Tissues. Frontiers in Bioengineering and Biotechnology, 2019, 7, 400.	2.0	55
1308	Dorsal-ventral patterned neural cyst from human pluripotent stem cells in a neurogenic niche. Science Advances, 2019, 5, eaax5933.	4.7	59
1309	Modelling heme-mediated brain injury associated with cerebral malaria in human brain cortical organoids. Scientific Reports, 2019, 9, 19162.	1.6	39
1310	Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature, 2019, 574, 418-422.	13.7	496
1311	Oxidative DNA Damage Signalling in Neural Stem Cells in Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-10.	1.9	14
1313	Early Actions of Neurotransmitters During Cortex Development and Maturation of Reprogrammed Neurons. Frontiers in Synaptic Neuroscience, 2019, 11, 33.	1.3	27

#	Article	IF	CITATIONS
1315	P.511 Deregulation of collapsin response mediator protein gene family in autism spectrum disorders. European Neuropsychopharmacology, 2019, 29, S360-S361.	0.3	0
1316	Genetic Modification of Brain Organoids. Frontiers in Cellular Neuroscience, 2019, 13, 558.	1.8	32
1317	Species-Specific miRNAs in Human Brain Development and Disease. Frontiers in Cellular Neuroscience, 2019, 13, 559.	1.8	26
1318	Putative Cellular and Molecular Roles of Zika Virus in Fetal and Pediatric Neuropathologies. Pediatric and Developmental Pathology, 2019, 22, 5-21.	0.5	5
1319	Neural tissue microphysiological systems in the era of patient-derived pluripotent stem cells. , 2019, , 249-296.		3
1320	Beta-propeller protein-associated neurodegeneration (BPAN) as a genetically simple model of multifaceted neuropathology resulting from defects in autophagy. Reviews in the Neurosciences, 2019, 30, 261-277.	1.4	18
1321	Advances in Cerebral Organoid Systems and their Application in Disease Modeling. Neuroscience, 2019, 399, 28-38.	1.1	17
1322	Engineered Microenvironment for Manufacturing Human Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells. Stem Cell Reports, 2019, 12, 84-97.	2.3	25
1323	Application of human pluripotent stem cells and pluripotent stem cell-derived cellular models for assessing drug toxicity. Expert Opinion on Drug Metabolism and Toxicology, 2019, 15, 61-75.	1.5	13
1324	Generation of Pancreatic Ductal Organoids and Wholeâ€Mount Immunostaining of Intact Organoids. Current Protocols in Cell Biology, 2019, 83, e82.	2.3	8
1325	Effects of minocycline and rapamycin in gamma-irradiated human embryonic stem cells-derived cerebral organoids. Molecular Biology Reports, 2019, 46, 1343-1348.	1.0	5
1326	Vincristine Impairs Microtubules and Causes Neurotoxicity in Cerebral Organoids. Neuroscience, 2019, 404, 530-540.	1.1	30
1327	Constructing and Deconstructing Cancers using Human Pluripotent Stem Cells and Organoids. Cell Stem Cell, 2019, 24, 12-24.	5.2	59
1328	Evaluation of variability in human kidney organoids. Nature Methods, 2019, 16, 79-87.	9.0	176
1329	Reliability of human cortical organoid generation. Nature Methods, 2019, 16, 75-78.	9.0	330
1330	Personalized Hydrogels for Engineering Diverse Fully Autologous Tissue Implants. Advanced Materials, 2019, 31, e1803895.	11.1	85
1331	Reversal of proliferation deficits caused by chromosome $16p13.11$ microduplication through targeting NFκB signaling: an integrated study of patient-derived neuronal precursor cells, cerebral organoids and in vivo brain imaging. Molecular Psychiatry, 2019, 24, 294-311.	4.1	36
1332	Human cardiomyocytes undergo enhanced maturation in embryonic stem cell-derived organoid transplants. Biomaterials, 2019, 192, 537-550.	5.7	61

#	Article	IF	CITATIONS
1333	Human SPG11 cerebral organoids reveal cortical neurogenesis impairment. Human Molecular Genetics, 2019, 28, 961-971.	1.4	20
1334	The effect of rho kinase inhibition on morphological and electrophysiological maturity in iPSC-derived neurons. Cell and Tissue Research, 2019, 375, 641-654.	1.5	9
1335	Human Cardiac Organoids for Disease Modeling. Clinical Pharmacology and Therapeutics, 2019, 105, 79-85.	2.3	98
1336	Transplantation of photoreceptors into the degenerative retina: Current state and future perspectives. Progress in Retinal and Eye Research, 2019, 69, 1-37.	7.3	130
1337	Harnessing stem cells and biomaterials to promote neural repair. British Journal of Pharmacology, 2019, 176, 355-368.	2.7	34
1338	Modern Ways of Obtaining Stem Cells. , 2019, , 17-36.		3
1339	Engineering advanced neural tissue constructs to mitigate acute cerebral inflammation after brain transplantation in rats. Biomaterials, 2019, 192, 510-522.	5.7	15
1340	Reprogramming the brain with synthetic neurobiology. Current Opinion in Biotechnology, 2019, 58, 37-44.	3.3	2
1341	Cortical interneuron function in autism spectrum condition. Pediatric Research, 2019, 85, 146-154.	1.1	32
1342	Alginate Hydrogel Modified with a Ligand Interacting with $\hat{l}\pm3\hat{l}^21$ Integrin Receptor Promotes the Differentiation of 3D Neural Spheroids toward Oligodendrocytes in Vitro. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5821-5833.	4.0	48
1343	Human Brain Slice Culture: A Useful Tool to Study Brain Disorders and Potential Therapeutic Compounds. Neuroscience Bulletin, 2019, 35, 244-252.	1.5	28
1344	Brain organoids: a next step for humanized Alzheimer's disease models?. Molecular Psychiatry, 2019, 24, 474-478.	4.1	50
1345	Pathological priming causes developmental gene network heterochronicity in autistic subject-derived neurons. Nature Neuroscience, 2019, 22, 243-255.	7.1	209
1346	Nonadhesive Alginate Hydrogels Support Growth of Pluripotent Stem Cell-Derived Intestinal Organoids. Stem Cell Reports, 2019, 12, 381-394.	2.3	160
1347	The Astrocyte–Neuron Interface: An Overview on Molecular and Cellular Dynamics Controlling Formation and Maintenance of the Tripartite Synapse. Methods in Molecular Biology, 2019, 1938, 3-18.	0.4	20
1348	Disturbed redox homeostasis and oxidative stress: Potential players in the developmental regression in Rett syndrome. Neuroscience and Biobehavioral Reviews, 2019, 98, 154-163.	2.9	44
1349	Structurally Conserved Primate LncRNAs Are Transiently Expressed during Human Cortical Differentiation and Influence Cell-Type-Specific Genes. Stem Cell Reports, 2019, 12, 245-257.	2.3	53
1350	Neuronal migration in the CNS during development and disease: insights from <i>in vivo</i> and <i>in vitro</i> models. Development (Cambridge), 2019, 146, .	1.2	110

#	Article	IF	CITATIONS
1351	Glioblastoma's Next Top Model: Novel Culture Systems for Brain Cancer Radiotherapy Research. Cancers, 2019, 11, 44.	1.7	59
1352	In vitro and ex vivo systems at the forefront of infection modeling and drug discovery. Biomaterials, 2019, 198, 228-249.	5.7	54
1353	Use of induced pluripotent stem cells (iPSCs) and cerebral organoids in modeling the congenital infection and neuropathogenesis induced by Zika virus. Journal of Medical Virology, 2019, 91, 525-532.	2.5	11
1354	FACSâ€Mediated Isolation of Neuronal Cell Populations From Virusâ€Infected Human Embryonic Stem Cellâ€"Derived Cerebral Organoid Cultures. Current Protocols in Stem Cell Biology, 2019, 48, e65.	3.0	13
1355	Extracellular matrix: The ideal natural fibrous nanocomposite products. , 2019, , 263-286.		2
1356	Inherited Disorders of Neurotransmitters: Classification and Practical Approaches for Diagnosis and Treatment. Neuropediatrics, 2019, 50, 002-014.	0.3	55
1357	From organotypic culture to bodyâ€onâ€aâ€chip: A neuroendocrine perspective. Journal of Neuroendocrinology, 2019, 31, e12650.	1.2	10
1358	Enrichment and Identification of Neural Stem Cells in Neurospheres Using Rigidity-Tunable Gels. Tissue Engineering - Part A, 2019, 25, 427-436.	1.6	3
1359	Human brain development and its in vitro recapitulation. Neuroscience Research, 2019, 138, 33-42.	1.0	25
1360	Acute Inflammation After Traumatic Brain Injury. , 2019, , 221-239.		1
1361	Development of a human skeletal micro muscle platform with pacing capabilities. Biomaterials, 2019, 198, 217-227.	5.7	38
1362	Isolation of synaptic vesicles from genetically engineered cultured neurons. Journal of Neuroscience Methods, 2019, 312, 114-121.	1.3	1
1363	Organoids for Advanced Therapeutics and Disease Models. Advanced Therapeutics, 2019, 2, 1800087.	1.6	22
1364	Brain Organoids: A New, Transformative Investigational Tool for Neuroscience Research. Advanced Biology, 2019, 3, e1800174.	3.0	4
1365	Building an Artificial Stem Cell Niche: Prerequisites for Future 3Dâ€Formation of Inner Ear Structures—Toward 3D Inner Ear Biotechnology. Anatomical Record, 2020, 303, 408-426.	0.8	9
1366	New frontiers in modeling tuberous sclerosis with human stem cellâ€derived neurons and brain organoids. Developmental Dynamics, 2020, 249, 46-55.	0.8	26
1367	Using brain organoids to study human neurodevelopment, evolution and disease. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e347.	5.9	23
1368	New Drug Discovery Paradigms for Retinal Diseases: A Focus on Retinal Organoids. Journal of Ocular Pharmacology and Therapeutics, 2020, 36, 18-24.	0.6	29

#	Article	IF	CITATIONS
1369	Modeling genetic epilepsies in a dish. Developmental Dynamics, 2020, 249, 56-75.	0.8	27
1370	Modeling neuropsychiatric disorders using human induced pluripotent stem cells. Protein and Cell, 2020, 11, 45-59.	4.8	58
1371	Human pluripotent stem cell–derived models and drug screening in CNS precision medicine. Annals of the New York Academy of Sciences, 2020, 1471, 18-56.	1.8	54
1372	Kidney organoids in translational medicine: Disease modeling and regenerative medicine. Developmental Dynamics, 2020, 249, 34-45.	0.8	33
1373	Using induced pluripotent stem cell neuronal models to study neurodegenerative diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165431.	1.8	22
1374	Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnology Advances, 2020, 42, 107370.	6.0	78
1375	Host–parasite interaction associated with major mental illness. Molecular Psychiatry, 2020, 25, 194-205.	4.1	26
1376	Stem cells: A path towards improved epilepsy therapies. Neuropharmacology, 2020, 168, 107781.	2.0	9
1377	On Stem Cells, Organoids and Human Disease. European Review, 2020, 28, 1-5.	0.4	5
1378	7-Ketocholesterol and $7\hat{l}^2$ -hydroxycholesterol: In vitro and animal models used to characterize their activities and to identify molecules preventing their toxicity. Biochemical Pharmacology, 2020, 173, 113648.	2.0	48
1379	Reconstituting neurovascular unit based on the close relations between neural stem cells and endothelial cells: an effective method to explore neurogenesis and angiogenesis. Reviews in the Neurosciences, 2020, 31, 143-159.	1.4	16
1380	Blood vessel formation in cerebral organoids formed from human embryonic stem cells. Biochemical and Biophysical Research Communications, 2020, 521, 84-90.	1.0	92
1381	Biofabrication of neural microphysiological systems using magnetic spheroid bioprinting. Biofabrication, 2020, 12, 015002.	3.7	43
1382	Towards manufacturing of human organoids. Biotechnology Advances, 2020, 39, 107460.	6.0	44
1383	When Bio Meets Technology: Biohybrid Neural Interfaces. Advanced Materials, 2020, 32, e1903182.	11.1	65
1384	Three-dimensional modeling of human neurodegeneration: brain organoids coming of age. Molecular Psychiatry, 2020, 25, 254-274.	4.1	78
1385	Modeling Alzheimer's disease with iPSC-derived brain cells. Molecular Psychiatry, 2020, 25, 148-167.	4.1	263
1386	Probing disrupted neurodevelopment in autism using human stem cellâ€derived neurons and organoids: An outlook into future diagnostics and drug development. Developmental Dynamics, 2020, 249, 6-33.	0.8	25

#	Article	IF	CITATIONS
1387	CRISPR-based functional evaluation of schizophrenia risk variants. Schizophrenia Research, 2020, 217, 26-36.	1.1	10
1388	Opportunities and Challenges in Phenotypic Screening for Neurodegenerative Disease Research. Journal of Medicinal Chemistry, 2020, 63, 1823-1840.	2.9	33
1389	What would a synthetic connectome look like?. Physics of Life Reviews, 2020, 33, 1-15.	1.5	11
1390	Interneuron Types as Attractors and Controllers. Annual Review of Neuroscience, 2020, 43, 1-30.	5.0	127
1391	Abnormal organization during neurodevelopment in a mouse model of Sandhoff disease. Neuroscience Research, 2020, 155, 12-19.	1.0	3
1392	Human Tridimensional Neuronal Cultures for Phenotypic Drug Screening in Inherited Peripheral Neuropathies. Clinical Pharmacology and Therapeutics, 2020, 107, 1231-1239.	2.3	12
1393	Organotypic Neurovascular Models: Past Results and Future Directions. Trends in Molecular Medicine, 2020, 26, 273-284.	3.5	11
1394	3D cell culture models and organâ€onâ€aâ€chip: Meet separation science and mass spectrometry. Electrophoresis, 2020, 41, 56-64.	1.3	41
1395	Developing a Multidisciplinary Approach for Engineering Stem Cell Organoids. Annals of Biomedical Engineering, 2020, 48, 1895-1904.	1.3	10
1396	Review of functional in vitro models of the blood-cerebrospinal fluid barrier in leukaemia research. Journal of Neuroscience Methods, 2020, 329, 108478.	1.3	9
1397	The Next 50 Years of Neuroscience. Journal of Neuroscience, 2020, 40, 101-106.	1.7	23
1398	Recreating Physiological Environments In Vitro: Design Rules for Microfluidicâ€Based Vascularized Tissue Constructs. Small, 2020, 16, 1905055.	5.2	22
1399	Microphysiological system design: simplicity is elegance. Current Opinion in Biomedical Engineering, 2020, 13, 94-102.	1.8	16
1400	Organoid and pluripotent stem cells in Parkinson's disease modeling: an expert view on their value to drug discovery. Expert Opinion on Drug Discovery, 2020, 15, 427-441.	2.5	21
1401	A Patient-Derived Glioblastoma Organoid Model and Biobank Recapitulates Inter- and Intra-tumoral Heterogeneity. Cell, 2020, 180, 188-204.e22.	13.5	529
1402	Organoid and Assembloid Technologies for Investigating Cellular Crosstalk in Human Brain Development and Disease. Trends in Cell Biology, 2020, 30, 133-143.	3.6	148
1403	Cerebral Organoids Repair Ischemic Stroke Brain Injury. Translational Stroke Research, 2020, 11, 983-1000.	2.3	70
1404	Cell sources and methods for producing organotypic in vitro human tissue models. , 2020, , 13-45.		1

#	Article	IF	CITATIONS
1405	Back to the origins: Human brain organoids to investigate neurodegeneration. Brain Research, 2020, 1727, 146561.	1.1	12
1406	Anchoring a dynamic in vitro model of human neuronal differentiation to key processes of early brain development in vivo. Reproductive Toxicology, 2020, 91, 116-130.	1.3	2
1407	Pluripotent stem cell biology and engineering. , 2020, , 1-31.		0
1408	Human Pluripotent Stem Cell-Derived Extracellular Vesicles: Characteristics and Applications. Tissue Engineering - Part B: Reviews, 2020, 26, 129-144.	2.5	34
1409	iPSC modeling of rare pediatric disorders. Journal of Neuroscience Methods, 2020, 332, 108533.	1.3	12
1410	Are There Islands of Awareness?. Trends in Neurosciences, 2020, 43, 6-16.	4.2	54
1411	Development of an Anisotropically Organized Brain dECM Hydrogel-Based 3D Neuronal Culture Platform for Recapitulating the Brain Microenvironment in Vivo. ACS Biomaterials Science and Engineering, 2020, 6, 610-620.	2.6	27
1412	A critical look: Challenges in differentiating human pluripotent stem cells into desired cell types and organoids. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e368.	5.9	27
1413	Organoids for cell therapy and drug discovery. , 2020, , 461-471.		3
1414	Brain Organoids: Human Neurodevelopment in a Dish. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035709.	2.3	65
1415	Reverse engineering human brain evolution using organoid models. Brain Research, 2020, 1729, 146582.	1.1	25
1416	CNS organoids: an innovative tool for neurological disease modeling and drug neurotoxicity screening. Drug Discovery Today, 2020, 25, 456-465.	3.2	36
1417	Organoids. , 2020, , 123-129.		3
1418	Human Embryogenesis: A Comparative Perspective. Annual Review of Cell and Developmental Biology, 2020, 36, 411-440.	4.0	39
1419	Matisse and the Organoids: The Art of Science. Neuroscientist, 2020, , 107385842096136.	2.6	0
1420	Human Brain Organoid Models of Developmental Epilepsies. Epilepsy Currents, 2020, 20, 282-290.	0.4	17
1421	Isolation and Culture of Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoid Cells. Methods in Molecular Biology, 2020, , 483-494.	0.4	3
1422	Human stem cell-derived oligodendrocytes: From humanized animal models to cell therapy in myelin diseases. Seminars in Cell and Developmental Biology, 2021, 116, 53-61.	2.3	8

#	Article	IF	CITATIONS
1423	Modeling alcohol-induced neurotoxicity using human induced pluripotent stem cell-derived three-dimensional cerebral organoids. Translational Psychiatry, 2020, 10, 347.	2.4	47
1424	Modeling the function of BAX and BAK in early human brain development using iPSC-derived systems. Cell Death and Disease, 2020, 11, 808.	2.7	9
1425	Role of miRNA-mRNA Interaction in Neural Stem Cell Differentiation of Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2020, 21, 6980.	1.8	6
1426	Organoids, Assembloids, and Novel Biotechnology: Steps Forward in Developmental and Disease-Related Neuroscience. Neuroscientist, 2021, 27, 463-472.	2.6	22
1427	When glia meet induced pluripotent stem cells (iPSCs). Molecular and Cellular Neurosciences, 2020, 109, 103565.	1.0	15
1428	Generation of human induced pluripotent stem cell-derived liver buds with chemically defined and animal origin-free media. Scientific Reports, 2020, 10, 17937.	1.6	21
1429	Complete inhibition of ABCB1 and ABCG2 at the bloodâ€"brain barrier by co-infusion of erlotinib and tariquidar to improve brain delivery of the model ABCB1/ABCG2 substrate [¹¹ C]erlotinib. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1634-1646.	2.4	17
1430	Engineering Three-Dimensional Tumor Models to Study Glioma Cancer Stem Cells and Tumor Microenvironment. Frontiers in Cellular Neuroscience, 2020, 14, 558381.	1.8	38
1431	Human Cerebral Organoids Reveal Early Spatiotemporal Dynamics and Pharmacological Responses of UBE3A. Stem Cell Reports, 2020, 15, 845-854.	2.3	15
1432	Recent progress in translational engineered <i>in vitro</i> models of the central nervous system. Brain, 2020, 143, 3181-3213.	3.7	64
1433	Functional Characterization of Three-Dimensional Cortical Cultures for InÂVitro Modeling of Brain Networks. IScience, 2020, 23, 101434.	1.9	28
1434	Temporal Modulations of NODAL, BMP, and WNT Signals Guide the Spatial Patterning in Self-Organized Human Ectoderm Tissues. Matter, 2020, 2, 1621-1638.	5.0	6
1435	Genetic developmental timing revealed by inter-species transplantations in fish. Development (Cambridge), 2020, 147, .	1.2	10
1436	Neural Stem Cells and Methods for Their Generation From Induced Pluripotent Stem Cells in vitro. Frontiers in Cell and Developmental Biology, 2020, 8, 815.	1.8	45
1437	Organotypic Models to Study Human Glioblastoma: Studying the Beast in Its Ecosystem. IScience, 2020, 23, 101633.	1.9	12
1438	Artificial Intelligence, Brains, and Beyond: Imperial College London Neurotechnology Symposium, 2020. Bioelectricity, 2020, 2, 310-313.	0.6	2
1439	New era of personalised epilepsy management. BMJ, The, 2020, 371, m3658.	3.0	20
1440	Engineered microtissue as an anatomicallyÂinspired model of Parkinson's disease. Current Opinion in Biomedical Engineering, 2020, 14, 75-83.	1.8	5

#	Article	IF	CITATIONS
1441	Toward Brain-on-a-Chip: Human Induced Pluripotent Stem Cell-Derived Guided Neuronal Networks in Tailor-Made 3D Nanoprinted Microscaffolds. ACS Nano, 2020, 14, 13091-13102.	7.3	44
1442	Human cerebral organoids establish subcortical projections in the mouse brain after transplantation. Molecular Psychiatry, 2021, 26, 2964-2976.	4.1	55
1443	Generation of cortical neurons through large-scale expanding neuroepithelial stem cell from human pluripotent stem cells. Stem Cell Research and Therapy, 2020, 11, 431.	2.4	4
1444	Modeling the Interaction between the Microenvironment and Tumor Cells in Brain Tumors. Neuron, 2020, 108, 1025-1044.	3.8	31
1445	Organotypic culture assays for murine and human primary and metastatic-site tumors. Nature Protocols, 2020, 15, 2413-2442.	5 . 5	40
1446	Detection of amyloid aggregation in living systems. , 2020, , 127-152.		0
1447	Neurodevelopmental impairment induced by prenatal valproic acid exposure shown with the human cortical organoid-on-a-chip model. Microsystems and Nanoengineering, 2020, 6, 49.	3.4	39
1448	Towards brain-tissue-like biomaterials. Nature Communications, 2020, 11, 3423.	5 . 8	71
1449	Cerebral organoids as tools to identify the developmental roots of autism. Molecular Autism, 2020, 11, 58.	2.6	34
1450	Microengineered hiPSC-Derived 3D Amnion Tissue Model to Probe Amniotic Inflammatory Responses under Bacterial Exposure. ACS Biomaterials Science and Engineering, 2020, 6, 4644-4652.	2.6	5
1451	Human Induced Pluripotent Stem Cell Models of Neurodegenerative Disorders for Studying the Biomedical Implications of Autophagy. Journal of Molecular Biology, 2020, 432, 2754-2798.	2.0	15
1452	Innovations in the Neurosurgical Management of Epilepsy. World Neurosurgery, 2020, 139, 775-788.	0.7	8
1453	Modeling endodermal organ development and diseases using human pluripotent stem cell-derived organoids. Journal of Molecular Cell Biology, 2020, 12, 580-592.	1.5	4
1454	The Rise of Retinal Organoids for Vision Research. International Journal of Molecular Sciences, 2020, 21, 8484.	1.8	13
1455	The Application of Brain Organoids: From Neuronal Development to Neurological Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 579659.	1.8	65
1456	Simplified Brain Organoids for Rapid and Robust Modeling of Brain Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 594090.	1.8	21
1457	3D Bioprinting of Neural Tissues. Advanced Healthcare Materials, 2021, 10, e2001600.	3.9	48
1458	NR2F1 regulates regional progenitor dynamics in the mouse neocortex and cortical gyrification in BBSOAS patients. EMBO Journal, 2020, 39, e104163.	3.5	49

#	Article	IF	CITATIONS
1459	The need to develop a framework for human-relevant research in India: Towards better disease models and drug discovery. Journal of Biosciences, 2020, 45, 1.	0.5	2
1460	Microglia Play an Essential Role in Synapse Development and Neuron Maturation in Tissue-Engineered Neural Tissues. Frontiers in Neuroscience, 2020, 14, 586452.	1.4	6
1461	Intelligent Microfluidics: The Convergence of Machine Learning and Microfluidics in Materials Science and Biomedicine. Matter, 2020, 3, 1893-1922.	5.0	85
1462	Dissecting the Genetic and Etiological Causes of Primary Microcephaly. Frontiers in Neurology, 2020, 11, 570830.	1.1	47
1463	The Organoid Era Permits the Development of New Applications to Study Glioblastoma. Cancers, 2020, 12, 3303.	1.7	24
1464	Modeling neurodegenerative diseases with cerebral organoids and other three-dimensional culture systems: focus on Alzheimer's disease. Stem Cell Reviews and Reports, 2022, 18, 696-717.	1.7	28
1465	Translating Embryogenesis to Generate Organoids: Novel Approaches to Personalized Medicine. IScience, 2020, 23, 101485.	1.9	30
1466	Editorial: Brain Organoids: Modeling in Neuroscience. Frontiers in Cellular Neuroscience, 2020, 14, 602946.	1.8	2
1467	Generation of brain organoids from mouse ESCs via teratoma formation. Stem Cell Research, 2020, 49, 102100.	0.3	3
1468	Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells. Nature Biotechnology, 2020, 38, 1421-1430.	9.4	206
1469	Applying hiPSCs and Biomaterials Towards an Understanding and Treatment of Traumatic Brain Injury. Frontiers in Cellular Neuroscience, 2020, 14, 594304.	1.8	10
1470	Epidermal Growth Factor Is Essential for the Maintenance of Novel Prostate Epithelial Cells Isolated From Patient-Derived Organoids. Frontiers in Cell and Developmental Biology, 2020, 8, 571677.	1.8	14
1471	Tailoring Common Hydrogels into 3D Cell Culture Templates. Advanced Healthcare Materials, 2020, 9, e2000519.	3.9	12
1472	Choroid Plexus Organoids: Harnessing CSF Gatekeepers for Brain Therapeutics. Cell Stem Cell, 2020, 27, 191-192.	5.2	3
1473	A Fresh Approach to Targeting Aging Cells: CAR-T Cells Enhance Senolytic Specificity. Cell Stem Cell, 2020, 27, 192-194.	5,2	4
1474	In vitro modeling for inherited neurological diseases using induced pluripotent stem cells: from 2D to organoid. Archives of Pharmacal Research, 2020, 43, 877-889.	2.7	12
1475	Acrylamide exposure represses neuronal differentiation, induces cell apoptosis and promotes tau hyperphosphorylation in hESC-derived 3D cerebral organoids. Food and Chemical Toxicology, 2020, 144, 111643.	1.8	23
1476	Developmental excitation-inhibition imbalance underlying psychoses revealed by single-cell analyses of discordant twins-derived cerebral organoids. Molecular Psychiatry, 2020, 25, 2695-2711.	4.1	73

#	Article	IF	Citations
1477	Formation and optimization of three-dimensional organoids generated from urine-derived stem cells for renal function in vitro. Stem Cell Research and Therapy, 2020, 11, 309.	2.4	18
1478	Axonal Extensions along Corticospinal Tracts from Transplanted Human Cerebral Organoids. Stem Cell Reports, 2020, 15, 467-481.	2.3	49
1479	Rapid Processing and Drug Evaluation in Glioblastoma Patient-Derived Organoid Models with 4D Bioprinted Arrays. IScience, 2020, 23, 101365.	1.9	46
1480	Aging and Rejuvenation of Neural Stem Cells and Their Niches. Cell Stem Cell, 2020, 27, 202-223.	5.2	118
1481	Brain Organoids: Tiny Mirrors of Human Neurodevelopment and Neurological Disorders. Neuroscientist, 2021, 27, 388-426.	2.6	11
1482	Single-cell transcriptomics reveals multiple neuronal cell types in human midbrain-specific organoids. Cell and Tissue Research, 2020, 382, 463-476.	1.5	30
1483	A novel decellularization method to produce brain scaffolds. Tissue and Cell, 2020, 67, 101412.	1.0	14
1484	Rapid induction of gliogenesis in OLIG2 and NKX2.2-expressing progenitors-derived spheroids. Stem Cells Translational Medicine, 2020, 9, 1643-1650.	1.6	4
1485	Application of organoids in translational research of human diseases with a particular focus on gastrointestinal cancers. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188350.	3.3	16
1486	Brain organoids: Human 3D models to investigate neuronal circuits assembly, function and dysfunction. Brain Research, 2020, 1746, 147028.	1.1	25
1487	Loss of NARS1 impairs progenitor proliferation in cortical brain organoids and leads to microcephaly. Nature Communications, 2020, 11, 4038.	5.8	44
1488	Advanced Materials to Enhance Central Nervous System Tissue Modeling and Cell Therapy. Advanced Functional Materials, 2020, 30, 2002931.	7.8	7
1489	Application of induced pluripotent stem cells in epilepsy. Molecular and Cellular Neurosciences, 2020, 108, 103535.	1.0	13
1490	Induced pluripotent stem cells as a platform to understand patientâ€specific responses to opioids and anaesthetics. British Journal of Pharmacology, 2020, 177, 4581-4594.	2.7	7
1491	APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids. Nature Communications, 2020, 11, 5540.	5.8	172
1492	Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nature Neuroscience, 2020, 23, 1496-1508.	7.1	171
1493	Identification of Molecular Signatures in Neural Differentiation and Neurological Diseases Using Digital Color-Coded Molecular Barcoding. Stem Cells International, 2020, 2020, 1-9.	1.2	3
1494	A simple metastatic brain cancer model using human embryonic stem cellâ€derived cerebral organoids. FASEB Journal, 2020, 34, 16464-16475.	0.2	20

#	Article	IF	CITATIONS
1495	Microtechnology-based methods for organoid models. Microsystems and Nanoengineering, 2020, 6, 76.	3.4	145
1496	Modelling frontotemporal dementia using patient-derived induced pluripotent stem cells. Molecular and Cellular Neurosciences, 2020, 109, 103553.	1.0	19
1497	<i>GNAO1</i> organizes the cytoskeletal remodeling and firing of developing neurons. FASEB Journal, 2020, 34, 16601-16621.	0.2	14
1498	A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science, 2020, 370, 935-941.	6.0	101
1499	Herpes simplex virus type 1 infection leads to neurodevelopmental disorder-associated neuropathological changes. PLoS Pathogens, 2020, 16, e1008899.	2.1	49
1500	Transport of ultrasmall gold nanoparticles (2Ânm) across the blood–brain barrier in a six-cell brain spheroid model. Scientific Reports, 2020, 10, 18033.	1.6	55
1501	Shape-memory materials and their clinical applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 315-335.	1.8	17
1502	A loss-of-function NUAK2 mutation in humans causes anencephaly due to impaired Hippo-YAP signaling. Journal of Experimental Medicine, 2020, 217, .	4.2	25
1503	Comparative Transcriptomic Analysis of Cerebral Organoids and Cortical Neuron Cultures Derived from Human Induced Pluripotent Stem Cells. Stem Cells and Development, 2020, 29, 1370-1381.	1.1	11
1504	Is the Immunological Response a Bottleneck for Cell Therapy in Neurodegenerative Diseases?. Frontiers in Cellular Neuroscience, 2020, 14, 250.	1.8	20
1505	CSS: cluster similarity spectrum integration of single-cell genomics data. Genome Biology, 2020, 21, 224.	3.8	30
1506	In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nature Communications, 2020, 11 , 4283.	5 . 8	80
1507	Toxicity Assessment of SiO2 and TiO2 in Normal Colon Cells, In Vivo and in Human Colon Organoids. Molecules, 2020, 25, 3594.	1.7	17
1508	Development of an N-Cadherin Biofunctionalized Hydrogel to Support the Formation of Synaptically Connected Neural Networks. ACS Biomaterials Science and Engineering, 2020, 6, 5811-5822.	2.6	16
1509	Human iPSCâ€Derived Bloodâ€Brain Barrier Models: Valuable Tools for Preclinical Drug Discovery and Development?. Current Protocols in Stem Cell Biology, 2020, 55, e122.	3.0	26
1510	Human Pluripotent Stem Cell-Derived Neural Cells as a Relevant Platform for Drug Screening in Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 6867.	1.8	26
1511	Electrophysiological Maturation of Cerebral Organoids Correlates with Dynamic Morphological and Cellular Development. Stem Cell Reports, 2020, 15, 855-868.	2.3	94
1512	Upgrading the Physiological Relevance of Human Brain Organoids. Neuron, 2020, 107, 1014-1028.	3.8	55

#	Article	IF	Citations
1513	Resolving Neurodevelopmental and Vision Disorders Using Organoid Single-Cell Multi-omics. Neuron, 2020, 107, 1000-1013.	3.8	24
1514	Silk fibroin sponge combined with cell-derived ECM for tissue-engineered 3D functional neural tissues. Science China Technological Sciences, 2020, 63, 2113-2122.	2.0	4
1515	Biocompatibility of \hat{l} ±-Al2O3 Ceramic Substrates with Human Neural Precursor Cells. Journal of Functional Biomaterials, 2020, 11, 65.	1.8	7
1516	Modeling Human Nonalcoholic Fatty Liver Disease (NAFLD) with an Organoids-on-a-Chip System. ACS Biomaterials Science and Engineering, 2020, 6, 5734-5743.	2.6	50
1517	iPSCs-Derived Platform: A Feasible Tool for Probing the Neurotropism of SARS-CoV-2. ACS Chemical Neuroscience, 2020, 11, 2489-2491.	1.7	10
1518	Are Organoids Ready for Prime Time?. Cell Stem Cell, 2020, 27, 361-365.	5 . 2	24
1519	Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Molecular Autism, 2020, 11, 69.	2.6	125
1520	Establishment of patient-derived cancer organoids for drug-screening applications. Nature Protocols, 2020, 15, 3380-3409.	5.5	313
1521	Looking at neurodevelopment through a big data lens. Science, 2020, 369, .	6.0	28
1522	Human cerebral organoids and consciousness: a double-edged sword. Monash Bioethics Review, 2020, 38, 105-128.	0.4	38
1523	Immune Factor, TNFα, Disrupts Human Brain Organoid Development Similar to Schizophrenia—Schizophrenia Increases Developmental Vulnerability to TNFα. Frontiers in Cellular Neuroscience, 2020, 14, 233.	1.8	23
1524	Cerebral Organoids: A Model of Brain Development. Russian Journal of Developmental Biology, 2020, 51, 231-245.	0.1	1
1525	SMARCB1 loss interacts with neuronal differentiation state to block maturation and impact cell stability. Genes and Development, 2020, 34, 1316-1329.	2.7	30
1526	Total Recall: Lateral Habenula and Psychedelics in the Study of Depression and Comorbid Brain Disorders. International Journal of Molecular Sciences, 2020, 21, 6525.	1.8	4
1527	Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunology, 2020, 13, 877-891.	2.7	155
1528	Integrative analyses prioritize GNL3 as a risk gene for bipolar disorder. Molecular Psychiatry, 2020, 25, 2672-2684.	4.1	18
1529	Modelling <i>Toxoplasma gondii</i> infection in human cerebral organoids. Emerging Microbes and Infections, 2020, 9, 1943-1954.	3.0	31
1530	Applications of organoids for cancer biology and precision medicine. Nature Cancer, 2020, 1, 761-773.	5.7	93

#	Article	IF	CITATIONS
1531	Practical Review on Preclinical Human 3D Glioblastoma Models: Advances and Challenges for Clinical Translation. Cancers, 2020, 12, 2347.	1.7	25
1532	The road ahead in genetics and genomics. Nature Reviews Genetics, 2020, 21, 581-596.	7.7	118
1533	Mammary epithelial morphogenesis in 3D combinatorial microenvironments. Scientific Reports, 2020, 10, 21635.	1.6	4
1534	Modeling Rett Syndrome With Human Patient-Specific Forebrain Organoids. Frontiers in Cell and Developmental Biology, 2020, 8, 610427.	1.8	49
1535	Methadone Suppresses Neuronal Function and Maturation in Human Cortical Organoids. Frontiers in Neuroscience, 2020, 14, 593248.	1.4	9
1536	Combinatorial Effect of Magnetic Field and Radiotherapy in PDAC Organoids: A Pilot Study. Biomedicines, 2020, 8, 609.	1.4	6
1537	The Extracellular Matrix in the Evolution of Cortical Development and Folding. Frontiers in Cell and Developmental Biology, 2020, 8, 604448.	1.8	24
1538	Glioblastoma Organoids: Pre-Clinical Applications and Challenges in the Context of Immunotherapy. Frontiers in Oncology, 2020, 10, 604121.	1.3	55
1539	Toward Spatial Identities in Human Brain Organoids-on-Chip Induced by Morphogen-Soaked Beads. Bioengineering, 2020, 7, 164.	1.6	15
1540	Human iNSC-derived brain organoid model of lysosomal storage disorder in Niemann–Pick disease type C. Cell Death and Disease, 2020, 11, 1059.	2.7	19
1541	Stem Cells and Organoid Technology in Precision Medicine in Inflammation: Are We There Yet?. Frontiers in Immunology, 2020, 11, 573562.	2.2	13
1542	Challenges in Modeling Human Neural Circuit Formation via Brain Organoid Technology. Frontiers in Cellular Neuroscience, 2020, 14, 607399.	1.8	15
1543	Review: In vitro Cell Platform for Understanding Developmental Toxicity. Frontiers in Genetics, 2020, 11, 623117.	1.1	6
1544	Advanced 3D Cell Culture Techniques in Micro-Bioreactors, Part I: A Systematic Analysis of the Literature Published between 2000 and 2020. Processes, 2020, 8, 1656.	1.3	8
1545	Surfaceâ€Functionalized Self‧tanding Microdevices Exhibit Predictive Localization and Seamless Integration in 3D Neural Spheroids. Advanced Biology, 2020, 4, 2000114.	3.0	7
1546	Multiscale 3D phenotyping of human cerebral organoids. Scientific Reports, 2020, 10, 21487.	1.6	46
1547	Neuronal differentiation strategies: insights from single-cell sequencing and machine learning. Development (Cambridge), 2020, 147, .	1.2	12
1548	Patient-Derived Tumor Organoids for Drug Repositioning in Cancer Care: A Promising Approach in the Era of Tailored Treatment. Cancers, 2020, 12, 3636.	1.7	23

#	Article	IF	Citations
1549	TGF- \hat{l}^21 Suppresses Proliferation and Induces Differentiation in Human iPSC Neural in vitro Models. Frontiers in Cell and Developmental Biology, 2020, 8, 571332.	1.8	6
1550	Expression of a novel brain specific isoform of C3G is regulated during development. Scientific Reports, 2020, 10, 18838.	1.6	8
1551	Human pluripotent stem cellâ€derived lung organoids: Potential applications in development and disease modeling. Wiley Interdisciplinary Reviews: Developmental Biology, 2021, 10, e399.	5.9	32
1552	Meeting report on the NIDDK/AUA Workshop on Congenital Anomalies of External Genitalia: challenges and opportunities for translational research. Journal of Pediatric Urology, 2020, 16, 791-804.	0.6	7
1553	Updated perspectives on vascular cell specification and pluripotent stem cell-derived vascular organoids for studying vasculopathies. Cardiovascular Research, 2020, , .	1.8	9
1554	Brain Organoids as Model Systems for Genetic Neurodevelopmental Disorders. Frontiers in Cell and Developmental Biology, 2020, 8, 590119.	1.8	31
1555	Modeling cancer progression using human pluripotent stem cell-derived cells and organoids. Stem Cell Research, 2020, 49, 102063.	0.3	12
1556	Solving the Issue of Ionizing Radiation Induced Neurotoxicity by Using Novel Cell Models and State of the Art Accelerator Facilities. Frontiers in Physics, 2020, 8, .	1.0	4
1557	Polymer Hydrogels to Guide Organotypic and Organoid Cultures. Advanced Functional Materials, 2020, 30, 2000097.	7.8	61
1558	Glaucoma as a Neurodegenerative Disease Caused by Intrinsic Vulnerability Factors. Progress in Neurobiology, 2020, 193, 101817.	2.8	27
1559	Single cell transcriptomics identifies stem cell-derived graft composition in a model of Parkinson's disease. Nature Communications, 2020, 11, 2434.	5.8	54
1560	Multi-Functionalized Self-Assembling Peptides as Reproducible 3D Cell Culture Systems Enabling Differentiation and Survival of Various Human Neural Stem Cell Lines. Frontiers in Neuroscience, 2020, 14, 413.	1.4	27
1561	A Primer on Human Brain Organoids for the Neurosurgeon. Neurosurgery, 2020, 87, 620-629.	0.6	7
1562	Molecular causes of primary microcephaly and related diseases: a report from the UNIA Workshop. Chromosoma, 2020, 129, 115-120.	1.0	5
1563	Microfluidic Control of Tumor and Stromal Cell Spheroids Pairing and Merging for Three-Dimensional Metastasis Study. Analytical Chemistry, 2020, 92, 7638-7645.	3.2	24
1564	Modeling traumatic brain injury with human brain organoids. Current Opinion in Biomedical Engineering, 2020, 14, 52-58.	1.8	15
1565	CD49f Is a Novel Marker of Functional and Reactive Human iPSC-Derived Astrocytes. Neuron, 2020, 107, 436-453.e12.	3.8	115
1566	Transposable Elements: A Common Feature of Neurodevelopmental and Neurodegenerative Disorders. Trends in Genetics, 2020, 36, 610-623.	2.9	64

#	Article	IF	CITATIONS
1567	Dynamic Characterization of Structural, Molecular, and Electrophysiological Phenotypes of Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoids, and Comparison with Fetal and Adult Gene Profiles. Cells, 2020, 9, 1301.	1.8	35
1568	Modeling Controlled Cortical Impact Injury in 3D Brain‣ike Tissue Cultures. Advanced Healthcare Materials, 2020, 9, e2000122.	3.9	21
1569	Do not keep it simple: recent advances in the generation of complex organoids. Journal of Neural Transmission, 2020, 127, 1569-1577.	1.4	31
1570	Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biology, 2020, 18, e3000705.	2.6	202
1571	Ultrasmall gold nanoparticles (2Ânm) can penetrate and enter cell nuclei in an in vitro 3D brain spheroid model. Acta Biomaterialia, 2020, 111, 349-362.	4.1	51
1572	FASN-Dependent Lipid Metabolism Links Neurogenic Stem/Progenitor Cell Activity to Learning and Memory Deficits. Cell Stem Cell, 2020, 27, 98-109.e11.	5.2	62
1573	Microphysiological Systems: Design, Fabrication, and Applications. ACS Biomaterials Science and Engineering, 2020, 6, 3231-3257.	2.6	32
1575	Single-cell genomic analysis of human cerebral organoids. Methods in Cell Biology, 2020, 159, 229-256.	0.5	14
1576	Neurotransmitters as Modulators of Neural Progenitor Cell Proliferation During Mammalian Neocortex Development. Frontiers in Cell and Developmental Biology, 2020, 8, 391.	1.8	23
1577	Generating ventral spinal organoids from human induced pluripotent stem cells. Methods in Cell Biology, 2020, 159, 257-277.	0.5	13
1578	The Use of Patient-Derived Induced Pluripotent Stem Cells for Alzheimer's Disease Modeling. Progress in Neurobiology, 2020, 192, 101804.	2.8	15
1579	Synthetic alternatives to Matrigel. Nature Reviews Materials, 2020, 5, 539-551.	23.3	498
1580	"Tissues in a Dish― Plastic and Reconstructive Surgery - Global Open, 2020, 8, e2787.	0.3	4
1581	A brief history of organoids. American Journal of Physiology - Cell Physiology, 2020, 319, C151-C165.	2.1	189
1582	Human Brain Organoids to Decode Mechanisms of Microcephaly. Frontiers in Cellular Neuroscience, 2020, 14, 115.	1.8	33
1583	Human Cerebrospinal Fluid Promotes Neuronal Circuit Maturation of Human Induced Pluripotent Stem Cell-Derived 3D Neural Aggregates. Stem Cell Reports, 2020, 14, 1044-1059.	2.3	14
1584	Human CNS barrier-forming organoids with cerebrospinal fluid production. Science, 2020, 369, .	6.0	244
1585	Lipidâ€Bilayerâ€Supported 3D Printing of Human Cerebral Cortex Cells Reveals Developmental Interactions. Advanced Materials, 2020, 32, e2002183.	11.1	40

#	ARTICLE	IF	CITATIONS
1586	Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson's disease. Stem Cell Research, 2020, 46, 101870.	0.3	68
1587	Genome Engineering Evolves Brain Tumor Modeling. Neurologia Medico-Chirurgica, 2020, 60, 329-336.	1.0	7
1588	Scalable Generation of Mature Cerebellar Organoids from Human Pluripotent Stem Cells and Characterization by Immunostaining. Journal of Visualized Experiments, 2020, , .	0.2	26
1589	zâ€Wire: A Microscaffold That Supports Guided Tissue Assembly and Intramyocardium Delivery for Cardiac Repair. Advanced Healthcare Materials, 2020, 9, 2000358.	3.9	4
1590	Bioinspired flexible electronics for seamless neural interfacing and chronic recording. Nanoscale Advances, 2020, 2, 3095-3102.	2.2	20
1591	Generation of Vascularized Neural Organoids by Co-culturing with Mesodermal Progenitor Cells. STAR Protocols, 2020, 1, 100041.	0.5	29
1592	Modelling neurodegenerative diseases with <scp>3D</scp> brain organoids. Biological Reviews, 2020, 95, 1497-1509.	4.7	30
1593	Negative Symptoms of Schizophrenia and Dopaminergic Transmission: Translational Models and Perspectives Opened by iPSC Techniques. Frontiers in Neuroscience, 2020, 14, 632.	1.4	17
1594	Using Pharmacology to Squeeze the Life Out of Childhood Leukemia, and Potential Strategies to Achieve Breakthroughs in Medulloblastoma Treatment. Pharmacological Reviews, 2020, 72, 668-691.	7.1	6
1595	Retinal and Brain Organoids: Bridging the Gap Between in vivo Physiology and in vitro Micro-Physiology for the Study of Alzheimer's Diseases. Frontiers in Neuroscience, 2020, 14, 655.	1.4	16
1597	A Defined and Scalable Peptide-Based Platform for the Generation of Human Pluripotent Stem Cell-Derived Astrocytes. ACS Biomaterials Science and Engineering, 2020, 6, 3477-3490.	2.6	6
1598	Cerebral Organoids: A Human Model for AAV Capsid Selection and Therapeutic Transgene Efficacy in the Brain. Molecular Therapy - Methods and Clinical Development, 2020, 18, 167-175.	1.8	22
1599	Recommended Guidelines for Developing, Qualifying, and Implementing Complex In Vitro Models (CIVMs) for Drug Discovery. SLAS Discovery, 2020, 25, 1174-1190.	1.4	33
1600	Decreased nuclear Pten in neural stem cells contributes to deficits in neuronal maturation. Molecular Autism, 2020, 11, 43.	2.6	10
1601	Cells grown in three-dimensional spheroids mirror in vivo metabolic response of epithelial cells. Communications Biology, 2020, 3, 246.	2.0	91
1602	SHP2 mutations induce precocious gliogenesis of Noonan syndrome-derived iPSCs during neural development in vitro. Stem Cell Research and Therapy, 2020, 11, 209.	2.4	9
1603	The Effect of Thiol Structure on Allyl Sulfide Photodegradable Hydrogels and their Application as a Degradable Scaffold for Organoid Passaging. Advanced Materials, 2020, 32, e1905366.	11.1	58
1604	Commentary: A Primer on Human Brain Organoids for the Neurosurgeon. Neurosurgery, 2020, 87, E443-E444.	0.6	O

#	Article	IF	CITATIONS
1605	Age-Dependent Statistical Changes of Involuntary Head Motion Signatures Across Autism and Controls of the ABIDE Repository. Frontiers in Integrative Neuroscience, 2020, 14, 23.	1.0	10
1606	In vitro models for ASD-patient-derived iPSCs and cerebral organoids. Progress in Molecular Biology and Translational Science, 2020, 173, 355-375.	0.9	4
1607	Determinants of Resident Tissue Macrophage Identity and Function. Immunity, 2020, 52, 957-970.	6.6	280
1608	The sociability spectrum: evidence from reciprocal genetic copy number variations. Molecular Autism, 2020, 11, 50.	2.6	10
1609	Microfluidics as a Novel Tool for Biological and Toxicological Assays in Drug Discovery Processes: Focus on Microchip Electrophoresis. Micromachines, 2020, 11, 593.	1.4	22
1610	A Static Self-Directed Method for Generating Brain Organoids from Human Embryonic Stem Cells. Journal of Visualized Experiments, 2020, , .	0.2	2
1611	Midbrain Organoids: A New Tool to Investigate Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 359.	1.8	46
1612	Brain organoids as a model system for human neurodevelopment in health and disease. , 2020, , 205-221.		0
1613	Toward Cardiac Regeneration: Combination of Pluripotent Stem Cell-Based Therapies and Bioengineering Strategies. Frontiers in Bioengineering and Biotechnology, 2020, 8, 455.	2.0	49
1614	Urine Sample-Derived Cerebral Organoids Suitable for Studying Neurodevelopment and Pharmacological Responses. Frontiers in Cell and Developmental Biology, 2020, 8, 304.	1.8	9
1615	In vitro Models of Neurodegenerative Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 328.	1.8	149
1616	Application of Fused Organoid Models to Study Human Brain Development and Neural Disorders. Frontiers in Cellular Neuroscience, 2020, 14, 133.	1.8	30
1617	Development of an animal-free methodology for mechanical performance assessment of engineered skin substitutes. Biomedical Science and Engineering, 2020, 3, .	0.0	0
1618	Clarifying mid-brain organoids: Application of the CLARITY protocol to unperfusable samples. Biomedical Science and Engineering, 2020, 3, .	0.0	1
1619	Routine Optical Clearing of 3D-Cell Cultures: Simplicity Forward. Frontiers in Molecular Biosciences, 2020, 7, 20.	1.6	50
1620	The "HSF connection― Pleiotropic regulation and activities of Heat Shock Factors shape pathophysiological brain development. Neuroscience Letters, 2020, 725, 134895.	1.0	9
1621	Transcription and Beyond: Delineating FOXG1 Function in Cortical Development and Disorders. Frontiers in Cellular Neuroscience, 2020, 14, 35.	1.8	46
1622	Fabrication of Dentin-Pulp-Like Organoids Using Dental-Pulp Stem Cells. Cells, 2020, 9, 642.	1.8	29

#	Article	IF	CITATIONS
1623	The roles of human induced pluripotent stem cell-derived cardiomyocytes in drug discovery: managing in vitro safety study expectations. Expert Opinion on Drug Discovery, 2020, 15, 719-729.	2.5	7
1624	Engineering of brain-like tissue constructs via 3D Cell-printing technology. Biofabrication, 2020, 12, 035016.	3.7	19
1625	Building a Human Brain for Research. Frontiers in Molecular Neuroscience, 2020, 13, 22.	1.4	9
1626	Environmental Pressures on Transgenerational Epigenetic Inheritance. , 2020, , 97-122.		0
1627	Assembly of FN-silk with laminin-521 to integrate hPSCs into a three-dimensional culture for neural differentiation. Biomaterials Science, 2020, 8, 2514-2525.	2.6	10
1628	Gaining New Biological and Therapeutic Applications into the Liver with 3D In Vitro Liver Models. Tissue Engineering and Regenerative Medicine, 2020, 17, 731-745.	1.6	13
1629	Recent Overview of the Use of iPSCs Huntington's Disease Modeling and Therapy. International Journal of Molecular Sciences, 2020, 21, 2239.	1.8	39
1630	Modeling and Targeting Alzheimer's Disease With Organoids. Frontiers in Pharmacology, 2020, 11, 396.	1.6	71
1631	The Beauty and the Dish: Brain Organoids Go Active. Epilepsy Currents, 2020, 20, 105-107.	0.4	0
1632	Organoid cultures of MELAS neural cells reveal hyperactive Notch signaling that impacts neurodevelopment. Cell Death and Disease, 2020, 11, 182.	2.7	26
1633	Centrosomes: The good and the bad for brain development. Biology of the Cell, 2020, 112, 153-172.	0.7	24
1634	<i>CDK5RAP2</i> primary microcephaly is associated with hypothalamic, retinal and cochlear developmental defects. Journal of Medical Genetics, 2020, 57, 389-399.	1.5	17
1635	Innovations in 3D Tissue Models of Human Brain Physiology and Diseases. Advanced Functional Materials, 2020, 30, 1909146.	7.8	50
1636	Unraveling Mechanisms of Patient-Specific NRXN1 Mutations in Neuropsychiatric Diseases Using Human Induced Pluripotent Stem Cells. Stem Cells and Development, 2020, 29, 1142-1144.	1.1	3
1637	Standardized GMP-compliant scalable production of human pancreas organoids. Stem Cell Research and Therapy, 2020, 11, 94.	2.4	34
1638	Differentiation of human pluripotent stem cells toward pharyngeal endoderm derivatives: Current status and potential. Current Topics in Developmental Biology, 2020, 138, 175-208.	1.0	5
1639	Visualizing the Synaptic and Cellular Ultrastructure in Neurons Differentiated from Human Induced Neural Stem Cells—An Optimized Protocol. International Journal of Molecular Sciences, 2020, 21, 1708.	1.8	5
1640	Multi-lineage Human iPSC-Derived Platforms for Disease Modeling and Drug Discovery. Cell Stem Cell, 2020, 26, 309-329.	5.2	174

#	Article	IF	CITATIONS
1641	Brainstem Organoids From Human Pluripotent Stem Cells. Frontiers in Neuroscience, 2020, 14, 538.	1.4	43
1642	Mechanisms of tangential migration of interneurons in the developing forebrain., 2020,, 345-363.		2
1643	Developmental basis of Zika virus-induced neuropathology. , 2020, , 79-97.		0
1644	Induced pluripotent stem cells as models of human neurodevelopmental disorders., 2020,, 99-127.		0
1645	Three-dimensional culture systems in central nervous system research. , 2020, , 571-601.		2
1646	InÂVitro Differentiated Human Stem Cell-Derived Neurons Reproduce Synaptic Synchronicity Arising during Neurodevelopment. Stem Cell Reports, 2020, 15, 22-37.	2.3	15
1647	Motor cortex connections., 2020, , 167-199.		8
1648	Cohen Syndrome Patient iPSC-Derived Neurospheres and Forebrain-Like Glutamatergic Neurons Reveal Reduced Proliferation of Neural Progenitor Cells and Altered Expression of Synapse Genes. Journal of Clinical Medicine, 2020, 9, 1886.	1.0	9
1649	An American Physiological Society cross-journal Call for Papers on "Deconstructing Organs: Single-Cell Analyses, Decellularized Organs, Organoids, and Organ-on-a-Chip Models― American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L266-L272.	1.3	7
1650	Neural induction of embryonic stem/induced pluripotent stem cells. , 2020, , 185-203.		2
1651	Formation of gyri and sulci. , 2020, , 223-252.		0
1652	Specification of cortical projection neurons. , 2020, , 427-459.		1
1653	Human neurogenesis., 2020,, 751-767.		0
1654	Engineered Perineural Vascular Plexus for Modeling Developmental Toxicity. Advanced Healthcare Materials, 2020, 9, e2000825.	3.9	14
1655	Loss of function of the mitochondrial peptidase PITRM1 induces proteotoxic stress and Alzheimer's disease-like pathology in human cerebral organoids. Molecular Psychiatry, 2021, 26, 5733-5750.	4.1	79
1656	Human organoids: model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 2020, 21, 571-584.	16.1	1,082
1657	3D Brain Organoids: Studying Brain Development and Disease Outside the Embryo. Annual Review of Neuroscience, 2020, 43, 375-389.	5.0	59
1658	CRISPR-based functional genomics for neurological disease. Nature Reviews Neurology, 2020, 16, 465-480.	4.9	89

#	Article	IF	CITATIONS
1659	Quality Prediction of Embryonic Bodies on Integrated Spheroid Culture Chip by Using 3D Convolutional Neural Network. , 2020, , .		0
1660	Single-Cell Resolution Three-Dimensional Imaging of Intact Organoids. Journal of Visualized Experiments, 2020, , .	0.2	22
1661	Robust detection of undifferentiated iPSC among differentiated cells. Scientific Reports, 2020, 10, 10293.	1.6	32
1662	Hydrogel-based milliwell arrays for standardized and scalable retinal organoid cultures. Scientific Reports, 2020, 10, 10275.	1.6	45
1663	Role of the cytoskeleton and membrane trafficking in axon–dendrite morphogenesis. , 2020, , 21-56.		2
1664	Genome-wide studies reveal the essential and opposite roles of ARID1A in controlling human cardiogenesis and neurogenesis from pluripotent stem cells. Genome Biology, 2020, 21, 169.	3.8	28
1666	Engineered hydrogels for brain tumor culture and therapy. Bio-Design and Manufacturing, 2020, 3, 203-226.	3.9	24
1667	A Rainbow Reporter Tracks Single Cells and Reveals Heterogeneous Cellular Dynamics among Pluripotent Stem Cells and Their Differentiated Derivatives. Stem Cell Reports, 2020, 15, 226-241.	2.3	16
1668	Exploiting CRISPR Cas9 in Three-Dimensional Stem Cell Cultures to Model Disease. Frontiers in Bioengineering and Biotechnology, 2020, 8, 692.	2.0	21
1669	Engineering Prostate Cancer from Induced Pluripotent Stem Cellsâ€"New Opportunities to Develop Preclinical Tools in Prostate and Prostate Cancer Studies. International Journal of Molecular Sciences, 2020, 21, 905.	1.8	15
1670	NeuroCore formation during differentiation of neurospheres of mouse embryonic neural stem cells. Stem Cell Research, 2020, 43, 101691.	0.3	15
1671	Optogenetics for neural transplant manipulation and functional analysis. Biochemical and Biophysical Research Communications, 2020, 527, 343-349.	1.0	12
1672	Using human induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which Apolipoprotein E (APOE) contributes to Alzheimer's disease (AD) risk. Neurobiology of Disease, 2020, 138, 104788.	2.1	23
1673	Mechanics of human brain organoids. Physical Review E, 2020, 101, 022403.	0.8	17
1674	Organoid models of gastrointestinal cancers in basic and translational research. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 203-222.	8.2	108
1675	Derivation of two iPSC lines from a sporadic ASD patient (NUIGi033-A) and a paternal control (NUIGi034-A). Stem Cell Research, 2020, 44, 101722.	0.3	1
1676	Cortical and Striatal Circuits in Huntington's Disease. Frontiers in Neuroscience, 2020, 14, 82.	1.4	64
1677	Multiscale brain research on a microfluidic chip. Lab on A Chip, 2020, 20, 1531-1543.	3.1	20

#	ARTICLE	IF	CITATIONS
1678	Cerebral organoid and mouse models reveal a RAB39b–PI3K–mTOR pathway-dependent dysregulation of cortical development leading to macrocephaly/autism phenotypes. Genes and Development, 2020, 34, 580-597.	2.7	105
1679	A Longâ€Living Bioengineered Neural Tissue Platform to Study Neurodegeneration. Macromolecular Bioscience, 2020, 20, e2000004.	2.1	36
1680	Long Term Gene Expression in Human Induced Pluripotent Stem Cells and Cerebral Organoids to Model a Neurodegenerative Disease. Frontiers in Cellular Neuroscience, 2020, 14, 14.	1.8	23
1681	Generation of homogeneous midbrain organoids with in vivo <i>-</i> like cellular composition facilitates neurotoxin-based Parkinson's disease modeling. Stem Cells, 2020, 38, 727-740.	1.4	64
1682	Modeling Down syndrome in cells: From stem cells to organoids. Progress in Brain Research, 2020, 251, 55-90.	0.9	14
1683	Modeling of human neurulation using bioengineered pluripotent stem cell culture. Current Opinion in Biomedical Engineering, 2020, 13, 127-133.	1.8	4
1684	In vitro testicular organogenesis from human fetal gonads produces fertilization-competent spermatids. Cell Research, 2020, 30, 244-255.	5.7	36
1685	Cerebral organoids transplantation improves neurological motor function in rat brain injury. CNS Neuroscience and Therapeutics, 2020, 26, 682-697.	1.9	42
1686	Assessing Toxicity with Human Cell-Based In Vitro Methods. Trends in Molecular Medicine, 2020, 26, 570-582.	3.5	43
1687	One-Stop Microfluidic Assembly of Human Brain Organoids To Model Prenatal Cannabis Exposure. Analytical Chemistry, 2020, 92, 4630-4638.	3.2	91
1688	Gastrointestinal tract modeling using organoids engineered with cellular and microbiota niches. Experimental and Molecular Medicine, 2020, 52, 227-237.	3.2	96
1689	Accelerated neuronal and synaptic maturation by BrainPhys medium increases $\hat{Al^2}$ secretion and alters $\hat{Al^2}$ peptide ratios from iPSC-derived cortical neurons. Scientific Reports, 2020, 10, 601.	1.6	26
1690	Uncovering cell biology in the third dimension. Molecular Biology of the Cell, 2020, 31, 319-323.	0.9	1
1691	miRNA-Based Rapid Differentiation of Purified Neurons from hPSCs Advancestowards Quick Screening for Neuronal Disease Phenotypes In Vitro. Cells, 2020, 9, 532.	1.8	27
1692	Emergence and Developmental Roles of the Cerebrospinal Fluid System. Developmental Cell, 2020, 52, 261-275.	3.1	126
1693	Harnessing the Potential of Stem Cells for Disease Modeling: Progress and Promises. Journal of Personalized Medicine, 2020, 10, 8.	1.1	16
1694	Synthetic Analyses of Single-Cell Transcriptomes from Multiple Brain Organoids and Fetal Brain. Cell Reports, 2020, 30, 1682-1689.e3.	2.9	150
1695	Smad anchor for receptor activation nuclear localization during development identifies Layers V and VI of the neocortex. Journal of Comparative Neurology, 2020, 528, 2161-2173.	0.9	1

#	Article	IF	CITATIONS
1696	Constitutive activity of a G protein-coupled receptor, DRD1, contributes to human cerebral organoid formation. Stem Cells, 2020, 38, 653-665.	1.4	20
1697	Invited Review: Epigenetics in neurodevelopment. Neuropathology and Applied Neurobiology, 2020, 46, 6-27.	1.8	34
1698	Nanocage encapsulation improves antiepileptic efficiency of phenytoin. Biomaterials, 2020, 240, 119849.	5.7	25
1699	Ex-Vivo Treatment of Tumor Tissue Slices as a Predictive Preclinical Method to Evaluate Targeted Therapies for Patients with Renal Carcinoma. Cancers, 2020, 12, 232.	1.7	40
1700	p53 controls genomic stability and temporal differentiation of human neural stem cells and affects neural organization in human brain organoids. Cell Death and Disease, 2020, 11, 52.	2.7	33
1701	Self-Organizing 3D Human Trunk Neuromuscular Organoids. Cell Stem Cell, 2020, 26, 172-186.e6.	5. 2	177
1702	Gardenia jasminoides Enhances CDDP-Induced Apoptosis of Glioblastoma Cells via AKT/mTOR Pathway While Protecting Death of Astrocytes. Nutrients, 2020, 12, 196.	1.7	6
1703	Modeling Cell-Cell Interactions in Parkinson's Disease Using Human Stem Cell-Based Models. Frontiers in Cellular Neuroscience, 2019, 13, 571.	1.8	19
1704	Brain Organoids: A Promising Living Biobank Resource for Neuroscience Research. Biopreservation and Biobanking, 2020, 18, 136-143.	0.5	15
1705	FICD activity and AMPylation remodelling modulate human neurogenesis. Nature Communications, 2020, 11, 517.	5. 8	39
1706	Cell stress in cortical organoids impairs molecular subtype specification. Nature, 2020, 578, 142-148.	13.7	387
1707	Organ-On-A-Chip in vitro Models of the Brain and the Blood-Brain Barrier and Their Value to Study the Microbiota-Gut-Brain Axis in Neurodegeneration. Frontiers in Bioengineering and Biotechnology, 2019, 7, 435.	2.0	73
1708	Emerging technologies to study glial cells. Glia, 2020, 68, 1692-1728.	2.5	32
1709	An update on human astrocytes and their role in development and disease. Glia, 2020, 68, 685-704.	2.5	46
1710	Human iPSCâ€derived microglia: A growing toolset to study the brain's innate immune cells. Glia, 2020, 68, 721-739.	2.5	77
1711	Ethical issues related to brain organoid research. Brain Research, 2020, 1732, 146653.	1.1	63
1712	Studying Human Neurodevelopment and Diseases Using 3D Brain Organoids. Journal of Neuroscience, 2020, 40, 1186-1193.	1.7	37
1713	The bioprinting roadmap. Biofabrication, 2020, 12, 022002.	3.7	291

#	Article	IF	CITATIONS
1714	Induced Pluripotent Stem Cell (iPSC)-Based Neurodegenerative Disease Models for Phenotype Recapitulation and Drug Screening. Molecules, 2020, 25, 2000.	1.7	75
1715	Benchmarking pluripotent stem cell-derived organoid models. Experimental Neurology, 2020, 330, 113333.	2.0	0
1717	Applications for stem cells. , 2020, , 445-455.		0
1718	Biofabricated three-dimensional tissue models. , 2020, , 1417-1441.		0
1719	Tissue organoid models and applications. , 2020, , 1537-1549.		3
1720	Induced pluripotent stem cell technology: venturing into the second decade. , 2020, , 435-443.		2
1721	Human organoids to model the developing human neocortex in health and disease. Brain Research, 2020, 1742, 146803.	1.1	12
1722	Cerebral organoids as a model for glioblastoma multiforme. Current Opinion in Biomedical Engineering, 2020, 13, 152-159.	1.8	11
1723	DNAJB6, a Key Factor in Neuronal Sensitivity to Amyloidogenesis. Molecular Cell, 2020, 78, 346-358.e9.	4.5	62
1724	Organoid technology for tissue engineering. Journal of Molecular Cell Biology, 2020, 12, 569-579.	1.5	38
1725	Organoid Models of Glioblastoma to Study Brain Tumor Stem Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 220.	1.8	38
1726	JNK Signaling in Stem Cell Self-Renewal and Differentiation. International Journal of Molecular Sciences, 2020, 21, 2613.	1.8	50
1727	Microglia alterations in neurodegenerative diseases and their modeling with human induced pluripotent stem cell and other platforms. Progress in Neurobiology, 2020, 190, 101805.	2.8	35
1728	Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2020, 96, 131-158.	1.6	22
1729	Bioprinting Neural Systems to Model Central Nervous System Diseases. Advanced Functional Materials, 2020, 30, 1910250.	7.8	38
1730	Emerging proteomic approaches to identify the underlying pathophysiology of neurodevelopmental and neurodegenerative disorders. Molecular Autism, 2020, 11, 27.	2.6	15
1731	Modeling Psychiatric Disorder Biology with Stem Cells. Current Psychiatry Reports, 2020, 22, 24.	2.1	25
1732	Engineering Human Brain Organoids: From Basic Research to Tissue Regeneration. Tissue Engineering and Regenerative Medicine, 2020, 17, 747-757.	1.6	15

#	Article	IF	CITATIONS
1733	From cell lines to pluripotent stem cells for modelling Parkinson's Disease. Journal of Neuroscience Methods, 2020, 340, 108741.	1.3	26
1734	Modeling Human Cytomegalovirus-Induced Microcephaly in Human iPSC-Derived Brain Organoids. Cell Reports Medicine, 2020, $1,100002.$	3.3	67
1735	Development of two-photon polymerised scaffolds for optical interrogation and neurite guidance of human iPSC-derived cortical neuronal networks. Lab on A Chip, 2020, 20, 1792-1806.	3.1	20
1736	Interfacing human induced pluripotent stem cell-derived neurons with designed nanowire arrays as a future platform for medical applications. Biomaterials Science, 2020, 8, 2434-2446.	2.6	15
1737	Human in vitro models for understanding mechanisms of autism spectrum disorder. Molecular Autism, 2020, 11, 26.	2.6	18
1738	Modeling Parkinson's Disease Using Induced Pluripotent Stem Cells. Stem Cells International, 2020, 2020, 1-15.	1.2	18
1739	CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic targets in glioma. Genome Biology, 2020, 21, 83.	3.8	76
1740	SCN2A channelopathies in the autism spectrum of neuropsychiatric disorders: a role for pluripotent stem cells?. Molecular Autism, 2020, 11, 23.	2.6	16
1741	Modeling Cell Communication in Cancer With Organoids: Making the Complex Simple. Frontiers in Cell and Developmental Biology, 2020, 8, 166.	1.8	71
1742	Therapeutic Plasticity of Neural Stem Cells. Frontiers in Neurology, 2020, 11, 148.	1.1	65
1743	Cholangiocarcinoma Disease Modelling Through Patients Derived Organoids. Cells, 2020, 9, 832.	1.8	13
1744	Biomaterials and Culture Systems for Development of Organoid and Organ-on-a-Chip Models. Annals of Biomedical Engineering, 2020, 48, 2002-2027.	1.3	33
1745	Airway organoids as models of human disease. Journal of Internal Medicine, 2021, 289, 604-613.	2.7	55
1746	The application of <i>in vitro</i> â€derived human neurons in neurodegenerative disease modeling. Journal of Neuroscience Research, 2021, 99, 124-140.	1.3	26
1747	Brain organoids: an ensemble of bioassays to investigate human neurodevelopment and disease. Cell Death and Differentiation, 2021, 28, 52-67.	5.0	104
1748	Cellular complexity in brain organoids: Current progress and unsolved issues. Seminars in Cell and Developmental Biology, 2021, 111, 32-39.	2.3	32
1749	Modeling neurological disorders using brain organoids. Seminars in Cell and Developmental Biology, 2021, 111, 4-14.	2.3	23
1750	Deconstructing and reconstructing the human brain with regionally specified brain organoids. Seminars in Cell and Developmental Biology, 2021, 111, 40-51.	2.3	21

#	Article	IF	CITATIONS
1751	Atypical Neurogenesis in Induced Pluripotent Stem Cells From Autistic Individuals. Biological Psychiatry, 2021, 89, 486-496.	0.7	40
1752	Bioengineering tissue morphogenesis and function in human neural organoids. Seminars in Cell and Developmental Biology, 2021, 111, 52-59.	2.3	22
1753	Glial cell diversity and methamphetamine-induced neuroinflammation in human cerebral organoids. Molecular Psychiatry, 2021, 26, 1194-1207.	4.1	68
1754	Modeling neurodevelopment in a dish with pluripotent stem cells. Development Growth and Differentiation, 2021, 63, 18-25.	0.6	12
1755	Rethinking embryology in vitro: A synergy between engineering, data science and theory. Developmental Biology, 2021, 474, 48-61.	0.9	15
1756	Using multi-organ culture systems to study Parkinson's disease. Molecular Psychiatry, 2021, 26, 725-735.	4.1	16
1757	Brain organoids: A new frontier of human neuroscience research. Seminars in Cell and Developmental Biology, 2021, 111, 1-3.	2.3	3
1758	A Transcriptomeâ€Based Drug Discovery Paradigm for Neurodevelopmental Disorders. Annals of Neurology, 2021, 89, 199-211.	2.8	14
1759	A matrigel-free method to generate matured human cerebral organoids using 3D-Printed microwell arrays. Bioactive Materials, 2021, 6, 1130-1139.	8.6	37
1760	Cerebral organoids to unravel the mechanisms underlying malformations of human cortical development. Seminars in Cell and Developmental Biology, 2021, 111, 15-22.	2.3	5
1761	PsychENCODE and beyond: transcriptomics and epigenomics of brain development and organoids. Neuropsychopharmacology, 2021, 46, 70-85.	2.8	15
1762	Identifying adaptive alleles in the human genome: from selection mapping to functional validation. Human Genetics, 2021, 140, 241-276.	1.8	13
1763	Taming human brain organoids one cell at a time. Seminars in Cell and Developmental Biology, 2021, 111, 23-31.	2.3	14
1764	The future of cerebral organoids in drug discovery. Seminars in Cell and Developmental Biology, 2021, 111, 67-73.	2.3	15
1765	The science and engineering of stem cellâ€derived organoidsâ€examples from hepatic, biliary, and pancreatic tissues. Biological Reviews, 2021, 96, 179-204.	4.7	13
1766	Modeling the pathophysiology of Parkinson's disease in patient-specific neurons. Experimental Biology and Medicine, 2021, 246, 298-304.	1.1	0
1767	Extracellular vesicles from organoids and 3D culture systems. Biotechnology and Bioengineering, 2021, 118, 1029-1049.	1.7	27
1768	Cancer research using organoid technology. Journal of Molecular Medicine, 2021, 99, 501-515.	1.7	49

#	Article	IF	Citations
1769	Potential ethical problems with human cerebral organoids: Consciousness and moral status of future brains in a dish. Brain Research, 2021, 1750, 147146.	1.1	32
1770	Dissecting Alzheimer's disease pathogenesis in human 2D and 3D models. Molecular and Cellular Neurosciences, 2021, 110, 103568.	1.0	30
1771	Engineered Microsystems for Spheroid and Organoid Studies. Advanced Healthcare Materials, 2021, 10, e2001284.	3.9	51
1772	A comprehensive library of human transcription factors for cell fate engineering. Nature Biotechnology, 2021, 39, 510-519.	9.4	110
1773	Current experimental human tissueâ€derived models for prostate cancer research. International Journal of Urology, 2021, 28, 150-162.	0.5	7
1774	Innovative approaches in CNS drug discovery. Therapie, 2021, 76, 101-109.	0.6	11
1775	The epidermal growth factor receptor variant type III mutation frequently found in gliomas induces astrogenesis in human cerebral organoids. Cell Proliferation, 2021, 54, e12965.	2.4	12
1776	Engineering organoid microfluidic system for biomedical and health engineering: A review. Chinese Journal of Chemical Engineering, 2021, 30, 244-254.	1.7	5
1777	Rethinking organoid technology through bioengineering. Nature Materials, 2021, 20, 145-155.	13.3	150
1778	Learning about cell lineage, cellular diversity and evolution of the human brain through stem cell models. Current Opinion in Neurobiology, 2021, 66, 166-177.	2.0	5
1779	Biomaterials Regulate Mechanosensors YAP/TAZ in Stem Cell Growth and Differentiation. Tissue Engineering and Regenerative Medicine, 2021, 18, 199-215.	1.6	22
1780	Dissecting the non-neuronal cell contribution to Parkinson's disease pathogenesis using induced pluripotent stem cells. Cellular and Molecular Life Sciences, 2021, 78, 2081-2094.	2.4	8
1781	Behavior and lineage progression of neural progenitors in the mammalian cortex. Current Opinion in Neurobiology, 2021, 66, 144-157.	2.0	30
1782	From <scp>iPS</scp> Cells to Rodents and Nonhuman Primates: Filling Gaps in Modeling Parkinson's Disease. Movement Disorders, 2021, 36, 832-841.	2.2	10
1783	The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cellular and Molecular Life Sciences, 2021, 78, 2517-2563.	2.4	58
1784	A novel integrated system using patient-derived glioma cerebral organoids and xenografts for disease modeling and drug screening. Cancer Letters, 2021, 500, 87-97.	3.2	29
1785	Cellular reprogramming: Mathematics meets medicine. WIREs Mechanisms of Disease, 2021, 13, e1515.	1.5	5
1786	Returning to kidney development to deliver synthetic kidneys. Developmental Biology, 2021, 474, 22-36.	0.9	14

#	Article	IF	CITATIONS
1787	Modeling human embryo development with embryonic and extra-embryonic stem cells. Developmental Biology, 2021, 474, 91-99.	0.9	35
1788	Human mini-brain models. Nature Biomedical Engineering, 2021, 5, 11-25.	11.6	49
1789	Spheroids and organoids as humanized 3D scaffoldâ€free engineered tissues for SARSâ€CoVâ€2 viral infection and drug screening. Artificial Organs, 2021, 45, 548-558.	1.0	21
1790	The Impact of Oxygen Availability and Multilineage Communication on Organoid Maturation. Antioxidants and Redox Signaling, 2021, 35, 217-233.	2.5	6
1791	Enhanced Neuronal Activity and Asynchronous Calcium Transients Revealed in a 3D Organoid Model of Alzheimer's Disease. ACS Biomaterials Science and Engineering, 2021, 7, 254-264.	2.6	37
1792	Great Expectations: Induced pluripotent stem cell technologies in neurodevelopmental impairments. International Journal of Medical Sciences, 2021, 18, 459-473.	1.1	7
1793	ApoE-Isoform-Dependent SARS-CoV-2 Neurotropism and Cellular Response. Cell Stem Cell, 2021, 28, 331-342.e5.	5 . 2	156
1794	Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development. Nature Protocols, 2021, 16, 579-602.	5 . 5	123
1795	The Role of Toll-Like Receptor 4 in Infectious and Non Infectious Inflammation. Agents and Actions Supplements, 2021, , .	0.2	2
1796	Towards Advanced iPSC-based Drug Development for Neurodegenerative Disease. Trends in Molecular Medicine, 2021, 27, 263-279.	3 . 5	37
1797	Modeling brain development and diseases with human cerebral organoids. Current Opinion in Neurobiology, 2021, 66, 103-115.	2.0	15
1798	Spotlight on the Replisome: Aetiology of DNA Replication-Associated Genetic Diseases. Trends in Genetics, 2021, 37, 317-336.	2.9	33
1800	Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. Journal of Neurochemistry, 2021, 157, 229-262.	2.1	36
1801	Evaluating Neurodevelopmental Consequences of Perinatal Exposure to Antiretroviral Drugs: Current Challenges and New Approaches. Journal of NeuroImmune Pharmacology, 2021, 16, 113-129.	2.1	26
1802	Advances in Engineering Human Tissue Models. Frontiers in Bioengineering and Biotechnology, 2020, 8, 620962.	2.0	72
1803	Shape Retaining and Sacrificial Molding Fabrication Method for ECM-Based in vitro Vascular Model. , 2021, , .		1
1804	Background: Evolution. , 2021, , 1-26.		0
1805	Modeling Poliovirus Infection Using Human Engineered Neural Tissue Enriched With Motor Neuron Derived From Embryonic Stem Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 593106.	1.8	0

#	Article	IF	CITATIONS
1806	Bipolar disorder as a gliopathy., 2021,, 175-182.		1
1807	Bio-3D Printed Organs as Drug Testing Tools. , 2021, , 149-164.		0
1808	Genome editing in stem cells for genetic neurodisorders. Progress in Molecular Biology and Translational Science, 2021, 182, 403-438.	0.9	6
1809	Human iPSCs and their uses in developmental toxicology. , 2021, , 1-44.		1
1810	Experimental Models to Study COVID-19 Effect in Stem Cells. Cells, 2021, 10, 91.	1.8	12
1811	Application of developmental principles for spinal cord repair after injury. International Journal of Developmental Biology, 2021, , .	0.3	0
1812	Lymphoblastoid-derived human-induced pluripotent stem cells. , 2021, , 57-70.		2
1813	Techno-Economic Analysis of Automated iPSC Production. Processes, 2021, 9, 240.	1.3	15
1814	Generation and Maintenance of Homogeneous Human Midbrain Organoids. Bio-protocol, 2021, 11, e4049.	0.2	4
1815	Molecular mechanisms of Zika virus-induced neurological pathology. , 2021, , 83-93.		0
1817	Brain organoid formation on decellularized porcine brain ECM hydrogels. PLoS ONE, 2021, 16, e0245685.	1.1	55
1818	Human Striatal Organoids Derived from Pluripotent Stem Cells Recapitulate Striatal Development and Compartments. SSRN Electronic Journal, 0, , .	0.4	0
1819	Induced pluripotent stem cells for modeling Angelman syndrome. , 2021, , 217-238.		1
1820	Neuroinvasion of SARS-CoV-2 in human and mouse brain. Journal of Experimental Medicine, 2021, 218, .	4.2	677
1821	Human stem cell models to study host–virus interactions in the central nervous system. Nature Reviews Immunology, 2021, 21, 441-453.	10.6	35
1822	Pluripotent Stem Cells for Cell Therapy. Methods in Molecular Biology, 2021, 2269, 25-33.	0.4	1
1823	3D Alzheimer's disease in a dish: Implications for drug discovery. , 2021, , 311-331.		1
1824	Production of Phenotypically Uniform Human Cerebral Organoids from Pluripotent Stem Cells. Bio-protocol, 2021, 11, e3985.	0.2	4

#	Article	IF	CITATIONS
1825	Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Current Topics in Developmental Biology, 2021, 142, 477-530.	1.0	15
1826	Mapping the molecular and cellular complexity of cortical malformations. Science, 2021, 371, .	6.0	57
1827	Pituitary Remodeling Throughout Life: Are Resident Stem Cells Involved?. Frontiers in Endocrinology, 2020, 11, 604519.	1.5	20
1828	Application of Airy beam light sheet microscopy to examine early neurodevelopmental structures in 3D hiPSC-derived human cortical spheroids. Molecular Autism, 2021, 12, 4.	2.6	14
1829	Evolution of Experimental Models in the Study of Glioblastoma: Toward Finding Efficient Treatments. Frontiers in Oncology, 2020, 10, 614295.	1.3	51
1830	Using iPSC Models to Understand the Role of Estrogen in Neuron–Glia Interactions in Schizophrenia and Bipolar Disorder. Cells, 2021, 10, 209.	1.8	7
1831	Electrophysiological Analysis of Brain Organoids: Current Approaches and Advancements. Frontiers in Neuroscience, 2020, 14, 622137.	1.4	43
1832	Progress in human embryonic stem cell research and aging. , 2021, , 9-52.		0
1833	Use of iPSC-derived brain organoids to study human brain evolution., 2021,, 157-177.		1
1834	Human induced pluripotent stem cell– based modeling of Alzheimer's disease, a glial perspective. , 2021, , 21-35.		2
1836	Present and future of adult stem cells and induced pluripotent stem cells therapy for ischemic stroke., 2021,, 67-95.		2
1837	Realizing the potential of organoids—an interview with Hans Clevers. Journal of Molecular Medicine, 2021, 99, 443-447.	1.7	6
1838	Animal models: value and translational potency. , 2021, , 95-103.		2
1839	Historical evolution of spheroids and organoids, and possibilities of use in life sciences and medicine. Biotechnology Journal, 2021, 16, e2000463.	1.8	44
1841	Use of induced pluripotent stem cells and cerebral organoids to profile Zika virus infection: Features and findings., 2021,, 85-95.		0
1842	Tubular human brain organoids to model microglia-mediated neuroinflammation. Lab on A Chip, 2021, 21, 2751-2762.	3.1	41
1843	Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology. Micromachines, 2021, 12, 124.	1.4	26
1844	Current and future applications of induced pluripotent stem cell-based models to study pathological proteins in neurodegenerative disorders. Molecular Psychiatry, 2021, 26, 2685-2706.	4.1	18

#	Article	IF	CITATIONS
1845	Induced pluripotent stem cells for modeling schizophrenia pathogenesis., 2021,, 105-127.		0
1846	Molecular and Cellular Basis of Hyper-Assembly, Protein Aggregation and Impaired Neurodevelopment Driven by a Rare Pathogenic Mutation in DDX3X. SSRN Electronic Journal, 0, , .	0.4	0
1848	Stem cell-derived three-dimensional (organoid) models of Alzheimer's disease: a precision medicine approach. Neural Regeneration Research, 2021, 16, 1546.	1.6	3
1849	Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. International Journal of Molecular Sciences, 2021, 22, 1203.	1.8	26
1850	From Cell Culture to Organoids-Model Systems for Investigating Prion Strain Characteristics. Biomolecules, 2021, 11, 106.	1.8	10
1851	Fluorescence-based Single-cell Analysis of Whole-mount-stained and Cleared Microtissues and Organoids for High Throughput Screening. Bio-protocol, 2021, 11, e4050.	0.2	4
1852	Controlled orientation and sustained rotation of biological samples in a sono-optical microfluidic device. Lab on A Chip, 2021, 21, 1563-1578.	3.1	13
1853	Differentiation of Stem Cells into Neuronal Lineage: In Vitro Cell Culture and In Vivo Transplantation in Animal Models. Pancreatic Islet Biology, 2021, , 73-102.	0.1	O
1854	Phenocopying Glioblastoma: A Review. IEEE Reviews in Biomedical Engineering, 2023, 16, 456-471.	13.1	3
1855	A logical network-based drug-screening platform for Alzheimer's disease representing pathological features of human brain organoids. Nature Communications, 2021, 12, 280.	5.8	88
1856	Toward three-dimensional in vitro models to study neurovascular unit functions in health and disease. Neural Regeneration Research, 2021, 16, 2132.	1.6	21
1858	Downregulation of Neurodevelopmental Gene Expression in iPSC-Derived Cerebral Organoids Upon Infection by Human Cytomegalovirus. SSRN Electronic Journal, 0, , .	0.4	O
1859	Drug Discovery in Induced Pluripotent Stem Cell Models. , 2021, , .		0
1860	Application of Scaffold-Free 3D Models. Learning Materials in Biosciences, 2021, , 147-174.	0.2	0
1861	Regulation of Cell Types Within Testicular Organoids. Endocrinology, 2021, 162, .	1.4	5
1862	Characterization of mitochondrial health from human peripheral blood mononuclear cells to cerebral organoids derived from induced pluripotent stem cells. Scientific Reports, 2021, 11, 4523.	1.6	16
1863	<i>PAUPAR</i> and PAX6 sequentially regulate human embryonic stem cell cortical differentiation. Nucleic Acids Research, 2021, 49, 1935-1950.	6.5	17
1864	Modeling Neurodevelopmental and Neuropsychiatric Diseases with Astrocytes Derived from Human-Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2021, 22, 1692.	1.8	7

#	Article	IF	CITATIONS
1865	Generation of human midbrain organoids from induced pluripotent stem cells. MNI Open Research, 0, 3, 1.	1.0	7
1866	Long-term live imaging and multiscale analysis identify heterogeneity and core principles of epithelial organoid morphogenesis. BMC Biology, 2021, 19, 37.	1.7	54
1867	Microfluidic Organoids-on-a-Chip: Quantum Leap in Cancer Research. Cancers, 2021, 13, 737.	1.7	49
1868	Recent progress in induced pluripotent stem cell-derived 3D cultures for cardiac regeneration. Cell and Tissue Research, 2021, 384, 231-240.	1.5	10
1869	Engineering organoids. Nature Reviews Materials, 2021, 6, 402-420.	23.3	497
1870	Long-term maturation of human cortical organoids matches key early postnatal transitions. Nature Neuroscience, 2021, 24, 331-342.	7.1	188
1871	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	7.1	1,098
1873	Clinical Application of Human Induced Pluripotent Stem Cell-Derived Organoids as an Alternative to Organ Transplantation. Stem Cells International, 2021, 2021, 1-16.	1.2	16
1874	Patient-derived iPSC modeling of rare neurodevelopmental disorders: Molecular pathophysiology and prospective therapies. Neuroscience and Biobehavioral Reviews, 2021, 121, 201-219.	2.9	25
1875	Cell-to-Cell Adhesion and Neurogenesis in Human Cortical Development: A Study Comparing 2D Monolayers with 3D Organoid Cultures. Stem Cell Reports, 2021, 16, 264-280.	2.3	16
1876	Organoids of the female reproductive tract. Journal of Molecular Medicine, 2021, 99, 531-553.	1.7	42
1877	Advances in modelling the human microbiome–gut–brain axis <i>in vitro</i> . Biochemical Society Transactions, 2021, 49, 187-201.	1.6	25
1879	Neurodevelopmental defects and neurodegenerative phenotypes in human brain organoids carrying Parkinson's disease-linked <i>DNAJC6</i>	4.7	52
1880	Biogenesis of Extracellular Vesicles Produced from Human-Stem-Cell-Derived Cortical Spheroids Exposed to Iron Oxides. ACS Biomaterials Science and Engineering, 2021, 7, 1111-1122.	2.6	20
1881	Advances in microfluidic <i>in vitro</i> systems for neurological disease modeling. Journal of Neuroscience Research, 2021, 99, 1276-1307.	1.3	56
1882	Mind the translational gap: using iPS cell models to bridge from genetic discoveries to perturbed pathways and therapeutic targets. Molecular Autism, 2021, 12, 10.	2.6	15
1883	Narrative review of stem cell therapy for ischemic brain injury. Translational Pediatrics, 2021, 10, 435-445.	0.5	3
1884	SARS-CoV-2 Infection and Disease Modelling Using Stem Cell Technology and Organoids. International Journal of Molecular Sciences, 2021, 22, 2356.	1.8	13

#	ARTICLE	IF	CITATIONS
1885	Cognitive effects of low dose of ionizing radiation – Lessons learned and research gaps from epidemiological and biological studies. Environment International, 2021, 147, 106295.	4.8	31
1886	The Emerging Role of Neuronal Organoid Models in Drug Discovery: Potential Applications and Hurdles to Implementation. Molecular Pharmacology, 2021, 99, 256-265.	1.0	9
1887	Physiological and Pathological Ageing of Astrocytes in the Human Brain. Neurochemical Research, 2021, 46, 2662-2675.	1.6	30
1888	Organoid and Spheroid Tumor Models: Techniques and Applications. Cancers, 2021, 13, 874.	1.7	178
1890	Organoid Models of Glioblastoma and Their Role in Drug Discovery. Frontiers in Cellular Neuroscience, 2021, 15, 605255.	1.8	31
1891	Three-dimensional model of glioblastoma by co-culturing tumor stem cells with human brain organoids. Biology Open, 2021, 10, .	0.6	18
1892	Patient-Derived Induced Pluripotent Stem Cells (iPSCs) and Cerebral Organoids for Drug Screening and Development in Autism Spectrum Disorder: Opportunities and Challenges. Pharmaceutics, 2021, 13, 280.	2.0	14
1893	Biologia Futura: the importance of 3D organoids—a new approach for research on neurological and rare diseases. Biologia Futura, 2021, 72, 281-290.	0.6	1
1894	Creative Destruction: A Basic Computational Model of Cortical Layer Formation. Cerebral Cortex, 2021, 31, 3237-3253.	1.6	6
1895	Comparison of Acute Effects of Neurotoxic Compounds on Network Activity in Human and Rodent Neural Cultures. Toxicological Sciences, 2021, 180, 295-312.	1.4	12
1896	Current Challenges Associated with the Use of Human Induced Pluripotent Stem Cell-Derived Organoids in Regenerative Medicine. International Journal of Stem Cells, 2021, 14, 9-20.	0.8	12
1897	Retinoic Acid Benefits Glomerular Organotypic Differentiation from Adult Renal Progenitor Cells In Vitro. Stem Cell Reviews and Reports, 2021, 17, 1406-1419.	1.7	2
1899	Engineering Co-Emergence in Organoid Models. Progress in Biomedical Engineering, 0, , .	2.8	0
1900	Electromembrane Extraction and Mass Spectrometry for Liver Organoid Drug Metabolism Studies. Analytical Chemistry, 2021, 93, 3576-3585.	3.2	19
1901	Human heart-forming organoids recapitulate early heart and foregut development. Nature Biotechnology, 2021, 39, 737-746.	9.4	196
1902	How well do brain organoids capture your brain?. IScience, 2021, 24, 102063.	1.9	27
1903	3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nature Communications, 2021, 12, 753.	5.8	247
1904	3D organotypic cell structures for drug development and Microorganism-Host interaction research. Research Results in Pharmacology, 2021, 7, 47-64.	0.1	O

#	Article	IF	CITATIONS
1905	Bioelectrical interfaces with cortical spheroids in three-dimensions. Journal of Neural Engineering, 2021, 18, 055005.	1.8	19
1906	Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Science Advances, 2021, 7, .	4.7	128
1908	Advances in Central Nervous System Organoids: A Focus on Organoid-Based Models for Motor Neuron Disease. Tissue Engineering - Part C: Methods, 2021, 27, 213-224.	1.1	15
1910	A Possible Association Between Zika Virus Infection and CDK5RAP2 Mutation. Frontiers in Genetics, 2021, 12, 530028.	1.1	1
1911	Mapping the Ethical Issues of Brain Organoid Research and Application. AJOB Neuroscience, 2022, 13, 81-94.	0.6	49
1912	Animal and Cellular Models of Alzheimer's Disease: Progress, Promise, and Future Approaches. Neuroscientist, 2022, 28, 572-593.	2.6	11
1913	Neurotropic Effects of SARS-CoV-2 Modeled by the Human Brain Organoids. Stem Cell Reports, 2021, 16, 373-384.	2.3	43
1914	Advanced Spheroid, Tumouroid and 3D Bioprinted In-Vitro Models of Adult and Paediatric Glioblastoma. International Journal of Molecular Sciences, 2021, 22, 2962.	1.8	16
1915	Nanotherapeutic approach to treat diabetic foot ulcers using tissue-engineered nanofiber skin substitutes: A review. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2021, 15, 487-491.	1.8	5
1916	Evaluation of UBE3A antibodies in mice and human cerebral organoids. Scientific Reports, 2021, 11, 6323.	1.6	1
1917	Mass spectrometry analysis of tau and amyloidâ€beta in iPSCâ€derived models of Alzheimer's disease and dementia. Journal of Neurochemistry, 2021, 159, 305-317.	2.1	8
1919	Interspecies chimeric conditions affect the developmental rate of human pluripotent stem cells. PLoS Computational Biology, 2021, 17, e1008778.	1.5	11
1920	Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids. International Journal of Molecular Sciences, 2021, 22, 2659.	1.8	33
1921	From stem and progenitor cells to neurons in the developing neocortex: key differences among hominids. FEBS Journal, 2022, 289, 1524-1535.	2.2	11
1922	Stem cells based in vitro models: trends and prospects in biomaterials cytotoxicity studies. Biomedical Materials (Bristol), 2021, 16, 042003.	1.7	19
1923	Establishment of a Robust Platform for Induced Pluripotent Stem Cell Research Using Maholo LabDroid. SLAS Technology, 2021, 26, 441-453.	1.0	6
1924	Organoids as a new model system to study neural tube defects. FASEB Journal, 2021, 35, e21545.	0.2	13
1925	Current State-of-the-Art and Unresolved Problems in Using Human Induced Pluripotent Stem Cell-Derived Dopamine Neurons for Parkinson's Disease Drug Development. International Journal of Molecular Sciences, 2021, 22, 3381.	1.8	11

#	Article	IF	CITATIONS
1927	Enfermedad de Parkinson: actualización de estudios preclÃnicos con el uso de células troncales pluripotentes inducidas. NeurologÃa, 2021, , .	0.3	1
1928	Establishment of 3D Neuro-Organoids Derived from Pig Embryonic Stem-Like Cells. International Journal of Molecular Sciences, 2021, 22, 2600.	1.8	1
1931	The Path to Progress Preclinical Studies of Age-Related Neurodegenerative Diseases: A Perspective on Rodent and hiPSC-Derived Models. Molecular Therapy, 2021, 29, 949-972.	3.7	10
1932	Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nature Communications, 2021, 12, 1929.	5.8	55
1933	Minimalist Tissue Engineering Approaches Using Low Materialâ€Based Bioengineered Systems. Advanced Healthcare Materials, 2021, 10, e2002110.	3.9	16
1934	3D Tissue Models as an Effective Tool for Studying Viruses and Vaccine Development. Frontiers in Materials, 2021, 8, .	1.2	10
1935	Genome Editing in iPSC-Based Neural Systems: From Disease Models to Future Therapeutic Strategies. Frontiers in Genome Editing, 2021, 3, 630600.	2.7	22
1936	Patterning Neuroepithelial Cell Sheet <i>via</i> a Sustained Chemical Gradient Generated by Localized Passive Diffusion Devices. ACS Biomaterials Science and Engineering, 2021, 7, 1713-1721.	2.6	3
1937	Human cerebral organoids as a therapeutic drug screening model for Creutzfeldt–Jakob disease. Scientific Reports, 2021, 11, 5165.	1.6	40
1938	Regional specification and complementation with non-neuroectodermal cells in human brain organoids. Journal of Molecular Medicine, 2021, 99, 489-500.	1.7	14
1939	SOX Transcription Factors as Important Regulators of Neuronal and Glial Differentiation During Nervous System Development and Adult Neurogenesis. Frontiers in Molecular Neuroscience, 2021, 14, 654031.	1.4	64
1940	Organoids: a promising new in vitro platform in livestock and veterinary research. Veterinary Research, 2021, 52, 43.	1.1	29
1941	Organoids in domestic animals: with which stem cells?. Veterinary Research, 2021, 52, 38.	1.1	5
1942	Culture Variabilities of Human iPSC-Derived Cerebral Organoids Are a Major Issue for the Modelling of Phenotypes Observed in Alzheimer's Disease. Stem Cell Reviews and Reports, 2022, 18, 718-731.	1.7	40
1943	Primate cell fusion disentangles gene regulatory divergence in neurodevelopment. Nature, 2021, 592, 421-427.	13.7	52
1944	A lysosomal enigma CLN5 and its significance in understanding neuronal ceroid lipofuscinosis. Cellular and Molecular Life Sciences, 2021, 78, 4735-4763.	2.4	15
1945	An early cell shape transition drives evolutionary expansion of the human forebrain. Cell, 2021, 184, 2084-2102.e19.	13.5	139
1946	Transcriptome Regulation by Oncogenic ALK Pathway in Mammalian Cortical Development Revealed by Single-Cell RNA Sequencing. Cerebral Cortex, 2021, 31, 3911-3924.	1.6	3

#	Article	IF	CITATIONS
1947	Modeling Rett Syndrome with Human Pluripotent Stem Cells: Mechanistic Outcomes and Future Clinical Perspectives. International Journal of Molecular Sciences, 2021, 22, 3751.	1.8	10
1948	3D-printed microplate inserts for long term high-resolution imaging of live brain organoids. BMC Biomedical Engineering, 2021, 3, 6.	1.7	27
1949	A Closer Look to the Evolution of Neurons in Humans and Apes Using Stem-Cell-Derived Model Systems. Frontiers in Cell and Developmental Biology, 2021, 9, 661113.	1.8	1
1950	Utilising Induced Pluripotent Stem Cells in Neurodegenerative Disease Research: Focus on Glia. International Journal of Molecular Sciences, 2021, 22, 4334.	1.8	14
1951	Glutamatergic Neurons Differentiated from Embryonic Stem Cells: An Investigation of Differentiation and Associated Diseases. International Journal of Molecular Sciences, 2021, 22, 4592.	1.8	4
1952	Artificially Induced Pluripotent Stem Cell-Derived Whole-Brain Organoid for Modelling the Pathophysiology of Metachromatic Leukodystrophy and Drug Repurposing. Biomedicines, 2021, 9, 440.	1.4	5
1953	Role of SHH in Patterning Human Pluripotent Cells towards Ventral Forebrain Fates. Cells, 2021, 10, 914.	1.8	10
1954	Harnessing pluripotent stem cells as models to decipher human evolution. FEBS Journal, 2022, 289, 2992-3010.	2.2	11
1955	Using organoids to study human brain development and evolution. Developmental Neurobiology, 2021, 81, 608-622.	1.5	5
1957	Neuronal deletion of <i>Wwox</i> , associated with WOREE syndrome, causes epilepsy and myelin defects. Brain, 2021, 144, 3061-3077.	3.7	21
1958	Gene Expression of Mouse Hippocampal Stem Cells Grown in a Galactose-Derived Molecular Gel Compared to In Vivo and Neurospheres. Processes, 2021, 9, 716.	1.3	3
1959	Tools and approaches for analyzing the role of mitochondria in health, development and disease using human cerebral organoids. Developmental Neurobiology, 2021, 81, 591-607.	1.5	4
1961	Basic and Preclinical Research for Personalized Medicine. Journal of Personalized Medicine, 2021, 11, 354.	1.1	8
1962	Derivation of iPSC lines from two patients with autism spectrum disorder carrying NRXN1α deletion (NUIGi041-A, NUIG041-B; NUIGi045-A) and one sibling control (NUIGi042-A, NUIGi042-B). Stem Cell Research, 2021, 52, 102222.	0.3	0
1963	Centrosomeâ€mediated microtubule remodeling during axon formation in human iPSCâ€derived neurons. EMBO Journal, 2021, 40, e106798.	3.5	8
1964	Recent advances in organoid development and applications in disease modeling. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188527.	3.3	35
1965	Molecular Components of Store-Operated Calcium Channels in the Regulation of Neural Stem Cell Physiology, Neurogenesis, and the Pathology of Huntington's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 657337.	1.8	9
1966	Neurological Disorders Associated with WWOX Germline Mutations—A Comprehensive Overview. Cells, 2021, 10, 824.	1.8	15

#	Article	IF	CITATIONS
1967	The Contribution of Microglia to Neuroinflammation in Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 4676.	1.8	114
1968	Applications of brain organoids in neurodevelopment and neurological diseases. Journal of Biomedical Science, 2021, 28, 30.	2.6	44
1969	Sulfonated cryogel scaffolds for focal delivery in ex-vivo brain tissue cultures. Biomaterials, 2021, 271, 120712.	5.7	12
1970	Design and Evaluation of an In Vitro Mild Traumatic Brain Injury Modeling System Using 3D Printed Mini Impact Device on the 3D Cultured Human iPSC Derived Neural Progenitor Cells. Advanced Healthcare Materials, 2021, 10, e2100180.	3.9	13
1971	Towards physiologically relevant human pluripotent stem cell (hPSC) models of Parkinson's disease. Stem Cell Research and Therapy, 2021, 12, 253.	2.4	9
1972	Integrating Biomaterials and Genome Editing Approaches to Advance Biomedical Science. Annual Review of Biomedical Engineering, 2021, 23, 493-516.	5.7	4
1974	Trabecular bone organoids: a micron-scale †humanised' prototype designed to study the effects of microgravity and degeneration. Npj Microgravity, 2021, 7, 17.	1.9	29
1975	Three-dimensional in vitro tissue culture models of brain organoids. Experimental Neurology, 2021, 339, 113619.	2.0	11
1976	The Combination of Cell Cultured Technology and In Silico Model to Inform the Drug Development. Pharmaceutics, 2021, 13, 704.	2.0	11
1977	Transparent, Compliant 3D Mesostructures for Precise Evaluation of Mechanical Characteristics of Organoids. Advanced Materials, 2021, 33, e2100026.	11.1	23
1978	Modeling Neurological Disorders in 3D Organoids Using Human-Derived Pluripotent Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 640212.	1.8	19
1979	Two-Dimensional and Three-Dimensional Cartilage Model Platforms for Drug Evaluation and High-Throughput Screening Assays. Tissue Engineering - Part B: Reviews, 2022, 28, 421-436.	2.5	7
1980	Brain organoids: A promising model to assess oxidative stressâ€induced central nervous system damage. Developmental Neurobiology, 2021, 81, 653-670.	1.5	15
1981	Organoids, Where We Stand and Where We Go. Trends in Molecular Medicine, 2021, 27, 416-418.	3.5	14
1983	Translational Block in Stroke: A Constructive and "Out-of-the-Box―Reappraisal. Frontiers in Neuroscience, 2021, 15, 652403.	1.4	21
1985	Maternal sevoflurane exposure induces temporary defects in interkinetic nuclear migration of radial glial progenitors in the fetal cerebral cortex through the Notch signalling pathway. Cell Proliferation, 2021, 54, e13042.	2.4	9
1986	Synthetic living machines: A new window on life. IScience, 2021, 24, 102505.	1.9	35
1987	Cardiac organoid $\hat{a}\in$ " a promising perspective of preclinical model. Stem Cell Research and Therapy, 2021, 12, 272.	2.4	43

#	Article	IF	CITATIONS
1988	Liquid Biopsy for Colorectal Adenoma: Is the Exosomal miRNA Derived From Organoid a Potential Diagnostic Biomarker?. Clinical and Translational Gastroenterology, 2021, 12, e00356.	1.3	22
1991	Emerging Brainâ€Pathophysiologyâ€Mimetic Platforms for Studying Neurodegenerative Diseases: Brain Organoids and Brainsâ€onâ€aâ€Chip. Advanced Healthcare Materials, 2021, 10, e2002119.	3.9	27
1992	Development in a Dishâ€"In Vitro Models of Mammalian Embryonic Development. Frontiers in Cell and Developmental Biology, 2021, 9, 655993.	1.8	13
1993	Advances in development and application of human organoids. 3 Biotech, 2021, 11, 257.	1.1	31
1994	Transcriptome profiling of human pluripotent stem cellâ€derived cerebellar organoids reveals faster commitment under dynamic conditions. Biotechnology and Bioengineering, 2021, 118, 2781-2803.	1.7	20
1995	Running the full human developmental clock in interspecies chimeras using alternative human stem cells with expanded embryonic potential. Npj Regenerative Medicine, 2021, 6, 25.	2.5	7
1996	From Laboratory Studies to Clinical Trials: Temozolomide Use in IDH-Mutant Gliomas. Cells, 2021, 10, 1225.	1.8	17
1997	A versatile polypharmacology platform promotes cytoprotection and viability of human pluripotent and differentiated cells. Nature Methods, 2021, 18, 528-541.	9.0	72
1998	Human-Specific Genes, Cortical Progenitor Cells, and Microcephaly. Cells, 2021, 10, 1209.	1.8	23
1999	All models are wrong, but some are useful: Establishing standards for stem cell-based embryo models. Stem Cell Reports, 2021, 16, 1117-1141.	2.3	24
2000	Human pluripotent stem cell-derived brain organoids as in vitro models for studying neural disorders and cancer. Cell and Bioscience, 2021, 11, 99.	2.1	11
2001	Ethical Aspects of Brain Organoid Research in News Reports: An Exploratory Descriptive Analysis. Medicina (Lithuania), 2021, 57, 532.	0.8	7
2002	Organoids: A new approach in toxicity testing of nanotherapeutics. Journal of Applied Toxicology, 2022, 42, 52-72.	1.4	21
2003	Development of 3D Cerebral Aggregates in the Brain Ventricles of Adult Mice. Russian Journal of Developmental Biology, 2021, 52, 164-175.	0.1	1
2004	Patient-Derived Cancer Organoids for Precision Oncology Treatment. Journal of Personalized Medicine, 2021, 11, 423.	1.1	18
2005	Human Induced Pluripotent Stem Cell-Based Modelling of Spinocerebellar Ataxias. Stem Cell Reviews and Reports, 2022, 18, 441-456.	1.7	7
2006	In Vitro Glioblastoma Models: A Journey into the Third Dimension. Cancers, 2021, 13, 2449.	1.7	27
2007	Predictable fabrication of pre-made alginate hydrogel microtubes for stem cell aggregation using needle-in-needle devices. Biofabrication, 2021, 13, 035043.	3.7	3

#	Article	IF	CITATIONS
2008	Length of the Neurogenic Periodâ€"A Key Determinant for the Generation of Upper-Layer Neurons During Neocortex Development and Evolution. Frontiers in Cell and Developmental Biology, 2021, 9, 676911.	1.8	27
2009	Cerebral organoids and their potential for studies of brain diseases in domestic animals. Veterinary Research, 2021, 52, 65.	1.1	3
2010	The Potential of Induced Pluripotent Stem Cells to Treat and Model Alzheimer's Disease. Stem Cells International, 2021, 2021, 1-16.	1.2	4
2012	Organoids for toxicology and genetic toxicology: applications with drugs and prospects for environmental carcinogenesis. Mutagenesis, 2022, 37, 143-154.	1.0	12
2013	Resolving organoid brain region identities by mapping single-cell genomic data to reference atlases. Cell Stem Cell, 2021, 28, 1148-1159.e8.	5.2	63
2014	Cardioids reveal self-organizing principles of human cardiogenesis. Cell, 2021, 184, 3299-3317.e22.	13.5	227
2015	A simple method to improve the quality and yield of human pluripotent stem cell-derived cerebral organoids. Heliyon, 2021, 7, e07350.	1.4	6
2016	Human iPSCs and Genome Editing Technologies for Precision Cardiovascular Tissue Engineering. Frontiers in Cell and Developmental Biology, 2021, 9, 639699.	1.8	16
2017	Proteasome stress in skeletal muscle mounts a long-range protective response that delays retinal and brain aging. Cell Metabolism, 2021, 33, 1137-1154.e9.	7.2	45
2018	Toward the nanoengineering of mature, well-patterned and vascularized organoids. Nanomedicine, 2021, 16, 1255-1258.	1.7	3
2020	Dissecting the Role of PCDH19 in Clustering Epilepsy by Exploiting Patient-Specific Models of Neurogenesis. Journal of Clinical Medicine, 2021, 10, 2754.	1.0	13
2021	Modeling Liver Organogenesis by Recreating Three-Dimensional Collective Cell Migration: A Role for TGFÎ ² Pathway. Frontiers in Bioengineering and Biotechnology, 2021, 9, 621286.	2.0	3
2022	Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chemical Reviews, 2021, 121, 11149-11193.	23.0	161
2023	Gene Expression Profiles of Human Cerebral Organoids Identify PPAR Pathway and PKM2 as Key Markers for Oxygen-Glucose Deprivation and Reoxygenation. Frontiers in Cellular Neuroscience, 2021, 15, 605030.	1.8	8
2025	Neurodevelopmental signatures of narcotic and neuropsychiatric risk factors in 3D human-derived forebrain organoids. Molecular Psychiatry, 2021, 26, 7760-7783.	4.1	20
2026	Defense of COVID-19 by Human Organoids. Phenomics, 2021, 1, 113-128.	0.9	8
2027	Perspective: Extending the Utility of Three-Dimensional Organoids by Tissue Clearing Technologies. Frontiers in Cell and Developmental Biology, 2021, 9, 679226.	1.8	12
2029	Academic collaborative models fostering the translation of physiological in vitro systems from basic research into drug discovery. Drug Discovery Today, 2021, 26, 1369-1381.	3.2	6

#	Article	IF	CITATIONS
2030	Ethical Challenges in Organoid Use. BioTech, 2021, 10, 12.	1.3	29
2031	Exploiting hiPSCs in Leber's Hereditary Optic Neuropathy (LHON): Present Achievements and Future Perspectives. Frontiers in Neurology, 2021, 12, 648916.	1.1	7
2032	SETBP1 accumulation induces P53 inhibition and genotoxic stress in neural progenitors underlying neurodegeneration in Schinzel-Giedion syndrome. Nature Communications, 2021, 12, 4050.	5.8	24
2034	Three-Dimensional Cell Cultures as a Research Platform in Lung Diseases and COVID-19. Tissue Engineering and Regenerative Medicine, 2021, 18, 735-745.	1.6	10
2035	Generation and validation of APOE knockout human iPSC-derived cerebral organoids. STAR Protocols, 2021, 2, 100571.	0.5	4
2037	Dopamine Neuron Diversity: Recent Advances and Current Challenges in Human Stem Cell Models and Single Cell Sequencing. Cells, 2021, 10, 1366.	1.8	9
2038	Experimental Models for SARS-CoV-2 Infection. Molecules and Cells, 2021, 44, 377-383.	1.0	6
2039	Advanced Bio-Based Polymers for Astrocyte Cell Models. Materials, 2021, 14, 3664.	1.3	7
2040	The CTNNBIP1-CLSTN1 fusion transcript regulates human neocortical development. Cell Reports, 2021, 35, 109290.	2.9	9
2041	Balancing serendipity and reproducibility: Pluripotent stem cells as experimental systems for intellectual and developmental disorders. Stem Cell Reports, 2021, 16, 1446-1457.	2.3	20
2042	Harnessing organs-on-a-chip to model tissue regeneration. Cell Stem Cell, 2021, 28, 993-1015.	5.2	36
2043	From Brain Organoids to Networking Assembloids: Implications for Neuroendocrinology and Stress Medicine. Frontiers in Physiology, 2021, 12, 621970.	1.3	22
2044	Modeling pancreatic pathophysiology using genome editing of adult stem cell-derived and induced pluripotent stem cell (iPSC)-derived organoids. American Journal of Physiology - Renal Physiology, 2021, 320, G1142-G1150.	1.6	4
2045	The Effects of Environmental Adversities on Human Neocortical Neurogenesis Modeled in Brain Organoids. Frontiers in Molecular Biosciences, 2021, 8, 686410.	1.6	14
2046	Organoid Technology and the COVID Pandemic., 0,,.		4
2047	Synthetic scaffolds for 3D cell cultures and organoids: applications in regenerative medicine. Critical Reviews in Biotechnology, 2022, 42, 468-486.	5.1	24
2048	Analyzing Olfactory Neuron Precursors Non-Invasively Isolated through NADH FLIM as a Potential Tool to Study Oxidative Stress in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 6311.	1.8	7
2049	DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome. Journal of Clinical Investigation, 2021, 131, .	3.9	67

#	ARTICLE	IF	Citations
2050	Progress in mimicking brain microenvironments to understand and treat neurological disorders. APL Bioengineering, 2021, 5, 020902.	3.3	9
2051	Developing liver organoids from induced pluripotent stem cells (iPSCs): An alternative source of organoid generation for liver cancer research. Cancer Letters, 2021, 508, 13-17.	3.2	27
2052	Axial elongation of caudalized human organoids mimics aspects of neural tube development. Development (Cambridge), 2021, 148, .	1.2	47
2053	The Application of Brain Organoid Technology in Stroke Research: Challenges and Prospects. Frontiers in Cellular Neuroscience, 2021, 15, 646921.	1.8	14
2054	Development of a quantitative prediction algorithm for target organ-specific similarity of human pluripotent stem cell-derived organoids and cells. Nature Communications, 2021, 12, 4492.	5.8	3
2055	Kidney organoid systems for studies of immune-mediated kidney diseases: challenges and opportunities. Cell and Tissue Research, 2021, 385, 457-473.	1.5	11
2057	Cerebral Organoidsâ€"Challenges to Establish a Brain Prototype. Cells, 2021, 10, 1790.	1.8	12
2058	Focus on the road to modelling cardiomyopathy in muscular dystrophy. Cardiovascular Research, 2022, 118, 1872-1884.	1.8	1
2059	Brain organoid: a 3D technology for investigating cellular composition and interactions in human neurological development and disease models in vitro. Stem Cell Research and Therapy, 2021, 12, 430.	2.4	22
2060	<i>RGCC</i> balances selfâ€renewal and neuronal differentiation of neural stem cells in the developing mammalian neocortex. EMBO Reports, 2021, 22, e51781.	2.0	12
2061	Multifaceted roles of centrosomes in development, health, and disease. Journal of Molecular Cell Biology, 2021, 13, 611-621.	1.5	14
2062	Epigenetic regulation during human cortical development: Seq-ing answers from the brain to the organoid. Neurochemistry International, 2021, 147, 105039.	1.9	12
2063	Microfabricated disk technology: Rapid scale up in midbrain organoid generation. Methods, 2022, 203, 465-477.	1.9	15
2064	Emerging hiPSC Models for Drug Discovery in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2021, 22, 8196.	1.8	9
2065	To Better Generate Organoids, What Can We Learn From Teratomas?. Frontiers in Cell and Developmental Biology, 2021, 9, 700482.	1.8	6
2066	Human neuromuscular junction three-dimensional organoid models and the insight in motor disorders. Journal of Molecular Cell Biology, 2022, 13, 767-773.	1.5	3
2067	Aiding and Abetting Anhedonia: Impact of Inflammation on the Brain and Pharmacological Implications. Pharmacological Reviews, 2021, 73, 1084-1117.	7.1	36
2068	Human Induced Pluripotent Stem Cellâ€Derived Neural Progenitor Cells Produce Distinct Neural 3D In Vitro Models Depending on Alginate/Gellan Gum/Laminin Hydrogel Blend Properties. Advanced Healthcare Materials, 2021, 10, e2100131.	3.9	22

#	ARTICLE	IF	CITATIONS
2069	Phenotyping Neurodegeneration in Human iPSCs. Annual Review of Biomedical Data Science, 2021, 4, 83-100.	2.8	3
2070	An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science, 2021, 373, 231-236.	6.0	67
2071	3D organoids derived from the small intestine: An emerging tool for drug transport research. Acta Pharmaceutica Sinica B, 2021, 11, 1697-1707.	5.7	14
2072	Increased connectivity of hiPSC-derived neural networks in multiphase granular hydrogel scaffolds. Bioactive Materials, 2022, 9, 358-372.	8.6	21
2073	Three decades of ASD genetics: building a foundation for neurobiological understanding and treatment. Human Molecular Genetics, 2021, 30, R236-R244.	1.4	22
2074	The complexity of Alzheimer's disease: an evolving puzzle. Physiological Reviews, 2021, 101, 1047-1081.	13.1	110
2075	3D biomaterial models of human brain disease. Neurochemistry International, 2021, 147, 105043.	1.9	31
2076	Newly established patient-derived organoid model of intracranial meningioma. Neuro-Oncology, 2021, 23, 1936-1948.	0.6	26
2078	Recent Trends and Perspectives in Cerebral Organoids Imaging and Analysis. Frontiers in Neuroscience, 2021, 15, 629067.	1.4	17
2080	The Use of Stem Cell-Derived Organoids in Disease Modeling: An Update. International Journal of Molecular Sciences, 2021, 22, 7667.	1.8	34
2081	Geneâ€"Environment Interactions in Developmental Neurotoxicity: a Case Study of Synergy between Chlorpyrifos and CHD8 Knockout in Human BrainSpheres. Environmental Health Perspectives, 2021, 129, 77001.	2.8	41
2082	Chick fetal organ spheroids as a model to study development and disease. BMC Molecular and Cell Biology, 2021, 22, 37.	1.0	1
2083	The evolution of our understanding of human development over the last 10 years. Nature Communications, 2021, 12, 4615.	5.8	3
2084	Modeling genetic epileptic encephalopathies using brain organoids. EMBO Molecular Medicine, 2021, 13, e13610.	3.3	25
2085	Future Match Making: When Pediatric Oncology Meets Organoid Technology. Frontiers in Cell and Developmental Biology, 2021, 9, 674219.	1.8	6
2088	Comparison of gene expression and activation of transcription factors in organoid-derived monolayer intestinal epithelial cells and organoids. Bioscience, Biotechnology and Biochemistry, 2021, 85, 2137-2144.	0.6	6
2089	Emerging Bioelectronics for Brain Organoid Electrophysiology. Journal of Molecular Biology, 2022, 434, 167165.	2.0	29
2090	Long Noncoding RNAs in Human Stemness and Differentiation. Trends in Cell Biology, 2021, 31, 542-555.	3.6	30

#	Article	IF	CITATIONS
2091	Spatial organization and transitions of spontaneous neuronal activities in the developing sensory cortex. Development Growth and Differentiation, 2021, 63, 323-339.	0.6	7
2092	Cell-Type-Specific High Throughput Toxicity Testing in Human Midbrain Organoids. Frontiers in Molecular Neuroscience, 2021, 14, 715054.	1.4	19
2093	Novel Scalable and Simplified System to Generate Microglia-Containing Cerebral Organoids From Human Induced Pluripotent Stem Cells. Frontiers in Cellular Neuroscience, 2021, 15, 682272.	1.8	23
2094	Making Sense of Patient-Derived iPSCs, Transdifferentiated Neurons, Olfactory Neuronal Cells, and Cerebral Organoids as Models for Psychiatric Disorders. International Journal of Neuropsychopharmacology, 2021, 24, 759-775.	1.0	8
2095	Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell, 2021, 28, 1740-1757.e8.	5.2	77
2096	The Gut-Brain Axis in Inflammatory Bowel Diseaseâ€"Current and Future Perspectives. International Journal of Molecular Sciences, 2021, 22, 8870.	1.8	36
2097	Real-Time Non-Invasive and Direct Determination of Lactate Dehydrogenase Activity in Cerebral Organoids—A New Method to Characterize the Metabolism of Brain Organoids?. Pharmaceuticals, 2021, 14, 878.	1.7	2
2098	Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nature Communications, 2021, 12, 4730.	5.8	164
2099	A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nature Neuroscience, 2021, 24, 1377-1391.	7.1	80
2100	Organoids in modelling infectious diseases. Drug Discovery Today, 2022, 27, 223-233.	3.2	14
2101	An Afro-Communitarian Relational Approach to Brain Surrogates Research. Neuroethics, 2021, 14, 561-574.	1.7	4
2103	Augmin deficiency in neural stem cells causes p53-dependent apoptosis and aborts brain development. ELife, 2021, 10, .	2.8	11
2107	Generation of caudal-type serotonin neurons and hindbrain-fate organoids from hPSCs. Stem Cell Reports, 2021, 16, 1938-1952.	2.3	29
2110	Modeling Sporadic Alzheimer's Disease in Human Brain Organoids under Serum Exposure. Advanced Science, 2021, 8, e2101462.	5.6	66
2111	Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell, 2021, 28, 1362-1379.e7.	5.2	67
2112	Deafness-in-a-dish: modeling hereditary deafness with inner ear organoids. Human Genetics, 2022, 141, 347-362.	1.8	10
2113	Brain Organoids: Filling the Need for a Human Model of Neurological Disorder. Biology, 2021, 10, 740.	1.3	12
2114	Engineering mechanobiology through organoidsâ€onâ€chip: AÂstrategy to boost therapeutics. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 883-899.	1.3	11

#	Article	IF	CITATIONS
2115	Modeling schizophrenia with iPS cell technology and disease mouse models. Neuroscience Research, 2022, 175, 46-52.	1.0	5
2116	Characterization of an in vitro 3D intestinal organoid modelÂby using massive RNAseq-based transcriptome profiling. Scientific Reports, 2021, 11, 16668.	1.6	8
2118	Organoids: a novel modality in disease modeling. Bio-Design and Manufacturing, 2021, 4, 689-716.	3.9	33
2119	Optimization of cerebral organoids: a more qualified model for Alzheimer's disease research. Translational Neurodegeneration, 2021, 10, 27.	3.6	14
2120	The Age of Brain Organoids: Tailoring Cell Identity and Functionality for Normal Brain Development and Disease Modeling. Frontiers in Neuroscience, 2021, 15, 674563.	1.4	18
2121	Modeling neurodegeneration with mutant-tau organoids. Cell, 2021, 184, 4377-4379.	13.5	7
2122	Bioengineered embryoids mimic post-implantation development in vitro. Nature Communications, 2021, 12, 5140.	5.8	35
2123	The power and the promise of organoid models for cancer precision medicine with next-generation functional diagnostics and pharmaceutical exploitation. Translational Oncology, 2021, 14, 101126.	1.7	8
2124	Generation of hiPSC-Derived Functional Dopaminergic Neurons in Alginate-Based 3D Culture. Frontiers in Cell and Developmental Biology, 2021, 9, 708389.	1.8	13
2125	The San Diego Nathan Shock Center: tackling the heterogeneity of aging. GeroScience, 2021, 43, 2139-2148.	2.1	2
2126	Pre-clinical Investigation of Rett Syndrome Using Human Stem Cell-Based Disease Models. Frontiers in Neuroscience, 2021, 15, 698812.	1.4	10
2127	Modeling the Human Body on Microfluidic Chips. Trends in Biotechnology, 2021, 39, 838-852.	4.9	53
2128	Advancing models of neural development with biomaterials. Nature Reviews Neuroscience, 2021, 22, 593-615.	4.9	60
2129	Chlorpyrifos Disrupts Acetylcholine Metabolism Across Model Blood-Brain Barrier. Frontiers in Bioengineering and Biotechnology, 2021, 9, 622175.	2.0	7
2130	Next-Generation Human Cerebral Organoids as Powerful Tools To Advance NeuroHIV Research. MBio, 2021, 12, e0068021.	1.8	10
2131	Heart Organoids and Engineered Heart Tissues: Novel Tools for Modeling Human Cardiac Biology and Disease. Biomolecules, 2021, 11, 1277.	1.8	24
2132	Neural differentiation medium for human pluripotent stem cells to model physiological glucose levels in human brain. Brain Research Bulletin, 2021, 173, 141-149.	1.4	1
2133	ELAVL4, splicing, and glutamatergic dysfunction precede neuron loss in MAPT mutation cerebral organoids. Cell, 2021, 184, 4547-4563.e17.	13.5	73

#	Article	IF	CITATIONS
2135	Modeling PTEN overexpression-induced microcephaly in human brain organoids. Molecular Brain, 2021, 14, 131.	1.3	12
2136	Cortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism. Molecular Psychiatry, 2021, 26, 7560-7580.	4.1	61
2137	Pediatric brain tumors as a developmental disease. Current Opinion in Oncology, 2021, 33, 608-614.	1.1	2
2138	Bioengineering Approaches for the Advanced Organoid Research. Advanced Materials, 2021, 33, e2007949.	11.1	48
2139	Generating Self-Assembling Human Heart Organoids Derived from Pluripotent Stem Cells. Journal of Visualized Experiments, 2021, , .	0.2	6
2140	Complex Organ Construction from Human Pluripotent Stem Cells for Biological Research and Disease Modeling with New Emerging Techniques. International Journal of Molecular Sciences, 2021, 22, 10184.	1.8	4
2142	Asymmetric cell division of mammary stem cells. Cell Division, 2021, 16, 5.	1.1	15
2143	Three-dimensional-engineered bioprinted in vitro human neural stem cell self-assembling culture model constructs of Alzheimer's disease. Bioactive Materials, 2022, 11, 192-205.	8.6	15
2144	Deciphering and reconstitution of positional information in the human brain development. Cell Regeneration, 2021, 10, 29.	1.1	4
2145	iPSC toolbox for understanding and repairing disrupted brain circuits in autism. Molecular Psychiatry, 2021, , .	4.1	3
2146	Multiplexed single-cell analysis of organoid signaling networks. Nature Protocols, 2021, 16, 4897-4918.	5.5	23
2147	Bioengineering methods for organoid systems. Biology of the Cell, 2021, 113, 475-491.	0.7	8
2148	Advance in Human Epithelial-Derived Organoids Research. Molecular Pharmaceutics, 2021, 18, 3931-3950.	2.3	3
2149	Brain Organoids: Studying Human Brain Development and Diseases in a Dish. Stem Cells International, 2021, 2021, 1-16.	1.2	10
2150	Environmental exposures impact the nervous system in a life stage-specific manner. Neuroforum, 2021,	0.2	0
2151	Organ-Chip Models: Opportunities for Precision Medicine in Pancreatic Cancer. Cancers, 2021, 13, 4487.	1.7	17
2152	Drug screening by uniform patient derived colorectal cancer hydro-organoids. Biomaterials, 2021, 276, 121004.	5.7	12
2154	Synthetic modified Fezf2 mRNA (modRNA) with concurrent small molecule SIRT1 inhibition enhances refinement of cortical subcerebral/corticospinal neuron identity from mouse embryonic stem cells. PLoS ONE, 2021, 16, e0254113.	1.1	3

#	Article	IF	CITATIONS
2155	Human iPSC-Derived Glia as a Tool for Neuropsychiatric Research and Drug Development. International Journal of Molecular Sciences, 2021, 22, 10254.	1.8	8
2156	Brain regionalization by Polycombâ€group proteins and chromatin accessibility. BioEssays, 2021, 43, e2100155.	1.2	2
2157	Vascular deficiencies in renal organoids and ex vivo kidney organogenesis. Developmental Biology, 2021, 477, 98-116.	0.9	23
2158	The Role of Sonic Hedgehog in Human Holoprosencephaly and Short-Rib Polydactyly Syndromes. International Journal of Molecular Sciences, 2021, 22, 9854.	1.8	8
2159	Engineered Human Induced Pluripotent Cells Enable Genetic Code Expansion in Brain Organoids. ChemBioChem, 2021, 22, 3208-3213.	1.3	3
2160	Current tools to interrogate microglial biology. Neuron, 2021, 109, 2805-2819.	3.8	30
2161	Histopathological features of SARS-CoV-2 infection and relationships with organoid technology. Journal of International Medical Research, 2021, 49, 030006052110443.	0.4	0
2162	Drug discovery oncology in a mouse: concepts, models and limitations. Future Science OA, 2021, 7, FSO737.	0.9	6
2163	Modelling the central nervous system: tissue engineering of the cellular microenvironment. Emerging Topics in Life Sciences, 2021, 5, 507-517.	1.1	9
2164	Establishment of the vertebrate body plan: Rethinking gastrulation through stem cell models of early embryogenesis. Developmental Cell, 2021, 56, 2405-2418.	3.1	21
2165	Engineering hydrogels for personalized disease modeling and regenerative medicine. Acta Biomaterialia, 2021, 132, 4-22.	4.1	27
2166	Light-Induced Differentiation of Forebrain Organoids by NVOC-SAG. Methods in Molecular Biology, 2022, 2374, 185-194.	0.4	0
2167	Organoid Models for Cancer Researchâ€"From Bed to Bench Side and Back. Cancers, 2021, 13, 4812.	1.7	11
2168	Viscoelasticity and Adhesion Signaling in Biomaterials Control Human Pluripotent Stem Cell Morphogenesis in 3D Culture. Advanced Materials, 2021, 33, e2101966.	11.1	60
2169	Neural stem cells derived from human midbrain organoids as a stable source for treating Parkinson's disease. Progress in Neurobiology, 2021, 204, 102086.	2.8	26
2170	Screening Platforms for Genetic Epilepsiesâ€"Zebrafish, iPSC-Derived Neurons, and Organoids. Neurotherapeutics, 2021, 18, 1478-1489.	2.1	10
2171	Advances in neural organoid systems and their application in neurotoxicity testing of environmental chemicals. Genes and Environment, 2021, 43, 39.	0.9	7
2172	A roadmap for the Human Developmental Cell Atlas. Nature, 2021, 597, 196-205.	13.7	114

#	Article	IF	CITATIONS
2173	Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder. Nature Communications, 2021, 12, 4087.	5.8	51
2174	Human Embryos, Induced Pluripotent Stem Cells, and Organoids: Models to Assess the Effects of Environmental Plastic Pollution. Frontiers in Cell and Developmental Biology, 2021, 9, 709183.	1.8	6
2175	Biomaterial-guided stem cell organoid engineering for modeling development and diseases. Acta Biomaterialia, 2021, 132, 23-36.	4.1	27
2176	An Individual Patient's "Body―on Chips—How Organismoid Theory Can Translate Into Your Personal Precision Therapy Approach. Frontiers in Medicine, 2021, 8, 728866.	1.2	6
2177	Combining Automated Organoid Workflows with Artificial Intelligenceâ€Based Analyses: Opportunities to Build a New Generation of Interdisciplinary Highâ€Throughput Screens for Parkinson's Disease and Beyond. Movement Disorders, 2021, 36, 2745-2762.	2.2	10
2178	Generating Cerebral Organoids from Human Pluripotent Stem Cells. Methods in Molecular Biology, 2022, 2389, 177-199.	0.4	5
2179	The One-Stop Gyrification Station - Challenges and New Technologies. Progress in Neurobiology, 2021, 204, 102111.	2.8	4
2180	Organoid Technology: A Reliable Developmental Biology Tool for Organ-Specific Nanotoxicity Evaluation. Frontiers in Cell and Developmental Biology, 2021, 9, 696668.	1.8	22
2181	Inducible Pluripotent Stem Cells to Model and Treat Inherited Degenerative Diseases of the Outer Retina: 3D-Organoids Limitations and Bioengineering Solutions. Cells, 2021, 10, 2489.	1.8	6
2182	Applications of Brain Organoids for Infectious Diseases. Journal of Molecular Biology, 2022, 434, 167243.	2.0	17
2183	Human neural organoids: Models for developmental neurobiology and disease. Developmental Biology, 2021, 478, 102-121.	0.9	18
2184	Restoration of the defect in radial glial fiber migration and cortical plate organization in a brain organoid model of Fukuyama muscular dystrophy. IScience, 2021, 24, 103140.	1.9	5
2185	Heart organoids and tissue models for modeling development and disease. Seminars in Cell and Developmental Biology, 2021, 118, 119-128.	2.3	23
2186	Challenges for the Applications of Human Pluripotent Stem Cell-Derived Liver Organoids. Frontiers in Cell and Developmental Biology, 2021, 9, 748576.	1.8	13
2187	Induced pluripotent stem cells for 2D and 3D modelling the biological basis of schizophrenia and screening possible therapeutics. Brain Research Bulletin, 2021, 175, 48-62.	1.4	4
2188	Developmental dysregulation of excitatory-to-inhibitory GABA-polarity switch may underlie schizophrenia pathology: A monozygotic-twin discordant case analysis in human iPS cell-derived neurons. Neurochemistry International, 2021, 150, 105179.	1.9	9
2189	Exposure to cadmium induces neuroinflammation and impairs ciliogenesis in hESC-derived 3D cerebral organoids. Science of the Total Environment, 2021, 797, 149043.	3.9	35
2190	Engineering microcapsules to construct vascularized human brain organoids. Chemical Engineering Journal, 2021, 424, 130427.	6.6	17

#	Article	IF	CITATIONS
2191	The Evolving Role of Induced Pluripotent Stem Cells and Cerebral Organoids in Treating and Modeling Neurosurgical Diseases. World Neurosurgery, 2021, 155, 171-179.	0.7	3
2192	Abnormal amyloid beta metabolism in systemic abnormalities and Alzheimer's pathology: Insights and therapeutic approaches from periphery. Ageing Research Reviews, 2021, 71, 101451.	5.0	20
2193	Breaking the barrier: InÂvitro models to study choroid plexus development. Current Opinion in Cell Biology, 2021, 73, 41-49.	2.6	5
2194	Velvet antler polypeptide-loaded polyvinyl alcohol-sodium alginate hydrogels promote the differentiation of neural progenitor cells in 3D towards oligodendrocytes in vitro. European Journal of Pharmaceutical Sciences, 2021, 167, 106003.	1.9	4
2195	Tissue engineering, 3D-Bioprinting, morphogenesis modelling and simulation of biostructures: Relevance, underpinning biological principles and future trends. Bioprinting, 2021, 24, e00171.	2.9	5
2196	Reprogramming toward kidney regeneration: New technologies and future promises. , 2022, , 379-394.		0
2197	Local tissue interactions govern pLL patterning in medaka. Developmental Biology, 2022, 481, 1-13.	0.9	4
2198	From human pluripotent stem cells to cerebral cortical neurons. , 2021, , 69-96.		0
2199	Preparation and Culture of Organotypic Hippocampal Slices for the Analysis of Brain Metastasis and Primary Brain Tumor Growth. Methods in Molecular Biology, 2021, 2294, 59-77.	0.4	1
2200	Engineering human hepato-biliary-pancreatic organoids from pluripotent stem cells. Nature Protocols, 2021, 16, 919-936.	5.5	30
2201	Internet of Things Architecture for High Throughput Biology. SSRN Electronic Journal, 0, , .	0.4	2
2202	Development of Robust and Reproducible Murine Brain Organoids Endowed WithÂNetworks of Functional Neurons and Specific Brain-Region Signature. SSRN Electronic Journal, 0, , .	0.4	O
2204	Next generation human brain models: engineered flat brain organoids featuring gyrification. Biofabrication, 2021, 13, 011001.	3.7	26
2205	Self-Organizing Single-Rosette Brain Organoids From Human Pluripotent Stem Cells. SSRN Electronic Journal, 0, , .	0.4	0
2206	Microfluidic Culture Platforms in Neuroscience Research. , 2021, , 1-39.		1
2207	Advances in 3D neuronal microphysiological systems: towards a functional nervous system on a chip. In Vitro Cellular and Developmental Biology - Animal, 2021, 57, 191-206.	0.7	30
2208	Modeling SARS-CoV-2 infection in individuals with opioid use disorder with brain organoids. Journal of Tissue Engineering, 2021, 12, 204173142098529.	2.3	6
2209	Generation of Human iPSC-derived Neural Progenitor Cells (NPCs) as Drug Discovery Model for Neurological and Mitochondrial Disorders. Bio-protocol, 2021, 11, e3939.	0.2	4

#	Article	IF	CITATIONS
2210	Investigating the pathophysiology of anorexia nervosa using induced pluripotent stem cells., 2021,, 293-323.		0
2211	Human induced pluripotent stem cell-based studies; a new route toward modeling autism spectrum disorders., 2021,, 37-81.		0
2212	Familial Alzheimer's Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis. Cell Reports, 2021, 34, 108615.	2.9	53
2213	Microglia Orchestrate Neuronal Activity in Brain Organoids. SSRN Electronic Journal, 0, , .	0.4	2
2214	Human primary epidermal organoids enable modeling of dermatophyte infections. Cell Death and Disease, 2021, 12, 35.	2.7	16
2215	Neurons derived from human-induced pluripotent stem cells express mu and kappa opioid receptors. Neural Regeneration Research, 2021, 16, 653.	1.6	7
2216	Modeling of Hypoxic Brain Injury through 3D Human Neural Organoids. Cells, 2021, 10, 234.	1.8	19
2217	The construction of 3D cognitive networks from iPSCs through precise spatiotemporal specification. , 2021, , 45-76.		0
2218	Pluripotent stem cell–derived brain-region-specific organoids. , 2021, , 1-43.		0
2220	Targeting Poison Exons to Treat Developmental and Epileptic Encephalopathy. Developmental Neuroscience, 2021, 43, 241-246.	1.0	8
2221	Types and Classification of Stem Cells. Pancreatic Islet Biology, 2021, , 25-49.	0.1	2
2222	Harnessing stem cells and biomaterials to promote neural repair. British Journal of Pharmacology, 2019, 176, 355-368.	2.7	1
2227	Stem Cells for Next Level Toxicity Testing in the 21st Century. Small, 2021, 17, e2006252.	5.2	41
2228	Vascularization of Human Brain Organoids. Stem Cells, 2021, 39, 1017-1024.	1.4	63
2229	Tissue Engineering for Musculoskeletal Regeneration and Disease Modeling. Handbook of Experimental Pharmacology, 2020, 265, 235-268.	0.9	9
2230	Gastruloids: Embryonic Organoids from Mouse Embryonic Stem Cells to Study Patterning and Development in Early Mammalian Embryos. Methods in Molecular Biology, 2021, 2258, 131-147.	0.4	8
2231	Human Stem/Progenitor Cell-Based Assays for Neurodevelopmental Toxicity Testing. Methods in Pharmacology and Toxicology, 2014, , 351-373.	0.1	2
2232	MTOC Organization and Competition During Neuron Differentiation. Results and Problems in Cell Differentiation, 2019, 67, 337-357.	0.2	6

#	Article	IF	CITATIONS
2233	Three-Dimensional Models for Studying Neurodegenerative and Neurodevelopmental Diseases. Advances in Experimental Medicine and Biology, 2020, 1195, 35-41.	0.8	1
2234	Organs-on-a-Chip. Advances in Experimental Medicine and Biology, 2020, 1230, 27-42.	0.8	21
2235	Zika virus Infection and Potential Mechanisms Implicated in Neuropsychiatric Complications. Agents and Actions Supplements, 2020, , 207-221.	0.2	1
2236	3D Cell Culture Systems for the Development of Neural Interfaces. , 2020, , 201-236.		2
2237	Using Two- and Three-Dimensional Human iPSC Culture Systems to Model Psychiatric Disorders. Advances in Neurobiology, 2020, 25, 237-257.	1.3	6
2238	Tissue Engineering Modalities and Nanotechnology. Learning Materials in Biosciences, 2020, , 289-322.	0.2	4
2239	Modelling Autistic Neurons with Induced Pluripotent Stem Cells. Advances in Anatomy, Embryology and Cell Biology, 2017, 224, 49-64.	1.0	5
2240	Engineering Cellular Assembly for Applications in Regenerative Medicine. Nanomedicine and Nanotoxicology, 2014, , 131-145.	0.1	1
2241	Microfluidic Approach to Cell Handling and Measurement. , 2016, , 85-106.		2
2242	Induced Pluripotent Stem Cell-Derived Astroglia: A New Tool for Research Towards the Treatment of Alzheimer's Disease. Advances in Experimental Medicine and Biology, 2019, 1175, 383-405.	0.8	5
2243	A systems biology approach for studying neurodegenerative diseases. Drug Discovery Today, 2020, 25, 1146-1159.	3.2	23
2244	Impact of environmental neurotoxic: current methods and usefulness of human stem cells. Heliyon, 2020, 6, e05773.	1.4	7
2245	Spinâ^ž: an updated miniaturized spinning bioreactor design for the generation of human cerebral organoids from pluripotent stem cells. HardwareX, 2019, 6, e00084.	1.1	27
2246	The Utility of Human Kidney Organoids in Modeling Kidney Disease. Seminars in Nephrology, 2020, 40, 188-198.	0.6	11
2247	Engineering organoids: a promising platform to understand biology and treat diseases. Cell Death and Differentiation, 2021, 28, 1-4.	5.0	14
2248	Human Brain Surrogates Research: The Onrushing Ethical Dilemma. American Journal of Bioethics, 2021, 21, 34-45.	0.5	56
2249	Pluripotent stem cells for neurodegenerative disease modeling: an expert view on their value to drug discovery. Expert Opinion on Drug Discovery, 2020, 15, 1081-1094.	2.5	8
2250	Better understanding the neurobiology of primary lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 35-46.	1.1	3

#	Article	IF	CITATIONS
2251	Trapping cell spheroids and organoids using digital acoustofluidics. Biofabrication, 2020, 12, 035025.	3.7	29
2252	Flow enhances phenotypic and maturation of adult rat liver organoids. Biofabrication, 2020, 12, 045035.	3.7	6
2253	Toward a neurospheroid niche model: optimizing embedded 3D bioprinting for fabrication of neurospheroid brain-like co-culture constructs. Biofabrication, 2021, 13, 015014.	3.7	32
2254	Investigation of human trophoblast invasion <i>in vitro</i> . Human Reproduction Update, 2020, 26, 501-513.	5.2	155
2255	Adult precision medicine: learning from the past to enhance the future. Neuro-Oncology Advances, 2021, 3, vdaa145.	0.4	11
2318	Models for discovery of targeted therapy in genetic epileptic encephalopathies. Journal of Neurochemistry, 2017, 143, 30-48.	2.1	38
2319	Integrated RNA Sequencing Reveals Epigenetic Impacts of Diesel Particulate Matter Exposure in Human Cerebral Organoids. Developmental Neuroscience, 2020, 42, 195-207.	1.0	12
2320	The endothelium, a key actor in organ development and hPSC-derived organoid vascularization. Journal of Biomedical Science, 2020, 27, 67.	2.6	45
2321	Generation of 3D human gastrointestinal organoids: principle and applications. Cell Regeneration, 2020, 9, 6.	1.1	22
2322	Organoid based personalized medicine: from bench to bedside. Cell Regeneration, 2020, 9, 21.	1.1	67
2323	Brain organoids and insights on human evolution. F1000Research, 2019, 8, 760.	0.8	7
2324	Recent advances in understanding neocortical development. F1000Research, 2019, 8, 1791.	0.8	29
2325	Generation of human midbrain organoids from induced pluripotent stem cells. MNI Open Research, 0, 3, 1.	1.0	10
2326	Heat Shock Alters the Expression of Schizophrenia and Autism Candidate Genes in an Induced Pluripotent Stem Cell Model of the Human Telencephalon. PLoS ONE, 2014, 9, e94968.	1.1	39
2327	Towards Long Term Cultivation of Drosophila Wing Imaginal Discs In Vitro. PLoS ONE, 2014, 9, e107333.	1.1	30
2328	Heterozygous Disruption of Autism susceptibility candidate 2 Causes Impaired Emotional Control and Cognitive Memory. PLoS ONE, 2015, 10, e0145979.	1.1	36
2329	Experimental study of tuberculosis: From animal models to complex cell systems and organoids. PLoS Pathogens, 2017, 13, e1006421.	2.1	70
2330	Past, Present, and Future of Brain Organoid Technology. Molecules and Cells, 2019, 42, 617-627.	1.0	63

#	Article	IF	CITATIONS
2331	EEG Signals based Brain Source Localization Approaches. International Journal of Advanced Computer Science and Applications, $2018,9,.$	0.5	5
2332	State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 441-477.	0.9	101
2333	A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 362-376.	0.9	195
2334	<scp>SARS</scp> oVâ€2 targets neurons of 3D human brain organoids. EMBO Journal, 2020, 39, e106230.	3.5	401
2335	Cystatin B is essential for proliferation and interneuron migration in individuals with <scp>EPM</scp> 1 epilepsy. EMBO Molecular Medicine, 2020, 12, e11419.	3.3	32
2336	Vascularized Organoids: A More Complete Model. International Journal of Stem Cells, 2020, 14, 127-137.	0.8	17
2337	Human pluripotent stem cells in regenerative medicine: where do we stand?. Reproduction, 2018, 156, R143-R153.	1.1	5
2338	A review of the current understanding of nanoparticles protein corona composition. Medicine and Pharmacy Reports, 2020, 93, 342-350.	0.2	12
2339	Remodeling of mitochondrial morphology and function: an emerging hallmark of cellular reprogramming. Cell Stress, 2019, 3, 181-194.	1.4	26
2340	Recapitulating Amyloid ß and Tau Pathology in Human Neural Cell Culture Models—Clinical Implications. US Neurology, 2015, 11, 102.	0.2	19
2341	Approach to Neurotoxicity using Human iPSC Neurons: Consortium for Safety Assessment using Human iPS Cells. Current Pharmaceutical Biotechnology, 2020, 21, 780-786.	0.9	14
2342	Organotypic Brain Slices of ADULT Transgenic Mice: A Tool to Study Alzheimer's Disease. Current Alzheimer Research, 2019, 16, 172-181.	0.7	10
2343	Tissue Regeneration: From Synthetic Scaffolds to Self-Organizing Morphogenesis. Current Stem Cell Research and Therapy, 2014, 9, 432-443.	0.6	13
2344	Breeding brains? Patients' and laymen's perspectives on cerebral organoids. Regenerative Medicine, 2020, 15, 2351-2360.	0.8	28
2345	Modelos tridimensionais de cultura de células: aproximando o in vitro do in vivo. Vigilância Sanitária Em Debate: Sociedade, Ciência & Tecnologia, 2018, 6, 72.	0.3	3
2346	Robust production of uniform human cerebral organoids from pluripotent stem cells. Life Science Alliance, 2020, 3, e202000707.	1.3	52
2347	Challenges and future perspectives for 3D cerebral organoids as a model for complex brain disorders. Neuroscience Research Notes, 2019, 2, 1-6.	0.5	6
2348	Human Induced Pluripotent Stem Cells: Clinical Significance and Applications in Neurologic Diseases. Journal of Korean Neurosurgical Society, 2019, 62, 493-501.	0.5	20

#	Article	IF	CITATIONS
2349	Directed midbrain and spinal cord neurogenesis from pluripotent stem cells to model development and disease in a dish. Frontiers in Neuroscience, 2014, 8, 109.	1.4	22
2350	Human Induced Pluripotent Stem Cell-Derived 3D-Neurospheres Are Suitable for Neurotoxicity Screening. Cells, 2020, 9, 1122.	1.8	39
2351	Advanced 3D Cell Culture Techniques in Micro-Bioreactors, Part II: Systems and Applications. Processes, 2021, 9, 21.	1.3	9
2352	Organoids of liver diseases: From bench to bedside. World Journal of Gastroenterology, 2019, 25, 1913-1927.	1.4	12
2353	Engineered 3D Silk-collagen-based Model of Polarized Neural Tissue. Journal of Visualized Experiments, 2015, , e52970.	0.2	22
2354	Modelling neurodegenerative diseases in vitro : Recent advances in 3D iPSC technologies. AIMS Cell and Tissue Engineering, 2018, 2, 1-23.	0.4	7
2355	Modeling rare pediatric neurogenetic disorders with IPSCs. AIMS Cell and Tissue Engineering, 2019, 3, 1-25.	0.4	1
2356	Stem cells, progenitors & regenerative medicine: A retrospection. Indian Journal of Medical Research, 2015, 141, 154.	0.4	23
2357	Novel advancements in three-dimensional neural tissue engineering and regenerative medicine. Neural Regeneration Research, 2015, 10, 352.	1.6	15
2358	Cerebral organoids exhibit mature neurons and astrocytes and recapitulate electrophysiological activity of the human brain. Neural Regeneration Research, 2019, 14, 757.	1.6	48
2359	Spinal cord organoids add an extra dimension to traditional motor neuron cultures. Neural Regeneration Research, 2019, 14, 1515.	1.6	17
2360	Using our mini-brains: cerebral organoids as an improved cellular model for human prion disease. Neural Regeneration Research, 2020, 15, 1019.	1.6	9
2361	HEAVEN: The Frankenstein effect., 2016, 7, 623.		5
2362	Molecular genetics of epilepsy: A clinician's perspective. Annals of Indian Academy of Neurology, 2017, 20, 96.	0.2	11
2363	Trends in the development of human stem cell-based non-animal drug testing models. Korean Journal of Physiology and Pharmacology, 2020, 24, 441-452.	0.6	15
2364	Application of Bioreactor in Stem Cell Culture. Journal of Biomedical Science and Engineering, 2017, 10, 485-499.	0.2	7
2365	Induced pluripotent stem cells for therapy personalization in pediatric patients: Focus on drug-induced adverse events. World Journal of Stem Cells, 2019, 11, 1020-1044.	1.3	14
2366	Importance of being Nernst: Synaptic activity and functional relevance in stem cell-derived neurons. World Journal of Stem Cells, 2015, 7, 899.	1.3	10

#	Article	IF	CITATIONS
2367	Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development. ELife, 2016, 5, .	2.8	200
2368	Addressing the ethical issues raised by synthetic human entities with embryo-like features. ELife, 2017, 6, .	2.8	77
2369	Speed and segmentation control mechanisms characterized in rhythmically-active circuits created from spinal neurons produced from genetically-tagged embryonic stem cells. ELife, 2017, 6, .	2.8	40
2370	Engineering induction of singular neural rosette emergence within hPSC-derived tissues. ELife, 2018, 7,	2.8	81
2371	A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. ELife, 2020, 9, .	2.8	117
2372	The analysis of living systems can generate both knowledge and illusions. ELife, 2020, 9, .	2.8	6
2373	mTOR signaling regulates the morphology and migration of outer radial glia in developing human cortex. ELife, 2020, 9, .	2.8	74
2374	Generation of human liver organoids from pluripotent stem cell-derived hepatic endoderms. PeerJ, 2020, 8, e9968.	0.9	24
2375	Tumor organoids for cancer research and personalized medicine. Cancer Biology and Medicine, 2021, 18, 0-0.	1.4	7
2376	A cis-acting structural variation at the ZNF558 locus controls a gene regulatory network in human brain development. Cell Stem Cell, 2022, 29, 52-69.e8.	5.2	37
2377	New guidelines for embryo and stem cell research. Nature Reviews Molecular Cell Biology, 2021, 22, 773-774.	16.1	5
2378	Opportunities and challenges of glioma organoids. Cell Communication and Signaling, 2021, 19, 102.	2.7	19
2379	iPSC-Derived Organoids as Therapeutic Models in Regenerative Medicine and Oncology. Frontiers in Medicine, 2021, 8, 728543.	1.2	14
2380	Organoid Models for Infectious Disease. Annual Review of Medicine, 2022, 73, 167-182.	5.0	20
2381	Folding brains: from development to disease modeling. Physiological Reviews, 2022, 102, 511-550.	13.1	28
2383	Organoids in image-based phenotypic chemical screens. Experimental and Molecular Medicine, 2021, 53, 1495-1502.	3.2	50
2384	Parkinson's Disease Phenotypes in Patient Neuronal Cultures and Brain Organoids Improved by <scp>2â€Hydroxypropylâ€Î²â€Cyclodextrin</scp> Treatment. Movement Disorders, 2022, 37, 80-94.	2.2	37
2385	Induction of inverted morphology in brain organoids by vertical-mixing bioreactors. Communications Biology, 2021, 4, 1213.	2.0	13

#	Article	IF	CITATIONS
2386	Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology. Nature Neuroscience, 2021, 24, 1542-1554.	7.1	72
2387	Electron cryo-tomography reveals the subcellular architecture of growing axons in human brain organoids. ELife, 2021, 10, .	2.8	21
2388	Plexin-B2 orchestrates collective stem cell dynamics via actomyosin contractility, cytoskeletal tension and adhesion. Nature Communications, 2021, 12, 6019.	5.8	16
2389	Modeling Traumatic Brain Injury in Human Cerebral Organoids. Cells, 2021, 10, 2683.	1.8	24
2390	Autism in Three Dimensions: Using Brain Organoids to Study Potential Gene–Environment Interactions. Environmental Health Perspectives, 2021, 129, 104003.	2.8	2
2391	Brain Organoids and Consciousness: Late Night Musings Inspired by Lewis Thomas. Cambridge Quarterly of Healthcare Ethics, 2021, 30, 557-560.	0.5	3
2392	Effects of early geometric confinement on the transcriptomic profile of human cerebral organoids. BMC Biotechnology, 2021, 21, 59.	1.7	11
2393	Recent Advances in Three-Dimensional Stem Cell Culture Systems and Applications. Stem Cells International, 2021, 2021, 1-13.	1.2	23
2394	Neuronal excitatory-to-inhibitory balance is altered in cerebral organoid models of genetic neurological diseases. Molecular Brain, 2021, 14, 156.	1.3	25
2396	Patient-Derived Induced Pluripotent Stem Cell Models for Phenotypic Screening in the Neuronal Ceroid Lipofuscinoses. Molecules, 2021, 26, 6235.	1.7	4
2397	Biobanking of human gut organoids for translational research. Experimental and Molecular Medicine, 2021, 53, 1451-1458.	3.2	21
2398	The proteomic architecture of schizophrenia iPSC-derived cerebral organoids reveals alterations in GWAS and neuronal development factors. Translational Psychiatry, 2021, 11, 541.	2.4	28
2399	Unraveling Human Brain Development and Evolution Using Organoid Models. Frontiers in Cell and Developmental Biology, 2021, 9, 737429.	1.8	9
2401	The potential and limitations of intrahepatic cholangiocyte organoids to study inborn errors of metabolism. Journal of Inherited Metabolic Disease, 2022, 45, 353-365.	1.7	4
2402	Neurotransmitter signaling regulates distinct phases of multimodal human interneuron migration. EMBO Journal, 2021, 40, e108714.	3.5	16
2403	Current Status and Challenges of Stem Cell Treatment for Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 84, 917-935.	1.2	8
2405	Neocortical development and epilepsy: insights from focal cortical dysplasia and brain tumours. Lancet Neurology, The, 2021, 20, 943-955.	4.9	47
2406	Deciphering the mechanisms underlying brain alterations and cognitive impairment in congenital myotonic dystrophy. Neurobiology of Disease, 2021, 160, 105532.	2.1	7

#	Article	IF	Citations
2407	Three-dimensional Âculture models to study glioblastoma $\hat{a} \in$ " current trends and future perspectives. Current Opinion in Pharmacology, 2021, 61, 91-97.	1.7	11
2408	Micro/nanoengineered technologies for human pluripotent stem cells maintenance and differentiation. Nano Today, 2021, 41, 101310.	6.2	11
2409	Generation of offspring-producing 3D ovarian organoids derived from female germline stem cells and their application in toxicological detection. Biomaterials, 2021, 279, 121213.	5.7	29
2410	臓床応甓ã«å⁴ãťã¥è…Žè‡"å†ç"Ÿç"ç©¶ —第58å›žæ—¥æœ¬é€æžåŒ»å{ä⅓šæ•™è,²è¬›æ⅓"ã,ĵã,Šâ€". Niho	n ō æseki Iş	gadakai Zassh
2411	Stem cells mimic human brain. Nature, 0, , .	13.7	0
2412	Towards the use of human embryonic stem cells in the clinical setting: recent progress. Postdoc Journal, 0, , .	0.4	O
2413	Advances in Human Pluripotent Stem Cells for Regenerative Medicine and Drug Discovery. Journal of Tissue Science & Engineering, 2014, 05, .	0.2	0
2414	Researches for iPS Cell-based Transplantation : Current Status and Issues. Spinal Surgery, 2014, 28, 252-257.	0.0	O
2415	The Future Challenges for the Clinical Application of Reprogrammed Cells. , 2014, 04, .		0
2416	The Potential Brain Drain from Environmental Exposures on the Methylome and Genome Across Generations., 2014,, 375-406.		O
2417	The launch of Advances in Regenerative Biology. Advances in Regenerative Biology, 2014, 1, 25850.	0.2	0
2418	Directed Differentiation of Human Pluripotent Stem Cells into Lung and Airway Epithelial Cells. Pancreatic Islet Biology, 2015, , 265-285.	0.1	O
2420	How induced pluripotent stem cells are informing drug discovery in psychiatry. Swiss Medical Weekly, 2016, 146, w14241.	0.8	2
2421	Migration Guidance of Human iPSC-derived Neurons by a Two-dimensional Patterning. IEEJ Transactions on Electronics, Information and Systems, 2016, 136, 1268-1276.	0.1	0
2422	Use of Stem Cells in Toxicology. , 2017, , 177-194.		0
2423	6 Huntington's Disease and Stem Cells. , 2017, , 115-144.		0
2428	Spatio-Temporally Patterned Neuroectoderm Tissue Recapitulates Early Neural Tube Morphogenesis and Pathogenesis. SSRN Electronic Journal, 0, , .	0.4	0
2431	Three-dimensional Human Axon Tracts Derived From Cerebral Organoids. SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	CITATIONS
2432	Cerebral organoids: a promising model in cellular technologies. Vavilovskii Zhurnal Genetiki I Selektsii, 2018, 22, 168-178.	0.4	0
2440	Organoids: The Future of Medicine. California Agriculture, 2019, 23, .	0.0	0
2441	miRNA as a Marker for In Vitro Neurotoxicity Testing and Related Neurological Disorders. Neuromethods, 2019, , 255-281.	0.2	1
2442	Comparative Efficacy of 3Dimensional (3D) Cell Culture Organoids Vs 2Dimensional (2D) Cell Cultures Vs Experimental Animal Models In Disease modeling, Drug development, And Drug Toxicity Testing. International Journal of Current Research and Review (discontinued), 2019, 11, 11-17.	0.1	4
2444	Systems Biology Perspectives for Studying Neurodevelopmental Events., 0,,.		0
2452	Building a better model of the retina. ELife, 2019, 8, .	2.8	3
2454	Biopharmaceutical molecules. , 2020, , 31-68.		1
2455	The Dilemma of Human Brain Surrogates: Scientific Opportunities, Ethical Concerns. , 2020, , 371-399.		12
2463	Human Forebrain Organoids from Induced Pluripotent Stem Cells: A Novel Approach to Model Repair of Ionizing Radiation-Induced DNA Damage in Human Neurons. Radiation Research, 2020, 194, 191.	0.7	10
2467	â€~Consciousnessoids': clues and insights from human cerebral organoids for the study of consciousness. Neuroscience of Consciousness, 2021, 2021, niab029.	1.4	14
2468	Tumor organoids: synergistic applications, current challenges, and future prospects in cancer therapy. Cancer Communications, 2021, 41, 1331-1353.	3.7	48
2469	Cep55 regulation of PI3K/Akt signaling is required for neocortical development and ciliogenesis. PLoS Genetics, 2021, 17, e1009334.	1.5	4
2470	Advances in Modeling Alzheimer's Disease In Vitro. Advanced NanoBiomed Research, 2021, 1, 2100097.	1.7	10
2471	Non-Animal Models in Experimental Subarachnoid Hemorrhage Research: Potentials and the Dilemma of the Translation from Bench to Bedside. Translational Stroke Research, 2022, 13, 218-221.	2.3	1
2472	Vascularization of iNSC spheroid in a 3D spheroidâ€onâ€aâ€chip platform enhances neural maturation. Biotechnology and Bioengineering, 2022, 119, 566-574.	1.7	20
2473	Human Organoids for Predictive Toxicology Research and Drug Development. Frontiers in Genetics, 2021, 12, 767621.	1.1	40
2474	Loss of Oligodendrocytes by Oxidative Phosphorylation Inhibitor Rotenone and its Reversal by Phenylbutyrate (PB) in Human Brain Developmental Organoid Model. Translational Neuroscience Research and Reviews, 2020, 3, .	0.0	0
2475	Cell Therapy for Stroke: A Mechanistic Analysis. Neurosurgery, 2021, 88, 733-745.	0.6	4

#	Article	IF	Citations
2476	Building a Non-ionic, Non-electronic, Non-algorithmic Artificial Brain: Cortex and Connectome Interaction in a Humanoid Bot Subject (HBS). Advances in Intelligent Systems and Computing, 2021, , 245-278.	0.5	5
2478	Methods for Controlled Induction of Singular Rosette Cytoarchitecture Within Human Pluripotent Stem Cell-Derived Neural Multicellular Assemblies. Methods in Molecular Biology, 2021, 2258, 193-203.	0.4	1
2480	Ariadne's Thread in the Developing Cerebral Cortex: Mechanisms Enabling the Guiding Role of the Radial Glia Basal Process during Neuron Migration. Cells, 2021, 10, 3.	1.8	8
2481	Alternative Models in Biomedical Research: In Silico, InÂVitro, ExÂVivo, and Nontraditional InÂVivo Approaches. , 2022, , 925-966.		1
2482	Cortical spheroids display oscillatory network dynamics. Lab on A Chip, 2021, 21, 4586-4595.	3.1	4
2483	In vitro disease and organ model. , 2020, , 629-668.		0
2485	Embryonic Stem Cells. , 2020, , 315-365.		0
2486	Holistic Thinking and the Worldviews-Based Learning Framework. Encyclopedia of the UN Sustainable Development Goals, 2020, , 407-419.	0.0	0
2487	Three-dimensional models of human brain development. , 2020, , 257-278.		2
2488	Introduction: A Decade Teaching Stem Cell Biology. Learning Materials in Biosciences, 2020, , 1-9.	0.2	0
2489	The contribution of human pluripotent stem cells to the study of myotonic dystrophy type $1.$, 2020, , $161\text{-}186.$		0
2490	Development of a 3-D Organoid System Using Human Induced Pluripotent Stem Cells to Model Idiopathic Autism. Advances in Neurobiology, 2020, 25, 259-297.	1.3	3
2495	PARP Inhibition in Prostate Cancer With Homologous Recombination Repair Alterations. JCO Precision Oncology, 2021, 5, 1639-1649.	1.5	7
2496	Establishment and characterization of prostate organoids from treatmentâ€naÃ⁻ve patients with prostate cancer. Oncology Letters, 2021, 23, 6.	0.8	12
2497	Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chemical Reviews, 2022, 122, 5277-5316.	23.0	31
2498	Dissecting the complexities of Alzheimer disease with in vitro models of the human brain. Nature Reviews Neurology, 2022, 18, 25-39.	4.9	30
2499	Developmental defects and impaired network excitability in a cerebral organoidÂmodel ofÂKCNJ11 p.V59M-related neonatal diabetes. Scientific Reports, 2021, 11, 21590.	1.6	7
2500	Regenerative Engineering: Current Applications and Future Perspectives. Frontiers in Surgery, 2021, 8, 731031.	0.6	11

#	Article	IF	Citations
2501	Extracellular LGALS3BP regulates neural progenitor position and relates to human cortical complexity. Nature Communications, 2021, 12, 6298.	5.8	21
2502	Biofidelic dynamic compression of human cortical spheroids reproduces neurotrauma phenotypes. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	7
2509	Human Glioblastoma Organoids to Model Brain Tumor Heterogeneity Ex Vivo. Neuromethods, 2021, , 133-158.	0.2	0
2517	Your brain under the microscope: the promise of stem cells. Cerebrum: the Dana Forum on Brain Science, 2014, 2014, 1.	0.1	5
2518	The use of stem cells to study autism spectrum disorder. Yale Journal of Biology and Medicine, 2015, 88, 5-16.	0.2	11
2520	Value of Organoids from Comparative Epithelia Models. Yale Journal of Biology and Medicine, 2015, 88, 367-74.	0.2	7
2521	Generating CNS organoids from human induced pluripotent stem cells for modeling neurological disorders. International Journal of Physiology, Pathophysiology and Pharmacology, 2017, 9, 101-111.	0.8	20
2522	Generation of Isthmic Organizer-Like Cells from Human Embryonic Stem Cells. Molecules and Cells, 2018, 41, 110-118.	1.0	0
2523	Gene Expression Patterns of Royan Human Embryonic Stem Cells Correlate with Their Propensity and Culture Systems. Cell Journal, 2019, 21, 290-299.	0.2	0
2524	Real-time observation of pancreatic beta cell differentiation from human induced pluripotent stem cells. American Journal of Translational Research (discontinued), 2019, 11, 3490-3504.	0.0	6
2525	Organoid models of glioblastoma: advances, applications and challenges. American Journal of Cancer Research, 2020, 10, 2242-2257.	1.4	8
2526	Differentiation of Human Pluripotent Stem Cells Into Specific Neural Lineages. Cell Transplantation, 2021, 30, 9636897211017829.	1.2	0
2527	Differentiation of Human Pluripotent Stem Cells Into Specific Neural Lineages. Cell Transplantation, 2021, 30, 096368972110178.	1.2	5
2528	Human induced pluripotent stem cell–derived astrocytes progenitors as discovery platforms. , 2022, , 45-89.		0
2529	Human induced pluripotent stem cell modeling of neurofibromatosis type 1., 2022, , 1-30.		0
2530	Modeling heritable kidney disease using human kidney iPSC-derived organoids. , 2022, , 275-296.		0
2531	Induced pluripotent stem cells for modeling Noonan, Noonan Syndrome with Multiple Lentigines, and Costello Syndromes., 2022,, 65-110.		0
2532	Induced pluripotent stem cell–derived neural stem cells. , 2022, , 1-17.		0

#	Article	IF	CITATIONS
2533	Modeling hereditary spastic paraplegias using induced pluripotent stem cells., 2022, , 185-215.		0
2534	Organoid Technology: Current Standing and Future Perspectives. Stem Cells, 2021, 39, 1625-1649.	1.4	29
2535	The ECM: To Scaffold, or Not to Scaffold, That Is the Question. International Journal of Molecular Sciences, 2021, 22, 12690.	1.8	54
2536	Harnessing the Potential of Human Pluripotent Stem Cell-Derived Motor Neurons for Drug Discovery in Amyotrophic Lateral Sclerosis: From the Clinic to the Laboratory and Back to the Patient. Frontiers in Drug Discovery, 2021, 1, .	1.1	8
2537	Energy Metabolism and Intracellular pH Alteration in Neural Spheroids Carrying Down Syndrome. Biomedicines, 2021, 9, 1741.	1.4	2
2538	Generation of heart-forming organoids from human pluripotent stem cells. Nature Protocols, 2021, 16, 5652-5672.	5.5	24
2539	A familiar study on self-limited childhood epilepsy patients using hIPSC-derived neurons shows a bias towards immaturity at the morphological, electrophysiological and gene expression levels. Stem Cell Research and Therapy, 2021, 12, 590.	2.4	3
2540	Building on a Solid Foundation: Adding Relevance and Reproducibility to Neurological Modeling Using Human Pluripotent Stem Cells. Frontiers in Cellular Neuroscience, 2021, 15, 767457.	1.8	0
2541	Generation of Interconnected Neural Clusters in Multiscale Scaffolds from Human-Induced Pluripotent Stem Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55939-55952.	4.0	8
2543	Methodologies for Generating Brain Organoids to Model Viral Pathogenesis in the CNS. Pathogens, 2021, 10, 1510.	1.2	5
2544	WWOX-Related Neurodevelopmental Disorders: Models and Future Perspectives. Cells, 2021, 10, 3082.	1.8	8
2546	Lipopolysaccharide-induced neuroinflammation disrupts functional connectivity and community structure in primary cortical microtissues. Scientific Reports, 2021, 11, 22303.	1.6	3
2547	In Vitro Recapitulation of Neuropsychiatric Disorders with Pluripotent Stem Cells-Derived Brain Organoids. International Journal of Environmental Research and Public Health, 2021, 18, 12431.	1.2	5
2548	Light-weight electrophysiology hardware and software platform for cloud-based neural recording experiments. Journal of Neural Engineering, 2021, 18, 066004.	1.8	7
2549	Human brain organogenesis: Toward a cellular understanding of development and disease. Cell, 2022, 185, 42-61.	13.5	97
2550	Rare Does Not Mean Worthless: How Rare Diseases Have Shaped Neurodevelopment Research in the NGS Era. Biomolecules, $2021, 11, 1713$.	1.8	3
2552	Evaluation of growth, viability, and structural integrity of equine endometrial organoids following cryopreservation. Cryobiology, 2022, 104, 56-62.	0.3	6
2553	Schizophrenia is defined by cell-specific neuropathology and multiple neurodevelopmental mechanisms in patient-derived cerebral organoids. Molecular Psychiatry, 2022, 27, 1416-1434.	4.1	57

#	Article	IF	CITATIONS
2554	Insights to Heart Development and Cardiac Disease Models Using Pluripotent Stem Cell Derived 3D Organoids. Frontiers in Cell and Developmental Biology, 2021, 9, 788955.	1.8	8
2555	Protocol for controlled cortical impact in human cerebral organoids to model traumatic brain injury. STAR Protocols, 2021, 2, 100987.	0.5	5
2556	Murine cerebral organoids develop network of functional neurons and hippocampal brain region identity. IScience, 2021, 24, 103438.	1.9	15
2558	Time is of the essence: the molecular mechanisms of primary microcephaly. Genes and Development, 2021, 35, 1551-1578.	2.7	34
2559	Culturing human iPSC-derived neural progenitor cells on nanowire arrays: mapping the impact of nanowire length and array pitch on proliferation, viability, and membrane deformation. Nanoscale, 2021, 13, 20052-20066.	2.8	3
2560	Making neurons, made easy: The use of Neurogenin-2 in neuronal differentiation. Stem Cell Reports, 2022, 17, 14-34.	2.3	35
2562	When stem cells meet COVID-19: recent advances, challenges and future perspectives. Stem Cell Research and Therapy, 2022, 13, 9.	2.4	9
2563	CLARITY and Light-Sheet microscopy sample preparation in application to human cerebral organoids. Vavilovskii Zhurnal Genetiki I Selektsii, 2022, 25, 889-895.	0.4	1
2564	A Microfluidic Chip for Growth and Characterization of Adult Rat Hippocampal Progenitor Cell Neurospheroids. Journal of Microelectromechanical Systems, 2022, 31, 37-44.	1.7	3
2565	Redox modulation by plant polyphenols targeting vitagenes for chemoprevention and therapy: Relevance to novel anti-cancer interventions and mini-brain organoid technology. Free Radical Biology and Medicine, 2022, 179, 59-75.	1.3	22
2566	Two new applications in the study of angiogenesis the CAM assay: Acellular scaffolds and organoids. Microvascular Research, 2022, 140, 104304.	1.1	9
2567	Chapter 10. Post-Genomics, Cell Reprogramming, and the Obstacle to Biomedicine. , 2020, , 409-439.		0
2568	Organoids in Tissue Transplantation. Advances in Experimental Medicine and Biology, 2021, , 45-64.	0.8	3
2569	Engineered models for studying blood-brain-barrier-associated brain physiology and pathology. Organoid, 0, 1, e10.	0.0	2
2570	Trends in the global organoid technology and industry: from organogenesis in a dish to the commercialization of organoids. Organoid, 0, 1, e11.	0.0	1
2571	è,è"ç±»å™"å®~çš"ç"究进展åŠå²"ç"". Scientia Sinica Vitae, 2021, , .	0.1	0
2572	Fabrication of Biomaterials and Biostructures Based On Microfluidic Manipulation. Small, 2022, 18, e2105867.	5.2	16
2573	Regenerative Neurology and Regenerative Cardiology: Shared Hurdles and Achievements. International Journal of Molecular Sciences, 2022, 23, 855.	1.8	6

#	Article	IF	Citations
2574	Organoids for modeling prion diseases. Cell and Tissue Research, 2023, 392, 97-111.	1.5	6
2575	Applications of noncoding RNAs in brain cancer patients. , 2022, , 17-64.		O
2577	Gene-Edited Fluorescent and Mixed Cerebral Organoids. CRISPR Journal, 2022, 5, 53-65.	1.4	3
2579	Human Brain Organoids as an In Vitro Model System of Viral Infectious Diseases. Frontiers in Immunology, 2021, 12, 792316.	2.2	12
2580	Electrophysiological Monitoring of Neurochemical-Based Neural Signal Transmission in a Human Brain–Spinal Cord Assembloid. ACS Sensors, 2022, 7, 409-414.	4.0	12
2581	Three-dimensional tissue model in direct contact with an on-chip vascular bed enabled by removable membranes. Lab on A Chip, 2022, 22, 641-651.	3.1	9
2582	Emerging Threeâ€Dimensional Integrated Systems for Biomimetic Neural InÂVitro Cultures. Advanced Materials Interfaces, 2022, 9, .	1.9	10
2583	Can We Ever Make a Humanoid Bot that Runs by Itself Without Any Software?. Studies in Rhythm Engineering, 2022, , 197-238.	0.1	0
2584	Central nervous system organoids for modeling neurodegenerative diseases. IUBMB Life, 2022, 74, 812-825.	1.5	4
2585	Bioengineering of brain organoids: Advancements and challenges. , 2022, , 399-414.		2
2586	Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chemical Reviews, 2022, 122, 7142-7181.	23.0	21
2587	Androgens increase excitatory neurogenic potential in human brain organoids. Nature, 2022, 602, 112-116.	13.7	47
2588	Aligned Poly- <scp>I</scp> -lactic Acid Nanofibers Induce Self-Assembly of Primary Cortical Neurons into 3D Cell Clusters. ACS Biomaterials Science and Engineering, 2022, 8, 765-776.	2.6	5
2590	Revealing nervous and cardiac system interactions by iPSC-Based platforms. , 2022, , 1-28.		0
2591	Toward the inÂvitro understanding of iPSC nucleoskeletal and cytoskeletal biology, and their relevance for organoid development. , 2022, , 137-150.		0
2592	Challenges of Organoid Research. Annual Review of Neuroscience, 2022, 45, 23-39.	5.0	59
2593	High-throughput formation and image-based analysis of basal-in mammary organoids in 384-well plates. Scientific Reports, 2022, 12, 317.	1.6	15
2594	Stretchable Mesh Nanoelectronics for 3D Singleâ€Cell Chronic Electrophysiology from Developing Brain Organoids. Advanced Materials, 2022, 34, e2106829.	11.1	44

#	Article	IF	CITATIONS
2595	Autosomal Recessive Primary Microcephaly: Not Just a Small Brain. Frontiers in Cell and Developmental Biology, 2021, 9, 784700.	1.8	28
2596	Engineering Organoids for in vitro Modeling of Phenylketonuria. Frontiers in Molecular Neuroscience, 2021, 14, 787242.	1.4	6
2597	Patient-Derived InÂVitro Models of Microglial Function and Synaptic Engulfment in Schizophrenia. Biological Psychiatry, 2022, 92, 470-479.	0.7	20
2598	hiPSC disease modeling with 3D organoids. , 2022, , 63-93.		0
2599	Epilepsy Research Now in 3D: Harnessing the Power of Brain Organoids in Epilepsy. Epilepsy Currents, 2022, 22, 135-136.	0.4	1
2600	Induced pluripotent stem cell models for mitochondrial disorders. , 2022, , 151-165.		0
2601	Modeling Somatic Mutations Associated With Neurodevelopmental Disorders in Human Brain Organoids. Frontiers in Molecular Neuroscience, 2021, 14, 787243.	1.4	4
2602	Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development—Current State-of-the-Art and Future Perspectives. Pharmacological Reviews, 2022, 74, 141-206.	7.1	23
2603	Biomaterials-based strategies for <i>in vitro</i> neural models. Biomaterials Science, 2022, 10, 1134-1165.	2.6	7
2604	Reaching into the toolbox: Stem cell models to study neuropsychiatric disorders. Stem Cell Reports, 2022, 17, 187-210.	2.3	13
2605	IPSC-derived models in Africa: An HIV perspective. Biochimie, 2022, 196, 153-160.	1.3	1
2606	Overcoming the barriers of two-dimensional cell culture systems with three-dimensional cell culture systems: techniques, drug discovery, and biomedical applications., 2022,, 179-229.		0
2607	Single-cell transcription profiles in Bloom syndrome patients link <i>BLM</i> deficiency with altered condensin complex expression signatures. Human Molecular Genetics, 2022, 31, 2185-2193.	1.4	2
2608	Applications of human induced pluripotent stem cell and human embryonic stem cell models for substance use disorders., 2022,, 153-177.		1
2610	A multimodal 3D neuro-microphysiological system with neurite-trapping microelectrodes. Biofabrication, 2022, 14, 025004.	3.7	11
2611	Therapeutic potential of induced pluripotent stem cell–derived extracellular vesicles. , 2022, , 393-449.		0
2612	Expression of the transcription factor PU.1 induces the generation of microglia-like cells in human cortical organoids. Nature Communications, 2022, 13, 430.	5.8	49
2613	Amplification of human interneuron progenitors promotes brain tumors and neurological defects. Science, 2022, 375, eabf5546.	6.0	61

#	ARTICLE	IF	Citations
2614	Modeling human neurodevelopmental diseases with brain organoids. Cell Regeneration, 2022, 11, 1.	1.1	22
2615	Harnessing the Power of Stem Cell Models to Study Shared Genetic Variants in Congenital Heart Diseases and Neurodevelopmental Disorders. Cells, 2022, 11, 460.	1.8	O
2616	Long-Term Effects of Nanoscale Magnetite on Human Forebrain-like Tissue Development in Stem-Cell-Derived Cortical Spheroids. ACS Biomaterials Science and Engineering, 2022, 8, 801-813.	2.6	5
2617	Human iPSC-Derived Neural Models for Studying Alzheimer's Disease: from Neural Stem Cells to Cerebral Organoids. Stem Cell Reviews and Reports, 2022, 18, 792-820.	1.7	25
2619	Modeling Developmental Brain Diseases Using Human Pluripotent Stem Cells-Derived Brain Organoids – Progress and Perspective. Journal of Molecular Biology, 2022, 434, 167386.	2.0	15
2621	Human Organoids and Organsâ€onâ€Chips for Addressing COVIDâ€19 Challenges. Advanced Science, 2022, 9, e2105187.	5.6	19
2622	Injection and electroporation of plasmid DNA into human cortical organoids. STAR Protocols, 2022, 3, 101129.	0.5	4
2624	Bio-inspired engineering of a perfusion culture platform for guided three-dimensional nerve cell growth and differentiation. Lab on A Chip, 2022, 22, 1006-1017.	3.1	13
2625	iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell, 2022, 29, 189-208.	5.2	71
2626	The Application of Brain Organoids in Assessing Neural Toxicity. Frontiers in Molecular Neuroscience, 2022, 15, 799397.	1.4	11
2627	In vivo development and singleâ€cell transcriptome profiling of human brain organoids. Cell Proliferation, 2022, , e13201.	2.4	3
2628	Human Brain Organoids and Consciousness. Neuroethics, 2022, 15, 1.	1.7	23
2629	The microbiotaâ€gutâ€brain axis and epilepsy from a multidisciplinary perspective: Clinical evidence and technological solutions for improvement of in vitro preclinical models. Bioengineering and Translational Medicine, 2022, 7, .	3.9	10
2630	Generation of human induced pluripotent stem cell-derived cerebral organoids for cellular and molecular characterization. STAR Protocols, 2022, 3, 101173.	0.5	4
2631	Lineage recording in human cerebral organoids. Nature Methods, 2022, 19, 90-99.	9.0	93
2632	Microglia-like Cells Promote Neuronal Functions in Cerebral Organoids. Cells, 2022, 11, 124.	1.8	50
2633	From Spheroids to Organoids: The Next Generation of Model Systems of Human Cardiac Regeneration in a Dish. International Journal of Molecular Sciences, 2021, 22, 13180.	1.8	27
2634	Generation of iPSC-Derived Brain Organoids for Drug Testing and Toxicological Evaluation. Methods in Molecular Biology, 2022, 2474, 93-105.	0.4	2

#	Article	IF	Citations
2635	Towards More Human and Humane Testing: The Role of the Device Supplier Industry. ATLA Alternatives To Laboratory Animals, 2022, 50, 62-70.	0.7	2
2636	Toward Understanding Neurodegeneration Using Brain Organoids. Pancreatic Islet Biology, 2022, , 91-107.	0.1	0
2637	Plumbing our organs: Lessons from vascular development to instruct lab generated tissues. Current Topics in Developmental Biology, 2022, 148, 165-194.	1.0	5
2638	Establishment of In Vitro Brain Models for AON Delivery. Methods in Molecular Biology, 2022, 2434, 257-264.	0.4	1
2640	Patient-derived functional organoids as a personalized approach for drug screening against hepatobiliary cancers. Advances in Cancer Research, 2022, , 319-341.	1.9	2
2641	The Organoids: Derivations and Applications. Pancreatic Islet Biology, 2022, , 1-19.	0.1	0
2642	Engineering neurovascular organoids with 3D printed microfluidic chips. Lab on A Chip, 2022, 22, 1615-1629.	3.1	73
2643	From engineered heart tissue to cardiac organoid. Theranostics, 2022, 12, 2758-2772.	4.6	21
2645	Unraveling pathological mechanisms in neurological disorders: the impact of cell-based and organoid models. Neural Regeneration Research, 2022, 17, 2131.	1.6	6
2647	A Simple Method for Generating Cerebral Organoids from Human Pluripotent Stem Cells. International Journal of Stem Cells, 2022, 15, 95-103.	0.8	3
2648	Human spinal cord in vitro differentiation pace is initially maintained in heterologous embryonic environments. ELife, 2022, 11, .	2.8	7
2649	Modeling the Human Brain With ex vivo Slices and in vitro Organoids for Translational Neuroscience. Frontiers in Neuroscience, 2022, 16, 838594.	1.4	16
2650	Application Progress of Organoids in Colorectal Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, 815067.	1.8	8
2651	Impaired p53-Mediated DNA Damage Response Contributes to Microcephaly in Nijmegen Breakage Syndrome Patient-Derived Cerebral Organoids. Cells, 2022, 11, 802.	1.8	7
2652	Heart in a Dish: From Traditional 2D Differentiation Protocols to Cardiac Organoids. Frontiers in Cell and Developmental Biology, 2022, 10, 855966.	1.8	6
2653	Generation of Cortical Brain Organoid with Vascularization by Assembling with Vascular Spheroid. International Journal of Stem Cells, 2022, 15, 85-94.	0.8	20
2654	BrewerlX enables allelic expression analysis of imprinted and X-linked genes from bulk and single-cell transcriptomes. Communications Biology, 2022, 5, 146.	2.0	2
2655	Biosensors to Monitor Cell Activity in 3D Hydrogel-Based Tissue Models. Sensors, 2022, 22, 1517.	2.1	14

#	Article	IF	CITATIONS
2656	Neural Organoids, a Versatile Model for Neuroscience. Molecules and Cells, 2022, 45, 53-64.	1.0	6
2657	Cerebral Organoids Maintain the Expression of Neural Stem Cell-Associated Glycoepitopes and Extracellular Matrix. Cells, 2022, 11, 760.	1.8	8
2658	Patient-derived cellular models of primary ciliopathies. Journal of Medical Genetics, 2022, , jmedgenet-2021-108315.	1.5	5
2659	Engineering Brain Organoids: Toward Mature Neural Circuitry with an Intact Cytoarchitecture. International Journal of Stem Cells, 2022, 15, 41-59.	0.8	11
2660	Post-transcriptional and Post-translational Modifications of Primary Cilia: How to Fine Tune Your Neuronal Antenna. Frontiers in Cellular Neuroscience, 2022, 16, 809917.	1.8	6
2663	Region Specific Brain Organoids to Study Neurodevelopmental Disorders. International Journal of Stem Cells, 2022, 15, 26-40.	0.8	14
2666	Pursuit of Perfection? On Brain Organoids as Models. AJOB Neuroscience, 2022, 13, 79-80.	0.6	4
2667	Brain and Retinal Organoids for Disease Modeling: The Importance of In Vitro Blood–Brain and Retinal Barriers Studies. Cells, 2022, 11, 1120.	1.8	5
2669	Physiological Electric Field: A Potential Construction Regulator of Human Brain Organoids. International Journal of Molecular Sciences, 2022, 23, 3877.	1.8	8
2670	Present Application and Perspectives of Organoid Imaging Technology. Bioengineering, 2022, 9, 121.	1.6	18
2671	Modeling PCDH19-CE: From 2D Stem Cell Model to 3D Brain Organoids. International Journal of Molecular Sciences, 2022, 23, 3506.	1.8	1
2672	Production of human spinal-cord organoids recapitulating neural-tube morphogenesis. Nature Biomedical Engineering, 2022, 6, 435-448.	11.6	40
2673	Application of tumoroids derived from advanced colorectal cancer patients to predict individual response to chemotherapy. Journal of Chemotherapy, 2023, 35, 104-116.	0.7	6
2674	Transcellular propagation of fibrillar \hat{l}_{\pm} -synuclein from enteroendocrine to neuronal cells requires cell-to-cell contact and is Rab35-dependent. Scientific Reports, 2022, 12, 4168.	1.6	19
2677	Stem cellâ€based regionâ€specific brain organoids: Novel models to understand neurodevelopmental defects. Birth Defects Research, 2022, 114, 1003-1013.	0.8	1
2678	Principles for the design of multicellular engineered living systems. APL Bioengineering, 2022, 6, 010903.	3.3	17
2679	Human Brain Organoids as Models for Central Nervous System Viral Infection. Viruses, 2022, 14, 634.	1.5	20
2680	Optical tissue clearing associated with 3D imaging: application in preclinical and clinical studies. Histochemistry and Cell Biology, 2022, 157, 497-511.	0.8	10

#	Article	IF	CITATIONS
2681	Moving To A New Dimension: 3D Kidney Cultures For Kidney Regeneration. Current Opinion in Biomedical Engineering, 2022, , 100379.	1.8	0
2682	Modeling Human Primary Microcephaly With hiPSC-Derived Brain Organoids Carrying CPAP-E1235V Disease-Associated Mutant Protein. Frontiers in Cell and Developmental Biology, 2022, 10, 830432.	1.8	8
2683	Deficiency of N-glycanase 1 perturbs neurogenesis and cerebral development modeled by human organoids. Cell Death and Disease, 2022, 13, 262.	2.7	4
2684	AUTS2 Syndrome: Molecular Mechanisms and Model Systems. Frontiers in Molecular Neuroscience, 2022, 15, 858582.	1.4	14
2686	Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues. Nature Biomedical Engineering, 2022, 6, 449-462.	11.6	52
2687	Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality. Glia, 2022, 70, 1267-1288.	2.5	51
2691	Superoxide dismutase isozymes in cerebral organoids from autism spectrum disorder patients. Journal of Neural Transmission, 2022, , $1.$	1.4	1
2692	Long-term adherence of human brain cells inÂvitro is enhanced by charged amine-based plasma polymer coatings. Stem Cell Reports, 2022, 17, 489-506.	2.3	11
2694	The Subventricular Zone in Glioblastoma: Genesis, Maintenance, and Modeling. Frontiers in Oncology, 2022, 12, 790976.	1.3	11
2695	Protective Effect of Human-Neural-Crest-Derived Nasal Turbinate Stem Cells against Amyloid-β Neurotoxicity through Inhibition of Osteopontin in a Human Cerebral Organoid Model of Alzheimer's Disease. Cells, 2022, 11, 1029.	1.8	5
2696	Creation and Development of Patient-Derived Organoids for Therapeutic Screening in Solid Cancer. Current Stem Cell Reports, 2022, 8, 107-117.	0.7	2
2698	Retinal Organoids and Retinal Prostheses: An Overview. International Journal of Molecular Sciences, 2022, 23, 2922.	1.8	10
2699	Synthetic developmental biology: Engineering approaches to guide multicellular organization. Stem Cell Reports, 2022, 17, 715-733.	2.3	13
2700	ZIKV Teratogenesis: Clinical Findings in Humans, Mechanisms and Experimental Models. Frontiers in Virology, 2022, 1, .	0.7	O
2701	Human forebrain organoids reveal connections between valproic acid exposure and autism risk. Translational Psychiatry, 2022, 12, 130.	2.4	21
2702	Mitigating Effect of Estrogen in Alzheimer's Disease-Mimicking Cerebral Organoid. Frontiers in Neuroscience, 2022, 16, 816174.	1.4	10
2703	Brain organoids, consciousness, ethics and moral status. Seminars in Cell and Developmental Biology, 2023, 144, 97-102.	2.3	19
2704	Emerging scaffold- and cellular-based strategies for brain tissue regeneration and imaging. In Vitro Models, 2022, 1, 129-150.	1.0	8

#	Article	IF	CITATIONS
2705	Application of Organoids in Carcinogenesis Modeling and Tumor Vaccination. Frontiers in Oncology, 2022, 12, 855996.	1.3	2
2706	In-vitro engineered human cerebral tissues mimic pathological circuit disturbances in 3D. Communications Biology, 2022, 5, 254.	2.0	4
2707	Prenatal Drugs and Their Effects on the Developing Brain: Insights From Three-Dimensional Human Organoids. Frontiers in Neuroscience, 2022, 16, 848648.	1.4	4
2708	3D and organoid culture in research: physiology, hereditary genetic diseases and cancer. Cell and Bioscience, 2022, 12, 39.	2.1	23
2709	Advanced human developmental toxicity and teratogenicity assessment using human organoid models. Ecotoxicology and Environmental Safety, 2022, 235, 113429.	2.9	32
2710	Translational organoid technology – the convergence of chemical, mechanical, and computational biology. Trends in Biotechnology, 2022, 40, 1121-1135.	4.9	7
2711	Consequences of Viral Infection and Cytokine Production During Pregnancy on Brain Development in Offspring. Frontiers in Immunology, 2022, 13, 816619.	2.2	15
2712	Chromatin Structure and Dynamics: Focus on Neuronal Differentiation and Pathological Implication. Genes, 2022, 13, 639.	1.0	8
2713	Upscaling biological complexity to boost neuronal and oligodendroglia maturation and improve in vitro developmental neurotoxicity (DNT) evaluation. Reproductive Toxicology, 2022, , .	1.3	7
2714	Astrocytes derived from ASD individuals alter behavior and destabilize neuronal activity through aberrant Ca2+ signaling. Molecular Psychiatry, 2022, 27, 2470-2484.	4.1	26
2715	Large-Scale Cortex-Core Structure Formation in Brain Organoids. Frontiers in Physics, 2022, 10, .	1.0	2
2716	Downregulation of neurodevelopmental gene expression in iPSC-derived cerebral organoids upon infection by human cytomegalovirus. IScience, 2022, 25, 104098.	1.9	12
2718	The Evolution of Complex Muscle Cell In Vitro Models to Study Pathomechanisms and Drug Development of Neuromuscular Disease. Cells, 2022, 11, 1233.	1.8	7
2719	Impaired neurogenesis alters brain biomechanics in a neuroprogenitor-based genetic subtype of congenital hydrocephalus. Nature Neuroscience, 2022, 25, 458-473.	7.1	46
2720	Zika virus infection accelerates Alzheimer's disease phenotypes in brain organoids. Cell Death Discovery, 2022, 8, 153.	2.0	22
2721	A suspension technique for efficient large-scale cancer organoid culturing and perturbation screens. Scientific Reports, 2022, 12, 5571.	1.6	11
2722	Human organoid models to study SARS-CoV-2 infection. Nature Methods, 2022, 19, 418-428.	9.0	73
2723	Heads or tails: making the spinal cord. Developmental Biology, 2022, 485, 80-92.	0.9	2

#	Article	IF	CITATIONS
2724	Human airway organoids and microplastic fibers: A new exposure model for emerging contaminants. Environment International, 2022, 163, 107200.	4.8	25
2725	Patterning of brain organoids derived from human pluripotent stem cells. Current Opinion in Neurobiology, 2022, 74, 102536.	2.0	13
2726	Abnormal mitochondria in Down syndrome iPSC-derived GABAergic interneurons and organoids. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166388.	1.8	6
2727	The application and research advances of organoids in clinical medicine. Scientia Sinica Vitae, 2023, 53, 221-237.	0.1	1
2728	Ethical Dimensions of Human Organoids Research. American Biology Teacher, 2021, 83, 575-578.	0.1	0
2729	Hydrogel Mechanics Influence the Growth and Development of Embedded Brain Organoids. ACS Applied Bio Materials, 2022, 5, 214-224.	2.3	23
2730	Patient-Derived Organoids in Precision Medicine: Drug Screening, Organoid-on-a-Chip and Living Organoid Biobank. Frontiers in Oncology, 2021, 11, 762184.	1.3	53
2731	The good, the bad, and the ugly: Evolutionary and pathological aspects of gene dosage alterations. PLoS Genetics, 2021, 17, e1009906.	1.5	5
2733	PNPLA3 as a therapeutic target for fatty liver disease: the evidence to date. Expert Opinion on Therapeutic Targets, 2021, 25, 1033-1043.	1.5	22
2734	Transcriptome Dynamics of Human Neuronal Differentiation From iPSC. Frontiers in Cell and Developmental Biology, 2021, 9, 727747.	1.8	4
2735	Altering Cell-Cell Interaction in Prenatal Alcohol Exposure Models: Insight on Cell-Adhesion Molecules During Brain Development. Frontiers in Molecular Neuroscience, 2021, 14, 753537.	1.4	4
2737	Establishment of Human Pluripotent Stem Cellâ€Derived Skin Organoids Enabled Pathophysiological Model of SARSâ€CoVâ€2 Infection. Advanced Science, 2022, 9, e2104192.	5.6	18
2738	A Cerebral Organoid Connectivity Apparatus to Model Neuronal Tract Circuitry. Micromachines, 2021, 12, 1574.	1.4	5
2739	Beyond Mendelian Inheritance: Genetic Buffering and Phenotype Variability. Phenomics, 2022, 2, 79-87.	0.9	4
2740	Guided Self-Assembly of ES-Derived Lung Progenitors into Biomimetic Tube Structures That Impact Cell Differentiation. Bioengineering, 2021, 8, 209.	1.6	2
2741	Assessment of Normal Tissue Radiosensitivity by Evaluating DNA Damage and Repair Kinetics in Human Brain Organoids. International Journal of Molecular Sciences, 2021, 22, 13195.	1.8	3
2742	Focus on organoids: cooperation and interconnection with extracellular vesicles – Is this the future of in vitro modeling?. Seminars in Cancer Biology, 2022, 86, 367-381.	4.3	5
2743	Evolving features of human cortical development and the emerging roles of non-coding RNAs in neural progenitor cell diversity and function. Cellular and Molecular Life Sciences, 2022, 79, 1.	2.4	2

#	Article	IF	CITATIONS
2744	CDK5RAP2 loss-of-function causes premature cell senescence via the GSK3 \hat{l}^2/\hat{l}^2 -catenin-WIP1 pathway. Cell Death and Disease, 2022, 13, 9.	2.7	2
2745	Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids. Nature Communications, 2021, 12, 7302.	5.8	39
2746	Gold nanoparticle-assisted delivery of brain-derived neurotrophic factor to cerebral organoids. Nano Research, 2022, 15, 3099-3105.	5.8	0
2747	Human iPSC-Derived Astrocytes: A Powerful Tool to Study Primary Astrocyte Dysfunction in the Pathogenesis of Rare Leukodystrophies. International Journal of Molecular Sciences, 2022, 23, 274.	1.8	5
2748	Effect of duty cycles of tumor‑treating fields onÂglioblastoma cells and normal brain organoids. International Journal of Oncology, 2021, 60, .	1.4	4
2749	Robotic high-throughput biomanufacturing and functional differentiation ofÂhuman pluripotent stem cells. Stem Cell Reports, 2021, 16, 3076-3092.	2.3	34
2750	Toward Construction of a Brain in a Dish: Cultured Neurons, Brain Organoids, and Beyond. The Brain & Neural Networks, 2021, 28, 151-161.	0.1	0
2751	LncRNA <i>SOX1â€OT</i> V1 acts as a decoy of HDAC10 to promote SOX1â€dependent hESC neuronal differentiation. EMBO Reports, 2022, 23, e53015.	2.0	11
2752	Activity-induced instabilities of brain organoids. European Physical Journal E, 2021, 44, 147.	0.7	4
2753	Transcriptomic Mapping of Neural Diversity, Differentiation and Functional Trajectory in iPSC-Derived 3D Brain Organoid Models. Cells, 2021, 10, 3422.	1.8	7
2754	Automatic Differentiation of Human Induced Pluripotent Stem Cells Toward Synchronous Neural Networks on an Arrayed Monolayer of Nanofiber Membrane. SSRN Electronic Journal, 0, , .	0.4	0
2755	What Makes Organoids Good Models of Human Neurogenesis?. Frontiers in Neuroscience, 2022, 16, 872794.	1.4	5
2756	Modeling common and rare genetic risk factors of neuropsychiatric disorders in human induced pluripotent stem cells. Schizophrenia Research, 2022, , .	1.1	6
2757	Media portrayal of ethical and social issues in brain organoid research. Philosophy, Ethics, and Humanities in Medicine, 2022, 17, 8.	0.7	15
2758	Development of Living "Bio-Robots―for Autonomous Actuations. Journal of Robotics and Mechatronics, 2022, 34, 279-284.	0.5	4
2759	Transcending Dimensions in Apicomplexan Research: from Two-Dimensional to Three-Dimensional <i>In Vitro</i> Cultures. Microbiology and Molecular Biology Reviews, 2022, 86, e0002522.	2.9	9
2760	Current progress in brain organoid technology. Scientia Sinica Vitae, 2023, 53, 161-174.	0.1	1
2761	Specific metabolic response of patient-derived organoids to curcumin of colorectal cancer. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2022, 1203, 123260.	1.2	5

#	Article	lF	CITATIONS
2762	Perspectives on Mechanisms Supporting Neuronal Polarity From Small Animals to Humans. Frontiers in Cell and Developmental Biology, 2022, 10, 878142.	1.8	2
2763	In Vitro Model of Human Trophoblast in Early Placentation. Biomedicines, 2022, 10, 904.	1.4	8
2764	Characterization of HIV-1 Infection in Microglia-Containing Human Cerebral Organoids. Viruses, 2022, 14, 829.	1.5	24
2766	Engineered Neutral Phosphorous Dendrimers Protect Mouse Cortical Neurons and Brain Organoids from Excitotoxic Death. International Journal of Molecular Sciences, 2022, 23, 4391.	1.8	6
2767	What Are the Human-Specific Aspects of Neocortex Development?. Frontiers in Neuroscience, 2022, 16, 878950.	1.4	7
2768	Connecting past and present: single-cell lineage tracing. Protein and Cell, 2022, 13, 790-807.	4.8	30
2769	â€~Channeling' therapeutic discovery for epileptic encephalopathy through iPSC technologies. Trends in Pharmacological Sciences, 2022, 43, 392-405.	4.0	10
2849	Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioactive Materials, 2023, 19, 50-74.	8.6	57
2850	Mapping and exploring the organoid state space using synthetic biology. Seminars in Cell and Developmental Biology, 2022, , .	2.3	3
2851	Extracellular Microenvironmental Control for Organoid Assembly. Tissue Engineering - Part B: Reviews, 2022, 28, 1209-1222.	2.5	10
2852	Characterization of human nasal organoids from chronic rhinosinusitis patients. Biology Open, 2022,	0.6	1
2855	Differentiation of Human Induced Pluripotent Stem Cells into Cortical Neurons to Advance Precision Medicine. Methods in Molecular Biology, 2022, 2429, 143-174.	0.4	2
2856	The application of intestinal organoids and their co-culture systems in the study of gastrointestinal diseases. Organoid, 0, 2, e3.	0.0	3
2858	Promising Developments in the Use of Induced Pluripotent Stem Cells in Research of ADHD. Current Topics in Behavioral Neurosciences, 2022, , .	0.8	1
2859	Assessment of a 3D neural spheroid model to detect pharmaceutical-induced neurotoxicity. ALTEX: Alternatives To Animal Experimentation, 0 , , .	0.9	2
2860	Dysfunction of vesicular storage in young-onset Parkinson's patient-derived dopaminergic neurons and organoids revealed by single cell electrochemical cytometry. Chemical Science, 2022, 13, 6217-6223.	3.7	8
2861	Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Frontiers in Molecular Neuroscience, 2022, 15, 840265.	1.4	1
2862	Recent advances and challenges in organoid-on-a-chip technology. Organoid, 0, 2, e4.	0.0	3

#	Article	IF	CITATIONS
2863	Synthetic developmental biology: New tools to deconstruct and rebuild developmental systems. Seminars in Cell and Developmental Biology, 2023, 141, 33-42.	2.3	12
2864	Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine. , 0, , .		0
2865	The Patient-Derived Cancer Organoids: Promises and Challenges as Platforms for Cancer Discovery. Cancers, 2022, 14, 2144.	1.7	5
2866	A Blood Vessel Organoid Model Recapitulating Aspects of Vasculogenesis, Angiogenesis and Vessel Wall Maturation. Organoids, 2022, 1, 41-53.	1.8	12
2867	Organoids as Model Systems to Investigate Circadian Clock-Related Diseases and Treatments. Frontiers in Genetics, 2022, 13, 874288.	1.1	1
2868	Singling out motor neurons in the age of single-cell transcriptomics. Trends in Genetics, 2022, 38, 904-919.	2.9	9
2869	Organoids, Assembloids and Embryoids: New Avenues for Developmental Biology, Disease Modeling, Drug Testing and Toxicity Assessment without Animal Experimentation. Organoids, 2022, 1, 37-40.	1.8	6
2870	Recombinant Limb Assay as in Vivo Organoid Model. Frontiers in Cell and Developmental Biology, 2022, 10, 863140.	1.8	1
2871	Organoids and Commercialization. , 0, , .		2
2872	To Model Developmental Risk in a Dish. American Journal of Psychiatry, 2022, 179, 319-321.	4.0	2
2873	Generation of vascularized brain organoids to study neurovascular interactions. ELife, 2022, 11, .	2.8	94
2874	Effects of spike protein and toxin-like peptides found in COVID-19 patients on human 3D neuronal/glial model undergoing differentiation: Possible implications for SARS-CoV-2 impact on brain development. Reproductive Toxicology, 2022, 111, 34-48.	1.3	13
2875	Neurotoxicity of phenylalanine on human iPSC-derived cerebral organoids. Molecular Genetics and Metabolism, 2022, 136, 132-144.	0.5	7
2876	Engineering multiscale structural orders for high-fidelity embryoids and organoids. Cell Stem Cell, 2022, 29, 722-743.	5.2	19
2877	Buprenorphine Exposure Alters the Development and Migration of Interneurons in the Cortex. Frontiers in Molecular Neuroscience, 2022, 15, .	1.4	8
2878	Use of standard U-bottom and V-bottom well plates to generate neuroepithelial embryoid bodies. PLoS ONE, 2022, 17, e0262062.	1.1	4
2880	Gastruloids: Pluripotent stem cell models of mammalian gastrulation and embryo engineering. Developmental Biology, 2022, 488, 35-46.	0.9	20
2881	Differentiation of brain and retinal organoids from confluent cultures of pluripotent stem cells connected by nerve-like axonal projections of optic origin. Stem Cell Reports, 2022, 17, 1476-1492.	2.3	19

#	Article	IF	CITATIONS
2883	The uses of 3D human brain organoids for neurotoxicity evaluations: A review. NeuroToxicology, 2022, 91, 84-93.	1.4	18
2884	Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration. Journal of Molecular and Cellular Cardiology, 2022, 169, 13-27.	0.9	8
2885	Neuregulin-1/ErbB4 signaling modulates Plasmodium falciparum HRP2-induced damage to brain cortical organoids. IScience, 2022, 25, 104407.	1.9	4
2886	Organoids as a tool for understanding immune-mediated intestinal regeneration and development. Development (Cambridge), 2022, 149, .	1.2	7
2887	The ciliary gene INPP5E confers dorsal telencephalic identity to human cortical organoids by negatively regulating Sonic hedgehog signaling. Cell Reports, 2022, 39, 110811.	2.9	3
2888	Cell-line dependency in cerebral organoid induction: cautionary observations in Alzheimer's disease patient-derived induced pluripotent stem cells. Molecular Brain, 2022, 15, 46.	1.3	1
2889	Human Brain-Based Models Provide a Powerful Tool for the Advancement of Parkinson's Disease Research and Therapeutic Development. Frontiers in Neuroscience, 2022, 16, .	1.4	4
2890	Bioelectric Potential in Next-Generation Organoids: Electrical Stimulation to Enhance 3D Structures of the Central Nervous System. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	8
2893	Why Can Organoids Improve Current Organ-on-Chip Platforms?. Organoids, 2022, 1, 69-84.	1.8	3
2895	Cerebral Organoids for Modeling of HSV-1-Induced-Amyloid \hat{l}^2 Associated Neuropathology and Phenotypic Rescue. International Journal of Molecular Sciences, 2022, 23, 5981.	1.8	9
2896	Regionally defined proteomic profiles of human cerebral tissue and organoids reveal conserved molecular modules of neurodevelopment. Cell Reports, 2022, 39, 110846.	2.9	7
2897	3D Neural Network Composed of Neurospheroid and Bionanohybrid on Microelectrode Array to Realize the Spatial Input Signal Recognition in Neurospheroid. Small Methods, 0, , 2200127.	4.6	2
2898	Advancing Tissue Decellularized Hydrogels for Engineering Human Organoids. Advanced Functional Materials, 2022, 32, .	7.8	21
2899	Across Dimensions: Developing 2D and 3D Human iPSC-Based Models of Fragile X Syndrome. Cells, 2022, 11, 1725.	1.8	3
2900	Metabolomics-based mass spectrometry methods to analyze the chemical content of 3D organoid models. Analyst, The, 2022, 147, 2918-2929.	1.7	6
2901	Hepatobiliary Organoids: The Current Status and Biomedical Applications. SSRN Electronic Journal, 0, ,	0.4	0
2902	AAEGAN Optimization by Purposeful Noise Injection for the Generation of Bright-Field Brain Organoid Images., 2022,,.		1
2903	Granular Matrigel: restructuring a trusted extracellular matrix material for improved permeability. Biomedical Materials (Bristol), 2022, 17, 045020.	1.7	6

#	Article	IF	Citations
2905	Human organoids in basic research and clinical applications. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	83
2907	Exposure to the Amino Acids Histidine, Lysine, and Threonine Reduces mTOR Activity and Affects Neurodevelopment in a Human Cerebral Organoid Model. Nutrients, 2022, 14, 2175.	1.7	2
2908	Experimental approaches for manipulating choroid plexus epithelial cells. Fluids and Barriers of the CNS, 2022, 19, .	2.4	17
2910	Human cerebral spheroids undergo 4-aminopyridine-induced, activity associated changes in cellular composition and microrna expression. Scientific Reports, 2022, 12, .	1.6	2
2912	The future of stem cell therapies of Alzheimer's disease. Ageing Research Reviews, 2022, 80, 101655.	5.0	5
2913	Microglia in a Dish—Which Techniques Are on the Menu for Functional Studies?. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	6
2914	Cellular and molecular neurobiology of autism spectrum disorder. , 2022, , 215-244.		1
2915	Transformational Applications of Human Cardiac Organoids in Cardiovascular Diseases. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
2916	Modeling Neurodegenerative Diseases Using In Vitro Compartmentalized Microfluidic Devices. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	11
2917	Utility of iPSC-Derived Cells for Disease Modeling, Drug Development, and Cell Therapy. Cells, 2022, 11, 1853.	1.8	19
2919	Automated high-speed 3D imaging of organoid cultures with multi-scale phenotypic quantification. Nature Methods, 2022, 19, 881-892.	9.0	41
2920	Zika Virus Strains and Dengue Virus Induce Distinct Proteomic Changes in Neural Stem Cells and Neurospheres. Molecular Neurobiology, 2022, 59, 5549-5563.	1.9	2
2921	Forebrain Organoids to Model the Cell Biology of Basal Radial Glia in Neurodevelopmental Disorders and Brain Evolution. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
2922	Functional characterization of the schizophrenia associated gene <scp> <i>AS3MT</i> </scp> identifies a role in neuronal development. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, O, , .	1.1	2
2923	Enhanced cortical neural stem cell identity through short SMAD and WNT inhibition in human cerebral organoids facilitates emergence of outer radial glial cells. Nature Cell Biology, 2022, 24, 981-995.	4.6	26
2924	Disease Modeling of Neurodegenerative Disorders Using Direct Neural Reprogramming. Cellular Reprogramming, 0, , .	0.5	4
2925	Mitochondrial HSF1 triggers mitochondrial dysfunction and neurodegeneration in Huntington's disease. EMBO Molecular Medicine, 2022, 14, .	3.3	18
2926	Centrosome function is critical during terminal erythroid differentiation. EMBO Journal, 2022, 41, .	3.5	7

#	Article	IF	CITATIONS
2927	264th ENMC International Workshop: Multi-system involvement in spinal muscular atrophy Hoofddorp, the Netherlands, November 19th – 21st 2021. Neuromuscular Disorders, 2022, 32, 697-705.	0.3	4
2929	New Insights into the Neurodegeneration Mechanisms Underlying Riboflavin Transporter Deficiency (RTD): Involvement of Energy Dysmetabolism and Cytoskeletal Derangement. Biomedicines, 2022, 10, 1329.	1.4	5
2930	Human Brain Models of Intellectual Disability: Experimental Advances and Novelties. International Journal of Molecular Sciences, 2022, 23, 6476.	1.8	0
2931	100 plus years of stem cell research—20 years of ISSCR. Stem Cell Reports, 2022, 17, 1248-1267.	2.3	1
2932	Application and prospects of high-throughput screening for <i>in vitro </i> neurogenesis. World Journal of Stem Cells, 2022, 14, 393-419.	1.3	1
2933	Global Trends of Stem Cell Precision Medicine Research (2018–2022): A Bibliometric Analysis. Frontiers in Surgery, 0, 9, .	0.6	4
2934	Aberrant induction of p19Arf-mediated cellular senescence contributes to neurodevelopmental defects. PLoS Biology, 2022, 20, e3001664.	2.6	7
2935	Molecular genetics of human developmental neurocranial anomalies: towards "precision surgery― Cerebral Cortex, 2023, 33, 2912-2918.	1.6	1
2936	Study of BBB Dysregulation in Neuropathogenicity Using Integrative Human Model of Blood–Brain Barrier. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	12
2937	Orgo-Seq integrates single-cell and bulk transcriptomic data to identify cell type specific-driver genes associated with autism spectrum disorder. Nature Communications, 2022, 13 , .	5.8	11
2939	Stem-Cell-Based Modeling and Single-Cell Multiomics Reveal Gene Regulatory Mechanisms Underlying Human Skeletal Development. SSRN Electronic Journal, 0, , .	0.4	0
2941	The Legal Requirements for—and Limits to—the Donor's and the Patient's Consent. Advances in Neuroethics, 2022, , 131-190.	0.1	4
2942	Building a Better Beast: Enhancing the Minds of Animals. Advances in Neuroethics, 2022, , 223-239.	0.1	2
2943	Development of Brain Organoids with Genome-Edited iPSC-Derived Brain Cells. Advances in Neuroethics, 2022, , 21-33.	0.1	2
2944	A gastruloid model of the interaction between embryonic and extra-embryonic cell types. Journal of Tissue Engineering, 2022, 13, 204173142211030.	2.3	12
2946	Glioblastoma, from disease understanding towards optimal cell-based in vitro models. Cellular Oncology (Dordrecht), 2022, 45, 527-541.	2.1	8
2947	Progress in Modeling Neural Tube Development and Defects by Organoid Reconstruction. Neuroscience Bulletin, 2022, 38, 1409-1419.	1.5	1
2948	A Survey of the Metabolic Landscape of the Developing Cerebellum at Single-Cell Resolution. Cerebellum, 2022, 21, 838-850.	1.4	2

#	Article	IF	CITATIONS
2949	\hat{I}^2 -Arrestin 2 and Epac2 Cooperatively Mediate DRD1-Stimulated Proliferation of Human Neural Stem Cells and Growth of Human Cerebral Organoids. Stem Cells, 2022, 40, 857-869.	1.4	1
2951	Cerebral Organoids and Antisense Oligonucleotide Therapeutics: Challenges and Opportunities. Frontiers in Molecular Neuroscience, $0,15,.$	1.4	5
2952	3D Human Organoids: The Next "Viral―Model for the Molecular Basis of Infectious Diseases. Biomedicines, 2022, 10, 1541.	1.4	6
2954	Promising Strategies for the Development of Advanced In Vitro Models with High Predictive Power in Ischaemic Stroke Research. International Journal of Molecular Sciences, 2022, 23, 7140.	1.8	4
2955	Application of Induced Pluripotent Stem Cells in Moyamoya Disease: Progress and Promises. Current Stem Cell Research and Therapy, 2023, 18, 733-739.	0.6	2
2957	Comparison of the Response to the CXCR4 Antagonist AMD3100 during the Development of Retinal Organoids Derived from ES Cells and Zebrafish Retina. International Journal of Molecular Sciences, 2022, 23, 7088.	1.8	1
2958	Functional imaging of brain organoids using high-density microelectrode arrays. MRS Bulletin, 2022, 47, 530-544.	1.7	6
2959	3D printed human organoids: High throughput system for drug screening and testing in current COVIDâ€19 pandemic. Biotechnology and Bioengineering, 2022, 119, 2669-2688.	1.7	21
2960	Organoid transduction using recombinant adenoâ€associated viral vectors: Challenges and opportunities. BioEssays, 2022, 44, .	1.2	2
2961	Modeling infectious diseases of the central nervous system with human brain organoids. Translational Research, 2022, 250, 18-35.	2.2	2
2963	Cerebral organoids as an in vitro model to study autism spectrum disorders. Gene Therapy, 0, , .	2.3	7
2964	Cortical Organoids to Model Microcephaly. Cells, 2022, 11, 2135.	1.8	3
2965	Design of an Integrated Microvascularized Human Skin-on-a-Chip Tissue Equivalent Model. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	8
2966	Nitric Oxide Attenuates Human Cytomegalovirus Infection yet Disrupts Neural Cell Differentiation and Tissue Organization. Journal of Virology, 2022, 96, .	1.5	9
2967	Tissue Engineering Approaches to Uncover Therapeutic Targets for Endothelial Dysfunction in Pathological Microenvironments. International Journal of Molecular Sciences, 2022, 23, 7416.	1.8	2
2968	The integration of spheroids and organoids into organ-on-a-chip platforms for tumour research: A review. Bioprinting, 2022, 27, e00224.	2.9	10
2969	Applications of singleâ€cell multiâ€omics sequencing in deep understanding of brain diseases. Clinical and Translational Discovery, 2022, 2, .	0.2	0
2971	Multifaceted analysis of nanotoxicity using primary cultured neurons. Nano Express, 2022, 3, 035003.	1.2	O

#	Article	IF	CITATIONS
2972	Cerebral organoids containing an <i>AUTS2</i> missense variant model microcephaly. Brain, 2023, 146, 387-404.	3.7	11
2973	Electrochemically Synthesized Polyacrylamide Gel and Core–Shell Nanoparticles for 3D Cell Culture Formation. ACS Applied Materials & Electrochemically Synthesized Polyacrylamide Gel and Core–Shell Nanoparticles for 3D Cell Culture Formation. ACS Applied Materials & Electrochemically Synthesized Polyacrylamide Gel and Core–Shell Nanoparticles for 3D Cell Culture	4.0	3
2974	Cerebral malaria – modelling interactions at the blood–brain barrier <i>in vitro</i> . DMM Disease Models and Mechanisms, 2022, 15, .	1.2	5
2975	Emerging organoid models to study the epididymis in male reproductive toxicology. Reproductive Toxicology, 2022, 112, 88-99.	1.3	4
2976	Silver nanoparticles exposure induces developmental neurotoxicity in hiPSC-derived cerebral organoids. Science of the Total Environment, 2022, 845, 157047.	3.9	14
2977	Recent advances in organoid engineering: A comprehensive review. Applied Materials Today, 2022, 29, 101582.	2.3	8
2979	Cell‣aden Gradient Microgel Suspensions for Spatial Control of Differentiation During Biofabrication. Advanced Healthcare Materials, 2022, 11, .	3.9	7
2980	Interfacing brain organoids with precision medicine and machine learning. Cell Reports Physical Science, 2022, 3, 100974.	2.8	6
2982	Organoids: a systematic review of ethical issues. Stem Cell Research and Therapy, 2022, 13, .	2.4	32
2983	Biomanufacturing of glioblastoma organoids exhibiting hierarchical and spatially organized tumor microenvironment via transdifferentiation. Biotechnology and Bioengineering, 2022, 119, 3252-3274.	1.7	4
2984	3D Cell Cultures: Evolution of an Ancient Tool for New Applications. Frontiers in Physiology, 0, 13, .	1.3	18
2985	Automatic differentiation of human induced pluripotent stem cells toward synchronous neural networks on an arrayed monolayer of nanofiber membrane. Acta Biomaterialia, 2022, 150, 168-180.	4.1	3
2987	Disease Modeling of Pituitary Adenoma Using Human Pluripotent Stem Cells. Cancers, 2022, 14, 3660.	1.7	3
2988	Human fibroblasts facilitate the generation of iPSCs-derived mammary-like organoids. Stem Cell Research and Therapy, 2022, 13, .	2.4	5
2989	Anti-glioblastoma activity of monensin and its analogs in an organoid model of cancer. Biomedicine and Pharmacotherapy, 2022, 153, 113440.	2.5	8
2990	Progress, prospects, and limitations of organoid technology. Organoid, 0, 2, e9.	0.0	5
2991	Patient-derived cells – an irreplaceable tool for research of reduced penetrance in movement disorders. Medizinische Genetik, 2022, 34, 125-130.	0.1	0
2992	Label-free three-photon imaging of intact human cerebral organoids for tracking early events in brain development and deficits in Rett syndrome. ELife, 0, 11, .	2.8	12

#	ARTICLE	IF	Citations
2993	Functional neuronal circuitry and oscillatory dynamics in human brain organoids. Nature Communications, 2022, 13, .	5.8	57
2994	Longer metaphase and fewer chromosome segregation errors in modern human than Neanderthal brain development. Science Advances, 2022, 8, .	4.7	26
2995	Establishment and characterization of human pluripotent stem cells-derived brain organoids to model cerebellar diseases. Scientific Reports, 2022, 12, .	1.6	4
2996	Rapid and robust directed differentiation of mouse epiblast stem cells into definitive endoderm and forebrain organoids. Development (Cambridge), 2022, 149, .	1.2	3
2997	Using 2D and 3D pluripotent stem cell models to study neurotropic viruses. Frontiers in Virology, 0, 2,	0.7	3
2998	Human organoids: New strategies and methods for analyzing human development and disease. Cell, 2022, 185, 2756-2769.	13.5	42
2999	DNA Methylation Profiles of GAD1 in Human Cerebral Organoids of Autism Indicate Disrupted Epigenetic Regulation during Early Development. International Journal of Molecular Sciences, 2022, 23, 9188.	1.8	4
3000	Post-gastrulation synthetic embryos generated ex utero from mouse naive ESCs. Cell, 2022, 185, 3290-3306.e25.	13.5	102
3002	Bilirubin-Induced Neurological Damage: Current and Emerging iPSC-Derived Brain Organoid Models. Cells, 2022, 11, 2647.	1.8	11
3003	Ascendancy of semi-synthetic biomaterials from design towards democratization. Nature Materials, 2022, 21, 989-992.	13.3	7
3004	Urological cancer organoids, patients' avatars for precision medicine: past, present and future. Cell and Bioscience, 2022, 12, .	2.1	1
3005	Advances in construction and modeling of functional neural circuits in vitro. Neurochemical Research, 2022, 47, 2529-2544.	1.6	2
3006	Novel compound heterozygous mutation in STAMBP causes a neurodevelopmental disorder by disrupting cortical proliferation. Frontiers in Neuroscience, 0, 16 , .	1.4	1
3007	Imaging three-dimensional brain organoid architecture from meso- to nanoscale across development. Development (Cambridge), 2022, 149, .	1.2	11
3008	Teleost Fish and Organoids: Alternative Windows Into the Development of Healthy and Diseased Brains. Frontiers in Molecular Neuroscience, $0,15,.$	1.4	1
3009	Human Brain Organoid: A Versatile Tool for Modeling Neurodegeneration Diseases and for Drug Screening. Stem Cells International, 2022, 2022, 1-20.	1.2	5
3010	Modeling maternal cholesterol exposure reveals a reduction of neural progenitor proliferation using human cerebral organoids. , 2023, 2, .		2
3011	Shell microelectrode arrays (MEAs) for brain organoids. Science Advances, 2022, 8, .	4.7	40

#	Article	IF	CITATIONS
3012	Toward the next generation of vascularized human neural organoids. Medicinal Research Reviews, 2023, 43, 31-54.	5.0	11
3013	Advancement of Organoid Technology in Regenerative Medicine. Regenerative Engineering and Translational Medicine, 2023, 9, 83-96.	1.6	9
3014	Advancing preclinical models of psychiatric disorders with human brain organoid cultures. Molecular Psychiatry, 2023, 28, 83-95.	4.1	10
3015	Current progress of cerebral organoids for modeling Alzheimer's disease origins and mechanisms. Bioengineering and Translational Medicine, 2023, 8, .	3.9	4
3016	Motor neuron-derived induced pluripotent stem cells as a drug screening platform for amyotrophic lateral sclerosis. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
3017	Hybrid brains: the ethics of transplanting human neurons into animals. Nature, 2022, 608, 22-25.	13.7	3
3018	The Brain Protein Atlas: A conglomerate of proteomics datasets of human neural tissue. Proteomics, 2022, 22, .	1.3	8
3019	Recent progresses in novel in vitro models of primary neurons: A biomaterial perspective. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	3
3020	Breasi-CRISPR: an efficient genome-editing method to interrogate protein localization and protein–protein interactions in the embryonic mouse cortex. Development (Cambridge), 2022, 149, .	1.2	3
3022	Gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets. EMBO Journal, 2022, 41, .	3.5	19
3024	Technical advances in pluripotent stem cell-derived and tumorigenic organoids. Organoid, 0, 2, e18.	0.0	0
3025	Modelling skeletal pain harnessing tissue engineering. In Vitro Models, 2022, 1, 289-307.	1.0	6
3026	Griottes: a generalist tool for network generation from segmented tissue images. BMC Biology, 2022, 20, .	1.7	6
3028	Generation and Characterization of Novel iPSC Lines from a Portuguese Family Bearing Heterozygous and Homozygous GRN Mutations. Biomedicines, 2022, 10, 1905.	1.4	1
3029	Bioengineering the human spinal cord. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
3030	Multiplex viral tropism assay in complex cell populations with single-cell resolution. Gene Therapy, 2022, 29, 555-565.	2.3	1
3031	Human-Induced Pluripotent Stem Cell Technology: Toward the Future of Personalized Psychiatry. Journal of Personalized Medicine, 2022, 12, 1340.	1.1	6
3032	Disruption of the gene regulatory programme in neurodevelopmental disorders. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, , 194860.	0.9	2

#	Article	IF	CITATIONS
3033	Recent Advances in 3D-Cultured Brain Tissue Models Derived from Human iPSCs. Biochip Journal, 2022, 16, 246-254.	2.5	7
3034	An insight into the iPSCs-derived two-dimensional culture and three-dimensional organoid models for neurodegenerative disorders. Interface Focus, 2022, 12, .	1.5	2
3035	The multifaceted role of LRRK2 in Parkinson's disease: From human iPSC to organoids. Neurobiology of Disease, 2022, 173, 105837.	2.1	8
3036	The presence of BBB hastens neuronal differentiation of cerebral organoids – The potential role of endothelial derived BDNF. Biochemical and Biophysical Research Communications, 2022, 626, 30-37.	1.0	2
3037	Strategies for Generating Human Pluripotent Stem Cell-Derived-Organoid Culture for Disease Modeling, Drug Screening, and Regenerative Therapy. Future Pharmacology, 2022, 2, 360-376.	0.6	5
3038	Humanized cerebral organoids-based ischemic stroke model for discovering of potential anti-stroke agents. Acta Pharmacologica Sinica, 2023, 44, 513-523.	2.8	11
3039	Human PSCs determine the competency of cerebral organoid differentiation via FGF signaling and epigenetic mechanisms. IScience, 2022, 25, 105140.	1.9	3
3040	An alternative splice isoform of mouse CDK5RAP2 induced cytoplasmic microtubule nucleation. IBRO Neuroscience Reports, 2022, 13, 264-273.	0.7	0
3041	Modeling Human Organ Development and Diseases With Fetal Tissue–Derived Organoids. Cell Transplantation, 2022, 31, 096368972211244.	1.2	2
3042	3D Culture of Primary Patient-Derived Hepatoblastoma Tumoroids. Methods in Molecular Biology, 2022, , 259-267.	0.4	3
3043	Modeling Schizophrenia In Vitro: Challenges and Insights on Studying Brain Cells. Advances in Experimental Medicine and Biology, 2022, , 35-51.	0.8	0
3044	Rotenone, an environmental toxin, causes abnormal methylation of the mouse brain organoid's genome and ferroptosis. International Journal of Medical Sciences, 2022, 19, 1184-1197.	1.1	10
3045	Human mini brains and spinal cords in a dish: Modeling strategies, current challenges, and prospective advances. Journal of Tissue Engineering, 2022, 13, 204173142211133.	2.3	12
3046	Human Excitatory Cortical Neurospheroids Coupled to High-Density MEAs: A Valid Platform for Functional Tests. SSRN Electronic Journal, 0, , .	0.4	0
3047	Biotechnology applications in regenerative medicine. , 2022, , 131-142.		0
3048	Glioblastoma organoid technology: an emerging preclinical models for drug discovery. Organoid, 0, 2, e7.	0.0	1
3049	Effects of matrigel on growth and development of cerebral organoids. Materials Express, 2022, 12, 616-627.	0.2	1
3051	Chemical strategies to engineer hydrogels for cell culture. Nature Reviews Chemistry, 2022, 6, 726-744.	13.8	64

#	Article	IF	CITATIONS
3052	Multiscale Analysis of Cellular Composition and Morphology in Intact Cerebral Organoids. Biology, 2022, 11, 1270.	1.3	3
3053	Generation of Human Ventral Midbrain Organoids Derived from Pluripotent Stem Cells. Current Protocols, 2022, 2, .	1.3	10
3054	Mitochondrial dysfunction in psychiatric disorders. Schizophrenia Research, 2022, , .	1.1	3
3056	Self-Organizing Brain Organoids with Ventricles Amenable to Injection and Electroporation. Neuromethods, 2023, , 1-16.	0.2	0
3058	The World of Organoids: Gastrointestinal Disease Modelling in the Age of 3R and One Health with Specific Relevance to Dogs and Cats. Animals, 2022, 12, 2461.	1.0	6
3060	Enterovirus D68 Infection in Human Primary Airway and Brain Organoids: No Additional Role for Heparan Sulfate Binding for Neurotropism. Microbiology Spectrum, 2022, 10, .	1.2	13
3061	A Zebrafish/Drosophila Dual System Model for Investigating Human Microcephaly. Cells, 2022, 11, 2727.	1.8	0
3063	Human tau mutations in cerebral organoids induce a progressive dyshomeostasis of cholesterol. Stem Cell Reports, 2022, 17, 2127-2140.	2.3	16
3064	Micro/nano devices for integration with human brain organoids. Biosensors and Bioelectronics, 2022, 218, 114750.	5. 3	3
3066	Microfluidics for Neuronal Cell and Circuit Engineering. Chemical Reviews, 2022, 122, 14842-14880.	23.0	22
3067	Organoids as a novel tool in modelling infectious diseases. Seminars in Cell and Developmental Biology, 2023, 144, 87-96.	2.3	2
3068	Immunocompetent brain organoidsâ€"microglia enter the stage. Progress in Biomedical Engineering, 2022, 4, 042002.	2.8	3
3069	Diseased, differentiated and difficult: Strategies for improved engineering of in vitro neurological systems. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	2
3070	A kinase-independent function of cyclin-dependent kinase 6 promotes outer radial glia expansion and neocortical folding. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
3071	Circular RNA Involvement in Aging and Longevity. Current Genomics, 2022, 23, 318-325.	0.7	2
3072	Lung Organoids as Model to Study SARS-CoV-2 Infection. Cells, 2022, 11, 2758.	1.8	8
3073	Cerebral Organoids as an Experimental Platform for Human Neurogenomics. Cells, 2022, 11, 2803.	1.8	14
3074	Vesicular Glutamate Release from Feeder-FreehiPSC-Derived Neurons. International Journal of Molecular Sciences, 2022, 23, 10545.	1.8	5

#	ARTICLE	IF	CITATIONS
3076	Humanâ€specific <i> <scp>ARHGAP11B</scp> </i> ensures humanâ€like basal progenitor levels in hominid cerebral organoids. EMBO Reports, 2022, 23, .	2.0	15
3077	Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues. Nature Communications, 2022, 13, .	5.8	19
3078	Induced pluripotent stem cell-derived brain organoids as potential human model system for chemotherapy induced CNS toxicity. Frontiers in Molecular Biosciences, 0, 9, .	1.6	5
3079	Sevoflurane promotes premature differentiation of dopaminergic neurons in hiPSC-derived midbrain organoids. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
3080	Starting signal: Aberrant kinase activation as a trigger for SARS-CoV-2 induced axonal damage. Frontiers in Virology, 0, 2, .	0.7	1
3081	Development of Experimental Three-Dimensional Tumor Models to Study Glioblastoma Cancer Stem Cells and Tumor Microenvironment. Methods in Molecular Biology, 2023, , 117-127.	0.4	2
3082	Building in vitro models of the brain to understand the role of <i>APOE</i> i in Alzheimer's disease. Life Science Alliance, 2022, 5, e202201542.	1.3	2
3084	Profiling Cell Type-Specific Gene Regulatory Regions in Human Cortical Organoids. Neuromethods, 2023, , 17-41.	0.2	2
3085	Modelling metabolic diseases and drug response using stem cells and organoids. Nature Reviews Endocrinology, 2022, 18, 744-759.	4.3	30
3087	Myocardial infarction from a tissue engineering and regenerative medicine point of view: A comprehensive review on models and treatments. Biophysics Reviews, 2022, 3, .	1.0	5
3088	How mechanisms of stem cell polarity shape the human cerebral cortex. Nature Reviews Neuroscience, 2022, 23, 711-724.	4.9	16
3089	The Brain Organoid Technology: Diversity of Protocols and Challenges. , 0, , .		0
3090	Brain Organoids as a Model to Study Zika Virus and SARS-CoV-2 Infections. Neuromethods, 2023, , 173-190.	0.2	1
3092	Liver organoids: an in vitro 3D model for liver cancer study. Cell and Bioscience, 2022, 12, .	2.1	13
3093	Advantages of CRISPR-Cas9 combined organoid model in the study of congenital nervous system malformations. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	3
3094	Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes. Nature Communications, 2022, 13, .	5.8	30
3095	Retinal organoids from human-induced pluripotent stem cells: From studying retinal dystrophies to early diagnosis of Alzheimer's and Parkinson's disease. Seminars in Cell and Developmental Biology, 2023, 144, 77-86.	2.3	7
3096	Inferring and perturbing cell fate regulomes in human brain organoids. Nature, 2023, 621, 365-372.	13.7	71

#	Article	IF	CITATIONS
3097	Secretomics Alterations and Astrocyte Dysfunction in Human iPSC of Leukoencephalopathy with Vanishing White Matter. Neurochemical Research, 2022, 47, 3747-3760.	1.6	2
3098	Long-term morphological and functional dynamics of human stem cell-derived neuronal networks on high-density micro-electrode arrays. Frontiers in Neuroscience, $0,16,.$	1.4	9
3099	Creating artificial signaling gradients to spatially pattern engineered tissues. Current Opinion in Biotechnology, 2022, 78, 102810.	3.3	2
3100	Cerebral Organoids in Developmental Neuroscience. , 2022, , 551-567.		0
3101	Current Status of Research with Brain Organoids. , 2022, , 253-260.		0
3102	Spontaneous Cell Cluster Formation in Human iPSC-Derived Neuronal Spheroid Networks Influences Network Activity. ENeuro, 2022, 9, ENEURO.0143-22.2022.	0.9	1
3103	Microfluidic organoids-on-a-chip: The future of human models. Seminars in Cell and Developmental Biology, 2023, 144, 41-54.	2.3	24
3104	Approaches to benchmark and characterize <i>in vitro</i> human model systems. Development (Cambridge), 2022, 149, .	1.2	5
3105	Brain Regional Identity and Cell Type Specificity Landscape of Human Cortical Organoid Models. International Journal of Molecular Sciences, 2022, 23, 13159.	1.8	2
3106	Human Brain Organoids-on-Chip: Advances, Challenges, and Perspectives for Preclinical Applications. Pharmaceutics, 2022, 14, 2301.	2.0	14
3107	Human cerebral organoids â€" a new tool for clinical neurology research. Nature Reviews Neurology, 2022, 18, 661-680.	4.9	49
3108	Approaches to investigating metabolism in human neurodevelopment using organoids: insights from intestinal and cancer studies. Development (Cambridge), 2022, 149, .	1.2	1
3109	The Power of Gene Technologies: 1001 Ways to Create a Cell Model. Cells, 2022, 11, 3235.	1.8	3
3110	The pivotal application of patient-derived organoid biobanks for personalized treatment of gastrointestinal cancers. Biomarker Research, 2022, 10, .	2.8	5
3111	Patient-Derived Organoids for In Vivo Validation of In Vitro Data. Methods in Molecular Biology, 2023, , 111-126.	0.4	2
3112	Deterministic programming of human pluripotent stem cells into microglia facilitates studying their role in health and disease. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
3113	Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids. Nature Communications, 2022, 13, .	5.8	27
3114	Silk scaffolding drives self-assembly of functional and mature human brain organoids. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	11

#	Article	IF	CITATIONS
3115	Stem Cell Models for Context-Specific Modeling in Psychiatric Disorders. Biological Psychiatry, 2023, 93, 642-650.	0.7	9
3116	Organoid research on human early development and beyond. Medical Review, 2022, 2, 512-523.	0.3	0
3117	Human Brain Banking as a Convergence Platform of Neuroscience and Neuropsychiatric Research. , 2022, 1 , .		1
3118	Reimagining Cancer: Moving from the Cellular to the Tissue Level. Cancer Research, 2023, 83, 173-180.	0.4	1
3119	Bioengineering Human Pluripotent Stem Cell-Derived Retinal Organoids and Optic Vesicle-Containing Brain Organoids for Ocular Diseases. Cells, 2022, 11, 3429.	1.8	5
3120	DOX-loaded hydroxyapatite nanoclusters for colorectal cancer (CRC) chemotherapy: Evaluation based on the cancer cells and organoids. SLAS Technology, 2023, 28, 22-31.	1.0	3
3121	Efficient Gene Expression in Human Stem Cell Derived-Cortical Organoids Using Adeno Associated Virus. Cells, 2022, 11, 3194.	1.8	4
3122	Cellular Models of Alpha-Synuclein Aggregation: What Have We Learned and Implications for Future Study. Biomedicines, 2022, 10, 2649.	1.4	4
3123	Dynamic 3D Combinatorial Generation of hPSCâ€Derived Neuromesodermal Organoids With Diverse Regional and Cellular Identities. Current Protocols, 2022, 2, .	1.3	6
3124	Research models of neurodevelopmental disorders: The right model in the right place. Frontiers in Neuroscience, 0, 16 , .	1.4	1
3125	Opinion: Bridging gaps and doubts in glioblastoma cell-of-origin. Frontiers in Oncology, 0, 12, .	1.3	0
3127	AJOB-Neuroscience Top Abstract Award Winners from the 2021 International Neuroethics Society Annual Meeting. AJOB Neuroscience, 2022, 13, 287-306.	0.6	0
3128	Single-cell and single-nuclei RNA sequencing as powerful tools to decipher cellular heterogeneity and dysregulation in neurodegenerative diseases. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	15
3129	Single-cell transcriptional and functional analysis of dopaminergic neurons in organoid-like cultures derived from human fetal midbrain. Development (Cambridge), 2022, 149, .	1.2	8
3130	Adult human kidney organoids originate from CD24+ cells and represent an advanced model for adult polycystic kidney disease. Nature Genetics, 2022, 54, 1690-1701.	9.4	20
3131	Role of in vitro two-dimensional (2D) and three-dimensional (3D) cell culture systems for ADME-Tox screening in drug discovery and development: a comprehensive review. ADMET and DMPK, 0, , .	1.1	0
3132	Learning About Blast Injuries from Brain Organoids: A New Frontier. Journal of Neurotrauma, 2022, 39, 1453-1454.	1.7	0
3133	The industrial genomic revolution: A new era in neuroimmunology. Neuron, 2022, 110, 3429-3443.	3.8	2

#	Article	IF	CITATIONS
3134	Advanced inÂvitro models: Microglia in action. Neuron, 2022, 110, 3444-3457.	3.8	8
3135	Organoids for Modeling (Colorectal) Cancer in a Dish. Cancers, 2022, 14, 5416.	1.7	4
3137	Recent advancements and future requirements in vascularization of cortical organoids. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	5
3138	Tools for studying human microglia: In vitro and in vivo strategies. Brain, Behavior, and Immunity, 2023, 107, 369-382.	2.0	7
3139	Potential of astrocytes in targeting therapy for Alzheimer's disease. International Immunopharmacology, 2022, 113, 109368.	1.7	2
3140	Human embryonic stem cell-derived cerebral organoids for treatment of mild traumatic brain injury in a mouse model. Biochemical and Biophysical Research Communications, 2022, 635, 169-178.	1.0	4
3141	Rethinking the cilia hypothesis of hydrocephalus. Neurobiology of Disease, 2022, 175, 105913.	2.1	12
3142	Generation of cell-type-specific proteomes of neurodevelopment from human cerebral organoids. STAR Protocols, 2022, 3, 101774.	0.5	0
3143	Probing the electrophysiological properties of patient-derived neurons across neurodevelopmental disorders., 2023,, 229-242.		0
3144	A benchtop brain injury model using resected donor tissue from patients with Chiari malformation. Neural Regeneration Research, 2023, 18, 1057.	1.6	1
3145	Brain organoids. , 2023, , 121-151.		2
3146	Human models as new tools for drug development and precision medicine. , 2023, , 155-171.		O
3147	iPSC culture., 2023,, 3-24.		0
3148	Gene editing hPSCs for modeling neurological disorders. , 2023, , 289-311.		0
3149	iPSC-derived models of autism. , 2023, , 201-227.		0
3150	A microfluidic impedance platform for real-time, <i>in vitro</i> characterization of endothelial cells undergoing fluid shear stress. Lab on A Chip, 2022, 22, 4705-4716.	3.1	2
3151	One-rosette technique grows well-organized organoids. Spectrum, 0, , .	0.0	0
3152	Genetics of Cortical Development. , 2022, , .		O

#	Article	IF	CITATIONS
3153	Neuron(s)-on-a-Chip: A Review of the Design and Use of Microfluidic Systems for Neural Tissue Culture. IEEE Reviews in Biomedical Engineering, 2024, 17, 243-263.	13.1	2
3154	Somatic mosaicism in STAG2-associated cohesinopathies: Expansion of the genotypic and phenotypic spectrum. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	2
3156	Biomaterials and bioengineering to guide tissue morphogenesis in epithelial organoids. Frontiers in Bioengineering and Biotechnology, $0,10,10$	2.0	4
3157	Organoids-on-a-chip. Scientia Sinica Vitae, 2022, , .	0.1	1
3158	The HUSH complex controls brain architecture and protocadherin fidelity. Science Advances, 2022, 8, .	4.7	7
3160	A 3D-induced pluripotent stem cell-derived human neural culture model to study certain molecular and biochemical aspects of Alzheimer's disease. In Vitro Models, 2022, 1, 447-462.	1.0	1
3161	Emerging biomaterials and technologies to control stem cell fate and patterning in engineered 3D tissues and organoids. Biointerphases, 2022, 17, 060801.	0.6	1
3162	MAX: a simple, affordable, and rapid tissue clearing reagent for 3D imaging of wide variety of biological specimens. Scientific Reports, 2022, 12, .	1.6	0
3163	Impact of alcohol exposure on neural development and network formation in human cortical organoids. Molecular Psychiatry, 2023, 28, 1571-1584.	4.1	10
3164	Immersion bioprinting of hyaluronan and collagen bioink-supported 3D patient-derived brain tumor organoids. Biomedical Materials (Bristol), 2023, 18, 015014.	1.7	12
3165	Brain Organoids to Evaluate Cellular Therapies. Animals, 2022, 12, 3150.	1.0	2
3166	Modeling Alzheimer's Disease Using Human Brain Organoids. Methods in Molecular Biology, 2023, , 135-158.	0.4	5
3167	Human striatal organoids derived from pluripotent stem cells recapitulate striatal development and compartments. PLoS Biology, 2022, 20, e3001868.	2.6	8
3168	Human-Induced Pluripotent Stem Cell (hiPSC)-Derived Neurons and Glia for the Elucidation of Pathogenic Mechanisms in Alzheimer's Disease. Methods in Molecular Biology, 2023, , 105-133.	0.4	3
3169	Recent Advances in Electrophysiological Recording Platforms for Brain and Heart Organoids. Advanced NanoBiomed Research, 2022, 2, .	1.7	9
3170	Modeling congenital brain malformations with brain organoids: a narrative review. Translational Pediatrics, 2023, 12, 68-78.	0.5	1
3171	Low Doses of Bisphenol A Disrupt Neuronal Differentiation of Human Neuronal Stem/Progenitor Cells. Acta Histochemica Et Cytochemica, 2022, 55, 193-202.	0.8	1
3172	<i>In vitro</i> functional models for human liver diseases and drug screening: beyond animal testing. Biomaterials Science, 2023, 11, 2988-3015.	2.6	5

#	Article	IF	CITATIONS
3173	Future regenerative medicine developments and their therapeutic applications. Biomedicine and Pharmacotherapy, 2023, 158, 114131.	2.5	10
3174	Orthogonally crosslinked alginate conjugate thermogels with potential for cell encapsulation. Carbohydrate Polymers, 2023, 302, 120308.	5.1	5
3175	Transplanted brain organoids become mature and intelligent., 2023, 1, 48-51.		1
3176	A review of protocols for brain organoids and applications for disease modeling. STAR Protocols, 2023, 4, 101860.	0.5	14
3177	Function-oriented design: A novel strategy for advanced biomedical materials. Journal of Materials Science and Technology, 2023, 145, 197-209.	5.6	0
3178	Intestinal and optic-cup organoids as tools for unveiling mechanics of self-organizing morphogenesis. Biophysics and Physicobiology, 2022, 19, n/a.	0.5	1
3179	Brain organoids: Establishment and application. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
3180	Valproic acid exposure decreases neurogenic potential of outer radial glia in human brain organoids. Frontiers in Molecular Neuroscience, $0,15,.$	1.4	6
3181	Modeling RTT Syndrome by iPSC-Derived Neurons from Male and Female Patients with Heterogeneously Severe Hot-Spot MECP2 Variants. International Journal of Molecular Sciences, 2022, 23, 14491.	1.8	5
3182	Synergistic activation of RARÎ ² and RARÎ ³ nuclear receptors restores cell specialization during stem cell differentiation by hijacking RARα-controlled programs. Life Science Alliance, 2023, 6, e202201627.	1.3	1
3183	Topologically-protected interior for three-dimensional confluent cellular collectives. Physical Review Research, 2022, 4, .	1.3	3
3184	BACE2: A Promising Neuroprotective Candidate for Alzheimer's Disease. Journal of Alzheimer's Disease, 2023, 94, S159-S171.	1.2	2
3185	A minimal-complexity light-sheet microscope maps network activity in 3D neuronal systems. Scientific Reports, 2022, 12, .	1.6	0
3186	Mispatterning and interneuron deficit in Tourette Syndrome basal ganglia organoids. Molecular Psychiatry, 2022, 27, 5007-5019.	4.1	2
3188	Pax6 mutant cerebral organoids partially recapitulate phenotypes of Pax6 mutant mouse strains. PLoS ONE, 2022, 17, e0278147.	1.1	0
3189	3D organ-on-a-chip: The convergence of microphysiological systems and organoids. Frontiers in Cell and Developmental Biology, $0,10,10$	1.8	16
3190	Organoids of the male reproductive system: Challenges, opportunities, and their potential use in fertility research. WIREs Mechanisms of Disease, 2023, 15, .	1.5	4
3191	Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids. Scientific Reports, 2022, 12, .	1.6	12

#	Article	IF	CITATIONS
3192	Brain organoids for addressing COVID-19 challenge. Frontiers in Neuroscience, 0, 16, .	1.4	0
3193	Generation of neural organoids for spinal-cord regeneration via the direct reprogramming of human astrocytes. Nature Biomedical Engineering, 2023, 7, 253-269.	11.6	16
3194	Advances in Organoid Culture Research. Global Medical Genetics, 2022, 09, 268-276.	0.4	0
3196	Effects of Sevoflurane Exposure on Fetal Brain Development Using Cerebral Organoids. Journal of Molecular Neuroscience, 2022, 72, 2440-2450.	1.1	4
3197	Veteran-derived cerebral organoids display multifaceted pathological defects in studies on Gulf War Illness. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	3
3198	Targeting cancer-specific metabolic pathways for developing novel cancer therapeutics. Frontiers in lmmunology, 0, 13 , .	2.2	12
3199	Essential tremor: A three-dimensional neurosphere inÂvitro model to assess the neurotoxicity of harmane. Journal of Traditional Chinese Medical Sciences, 2022, , .	0.1	0
3200	Zika virus noncoding RNA cooperates with the viral protein NS5 to inhibit STAT1 phosphorylation and facilitate viral pathogenesis. Science Advances, 2022, 8, .	4.7	15
3201	What Have Organoids and Assembloids Taught Us About the Pathophysiology of Neuropsychiatric Disorders?. Biological Psychiatry, 2023, 93, 632-641.	0.7	9
3202	Proteomic signatures of schizophrenia-sourced iPSC-derived neural cells and brain organoids are similar to patients' postmortem brains. Cell and Bioscience, 2022, 12, .	2.1	5
3203	Defined Alginate Hydrogels Support Spinal Cord Organoid Derivation, Maturation, and Modeling of Spinal Cord Diseases. Advanced Healthcare Materials, 2023, 12, .	3.9	10
3204	Robust generation of human-chambered cardiac organoids from pluripotent stem cells for improved modelling of cardiovascular diseases. Stem Cell Research and Therapy, 2022, 13, .	2.4	7
3205	Advances in Tumor Organoids for the Evaluation of Drugs: A Bibliographic Review. Pharmaceutics, 2022, 14, 2709.	2.0	4
3206	Microglia-containing human brain organoids for the study of brain development and pathology. Molecular Psychiatry, 2023, 28, 96-107.	4.1	30
3208	Integrated brain on a chip and automated organâ€onâ€chips systems. , 2023, 1, .		4
3209	Engineered hydrogels for mechanobiology. Nature Reviews Methods Primers, 2022, 2, .	11.8	37
3210	Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: applications, challenges, and emerging opportunities. Journal of Nanobiotechnology, 2022, 20, .	4.2	10
3211	RINGs, DUBs and Abnormal Brain Growth—Histone H2A Ubiquitination in Brain Development and Disease. Epigenomes, 2022, 6, 42.	0.8	1

#	Article	IF	CITATIONS
3212	Bioengineering Liver Organoids for Diseases Modelling and Transplantation. Bioengineering, 2022, 9, 796.	1.6	3
3213	Generation of dorsoventral human spinal cord organoids via functionalizing composite scaffold for drug testing. IScience, 2023, 26, 105898.	1.9	4
3214	Recent Development of Brain Organoids for Biomedical Application. Macromolecular Bioscience, 2023, 23, .	2.1	2
3215	A Comprehensive Update of Cerebral Organoids between Applications and Challenges. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-10.	1.9	2
3216	Incorporating a greater diversity of cell types, including microglia, in brain organoid cultures improves clinical translation. Journal of Neurochemistry, 0, , .	2.1	3
3217	Gastric stem cell research and gastric organoids. Organoid, 0, 2, e27.	0.0	0
3219	Message in a Scaffold: Natural Biomaterials for Three-Dimensional (3D) Bioprinting of Human Brain Organoids. Biomolecules, 2023, 13, 25.	1.8	6
3220	Brain organoid-on-a-chip: A next-generation human brain avatar for recapitulating human brain physiology and pathology. Biomicrofluidics, 2022, 16, .	1.2	8
3221	Recent Advances in Brain Organoid Technology for Human Brain Research. ACS Applied Materials & Interfaces, 2023, 15, 200-219.	4.0	6
3222	What connects splicing of transfer RNA precursor molecules with pontocerebellar hypoplasia?. BioEssays, 2023, 45, .	1.2	1
3223	Modelling Alzheimer's disease using human brain organoids: current progress and challenges. Expert Reviews in Molecular Medicine, 2023, 25, .	1.6	3
3225	Downregulation of PMP22 ameliorates myelin defects in iPSC-derived human organoid cultures of CMT1A. Brain, 2023, 146, 2885-2896.	3.7	6
3226	Human Maternal-Fetal Interface Cellular Models to Assess Antiviral Drug Toxicity during Pregnancy. Reproductive Medicine, 2022, 3, 303-319.	0.3	0
3227	Current advancements of modelling schizophrenia using patient-derived induced pluripotent stem cells. Acta Neuropathologica Communications, 2022, 10 , .	2.4	5
3228	Alginateâ€Laminin Hydrogel Supports Longâ€Term Neuronal Activity in 3D Human Induced Pluripotent Stem Cellâ€Derived Neuronal Networks. Advanced Materials Interfaces, 2023, 10, .	1.9	6
3229	Neurotropism as a Mechanism of the Damaging Action of Coronavirus. Biology Bulletin Reviews, 2022, 12, 667-678.	0.3	1
3231	Cost-Effective Mechanical Aggregation of Cardiac Progenitors and Encapsulation in Matrigel Support Self-Organization in a Dynamic Culture Environment. International Journal of Molecular Sciences, 2022, 23, 15785.	1.8	1
3232	Three-Dimensional Cell Culture Systems in Pediatric and Adult Brain Tumor Precision Medicine. Cancers, 2022, 14, 5972.	1.7	1

#	Article	IF	CITATIONS
3234	Interdisciplinary approaches to brain organoid biology. Folia Pharmacologica Japonica, 2023, 158, 64-70.	0.1	0
3235	The Impact of the Cellular Environment and Aging on Modeling Alzheimer's Disease in 3D Cell Culture Models. Advanced Science, 2023, 10, .	5. 6	9
3236	A Robust Pipeline for the Multiâ€Stage Accelerated Differentiation of Functional 3D Cortical Organoids from Human Pluripotent Stem Cells. Current Protocols, 2023, 3, .	1.3	2
3237	Advancing organoid design through co-emergence, assembly, and bioengineering. Trends in Biotechnology, 2023, 41, 923-938.	4.9	8
3238	Generating Human Pluripotent Stem Cell-Derived Neural AssemBloidsâ,,¢ to Model Interneuron Migration and Immune Cell Interactions. Neuromethods, 2023, , 307-324.	0.2	0
3240	Generation of Mini-Brains From hiPSCs. Neuromethods, 2023, , 291-306.	0.2	0
3241	Analysis of AÎ ² -induced neurotoxicity and microglial responses in simple two- and three-dimensional human iPSC-derived cortical culture systems. Tissue and Cell, 2023, 81, 102023.	1.0	2
3242	Alzheimer's disease and synapse Loss: What can we learn from induced pluripotent stem Cells?. Journal of Advanced Research, 2023, 54, 105-118.	4.4	5
3244	Deepening the understanding of CNVs on chromosome $15q11\hat{a}\in 13$ by using hiPSCs: An overview. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
3245	Mimicking the Biological Sense of Taste In Vitro Using a Taste Organoidsâ€onâ€a hip System. Advanced Science, 2023, 10, .	5 . 6	8
3246	Organoid factory: The recent role of the human induced pluripotent stem cells (hiPSCs) in precision medicine. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	8
3247	Mechanics of morphogenesis in neural development: In vivo, in vitro, and in silico. Brain Multiphysics, 2023, 4, 100062.	0.8	0
3248	In Vitro 3D Modeling of Neurodegenerative Diseases. Bioengineering, 2023, 10, 93.	1.6	5
3249	Generation of Urine-Derived Induced Pluripotent Stem Cells and Cerebral Organoids for Modeling Down Syndrome. Stem Cell Reviews and Reports, 2023, 19, 1116-1123.	1.7	4
3250	Amyloid beta accumulations and enhanced neuronal differentiation in cerebral organoids of Dutch-type cerebral amyloid angiopathy patients. Frontiers in Aging Neuroscience, 0, 14, .	1.7	2
3251	Stem Cell Models in Prion Research. , 2023, , 295-312.		0
3252	Mimicking the neural stem cell niche: An engineer's view of cell: material interactions. Frontiers in Chemical Engineering, 0, 4, .	1.3	1
3253	Defined, Simplified, Scalable, and Clinically Compatible Hydrogel-Based Production of Human Brain Organoids. Organoids, 2023, 2, 20-36.	1.8	4

#	Article	IF	CITATIONS
3254	Recent methods of droplet microfluidics and their applications in spheroids and organoids. Lab on A Chip, $0, \ldots$	3.1	11
3255	3Rs Principle and Legislative Decrees to Achieve High Standard of Animal Research. Animals, 2023, 13, 277.	1.0	8
3256	Ethanol exposure disrupted the formation of radial glial processes and impaired the generation and migration of outer radial glial cells in forebrain organoids derived from human embryonic stem cells. Experimental Neurology, 2023, , 114325.	2.0	2
3257	Progress and challenges in directing the differentiation of human iPSCs into spinal motor neurons. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	5
3258	Generation of innervated cochlear organoid recapitulates early development of auditory unit. Stem Cell Reports, 2023, 18, 319-336.	2.3	10
3259	Biomaterial-based in vitro 3D modeling of glioblastoma multiforme. , 2023, 1, 177-194.		2
3260	iPS cell technologies toward overcoming neurological diseases. Folia Pharmacologica Japonica, 2023, 158, 57-63.	0.1	0
3261	Pioneering models of pediatric brain tumors. Neoplasia, 2023, 36, 100859.	2.3	2
3262	Di-(2-ethylhexyl) phthalate exposure impairs cortical development in hESC-derived cerebral organoids. Science of the Total Environment, 2023, 865, 161251.	3.9	5
3263	Modeling neuro-immune interactions using human pluripotent stem cells. Current Opinion in Neurobiology, 2023, 79, 102672.	2.0	4
3264	A brain metastasis model for breast cancer using human embryonic stem cell-derived cerebral organoids. Organoid, 0, 2, e25.	0.0	0
3265	Metabolic contributions to neuronal deficits caused by genomic disruption of schizophrenia risk gene SETD1A., 2022, 8,.		10
3267	Stem cells for organoids. , 2022, 1, .		10
3268	Progress of 3D Organoid Technology for Preclinical Investigations: Towards Human In Vitro Models. , 0, , 9.		1
3269	Humanâ€induced pluripotent stem cellâ€derived cerebral organoid of leukoencephalopathy with vanishing white matter. CNS Neuroscience and Therapeutics, 2023, 29, 1049-1066.	1.9	2
3271	Towards human organ generation using interspecies blastocyst complementation: Challenges and perspectives for therapy. Frontiers in Cell and Developmental Biology, $0,11,.$	1.8	2
3273	Arguments Against Using Nonhuman Primates in Research., 2023,, 559-588.		0
3274	Microfluidic Culture Platforms in Neuroscience Research. , 2023, , 39-77.		O

#	Article	IF	CITATIONS
3275	Mera: A scalable high throughput automated micro-physiological system. SLAS Technology, 2023, , .	1.0	0
3276	From 2D to 3D: Development of Monolayer Dopaminergic Neuronal and Midbrain Organoid Cultures for Parkinson's Disease Modeling and Regenerative Therapy. International Journal of Molecular Sciences, 2023, 24, 2523.	1.8	5
3277	Stem Cell–Based Organoid Models of Neurodevelopmental Disorders. Biological Psychiatry, 2023, 93, 622-631.	0.7	8
3278	Experimental Models of In Vitro Blood–Brain Barrier for CNS Drug Delivery: An Evolutionary Perspective. International Journal of Molecular Sciences, 2023, 24, 2710.	1.8	9
3279	Advances in Brain Metastasis Models. Brain Tumor Research and Treatment, 2023, 11, 16.	0.4	0
3280	Organoids revealed: morphological analysis of the profound next generation in-vitro model with artificial intelligence. Bio-Design and Manufacturing, 2023, 6, 319-339.	3.9	4
3281	Modeling Autism Spectrum Disorders with Induced Pluripotent Stem Cell-Derived Brain Organoids. Biomolecules, 2023, 13, 260.	1.8	4
3282	Laser bioprinting of human iPSC-derived neural stem cells and neurons: Effect on cell survival, multipotency, differentiation, and neuronal activity. International Journal of Bioprinting, 2022, 9, 672.	1.7	2
3283	ãfžã,®ãf«å§å¦ç•™å¦å±å'Š. Clinical Neurology, 2023, 63, 163-165.	0.0	0
3284	Organoid intelligence (OI): the new frontier in biocomputing and intelligence-in-a-dish. , 2023, 1, .		49
3285	3D cancer models: One step closer to in vitro human studies. Frontiers in Immunology, 0, 14, .	2.2	6
3286	Pathophysiology and mechanisms of hearing impairment related to neonatal infection diseases. Frontiers in Microbiology, 0, 14, .	1.5	0
3287	Human cerebral organoids: the ethical stance of scientists. Stem Cell Research and Therapy, 2023, 14, .	2.4	8
3288	Modelling hyperexcitability in human cerebral cortical organoids: Oxygen/glucose deprivation most effective stimulant. Heliyon, 2023, 9, e14999.	1.4	2
3289	Alzheimer Hastalığı'nda In Vivo ve In Vitro Modeller. , 2023, 6, 54-77.		0
3290	In vitro models to study human gut-microbiota interactions: Applications, advances, and limitations. Microbiological Research, 2023, 270, 127336.	2.5	5
3291	Aluminum hydroxide exposure induces neurodevelopmental impairment in hESC-derived cerebral organoids. Ecotoxicology and Environmental Safety, 2023, 256, 114863.	2.9	0
3292	An overview of in vitro 3D models of the blood-brain barrier as a tool to predict the in vivo permeability of nanomedicines. Advanced Drug Delivery Reviews, 2023, 196, 114816.	6.6	17

#	Article	IF	CITATIONS
3293	Human iPSC-derived brain organoids: A 3D mini-brain model for studying HIV infection. Experimental Neurology, 2023, 364, 114386.	2.0	2
3294	Microglia-containing cerebral organoids derived from induced pluripotent stem cells for the study of neurological diseases. IScience, 2023, 26, 106267.	1.9	13
3295	Linking fluid-axons interactions to the macroscopic fluid transport properties of the brain. Acta Biomaterialia, 2023, 160, 152-163.	4.1	4
3296	From cells to organoids: The evolution of blood-brain barrier technology for modelling drug delivery in brain cancer. Advanced Drug Delivery Reviews, 2023, 196, 114777.	6.6	8
3297	Biosensor integrated brain-on-a-chip platforms: Progress and prospects in clinical translation. Biosensors and Bioelectronics, 2023, 225, 115100.	5.3	5
3299	Single Cerebral Organoid Mass Spectrometry of Cell-Specific Protein and Glycosphingolipid Traits. Analytical Chemistry, 2023, 95, 3160-3167.	3.2	6
3300	3D multicellular systems in disease modelling: From organoids to organ-on-chip. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	5
3301	Microfabrication methods for 3D spheroids formation and their application in biomedical engineering. Korean Journal of Chemical Engineering, 2023, 40, 311-324.	1.2	2
3302	Large-scale organoid study suggests effects of trisomy 21 on early fetal neurodevelopment are more subtle than variability between isogenic lines and experiments. Frontiers in Neuroscience, 0, 16, .	1.4	3
3303	Oocyte Arrested at Metaphase II Stage were Derived from Human Pluripotent Stem Cells in vitro. Stem Cell Reviews and Reports, 0, , .	1.7	0
3304	A wholeâ€genome scan for Artemisinin cytotoxicity reveals a novel therapy for human brain tumors. EMBO Molecular Medicine, 2023, 15, .	3.3	4
3305	Cerebral organoids in primary progressive multiple sclerosis reveal stem cell and oligodendrocyte differentiation defect. Biology Open, 2023, 12, .	0.6	5
3306	Glioblastoma and cerebral organoids: development and analysis of an <i>in vitro</i> model for glioblastoma migration. Molecular Oncology, 2023, 17, 647-663.	2.1	6
3307	Spinal cord extracts of amyotrophic lateral sclerosis spread TDP-43 pathology in cerebral organoids. PLoS Genetics, 2023, 19, e1010606.	1.5	15
3308	Modeling disrupted synapse formation in wolfram syndrome using hESCs-derived neural cells and cerebral organoids identifies Riluzole as a therapeutic molecule. Molecular Psychiatry, 2023, 28, 1557-1570.	4.1	3
3309	Cell reprogramming for oligodendrocytes: A review of protocols and their applications to disease modeling and cellâ€based remyelination therapies. Journal of Neuroscience Research, 2023, 101, 1000-1028.	1.3	4
3310	Functional bioengineered models of the central nervous system. , 2023, 1, 252-270.		7
3311	Human Brain Organoids and Consciousness: Moral Claims and Epistemic Uncertainty. Organoids, 2023, 2, 50-65.	1.8	3

#	Article	IF	CITATIONS
3312	Transition from Animal-Based to Human Induced Pluripotent Stem Cells (iPSCs)-Based Models of Neurodevelopmental Disorders: Opportunities and Challenges. Cells, 2023, 12, 538.	1.8	1
3313	The "3Ds―of Growing Kidney Organoids: Advances in Nephron Development, Disease Modeling, and Drug Screening. Cells, 2023, 12, 549.	1.8	10
3314	Galangin Rescues Alzheimer's Amyloid-β Induced Mitophagy and Brain Organoid Growth Impairment. International Journal of Molecular Sciences, 2023, 24, 3398.	1.8	2
3315	Induced Pluripotent Stem Cell-Derived Organoids: Their Implication in COVID-19 Modeling. International Journal of Molecular Sciences, 2023, 24, 3459.	1.8	1
3316	Modeling brain and neural crest neoplasms with human pluripotent stem cells. Neuro-Oncology, 2023, 25, 1225-1235.	0.6	2
3317	Pluripotent Stem Cells in Disease Modeling and Drug Discovery for Myotonic Dystrophy Type 1. Cells, 2023, 12, 571.	1.8	1
3319	Opportunities and limitations for studying neuropsychiatric disorders using patient-derived induced pluripotent stem cells. Molecular Psychiatry, 2023, 28, 1430-1439.	4.1	5
3321	Spatio-temporal dynamics enhance cellular diversity, neuronal function and further maturation of human cerebral organoids. Communications Biology, 2023, 6, .	2.0	12
3322	The generation and properties of human cortical organoids as a disease model for malformations of cortical development. Neural Regeneration Research, 2023, 18, 2119.	1.6	2
3323	Developmental mechanisms underlying the evolution of human cortical circuits. Nature Reviews Neuroscience, 2023, 24, 213-232.	4.9	34
3324	Human brain organoids to explore SARSâ€CoVâ€2â€induced effects on the central nervous system. Reviews in Medical Virology, 2023, 33, .	3.9	7
3325	Lewy Body-like Pathology and Loss of Dopaminergic Neurons in Midbrain Organoids Derived from Familial Parkinson's Disease Patient. Cells, 2023, 12, 625.	1.8	6
3326	Consciousness in a Rotor? Science and Ethics of Potentially Conscious Human Cerebral Organoids. AJOB Neuroscience, 2023, 14, 178-196.	0.6	25
3327	Modeling Human Brain Tumors and the Microenvironment Using Induced Pluripotent Stem Cells. Cancers, 2023, 15, 1253.	1.7	4
3328	A human stem cell-derived neuronal model of morphine exposure reflects brain dysregulation in opioid use disorder: Transcriptomic and epigenetic characterization of postmortem-derived iPSC neurons. Frontiers in Psychiatry, 0, 14, .	1.3	2
3329	Blood Vessel Organoids for Development and Disease. Circulation Research, 2023, 132, 498-510.	2.0	12
3330	Congenital Microcephaly: A Debate on Diagnostic Challenges and Etiological Paradigm of the Shift from Isolated/Non-Syndromic to Syndromic Microcephaly. Cells, 2023, 12, 642.	1.8	4
3331	Sporadic Creutzfeldt–Jakob disease infected human cerebral organoids retain the original human brain subtype features following transmission to humanized transgenic mice. Acta Neuropathologica Communications, 2023, 11, .	2.4	3

#	Article	IF	CITATIONS
3332	Bat pluripotent stem cells reveal unusual entanglement between host and viruses. Cell, 2023, 186, 957-974.e28.	13.5	17
3333	Advances in human organoids-on-chips in biomedical research. , 2023, 2, .		6
3334	3D models of neurodegeneration: implementation in drug discovery. Trends in Pharmacological Sciences, 2023, 44, 208-221.	4.0	2
3335	Neural Stem Cells, Differentiation, and Migration. , 2023, , 39-54.		1
3336	Genetic manipulation and targeted protein degradation in mammalian systems: practical considerations, tips and tricks for discovery research. FEBS Open Bio, 2023, 13, 1164-1176.	1.0	1
3337	16p11.2 deletion accelerates subpallial maturation and increases variability in human iPSC-derived ventral telencephalic organoids. Development (Cambridge), 2023, 150, .	1.2	1
3338	GGC repeat expansion in <i>NOTCH2NLC</i> induces dysfunction in ribosome biogenesis and translation. Brain, 2023, 146, 3373-3391.	3.7	4
3339	Organoid models for Chinese herbal medicine studies. , 2023, 2, .		1
3340	Heart in a dish – choosing the right <i>in vitro</i> model. DMM Disease Models and Mechanisms, 2023, 16, .	1,2	4
3341	Liver Organoids as an In Vitro Model to Study Primary Liver Cancer. International Journal of Molecular Sciences, 2023, 24, 4529.	1.8	8
3342	Histone lysine methyltransferase-related neurodevelopmental disorders: current knowledge and saRNA future therapies. Frontiers in Cell and Developmental Biology, 0, 11 , .	1.8	0
3344	Bioreactors for engineering patient-specific tissue grafts., 2023, 1, 361-377.		6
3346	Modeling mitochondrial <scp>DNA</scp> diseases: from base editing to pluripotent stemâ€cellâ€derived organoids. EMBO Reports, 2023, 24, .	2.0	7
3347	oFlowSeq: a quantitative approach to identify protein coding mutations affecting cell type enrichment using mosaic CRISPR-Cas9 edited cerebral organoids. Human Genetics, 2023, 142, 1281-1291.	1.8	2
3348	Compressive molding of engineered tissues <i>via</i> thermoresponsive hydrogel devices. Lab on A Chip, 2023, 23, 2057-2067.	3.1	2
3350	A decade of liver organoids: Advances in disease modeling. Clinical and Molecular Hepatology, 2023, 29, 643-669.	4.5	1
3351	Brain organoids: are they for real?., 2023, 1,.		3
3352	Towards automatization of organoid analysis: A deep learning approach to localize and quantify organoid images. Computer Methods and Programs in Biomedicine Update, 2023, 3, 100101.	2.3	1

#	Article	IF	CITATIONS
3354	Middle-out methods for spatiotemporal tissue engineering of organoids., 2023, 1, 329-345.		10
3355	Human neural stem cells in developmental neurotoxicology: Current scenario and future prospects. Advances in Neurotoxicology, 2023, , .	0.7	0
3356	Polymer film-based microwell array platform for long-term culture and research of human bronchial organoids. Materials Today Bio, 2023, 19, 100603.	2.6	0
3357	Human stem cell-based models to study synaptic dysfunction and cognition in schizophrenia: A narrative review. Schizophrenia Research, 2023, , .	1.1	1
3358	Tracking early tuberous sclerosis complex diseased organoid development with quantitative oblique back-illumination microscopy. , 2023, , .		0
3359	Shedding light on latent pathogenesis and pathophysiology of mental disorders: The potential of <scp>iPS</scp> cell technology. Psychiatry and Clinical Neurosciences, 2023, 77, 308-314.	1.0	1
3360	Evolution and implications of de novo genes in humans. Nature Ecology and Evolution, 2023, 7, 804-815.	3.4	15
3361	Revolutionizing Disease Modeling: The Emergence of Organoids in Cellular Systems. Cells, 2023, 12, 930.	1.8	10
3362	Organoids in high-throughput and high-content screenings. Frontiers in Chemical Engineering, 0, 5, .	1.3	1
3363	Human cortical spheroids with a high diversity of innately developing brain cell types. Stem Cell Research and Therapy, 2023, 14, .	2.4	2
3364	Cerebral Malaria Model Applying Human Brain Organoids. Cells, 2023, 12, 984.	1.8	2
3365	Curvature induces active velocity waves in rotating spherical tissues. Nature Communications, 2023, 14, .	5.8	4
3367	Application of Human Stem Cells to Model Genetic Sensorineural Hearing Loss and Meniere Disease. Cells, 2023, 12, 988.	1.8	1
3369	Recent Advances in Generation of In Vitro Cardiac Organoids. International Journal of Molecular Sciences, 2023, 24, 6244.	1.8	7
3370	In Vitro three-dimensional (3D) cell culture tools for spheroid and organoid models. SLAS Discovery, 2023, 28, 119-137.	1.4	12
3373	How animal models can be utilized to find new biomarkers for cardiovascular diseases. Clinical Science, 2023, 137, 527-535.	1.8	2
3375	Considerations for modelling diffuse high-grade gliomas and developing clinically relevant therapies. Cancer and Metastasis Reviews, 0, , .	2.7	0
3376	Regenerative medicine: current research and perspective in pediatric surgery. Pediatric Surgery International, 2023, 39, .	0.6	4

#	Article	IF	Citations
3377	Promises and challenges of cardiac organoids. Mammalian Genome, 2023, 34, 351-356.	1.0	1
3378	A simplified protocol for the generation of cortical brain organoids. Frontiers in Cellular Neuroscience, 0, 17, .	1.8	4
3379	Human-Derived Cortical Neurospheroids Coupled to Passive, High-Density and 3D MEAs: A Valid Platform for Functional Tests. Bioengineering, 2023, 10, 449.	1.6	0
3381	Understanding neural development and diseases using CRISPR screens in human pluripotent stem cell-derived cultures. Frontiers in Cell and Developmental Biology, $0,11,.$	1.8	1
3382	Engineering Approaches in Ovarian Cancer Cell Culture. Current Cancer Research, 2023, , 231-253.	0.2	0
3383	Glioblastoma Microenvironment and Invasiveness: New Insights and Therapeutic Targets. International Journal of Molecular Sciences, 2023, 24, 7047.	1.8	14
3384	Label-free characterization of organoids with quantitative confocal Raman spectral imaging. Cell Reports Methods, 2023, , 100457.	1.4	1
3385	Advanced analysis and applications of single-cell transcriptome sequencing. International Journal of Transgender Health, 2023, 16 , .	1.1	0
3387	Human brain microphysiological systems in the study of neuroinfectious disorders. Experimental Neurology, 2023, 365, 114409.	2.0	2
3388	Evaluation of Neurotoxicity With Human Pluripotent Stem Cell–Derived Cerebral Organoids. Current Protocols, 2023, 3, .	1.3	1
3389	The potential of in vitro neuronal networks cultured on micro electrode arrays for biomedical research. Progress in Biomedical Engineering, 2023, 5, 032002.	2.8	4
3390	Political and ethical landscape of brain organoid research. , 0, 2, 3.		1
3391	Inflammatory Response and Exosome Biogenesis of Choroid Plexus Organoids Derived from Human Pluripotent Stem Cells. International Journal of Molecular Sciences, 2023, 24, 7660.	1.8	1
3392	Application of new technologies in embryos: From gene editing to synthetic embryos. , 2023, , 853-886.		0
3400	iPSC-derived three-dimensional brain organoid models and neurotropic viral infections. Journal of NeuroVirology, 2023, 29, 121-134.	1.0	5
3413	Stem cells, bioengineering, and 3D scaffolds for neural tissue engineering., 2023,, 315-341.		0
3415	Human disease models in drug development. , 2023, 1, 545-559.		18
3423	In Vitro Tumoroid Model Using Cancer Stem Cells. , 2023, , 233-243.		O

#	Article	IF	CITATIONS
3426	Brain organoids modeling of genetic and environmental impact on neurodevelopmental traits. , 2023, , 281-290.		0
3435	Mouse embryonic stem cell-derived cerebral organoids. , 2023, , 189-200.		0
3445	A Three-Dimensional Primary Cortical Culture System Compatible with Transgenic Disease Models, Virally Mediated Fluorescence, and Live Microscopy. Methods in Molecular Biology, 2023, , 153-167.	0.4	1
3446	Method to Generate Dorsal Forebrain Brain Organoids from Human Pluripotent Stem Cells. Methods in Molecular Biology, 2023, , 169-183.	0.4	1
3447	Generation of Cerebral Cortical Neurons from Human Pluripotent Stem Cells in 3D Culture. Methods in Molecular Biology, 2023, , 1-11.	0.4	0
3448	Whole Cell Patch Clamp Electrophysiology in Human Neuronal Cells. Methods in Molecular Biology, 2023, , 259-273.	0.4	0
3451	iPSCs-Derived Neurons and Brain Organoids from Patients. Handbook of Experimental Pharmacology, 2023, , .	0.9	1
3459	Human pluripotent stem cell (hPSC) and organoid models of autism: opportunities and limitations. Translational Psychiatry, 2023, 13, .	2.4	3
3461	Label-free three-photon imaging of intact human cerebral organoids for tracking early events in brain development., 2023,,.		0
3469	Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	49
3477	Single-Cell and Spatial Analysis of Emergent Organoid Platforms. Methods in Molecular Biology, 2023, , 311-344.	0.4	1
3482	Establishment and Maintenance of Human CRC-Derived Organoids for PcG Studies. Methods in Molecular Biology, 2023, , 231-244.	0.4	0
3499	Progress and promise of alternative animal and non-animal methods in biomedical research. Archives of Toxicology, 2023, 97, 2329-2342.	1.9	2
3501	Human 3D brain organoids: steering the demolecularization of brain and neurological diseases. Cell Death Discovery, 2023, 9, .	2.0	5
3509	Engineering prostate cancer in vitro: what does it take?. Oncogene, 2023, 42, 2417-2427.	2.6	3
3518	Organ Chips and Visualization of Biological Systems. Advances in Experimental Medicine and Biology, 2023, , 155-183.	0.8	1
3535	Genetics of human brain development. Nature Reviews Genetics, 2024, 25, 26-45.	7.7	12
3537	Growing organoids and spheroids on a chip. , 2023, , .		0

#	Article	IF	CITATIONS
3558	3D-Zell- und Organoidkultur. , 2023, , 411-434.		0
3599	Cerebral and noncerebral organoids. , 2023, , 431-453.		O
3604	Nanoscale drug delivery and tissue engineering for neurodegenerative diseases., 2023,, 581-590.		1
3610	iPSCs and their Role in Amelioration of Neurodegenerative Disorders. , 2023, , 111-137.		O
3615	Material Intelligence. Natural Computing Series, 2023, , 319-355.	2.2	0
3619	Classes of Stem Cells: From Biology to Engineering. Regenerative Engineering and Translational Medicine, 0, , .	1.6	1
3625	Applications of Induced Pluripotent Stem Cell-Derived Glia in Brain Disease Research and Treatment. Handbook of Experimental Pharmacology, 2023, , .	0.9	0
3642	Stem Cell-Derived Neural Organoids: From the Origin to Next Generation. , 2023, , 1-19.		0
3675	Two-Dimensional and Three-Dimensional Culture of Human Pluripotent Stem Cells. Biochemistry, 0, , .	0.8	0
3696	Editorial: Three-dimensional/3D stem cell culture systems. Frontiers in Cell and Developmental Biology, 0, 11 , .	1.8	0
3713	Microfluidics: a concise review of the history, principles, design, applications, and future outlook. Biomaterials Science, 2024, 12, 218-251.	2.6	2
3737	Tumor Ecosystem-Mimicking Bioengineering Methods. , 2023, , 637-653.		0
3763	Cell behaviors that pattern developing tissues: the case of the vertebrate nervous system. Current Topics in Developmental Biology, 2023, , .	1.0	0
3767	Organoide in der Zelltherapie. , 2023, , 183-198.		0
3792	Brain Development. , 2024, , 84-113.		0
3805	Eavesdropping on brain organoids. Nature Biotechnology, 0, , .	9.4	0
3823	Shaping the Neurovascular Unit Exploiting Human Brain Organoids. Molecular Neurobiology, 0, , .	1.9	0
3824	Developmental Origins of the Structural Defects Implicated in ASD: Insights from iPSC and Post-Mortem Studies., 2023,, 349-374.		0

#	Article	IF	CITATIONS
3827	Innovative explorations: unveiling the potential of organoids for investigating environmental pollutant exposure. Environmental Science and Pollution Research, 2024, 31, 16256-16273.	2.7	0
3829	Patient-derived organoids in human cancer: a platform for fundamental research and precision medicine. Molecular Biomedicine, 2024, 5, .	1.7	0
3850	Multipoint Selective Stimulation of Neural Spheroid Network with Microelectrode Array., 2024,,.		0
3862	Organoid Intelligence: Bridging Artificial Intelligence for Biological Computing and Neurological Insights. Biochemistry, 0, , .	0.8	O
3864	Editorial: Stem cell-derived retinal and brain organoid culture for disease modeling. Frontiers in Cellular Neuroscience, 0, 18, .	1.8	0