Bloodâ€"Brain Barrier Dysfunction as a Cause and Cons

Journal of Cerebral Blood Flow and Metabolism 33, 1500-1513 DOI: 10.1038/jcbfm.2013.135

Citation Report

#	Article	lF	CITATIONS
1	Mevalonate Kinase Deficiency and Neuroinflammation: Balance between Apoptosis and Pyroptosis. International Journal of Molecular Sciences, 2013, 14, 23274-23288.	1.8	32
2	Drug Delivery Across the Blood–Brain Barrier with Focused Ultrasound and Microbubbles. Topics in Medicinal Chemistry, 2013, , 143-158.	0.4	2
3	Interleukin-1β Induces Blood–Brain Barrier Disruption by Downregulating Sonic Hedgehog in Astrocytes. PLoS ONE, 2014, 9, e110024.	1.1	206
4	The Role of the Blood-Brain Barrier in the Pathogenesis of Senile Plaques in Alzheimer's Disease. International Journal of Alzheimer's Disease, 2014, 2014, 1-7.	1.1	43
5	Alzheimerââ,¬â,,¢s disease: relevant molecular and physiopathological events affecting amyloid-β brain balance and the putative role of PPARs. Frontiers in Aging Neuroscience, 2014, 6, 176.	1.7	46
6	De-regulation of gene expression and alternative splicing affects distinct cellular pathways in the aging hippocampus. Frontiers in Cellular Neuroscience, 2014, 8, 373.	1.8	101
7	Evolution of microRNA (miRNA) Structure and Function in Plants and Animals: Relevance to Aging and Disease. Journal of Aging Science, 2014, 02, .	0.5	14
8	Compounds Blocking Methylglyoxal-induced Protein Modification and Brain Endothelial Injury. Archives of Medical Research, 2014, 45, 753-764.	1.5	29
9	Systems-Level G Protein-Coupled Receptor Therapy Across a Neurodegenerative Continuum by the GLP-1 Receptor System. Frontiers in Endocrinology, 2014, 5, 142.	1.5	28
10	Role of the Blood–Brain Barrier in the Nutrition of the Central Nervous System. Archives of Medical Research, 2014, 45, 610-638.	1.5	137
11	Cholesterol as a causative factor in Alzheimer's disease: a debatable hypothesis. Journal of Neurochemistry, 2014, 129, 559-572.	2.1	155
12	A role for human brain pericytes in neuroinflammation. Journal of Neuroinflammation, 2014, 11, 104.	3.1	125
13	Role of cholesterol metabolism in the pathogenesis of Alzheimer's disease. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17, 319-323.	1.3	38
14	Involvement of the blood–brain barrier opening in cognitive decline in aged rats following orthopedic surgery and high concentration of sevoflurane inhalation. Brain Research, 2014, 1551, 13-24.	1.1	73
15	Regulation of Neurotropic Signaling by the Inducible, NF-kB-Sensitive miRNA-125b in Alzheimer's Disease (AD) and in Primary Human Neuronal-Glial (HNG) Cells. Molecular Neurobiology, 2014, 50, 97-106.	1.9	89
16	TREK-King the Blood–Brain-Barrier. Journal of NeuroImmune Pharmacology, 2014, 9, 293-301.	2.1	41
17	The role of amyloid-beta in the regulation of memory. Biochemical Pharmacology, 2014, 88, 479-485.	2.0	105
18	Can sleep apnea cause Alzheimer's disease?. Neuroscience and Biobehavioral Reviews, 2014, 47, 656-669.	2.9	78

#	Article	IF	CITATIONS
19	Pharmacogenomics of Alzheimer's Disease: Novel Therapeutic Strategies for Drug Development. Methods in Molecular Biology, 2014, 1175, 323-556.	0.4	60
20	Alpha synuclein is transported into and out of the brain by the blood–brain barrier. Peptides, 2014, 62, 197-202.	1.2	138
21	New Targets for the Development of PET Tracers for Imaging Neurodegeneration in Alzheimer Disease. Journal of Nuclear Medicine, 2014, 55, 1221-1224.	2.8	26
22	Tryps and trips: cell trafficking across the 100-year-old blood–brain barrier. Trends in Neurosciences, 2014, 37, 325-333.	4.2	49
23	MicroRNA (miRNA): Sequence and stability, viroid-like properties, and disease association in the CNS. Brain Research, 2014, 1584, 73-79.	1.1	36
24	Chronic Functional Bowel Syndrome Enhances Gut-Brain Axis Dysfunction, Neuroinflammation, Cognitive Impairment, and Vulnerability to Dementia. Neurochemical Research, 2014, 39, 624-644.	1.6	104
25	The impact of microglial activation on blood-brain barrier in brain diseases. Frontiers in Cellular Neuroscience, 2014, 8, 362.	1.8	408
26	The ratio of phosphatidylcholines to lysophosphatidylcholines in plasma differentiates healthy controls from patients with Alzheimer's disease and mild cognitive impairment. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2015, 1, 295-302.	1.2	64
27	The dynamic blood–brain barrier. FEBS Journal, 2015, 282, 4067-4079.	2.2	433
28	Multifunctional Effect of Human Serum Albumin Reduces Alzheimer's Disease Related Pathologies in the 3xTg Mouse Model. Journal of Alzheimer's Disease, 2016, 50, 175-188.	1.2	34
29	Different Populations of Human Locus Ceruleus Neurons Contain Heavy Metals or Hyperphosphorylated Tau: Implications for Amyloid-β and Tau Pathology in Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 45, 437-447.	1.2	37
30	Control of Inflammatory Responses: a New Paradigm for the Treatment of Chronic Neuronal Diseases. Experimental Neurobiology, 2015, 24, 95-102.	0.7	35
31	Facilitation of Drug Transport across the Blood–Brain Barrier with Ultrasound and Microbubbles. Pharmaceutics, 2015, 7, 275-293.	2.0	61
32	Can insulin signaling pathways be targeted to transport Aβ out of the brain?. Frontiers in Aging Neuroscience, 2015, 7, 114.	1.7	27
33	Real-time estimation of paracellular permeability of cerebral endothelial cells by capacitance sensor array. Scientific Reports, 2015, 5, 11014.	1.6	9
34	Blood–Brain Barrier Damage and Dysfunction by Chemical Toxicity. , 2015, , 725-739.		2
35	Development and evaluation of a multiplexed mass spectrometry based assay for measuring candidate peptide biomarkers in Alzheimer's Disease Neuroimaging Initiative (ADNI) CSF. Proteomics - Clinical Applications, 2015, 9, 715-731.	0.8	113
36	Role of Immunity and Inflammation in the Pathophysiology of Neurodegenerative Diseases. Neurodegenerative Diseases, 2015, 15, 63-69.	0.8	89

#	Article	IF	CITATIONS
37	Nanotherapeutic strategies for the treatment of Alzheimer's disease. Therapeutic Delivery, 2015, 6, 177-195.	1.2	12
38	Dysregulation of Endoplasmic Reticulum Stress and Autophagic Responses by the Antiretroviral Drug Efavirenz. Molecular Pharmacology, 2015, 88, 304-315.	1.0	33
39	Sleep fragmentation and sepsis differentially impact blood–brain barrier integrity and transport of tumor necrosis factor-α in aging. Brain, Behavior, and Immunity, 2015, 50, 259-265.	2.0	26
40	Clearance systems in the brain—implications for Alzheimer disease. Nature Reviews Neurology, 2015, 11, 457-470.	4.9	1,127
41	Structural brain alterations in heart failure: a review of the literature and implications for risk of Alzheimer's disease. Heart Failure Reviews, 2015, 20, 561-571.	1.7	50
42	HIV effects on age-associated neurocognitive dysfunction: premature cognitive aging or neurodegenerative disease?. Alzheimer's Research and Therapy, 2015, 7, 37.	3.0	114
43	Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy. Acta Neuropathologica Communications, 2015, 3, 8.	2.4	127
44	Lack of Widespread BBB Disruption in Alzheimer's Disease Models: Focus on Therapeutic Antibodies. Neuron, 2015, 88, 289-297.	3.8	164
45	Myeloid Cells in Alzheimer's Disease: Culprits, Victims or Innocent Bystanders?. Trends in Neurosciences, 2015, 38, 659-668.	4.2	60
46	Microbiota and the control of blood-tissue barriers. Tissue Barriers, 2015, 3, e1039691.	1.6	69
47	Brain endothelial TAK1 and NEMO safeguard the neurovascular unit. Journal of Experimental Medicine, 2015, 212, 1529-1549.	4.2	65
48	Amyloid β Oligomers Disrupt Blood–CSF Barrier Integrity by Activating Matrix Metalloproteinases. Journal of Neuroscience, 2015, 35, 12766-12778.	1.7	140
49	The antimicrobial protein, CAP37, is upregulated in pyramidal neurons during Alzheimer's disease. Histochemistry and Cell Biology, 2015, 144, 293-308.	0.8	19
50	Reliable disease biomarkers characterizing and identifying electrohypersensitivity and multiple chemical sensitivity as two etiopathogenic aspects of a unique pathological disorder. Reviews on Environmental Health, 2015, 30, 251-71.	1.1	59
51	Blood–brain barrier impairment in dementia: Current and future in vivo assessments. Neuroscience and Biobehavioral Reviews, 2015, 49, 71-81.	2.9	51
52	Cognitive Impairment in Multiple Sclerosis: Clinical, Radiologic and Pathologic Insights. Brain Pathology, 2015, 25, 79-98.	2.1	151
53	The blood-brain barrier in neuroimmunology: Tales of separation and assimilation. Brain, Behavior, and Immunity, 2015, 44, 1-8.	2.0	201
54	ADAMTS4, 5, 9, and 15 Expressions in the Autopsied Brain of Patients with Alzheimer's Disease: A Preliminary Immunohistochemistry Study. Journal of Microbiology and Biotechnology, 2016, 26, 7-14.	0.9	6

#	Article	IF	CITATIONS
55	Oral Triphenylmethane Food Dye Analog, Brilliant Blue G, Prevents Neuronal Loss in APPSwDI/NOS2-/- Mouse Model. Current Alzheimer Research, 2016, 13, 663-677.	0.7	13
56	Searching the Linkage between High Fat Diet and Alzheimer′s Disease: A Debatable Proof Stand for Ketogenic Diet to Alleviate Symptoms of Alzheimer′s Patient with APOE ε4 Allele. Journal of Neurology & Neurophysiology, 2016, 07, .	0.1	13
57	HIV-1 Tat Regulates Occludin and A <i>β</i> Transfer Receptor Expression in Brain Endothelial Cells via Rho/ROCK Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-9.	1.9	19
58	PD98059 Protects Brain against Cells Death Resulting from ROS/ERK Activation in a Cardiac Arrest Rat Model. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-13.	1.9	32
59	Antioxidants and Dementia Risk: Consideration through a Cerebrovascular Perspective. Nutrients, 2016, 8, 828.	1.7	22
60	In Vivo Amyloid-β Imaging in the APPPS1–21 Transgenic Mouse Model with a 89Zr-Labeled Monoclonal Antibody. Frontiers in Aging Neuroscience, 2016, 8, 67.	1.7	3
61	Restraint Stress-Induced Morphological Changes at the Blood-Brain Barrier in Adult Rats. Frontiers in Molecular Neuroscience, 2015, 8, 88.	1.4	84
62	The Rationale for Insulin Therapy in Alzheimer's Disease. Molecules, 2016, 21, 689.	1.7	14
63	Modulating Role of TTR in $\hat{Al^2}$ Toxicity, from Health to Disease. , 0, , .		1
64	Distribution of human umbilical cord blood-derived mesenchymal stem cells in the Alzheimer's disease transgenic mouse after a single intravenous injection. NeuroReport, 2016, 27, 235-241.	0.6	33
65	Neuregulin1â€Î² decreases interleukinâ€1βâ€induced RhoA activation, myosin light chain phosphorylation, and endothelial hyperpermeability. Journal of Neurochemistry, 2016, 136, 250-257.	2.1	11
66	Anti-Viral Properties of Amyloid-Î ² Peptides. Journal of Alzheimer's Disease, 2016, 54, 859-878.	1.2	70
67	Monitoring Blood-Brain Barrier Integrity Following Amyloid-β Immunotherapy Using Gadolinium-Enhanced MRI in a PDAPP Mouse Model. Journal of Alzheimer's Disease, 2016, 54, 723-735.	1.2	17
68	Glucose Transporters in Brain: In Health and in Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 55, 1307-1320.	1.2	160
69	Sleep deprivation. Current Opinion in Pulmonary Medicine, 2016, 22, 583-588.	1.2	21
70	Breakdown of the Cerebrovasculature and Blood-Brain Barrier: A Mechanistic Link Between Diabetes Mellitus and Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 54, 445-456.	1.2	45
71	Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. Journal of Controlled Release, 2016, 235, 34-47.	4.8	1,018
72	Brain imaging of neurovascular dysfunction in Alzheimer's disease. Acta Neuropathologica, 2016, 131, 687-707.	3.9	160

#	Article	IF	CITATIONS
73	Neprilysin Inhibition in the TimeÂofÂPrecision Medicine â^—. JACC: Heart Failure, 2016, 4, 409-414.	1.9	9
74	Exercise for the diabetic brain: how physical training may help prevent dementia and Alzheimer's disease in T2DM patients. Endocrine, 2016, 53, 350-363.	1.1	65
75	Inhibitory effect of melatonin on cerebral endothelial cells dysfunction induced by methamphetamine via NADPH oxidase-2. Brain Research, 2016, 1650, 84-92.	1.1	12
76	Unified theory of Alzheimer's disease (UTAD): implications for prevention and curative therapy. Journal of Molecular Psychiatry, 2016, 4, 3.	2.0	28
77	Lymphatics in Neurological Disorders: A Neuro-Lympho-Vascular Component of Multiple Sclerosis and Alzheimer's Disease?. Neuron, 2016, 91, 957-973.	3.8	123
78	Systemic and localized extraâ€central nervous system bacterial infections and the risk of dementia among US veterans: A retrospective cohort study. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2016, 4, 109-117.	1.2	20
79	Camelid single-domain antibodies: A versatile tool for in vivo imaging of extracellular and intracellular brain targets. Journal of Controlled Release, 2016, 243, 1-10.	4.8	90
80	Alzheimer Mythology: A Time to Think Out of the Box. Journal of the American Medical Directors Association, 2016, 17, 769-774.	1.2	15
81	Alzheimer's disease: are blood and brain markers related? A systematic review. Annals of Clinical and Translational Neurology, 2016, 3, 455-462.	1.7	14
82	Characterizing blood–brain barrier perturbations after exposure to human triglycerideâ€rich lipoprotein lipolysis products using MRI in a rat model. Magnetic Resonance in Medicine, 2016, 76, 1246-1251.	1.9	8
83	Insulin resistance, dyslipidemia, and apolipoprotein E interactions as mechanisms in cognitive impairment and Alzheimer's disease. Experimental Biology and Medicine, 2016, 241, 1676-1683.	1.1	34
84	Cerebral vasomotor reactivity in neurodegenerative diseases. Neurologia I Neurochirurgia Polska, 2016, 50, 455-462.	0.6	29
85	Tau Proteins Cross the Blood-Brain Barrier. Journal of Alzheimer's Disease, 2016, 55, 411-419.	1.2	50
86	Pharmacogenomics of Antidepressant Drugs. , 2016, , 545-609.		2
87	European multicentre double-blind placebo-controlled trial of Nilvadipine in mild-to-moderate Alzheimer's disease—the substudy protocols: NILVAD frailty; NILVAD blood and genetic biomarkers; NILVAD cerebrospinal fluid biomarkers; NILVAD cerebral blood flow. BMJ Open, 2016, 6, e011584.	0.8	21
88	Inhibition of ADAM10 promotes the clearance of $A^{\hat{l}2}$ across the BBB by reducing LRP1 ectodomain shedding. Fluids and Barriers of the CNS, 2016, 13, 14.	2.4	31
89	Is cerebral glucose metabolism related to blood–brain barrier dysfunction and intrathecal IgG synthesis in Alzheimer disease?. Medicine (United States), 2016, 95, e4206.	0.4	18
90	Blood-Brain Barrier Leakage in Patients with Early Alzheimer Disease. Radiology, 2016, 281, 527-535.	3.6	411

#	Article	IF	CITATIONS
91	The role of the low-density lipoprotein receptor–related protein 1 (LRP-1) in regulating blood-brain barrier integrity. Reviews in the Neurosciences, 2016, 27, 623-634.	1.4	55
92	Optimal acquisition and modeling parameters for accurate assessment of low K _{trans} blood-brain barrier permeability using dynamic contrast-enhanced MRI. Magnetic Resonance in Medicine, 2016, 75, 1967-1977.	1.9	87
93	From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nature Reviews Drug Discovery, 2016, 15, 275-292.	21.5	778
94	Neurodegeneration and Alzheimer's disease (AD). What Can Proteomics Tell Us About the Alzheimer's Brain?. Molecular and Cellular Proteomics, 2016, 15, 409-425.	2.5	79
95	Associating a negatively charged GdDOTA-derivative to the Pittsburgh compound B for targeting AÎ ² amyloid aggregates. Journal of Biological Inorganic Chemistry, 2016, 21, 83-99.	1.1	19
96	Valsartan/Sacubitril for Heart Failure. JAMA - Journal of the American Medical Association, 2016, 315, 25.	3.8	38
97	The pleiotropic effects of omega-3 docosahexaenoic acid on the hallmarks of Alzheimer's disease. Journal of Nutritional Biochemistry, 2016, 38, 1-11.	1.9	91
98	Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods, 2016, 101, 93-102.	1.9	123
99	Extracellular vesicles of the blood-brain barrier. Tissue Barriers, 2016, 4, e1131804.	1.6	77
100	Dissecting the Contribution of Vascular Alterations and Aging to Alzheimer's Disease. Molecular Neurobiology, 2016, 53, 3793-3811.	1.9	48
101	The blood-brain barrier in systemic inflammation. Brain, Behavior, and Immunity, 2017, 60, 1-12.	2.0	714
102	Asymmetric Amyloid Deposition in the Brain Following Unilateral Electroconvulsive Therapy. Biological Psychiatry, 2017, 81, e11-e13.	0.7	4
103	Glucose-6-phosphate dehydrogenase a novel hope on a blood-based diagnosis of Alzheimer's disease. Acta Neurologica Belgica, 2017, 117, 229-234.	0.5	16
105	Modulators of IgG penetration through the blood-brain barrier: Implications for Alzheimer's disease immunotherapy. Human Antibodies, 2017, 25, 131-146.	0.6	14
106	Diagnostic function of the neuroinflammatory biomarker YKL-40 in Alzheimer's disease and other neurodegenerative diseases. Expert Review of Proteomics, 2017, 14, 285-299.	1.3	78
107	Vascular protective effects of KLF2 on Aβ-induced toxicity: Implications for Alzheimer's disease. Brain Research, 2017, 1663, 174-183.	1.1	16
108	Early neurovascular dysfunction in a transgenic rat model of Alzheimer's disease. Scientific Reports, 2017, 7, 46427.	1.6	83
109	Determination of Evans blue as a blood–brain barrier integrity tracer in plasma and brain tissue by UHPLC/UV method. Journal of Liquid Chromatography and Related Technologies, 2017, 40, 442-448.	0.5	6

#	Article	IF	CITATIONS
110	Peritoneal dialysis reduces amyloid-beta plasma levels in humans and attenuates Alzheimer-associated phenotypes in an APP/PS1 mouse model. Acta Neuropathologica, 2017, 134, 207-220.	3.9	90
111	Characterisation of extracellular vesicleâ€subsets derived from brain endothelial cells and analysis of their protein cargo modulation after TNF exposure. Journal of Extracellular Vesicles, 2017, 6, 1302705.	5.5	96
112	Subtle bloodâ€brain barrier leakage rate and spatial extent: Considerations for dynamic contrastâ€enhanced <scp>MRI</scp> . Medical Physics, 2017, 44, 4112-4125.	1.6	75
113	Pathophysiology of the Blood–Brain Barrier in Neuroinflammatory Diseases. , 2017, , 61-79.		0
114	The blood brain barrier in Alzheimer's disease. Vascular Pharmacology, 2017, 89, 12-18.	1.0	84
115	Intracranial IL-17A overexpression decreases cerebral amyloid angiopathy by upregulation of ABCA1 in an animal model of Alzheimer's disease. Brain, Behavior, and Immunity, 2017, 65, 262-273.	2.0	32
116	Different impacts of acylated and non-acylated long-acting insulin analogs on neural functions in vitro and in vivo. Diabetes Research and Clinical Practice, 2017, 129, 62-72.	1.1	12
117	Neuroimaging and its Relevance to Understanding Pathways Linking Diabetes and Cognitive Dysfunction. Journal of Alzheimer's Disease, 2017, 59, 405-419.	1.2	41
118	Brain barriers in health and disease. Neurobiology of Disease, 2017, 107, 1-3.	2.1	34
119	Stem cell models of Alzheimer's disease: progress and challenges. Alzheimer's Research and Therapy, 2017, 9, 42.	3.0	112
121	Expression and Processing of Amyloid Precursor Protein in Vascular Endothelium. Physiology, 2017, 32, 20-32.	1.6	38
122	Increased blood-brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype. Neurobiology of Aging, 2017, 51, 104-112.	1.5	154
123	A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood–brain barrier. Lab on A Chip, 2017, 17, 448-459.	3.1	338
124	Kynurenine Pathway Metabolites in Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 60, 495-504.	1.2	99
125	Disease-Induced Alterations in Brain Drug Transporters in Animal Models of Alzheimer's Disease. Pharmaceutical Research, 2017, 34, 2652-2662.	1.7	11
126	Neuropathology of White Matter Lesions, Blood–Brain Barrier Dysfunction, and Dementia. Stroke, 2017, 48, 2799-2804.	1.0	85
127	Metabolite Clearance During Wakefulness and Sleep. Handbook of Experimental Pharmacology, 2017, 253, 385-423.	0.9	23
128	<i>Crocus sativus</i> Extract Tightens the Blood-Brain Barrier, Reduces Amyloid β Load and Related Toxicity in 5XFAD Mice. ACS Chemical Neuroscience. 2017. 8, 1756-1766.	1.7	66

	CITATION REPORT		
Article		IF	Citations
Neurovascular Alterations in Alzheimer's Disease: Transporter Expression Profiles a Access. AAPS Journal, 2017, 19, 940-956.	nd CNS Drug	2.2	16
NIH workshop report on the trans-agency blood \hat{s} "brain interface workshop 2016: exp challenges and opportunities associated with the blood, brain and their interface. Fluic of the CNS, 2017, 14, 12.		2.4	16
SLC and ABC Transporters: Expression, Localization, and Species Differences at the Blo the Blood-Cerebrospinal Fluid Barriers. AAPS Journal, 2017, 19, 1317-1331.	ood-Brain and	2.2	104
Conformational Change of Mutant form of Amyloid Precursor Protein by Carbon Nano Functionalized with Morin. Nano LIFE, 2017, 07, 1750001.	tube	0.6	0
Aging of cerebral white matter. Ageing Research Reviews, 2017, 34, 64-76.		5.0	191
Inflammation at the blood-brain barrier: The role of liver X receptors. Neurobiology of I 107, 57-65.	Disease, 2017,	2.1	20
The blood-brain barrier in Alzheimer's disease. Neurobiology of Disease, 2017, 107, 41	-56.	2.1	454
Making a Bad Diagnosis Worse? Suspect Drug Management of Urinary Incontinence ir Dementia. Journal of the American Geriatrics Society, 2017, 65, 238-240.	n Persons with	1.3	0
Annexin A1 restores Aî² _{1â€42} â€induced blood–brain barrier disruptior of RhoAâ€ <scp>ROCK</scp> signaling pathway. Aging Cell, 2017, 16, 149-161.	through the inhibition	3.0	87
Pathogenic Angiogenic Mechanisms in Alzheimer's Disease. , 0, , .			3
Maintenance of Blood-Brain Barrier Integrity in Hypertension: A Novel Benefit of Exerci Autonomic Control. Frontiers in Physiology, 2017, 8, 1048.	se Training for	1.3	51

140	Multifunctional Effects of Human Serum Albumin Toward Neuroprotection in AlzheimerÂDisease. , 2017, , 217-238.		4
141	Blood-Brain Barrier Dysfunction and the Pathogenesis of Alzheimer's Disease. International Journal of Molecular Sciences, 2017, 18, 1965.	1.8	273
142	Novel Treatment Strategies Using TiO2-Nanowired Delivery of Histaminergic Drugs and Antibodies to Tau With Cerebrolysin for Superior Neuroprotection in the Pathophysiology of Alzheimer's Disease. International Review of Neurobiology, 2017, 137, 123-165.	0.9	23
143	Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome. Frontiers in Aging Neuroscience, 2017, 9, 298.	1.7	96
144	Seeking a New Paradigm for Alzheimer's Disease: Considering the Roles of Inflammation, Blood-Brain Barrier Dysfunction, and Prion Disease. International Journal of Alzheimer's Disease, 2017, 2017, 1-6.	1.1	4
145	Proximate Mediators of Microvascular Dysfunction at the Blood-Brain Barrier: Neuroinflammatory Pathways to Neurodegeneration. BioMed Research International, 2017, 2017, 1-14.	0.9	3
146	Can brain impermeable BACE1 inhibitors serve as anti-CAA medicine?. BMC Neurology, 2017, 17, 163.	0.8	5

#

129

131

133

135

137

139

#	Article	IF	CITATIONS
147	The role of amyloid beta clearance in cerebral amyloid angiopathy: more potential therapeutic targets. Translational Neurodegeneration, 2017, 6, 22.	3.6	39
148	Alzheimer's Disease as the Product of a Progressive Energy Deficiency Syndrome in the Central Nervous System: The Neuroenergetic Hypothesis. Journal of Alzheimer's Disease, 2017, 60, 1223-1229.	1.2	32
149	Adiponectin controls the apoptosis and the expression of tight junction proteins in brain endothelial cells through AdipoR1 under beta amyloid toxicity. Cell Death and Disease, 2017, 8, e3102-e3102.	2.7	46
150	Are CSF Biomarkers Useful as Prognostic Indicators in Diagnostically Unresolved Cognitively Impaired Patients in a Normal Clinical Setting. Dementia and Geriatric Cognitive Disorders Extra, 2017, 6, 465-476.	0.6	6
151	Brain insulin signalling, glucose metabolism and females' reproductive aging: A dangerous triad in Alzheimer's disease. Neuropharmacology, 2018, 136, 223-242.	2.0	38
152	Catalpol provides a protective effect on fibrillary Aβ _{1–42} â€induced barrier disruption in an in vitro model of the blood–brain barrier. Phytotherapy Research, 2018, 32, 1047-1055.	2.8	23
153	Neuroimmune Axes of the Blood–Brain Barriers and Blood–Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions. Pharmacological Reviews, 2018, 70, 278-314.	7.1	242
154	Identification and quantification of blood–brain barrier transporters in isolated rat brain microvessels. Journal of Neurochemistry, 2018, 146, 670-685.	2.1	59
155	Spatiotemporal distribution of fibrinogen in marmoset and human inflammatory demyelination. Brain, 2018, 141, 1637-1649.	3.7	49
156	Impact of aging, Alzheimer's disease and Parkinson's disease on the blood-brain barrier transport of therapeutics. Advanced Drug Delivery Reviews, 2018, 135, 62-74.	6.6	78
157	Bisphosphonates: Future perspective for neurological disorders. Pharmacological Reports, 2018, 70, 900-907.	1.5	35
158	Neuroprotective effects of silk fibroin hydrolysate against Aβ25–35 induced cytotoxicity in SH-SY5Y cells and primary hippocampal neurons by regulating ROS inactivation of PP2A. Journal of Functional Foods, 2018, 45, 100-109.	1.6	13
159	Clearance of Amyloid Beta and Tau in Alzheimer's Disease: from Mechanisms to Therapy. Neurotoxicity Research, 2018, 34, 733-748.	1.3	137
160	Can Curcumin Counteract Cognitive Decline? Clinical Trial Evidence and Rationale for Combining Ï‱-3 Fatty Acids with Curcumin. Advances in Nutrition, 2018, 9, 105-113.	2.9	20
161	Precision pharmacology for Alzheimer's disease. Pharmacological Research, 2018, 130, 331-365.	3.1	79
162	A new model for chronic diseases. Medical Hypotheses, 2018, 113, 30-39.	0.8	4
163	Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nature Reviews Neurology, 2018, 14, 133-150.	4.9	1,731
164	Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathologica, 2018, 135, 311-336.	3.9	543

#	Article	IF	CITATIONS
165	In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain. Journal of Controlled Release, 2018, 273, 108-130.	4.8	43
166	A Perfect sTORm: The Role of the Mammalian Target of Rapamycin (mTOR) in Cerebrovascular Dysfunction of Alzheimer's Disease: A Mini-Review. Gerontology, 2018, 64, 205-211.	1.4	30
167	Transplantation of in vitro cultured endothelial progenitor cells repairs the blood-brain barrier and improves cognitive function of APP/PS1 transgenic AD mice. Journal of the Neurological Sciences, 2018, 387, 6-15.	0.3	23
168	Bridging Type 2 Diabetes and Alzheimer's Disease: Assembling the Puzzle Pieces in the Quest for the Molecules With Therapeutic and Preventive Potential. Medicinal Research Reviews, 2018, 38, 261-324.	5.0	55
169	ZO-1 expression is suppressed by GM-CSF via miR-96/ERG in brain microvascular endothelial cells. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 809-822.	2.4	26
170	A story of birth and death: Insights into the formation and dynamics of the microglial population. Brain, Behavior, and Immunity, 2018, 69, 9-17.	2.0	34
171	Activation of RARα, RARγ, or RXRα Increases Barrier Tightness in Human Induced Pluripotent Stem Cellâ€Đerived Brain Endothelial Cells. Biotechnology Journal, 2018, 13, 1700093.	1.8	39
172	Recent Advances in Computational Approaches for Designing Potential Anti-Alzheimer's Agents. Neuromethods, 2018, , 25-59.	0.2	3
173	Reduced glucose transporter-1 in brain derived circulating endothelial cells in mild Alzheimer's disease patients. Brain Research, 2018, 1678, 304-309.	1.1	20
174	Effects of donepezil on liver and kidney functions for the treatment of Alzheimer'sÂdisease. Journal of Integrative Neuroscience, 2018, 16, 335-346.	0.8	8
175	Overcoming the Blood–Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. Advanced Materials, 2018, 30, e1801362.	11.1	415
176	Microorganisms' Footprint in Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 2018, 12, 466.	1.8	42
177	Innate Immunity Cells and the Neurovascular Unit. International Journal of Molecular Sciences, 2018, 19, 3856.	1.8	38
178	Iron Dysregulation and Dormant Microbes as Causative Agents for Impaired Blood Rheology and Pathological Clotting in Alzheimer's Type Dementia. Frontiers in Neuroscience, 2018, 12, 851.	1.4	17
179	Isolation of Cerebral Capillaries from Fresh Human Brain Tissue. Journal of Visualized Experiments, 2018, , .	0.2	18
180	Brain Imaging in Type 2 Diabetes. , 2018, , 49-66.		0
181	Unravelling the glial response in the pathogenesis of Alzheimer's disease. FASEB Journal, 2018, 32, 5766-5777.	0.2	30
182	Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood–brain barrier. Fluids and Barriers of the CNS, 2018, 15, 30.	2.4	142

CITATION REPORT ARTICLE IF CITATIONS Leaky Gut, Leaky Brain?. Microorganisms, 2018, 6, 107. 153 1.6 Phyto-Therapeutic and Nanomedicinal Approaches to Cure Alzheimer's Disease: Present Status and 1.7 99 Future Opportunities. Frontiers in Aging Neuroscience, 2018, 10, 284. Changes in the Blood-Brain Barrier Function Are Associated With Hippocampal Neuron Death in a 1.1 25 Kainic Acid Mouse Model of Epilepsy. Frontiers in Neurology, 2018, 9, 775. Multifunctional Nanoparticles for Successful Targeted Drug Delivery across the Blood-Brain Barrier. , 0, , . Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer's disease and vascular cognitive impairment. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, 1.5 89 H693-H703. Astrocytic degeneration in chronic traumatic encephalopathy. Acta Neuropathologica, 2018, 136, 955-972. Lifetime Risk Factors for Functional and Cognitive Outcomes in Patients with Alzheimer's Disease. 1.2 22 Journal of Alzheimer's Disease, 2018, 65, 1283-1299. Potential roles of brain barrier dysfunctions in the early stage of Alzheimer's disease. Brain Research 1.4 Bulletin, 2018, 142, 360-367. Cerebral small vessel disease and the risk of Alzheimer's disease: A systematic review. Ageing Research 5.0 62 Reviews, 2018, 47, 41-48. Urine-Based Biomarkers for Alzheimer's Disease Identified Through Coupling Computational and 1.2 Experimental Methods. Journal of Alzheimer's Disease, 2018, 65, 421-431. Antibodies to Multiple Receptors are Associated with Neuropsychiatric Symptoms and Mortality in 7 1.2 Alzheimer's Disease: A Longitudinal Study. Journal of Alzhéimer's Disease, 2018, 64, 761-774. Neuroinflammation in Age-Related Neurodegenerative Diseases., 2018,, 477-507. A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell 1.6 31 types in brain diseases and cytotoxicity testing. Scientific Reports, 2018, 8, 8784. Functional MRI of brain physiology in aging and neurodegenerative diseases. NeuroImage, 2019, 187, 2.1 209-225. Microglia in the Neurovascular Unit: Blood–Brain Barrier–microglia Interactions After Central 119 1.1 Nervous System Disorders. Neuroscience, 2019, 405, 55-67. Mercury in the retina and optic nerve following prenatal exposure to mercury vapor. PLoS ONE, 2019, 1.1 14, e0220859. Chronic Cerebral Hypoperfusion Activates the Coagulation and Complement Cascades in Alzheimer's

200	miR-424–5p maybe regulate blood-brain barrier permeability in a model inÂvitro with Abeta incubated endothelial cells. Biochemical and Biophysical Research Communications, 2019, 517, 525-531.	1.0	15	
-----	--	-----	----	--

1.1

26

Disease Mice. Neuroscience, 2019, 416, 126-136.

#

183

184

185

186

187

188

189

191

193

194

195

197

199

#	ARTICLE	IF	CITATIONS
201	The role of mutations associated with familial neurodegenerative disorders on blood–brain barrier function in an iPSC model. Fluids and Barriers of the CNS, 2019, 16, 20.	2.4	51
202	Sitagliptin promotes mitochondrial biogenesis in human SH‣Y5Y cells by increasing the expression of PGCâ€1α/NRF1/TFAM. IUBMB Life, 2019, 71, 1515-1521.	1.5	22
203	The Blood–Brain Barrier and Its Intercellular Junctions in Age-Related Brain Disorders. International Journal of Molecular Sciences, 2019, 20, 5472.	1.8	61
204	Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms. Critical Care, 2019, 23, 352.	2.5	235
205	Inflammatory and Pro-resolving Mediators in Frontotemporal Dementia and Alzheimer's Disease. Neuroscience, 2019, 421, 123-135.	1.1	17
206	Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials, 2019, 224, 119491.	5.7	306
207	Norvaline Restores the BBB Integrity in a Mouse Model of Alzheimer's Disease. International Journal of Molecular Sciences, 2019, 20, 4616.	1.8	16
208	Blood-brain barrier at the interface of air pollution-associated neurotoxicity and neuroinflammation. Advances in Neurotoxicology, 2019, , 295-337.	0.7	3
209	Propofol improved hypoxiaâ€impaired integrity of bloodâ€brain barrier via modulating the expression and phosphorylation of zonula occludensâ€1. CNS Neuroscience and Therapeutics, 2019, 25, 704-713.	1.9	31
210	Identification of Blood Biomarkers for Alzheimer's Disease Through Computational Prediction and Experimental Validation. Frontiers in Neurology, 2019, 9, 1158.	1.1	34
211	Royal Jelly Alleviates Cognitive Deficits and β-Amyloid Accumulation in APP/PS1 Mouse Model Via Activation of the cAMP/PKA/CREB/BDNF Pathway and Inhibition of Neuronal Apoptosis. Frontiers in Aging Neuroscience, 2018, 10, 428.	1.7	45
212	Mechanisms Associated with Type 2 Diabetes as a Risk Factor for Alzheimer-Related Pathology. Molecular Neurobiology, 2019, 56, 5815-5834.	1.9	38
213	Multi-faceted therapeutic strategy for treatment of Alzheimer's disease by concurrent administration of etodolac and α-tocopherol. Neurobiology of Disease, 2019, 125, 123-134.	2.1	24
214	Sex differences in the expression of cell adhesion molecules on microvesicles derived from cultured human brain microvascular endothelial cells treated with inflammatory and thrombotic stimuli. Biology of Sex Differences, 2019, 10, 26.	1.8	16
215	Cerebrovascular plasticity: Processes that lead to changes in the architecture of brain microvessels. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1413-1432.	2.4	42
216	Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier. Beilstein Journal of Nanotechnology, 2019, 10, 941-954.	1.5	12
217	Age-Associated Changes in the Immune System and Blood–Brain Barrier Functions. International Journal of Molecular Sciences, 2019, 20, 1632.	1.8	107
218	ImmunoglobulinÂG transport increases in an in vitro blood–brain barrier model with amyloidâ€Î² and with neuroinflammatory cytokines. Biotechnology and Bioengineering, 2019, 116, 1752-1761.	1.7	16

ARTICLE IF CITATIONS Blood–Brain Barrier., 2019, , 325-336. 219 3 Beta-amyloid pathology in human brain microvessel extracts from the parietal cortex: relation with cerebral amyloid angiopathy and Alzheimer's disease. Acta Neuropathologica, 2019, 137, 801-823. 221 Blood-Brain Barrier–Targeted Nanotechnological Advances., 2019, , 25-31. 0 Selective loss of cortical endothelial tight junction proteins during Alzheimer's disease progression. 120 Biomarkers of Bloodâ€"Brain Barrier Dysfunction. , 2019, , 997-1012. 223 3 Plausible biochemical mechanisms of chemotherapy-induced cognitive impairment ($\hat{a}\in\hat{c}$ chemobrain $\hat{a}\in$), a condition that significantly impairs the quality of life of many cancer survivors. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1088-1097. 224 1.8 Regulation of Diabetes: a Therapeutic Strategy for Alzheimer's Disease?. Journal of Korean Medical 225 1.1 8 Science, 2019, 34, e297. Plasma Extracellular Vesicles in Children with OSA Disrupt Blood–Brain Barrier Integrity and 1.8 Endothelial Cell Wound Healing In Vitro. International Journal of Molecular Sciences, 2019, 20, 6233. 227 Understanding Inter-Individual Variability in Monoclonal Antibody Disposition. Antibodies, 2019, 8, 56. 1.2 46 The leukotriene signaling pathway: a druggable target in Alzheimer's disease. Drug Discovery Today, 3.2 2019, 24, 505-516. Current Perspectives and Mechanisms of Relationship between Intestinal Microbiota Dysfunction and 229 0.6 11 Dementia: A Review. Dementia and Geriatric Cognitive Disorders Extra, 2019, 8, 360-381. Extravascular fibrinogen in the white matter of Alzheimer's disease and normal aged brains: 2.1 24 implications for fibrinogen as a biomarker for Alzheimer's disease. Brain Pathology, 2019, 29, 414-424. Novel therapeutic strategies for Alzheimer's disease: Implications from cell-based therapy and 231 1.7 35 nanotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102149. Microphysiological systems for recapitulating physiology and function of blood-brain barrier. Biomaterials, 2020, 232, 119732. 5.7 34 MicroRNA-126-3p/-5p Overexpression Attenuates Blood-Brain Barrier Disruption in a Mouse Model of 233 1.0 78 Middle Cerebral Artery Occlusion. Stroke, 2020, 51, 619-627. Integrative glycoproteomics reveals protein N-glycosylation aberrations and glycoproteomic 234 network alterations in Alzheimer's disease. Ścieńce Advances, 2020, 6, . Structure and function of the perivascular fluid compartment and vertebral venous plexus: 235 Illumining a novel theory on mechanisms underlying the pathogenesis of Alzheimer's, cerebral small 2.19 vessel, and neurodegenerative diseases. Neurobiology of Disease, 2020, 144, 105022. The Interplay Between Beta-Amyloid 1–42 (Aβ1–42)-Induced Hippocampal Inflammatory Response, p-tau, Vascular Pathology, and Their Synergistic Contributions to Neuronal Death and Behavioral Deficits. 1.4 Frontiers in Molecular Neuroscience, 2020, 13, 522073.

		CITATION REPORT		
#	Article		IF	CITATIONS
237	Cerebral Amyloid Angiopathy and Blood-Brain Barrier Dysfunction. Neuroscientist, 202	1, 27, 668-684.	2.6	18
238	Association of Vitamin D Receptor Polymorphisms with Amyloid-β Transporters Express Mild Cognitive Impairment in a Chilean Cohort. Journal of Alzheimer's Disease, 2020, 8	sion and Risk of 2, 1-14.	1.2	6
239	Gene expression of serotonergic markers in peripheral blood mononuclear cells of patie late-onset Alzheimer's disease. Heliyon, 2020, 6, e04716.	ents with	1.4	4
240	Blood-brain barrier integrity in the pathogenesis of Alzheimer's disease. Frontiers in Neuroendocrinology, 2020, 59, 100857.		2.5	50
241	Tau Protein and Its Role in Blood–Brain Barrier Dysfunction. Frontiers in Molecular № 2020, 13, 570045.	euroscience,	1.4	77
242	The blood–brain barrier in health and disease: Important unanswered questions. Jour Experimental Medicine, 2020, 217, .	nal of	4.2	365
243	Roles of Gut Microbiota in Pathogenesis of Alzheimer's Disease and Therapeutic Ef Medicine. Chinese Journal of Integrative Medicine, 2020, , 1.	fects of Chinese	0.7	8
244	Cerebral Small Vessel Disease and Alzheimer's Disease: A Review. Frontiers in Neurolog	y, 2020, 11, 927.	1.1	53
245	Klotho overexpression improves amyloidâ€Î² clearance and cognition in the APP/PS1 m Alzheimer's disease. Aging Cell, 2020, 19, e13239.	ouse model of	3.0	51
246	Site-specific opening of the blood-brain barrier by extracellular histones. Journal of Neuroinflammation, 2020, 17, 281.		3.1	19
247	Aerobic exercise increases sprouting angiogenesis in the male rat motor cortex. Brain S Function, 2020, 225, 2301-2314.	tructure and	1.2	6
248	Single-Cell RNA Sequencing Unveils Unique Transcriptomic Signatures of Organ-Specifi Cells. Circulation, 2020, 142, 1848-1862.	c Endothelial	1.6	157
249	Fibrinogen isoforms as potential blood-based biomarkers of Alzheimer's disease usi approach. International Journal of Neuroscience, 2020, , 1-12.	ng a proteomics	0.8	4
250	Mechanobiology of the brain in ageing and Alzheimer's disease. European Journal of Ne 2021, 53, 3851-3878.	uroscience,	1.2	61
251	Interactions between Amyloid-Ì' Proteins and Human Brain Pericytes: Implications for th of Alzheimer's Disease. Journal of Clinical Medicine, 2020, 9, 1490.	1e Pathobiology	1.0	26
252	Perindopril ameliorates experimental Alzheimer's disease progression: role of amylo central estrogen receptor and hyperlipidemic-lipid raft signaling. Inflammopharmacolog 1343-1364.		1.9	18
253	Multifarious roles of <scp>mTOR</scp> signaling in cognitive aging and cerebrovascula of Alzheimer's disease. IUBMB Life, 2020, 72, 1843-1855.	ar dysfunction	1.5	40
254	DSC Brain Perfusion Using Advanced Deconvolution Models in the Diagnostic Work-Up and Mild Cognitive Impairment: A Semiquantitative Comparison with HMPAO-SPECT-Bi Journal of Clinical Medicine, 2020, 9, 1800.	o of Dementia rain Perfusion.	1.0	6

#	ARTICLE	IF	CITATIONS
255	Extracellular Vesicles miRNA Cargo for Microglia Polarization in Traumatic Brain Injury. Biomolecules, 2020, 10, 901.	1.8	32
256	Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomaterials Science, 2020, 8, 4109-4128.	2.6	85
257	Blood–brain barrier damage and dysfunction by chemical toxicity. , 2020, , 811-827.		0
258	Uncertainty in Pharmacology. Boston Studies in the Philosophy and History of Science, 2020, , .	0.4	1
259	Elevated cerebrospinal fluid homocysteine is associated with blood-brain barrier disruption in amyotrophic lateral sclerosis patients. Neurological Sciences, 2020, 41, 1865-1872.	0.9	23
260	Brain mural cell loss in the parietal cortex in Alzheimer's disease correlates with cognitive decline and TDPâ€43 pathology. Neuropathology and Applied Neurobiology, 2020, 46, 458-477.	1.8	29
261	Chronic cerebral hypoperfusion: An undefined, relevant entity. Journal of Clinical Neuroscience, 2020, 73, 8-12.	0.8	33
262	Neurovascular unit dysregulation, white matter disease, and executive dysfunction: the shared triad of vascular cognitive impairment and Alzheimer disease. GeroScience, 2020, 42, 445-465.	2.1	50
263	Fish oil protects the blood–brain barrier integrity in a mouse model of Alzheimer's disease. Chinese Medicine, 2020, 15, 29.	1.6	14
264	White matter alterations in Alzheimer's disease without concomitant pathologies. Neuropathology and Applied Neurobiology, 2020, 46, 654-672.	1.8	24
265	Microglia alterations in neurodegenerative diseases and their modeling with human induced pluripotent stem cell and other platforms. Progress in Neurobiology, 2020, 190, 101805.	2.8	35
266	A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Medicinal Research Reviews, 2021, 41, 2689-2745.	5.0	26
267	Nanomedicines for Brain Drug Delivery. Neuromethods, 2021, , .	0.2	3
268	Distinct Uptake Kinetics of Alzheimer Disease Amyloid- <i>β</i> 40 and 42 at the Blood-Brain Barrier Endothelium. Journal of Pharmacology and Experimental Therapeutics, 2021, 376, 482-490.	1.3	13
269	Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Molecular Psychiatry, 2021, 26, 1044-1059.	4.1	104
270	First record on mercury accumulation in mice brain living in active volcanic environments: a cytochemical approach. Environmental Geochemistry and Health, 2021, 43, 171-183.	1.8	7
271	Development and validation of a highâ€sensitivity assay for measuring p217+tau in plasma. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12204.	1.2	22
272	Nano-carriers for brain disorders targeting the blood brain barrier (BBB) crossing strategies. Indian Journal of Pharmacy and Pharmacology, 2021, 7, 213-221.	0.1	0

#	Article	IF	CITATIONS
273	Pathophysiological Clues to How the Emergent SARS-CoV-2 Can Potentially Increase the Susceptibility to Neurodegeneration. Molecular Neurobiology, 2021, 58, 2379-2394.	1.9	38
274	Selenium at the Neural Barriers: AReview. Frontiers in Neuroscience, 2021, 15, 630016.	1.4	36
275	Noncontrast assessment of blood–brain barrier permeability to water: Shorter acquisition, test–retest reproducibility, and comparison with contrastâ€based method. Magnetic Resonance in Medicine, 2021, 86, 143-156.	1.9	16
276	Time-Dependent Internalization of Polymer-Coated Silica Nanoparticles in Brain Endothelial Cells and Morphological and Functional Effects on the Blood-Brain Barrier. International Journal of Molecular Sciences, 2021, 22, 1657.	1.8	5
277	The Neurovascular Unit Dysfunction in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 2022.	1.8	65
278	Healthy aging and the blood–brain barrier. Nature Aging, 2021, 1, 243-254.	5.3	116
279	Plasma amyloid β levels in Alzheimer's disease and cognitively normal controls in Syrian population. Medical Journal of the Islamic Republic of Iran, 2021, 35, 19.	0.9	2
280	Inflammation and Insulin Resistance as Risk Factors and Potential Therapeutic Targets for Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 653651.	1.4	30
281	Alternative Targets to Fight Alzheimer's Disease: Focus on Astrocytes. Biomolecules, 2021, 11, 600.	1.8	16
283	Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS Omega, 2021, 6, 13033-13056.	1.6	7
284	Nanomedicine against Alzheimer's and Parkinson's Disease. Current Pharmaceutical Design, 2021, 27, 1507-1545.	0.9	7
285	Different Inflammatory Signatures in Alzheimer's Disease and Frontotemporal Dementia Cerebrospinal Fluid. Journal of Alzheimer's Disease, 2021, 81, 629-640.	1.2	18
286	An engineered neurovascular unit for modeling neuroinflammation. Biofabrication, 2021, 13, 035039.	3.7	18
287	Possible effects of <i>Porphyromonas gingivalis</i> on the blood–brain barrier in Alzheimer's disease. Expert Review of Anti-Infective Therapy, 2021, 19, 1367-1371.	2.0	10
288	Use of Zebrafish Genetic Models to Study Etiology of the Amyloid-Beta and Neurofibrillary Tangle Pathways in Alzheimer's Disease. Current Neuropharmacology, 2022, 20, 524-539.	1.4	8
289	B Cells in Neuroinflammation: New Perspectives and Mechanistic Insights. Cells, 2021, 10, 1605.	1.8	25
290	Role of Neuron and Glia in Alzheimer's Disease and Associated Vascular Dysfunction. Frontiers in Aging Neuroscience, 2021, 13, 653334.	1.7	28
291	Blood–Brain Barrier Breakdown in Relationship to Alzheimer and Vascular Disease. Annals of Neurology, 2021, 90, 227-238.	2.8	57

#	ARTICLE	IF	CITATIONS
292	Homocysteine and Age-Related Central Nervous System Diseases: Role of Inflammation. International Journal of Molecular Sciences, 2021, 22, 6259.	1.8	19
293	Effects of Lipotoxicity in Brain Microvascular Endothelial Cells During Sirt3 Deficiency-Potential Role in Comorbid Alzheimer's Disease. Frontiers in Aging Neuroscience, 2021, 13, 716616.	1.7	14
294	Amyloid-β disrupts unitary calcium entry through endothelial NMDA receptors in mouse cerebral arteries. Journal of Cerebral Blood Flow and Metabolism, 2021, , 0271678X2110395.	2.4	11
295	Blood–Brain Barrier Breakdown: An Emerging Biomarker of Cognitive Impairment in Normal Aging and Dementia. Frontiers in Neuroscience, 2021, 15, 688090.	1.4	108
296	Effects of earlyâ€life stress and sex on blood–brain barrier permeability and integrity in juvenile and adult rats. Developmental Neurobiology, 2021, 81, 861-876.	1.5	8
297	The Complexity of the Blood-Brain Barrier and the Concept of Age-Related Brain Targeting: Challenges and Potential of Novel Solid Lipid-Based Formulations. Journal of Pharmaceutical Sciences, 2022, 111, 577-592.	1.6	16
298	Effects of apolipoprotein E isoform, sex, and diet on insulin BBB pharmacokinetics in mice. Scientific Reports, 2021, 11, 18636.	1.6	8
299	Blood-brain barrier models: Rationale for selection. Advanced Drug Delivery Reviews, 2021, 176, 113859.	6.6	23
300	Inflammatory Cascade in Alzheimer's Disease Pathogenesis: A Review of Experimental Findings. Cells, 2021, 10, 2581.	1.8	42
301	Neutrophil-specific deletion of Syk results in recruitment-independent stabilization of the barrier and a long-term improvement in cognitive function after traumatic injury to the developing brain. Neurobiology of Disease, 2021, 157, 105430.	2.1	4
302	Abnormal amyloid beta metabolism in systemic abnormalities and Alzheimer's pathology: Insights and therapeutic approaches from periphery. Ageing Research Reviews, 2021, 71, 101451.	5.0	20
304	Cu, Fe, and Zn isotope ratios in murine Alzheimer's disease models suggest specific signatures of amyloidogenesis and tauopathy. Journal of Biological Chemistry, 2021, 296, 100292.	1.6	24
305	Vascular Dysfunction and Neurodegenerative Disease. , 2020, , 3-16.		2
306	Neurodegenerative Diseases: The Real Problem and Nanobiotechnological Solutions. , 2019, , 1-17.		3
307	Contributions of Drug Transporters to Blood-Brain Barriers. Advances in Experimental Medicine and Biology, 2019, 1141, 407-466.	0.8	10
308	Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina. Acta Neuropathologica, 2020, 139, 813-836.	3.9	113
309	Alzheimer's disease-like perturbations in HIV-mediated neuronal dysfunctions: understanding mechanisms and developing therapeutic strategies. Open Biology, 2020, 10, 200286.	1,5	19
311	Gut Microbiota and Disorders of the Central Nervous System. Neuroscientist, 2020, 26, 487-502.	2.6	20

ARTICLE IF CITATIONS # Low Dose Cranial Irradiation-Induced Cerebrovascular Damage Is Reversible in Mice. PLoS ONE, 2014, 9, 312 1.1 56 e112397. Sulfur-containing Secondary Metabolites as Neuroprotective Agents. Current Medicinal Chemistry, 1.2 2020, 27, 4421-4436. Central nervous system diseases associated with blood brain barrier breakdown - A Comprehensive 314 0.1 2 update of existing literatures. Journal of Neuroscience and Neurological Disorders, 2020, 4, 053-062. Hyperoside protects the blood-brain barrier from neurotoxicity of amyloid beta $1\hat{a}\in$ 42. Neural 24 Régeneration Research, 2018, 13, 1974. Chronic exposure to low doses of ozone produces a state of oxidative stress and blood-brain barrier 316 0.3 12 damage in the hippocampus of rat. Advances in Bioscience and Biotechnology (Print), 2013, 04, 24-29. Comparison of Erythrocytes for Individual Indications of Metabolism Changes in Parkinsonâ \in ^{Ms} and Alzheimerâ \in ^{Ms} Diseases., 0, , . The Bloodâ€"Brain Barrier: Much More Than a Selective Access to the Brain. Neurotoxicity Research, 318 1.3 12 2021, 39, 2154-2174. Mesenchymal Stem Cell-Derived Extracellular Vesicle-Based Therapy for Alzheimer's Disease: Progress 319 1.4 and Opportunity. Membranes, 2021, 11, 796. The Effects of Virgin Coconut Oil on Prevention of Alzheimer's Disease. Jundishapur Journal of 320 0.3 1 Natural Pharmaceutical Products, 2019, 14, . Predicting Alzheimer's Disease Onset. European Journal of Medical and Health Sciences, 2019, 1, . 0.1 Involvement of Astrocytes in the Process of Metabolic Syndrome., 0,,. 322 0 Affected albumin endocytosis as a new neurotoxicity mechanism of amyloid beta. AIMS Neuroscience, 2020, 7, 344-359. Robust Biomarkers: Methodologically Tracking Causal Processes in Alzheimer's Measurement. Boston 324 0.4 2 Studies in the Philosophy and History of Science, 2020, , 289-318. Vascular Component of Neuroinflammation in Experimental Alzheimer's Disease in Mice. Cell and 0.2 Tissue Biology, 2020, 14, 256-262. The Use of Peptide and Protein Vectors to Cross the Blood-Brain Barrier for the Delivery of 326 0.2 1 Therapeutic Concentration of Biologics. Neuromethods, 2021, , 119-147. An overview on therapeutics attenuating amyloid \hat{I}^2 level in Alzheimer's disease: targeting neurotransmission, inflammation, oxidative stress and enhanced cholesterol levels. American Journal 30 of Translational Research (discontinued), 2016, 8, 246-69. Oral Triphenylmethane Food Dye Analog, Brilliant Blue G, Prevents Neuronal Loss in APPSwDI/NOS2-/-328 0.7 4 Mouse Model. Current Alzheimer Research, 2016, 13, 663-77. Alzheimer's Pathogenesis, Metal-Mediated Redox Stress, and Potential Nanotheranostics., 2019, 7, 329 547-558.

#	Article	IF	CITATIONS
330	Targeting gut dysbiosis as a means to enhance recovery from surgical brain injury. Surgical Neurology International, 2021, 12, 210.	0.2	0
331	Multiplexed Ion Beam Imaging: Insights into Pathobiology. Annual Review of Pathology: Mechanisms of Disease, 2022, 17, 403-423.	9.6	16
332	Post-stroke dizziness of visual-vestibular cortices origin. Journal of Neuroscience and Neurological Disorders, 2020, 4, 075-078.	0.1	0
333	Targeting gut dysbiosis as a means to enhance recovery from surgical brain injury. , 2021, 12, 210.		0
334	Myotubularin-related protein protects against neuronal degeneration mediated by oxidative stress or infection. Journal of Biological Chemistry, 2022, , 101614.	1.6	4
335	The amyloid-β1–42-oligomer interacting peptide D-AIP possesses favorable biostability, pharmacokinetics, and brain region distribution. Journal of Biological Chemistry, 2022, 298, 101483.	1.6	1
336	Establishing a competing endogenous RNA (ceRNA)-immunoregulatory network associated with the progression of Alzheimer's disease. Annals of Translational Medicine, 2022, 10, 65-65.	0.7	5
337	Severe Gestational Low-Protein Intake Impacts Hippocampal Cellularity, Tau, and Amyloid-β Levels, and Memory Performance in Male Adult Offspring: An Alzheimer-Simile Disease Model?. Journal of Alzheimer's Disease Reports, 2022, 6, 17-30.	1.2	5
338	Impact of intestinal disorders on central and peripheral nervous system diseases. Neurobiology of Disease, 2022, 165, 105627.	2.1	17
339	Activation of the sigma-1 receptor attenuates blood–brain barrier disruption by inhibiting amyloid deposition in Alzheimer's disease mice. Neuroscience Letters, 2022, 774, 136528.	1.0	8
340	Metformin in Alzheimer's disease: An overview of potential mechanisms, preclinical and clinical findings. Biochemical Pharmacology, 2022, 197, 114945.	2.0	19
342	Peripheral Neutrophils-Derived Matrix Metallopeptidase-9 Induces Postoperative Cognitive Dysfunction in Aged Mice. Frontiers in Aging Neuroscience, 2022, 14, 683295.	1.7	4
343	A review of glucoregulatory hormones potentially applicable to the treatment of Alzheimer's disease: mechanism and brain delivery. Journal of Pharmaceutical Investigation, 2022, 52, 195.	2.7	1
344	Potential Mechanisms Underlying Resistance to Dementia in Non-Demented Individuals with Alzheimer's Disease Neuropathology. Journal of Alzheimer's Disease, 2022, 87, 51-81.	1.2	14
345	Sex differences in the blood–brain barrier: Implications for mental health. Frontiers in Neuroendocrinology, 2022, 65, 100989.	2.5	31
346	Induction of Heme Oxygenase-1 by 15d-Prostaglandin J2 Mediated via a ROS-Dependent Sp1 and AP-1 Cascade Suppresses Lipopolysaccharide-Triggered Interleukin-6 Expression in Mouse Brain Microvascular Endothelial Cells. Antioxidants, 2022, 11, 719.	2.2	4
347	New Horizons—Cognitive Dysfunction Associated With Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 929-942.	1.8	5
348	The Role of Heparin and Glycocalyx in Blood–Brain Barrier Dysfunction. Frontiers in Immunology, 2021, 12, 754141.	2.2	12

#	Article	IF	CITATIONS
355	Claudin-5 relieves cognitive decline in Alzheimer's disease mice through suppression of inhibitory GABAergic neurotransmission. Aging, 2022, 14, 3554-3568.	1.4	7
356	Establishing a competing endogenous RNA (ceRNA)-immunoregulatory network associated with the progression of Alzheimer's disease Annals of Translational Medicine, 2022, 10, 65.	0.7	0
357	Pathophysiological Mechanisms Underlying Idiopathic Normal Pressure Hydrocephalus: A Review of Recent Insights. Frontiers in Aging Neuroscience, 2022, 14, 866313.	1.7	9
358	Why electrohypersensitivity and related symptoms are caused by non-ionizing man-made electromagnetic fields: An overview and medical assessment. Environmental Research, 2022, 212, 113374.	3.7	10
359	A multiâ€hit hypothesis for an <i>APOE4</i> â€dependent pathophysiological state. European Journal of Neuroscience, 2022, 56, 5476-5515.	1.2	8
360	A novel strategy for delivering <scp>N</scp> iemannâ€ <scp>P</scp> ick type <scp>C2</scp> proteins across the blood–brain barrier using the brain endothelialâ€specific <scp>AAVâ€BR1</scp> virus. Journal of Neurochemistry, 2023, 164, 6-28.	2.1	4
361	Does Neuroinflammation Underlie the Cognitive Changes Observed With Dietary Interventions?. Frontiers in Neuroscience, 2022, 16, .	1.4	2
362	Blood-brain barrier permeability following conventional photon radiotherapy – A systematic review and meta-analysis of clinical and preclinical studies. Clinical and Translational Radiation Oncology, 2022, 35, 44-55.	0.9	12
363	Altered protein expression of membrane transporters in isolated cerebral microvessels and brain cortex of a rat Alzheimer's disease model. Neurobiology of Disease, 2022, 169, 105741.	2.1	14
364	Astrocytic Calcium and cAMP in Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 2022, 16, .	1.8	11
365	Shared pathophysiology: Understanding stroke and Alzheimer's disease. Clinical Neurology and Neurosurgery, 2022, 218, 107306.	0.6	9
367	Blood–brain barrier permeability in response to caffeine challenge. Magnetic Resonance in Medicine, 2022, 88, 2259-2266.	1.9	8
368	Fiscalin Derivatives as Potential Neuroprotective Agents. Pharmaceutics, 2022, 14, 1456.	2.0	3
369	Icariin: A Potential Neuroprotective Agent in Alzheimer's Disease and Parkinson's Disease. Neurochemical Research, 2022, 47, 2954-2962.	1.6	14
370	Activation of Wnt∫î²-catenin pathway mitigates blood–brain barrier dysfunction in Alzheimer's disease. Brain, 2022, 145, 4474-4488.	3.7	41
372	Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer's disease: Current trends and future perspectives. Frontiers in Neuroscience, 0, 16, .	1.4	16
373	Perspectives on the Molecular Mediators of Oxidative Stress and Antioxidant Strategies in the Context of Neuroprotection and Neurolongevity: An Extensive Review. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-20.	1.9	11
374	Current progress of cerebral organoids for modeling Alzheimer's disease origins and mechanisms. Bioengineering and Translational Medicine, 2023, 8, .	3.9	4

#	ARTICLE	IF	CITATIONS
375	The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Translational Neurodegeneration, 2022, 11, .	3.6	19
376	The effect of chronic stress and its preconditioning on spatial memory as well as hippocampal LRP1 and RAGE expression in a streptozotocin-induced rat model of Alzheimer's disease. Metabolic Brain Disease, 2022, 37, 2699-2710.	1.4	1
377	The Impairment of Blood-Brain Barrier in Alzheimer's Disease: Challenges and Opportunities with Stem Cells. International Journal of Molecular Sciences, 2022, 23, 10136.	1.8	6
378	The role of LRP1 in AÎ ² efflux transport across the blood-brain barrier and cognitive dysfunction in diabetes mellitus. Neurochemistry International, 2022, 160, 105417.	1.9	2
379	Discerning the Role of Blood Brain Barrier Dysfunction in Alzheimer's Disease. , 2022, 13, 1391.		4
381	Advances in the study of the relationship between Alzheimer's disease and the gastrointestinal microbiome. , 2022, 8, 465-475.		2
382	Migraine as an inflammatory disorder with microglial activation as a prime candidate. Neurological Research, 2023, 45, 200-215.	0.6	13
383	An Up-to-Date Look at In Vitro Models of Nose-to-Brain Drug Delivery. , 2022, , 115-139.		Ο
384	Manual acupuncture benignly regulates blood-brain barrier disruption and reduces lipopolysaccharide loading and systemic inflammation, possibly by adjusting the gut microbiota. Frontiers in Aging Neuroscience, 0, 14, .	1.7	13
385	Cognitive Impairments and blood-brain Barrier Damage in a Mouse Model of Chronic Cerebral Hypoperfusion. Neurochemical Research, 0, , .	1.6	4
386	Altered gene expression in human brain microvascular endothelial cells in response to the infection of influenza H1N1 virus. Animal Diseases, 2022, 2, .	0.6	2
387	Walnut-derived peptides ameliorate d-galactose-induced memory impairments in a mouse model via inhibition of MMP-9-mediated blood–brain barrier disruption. Food Research International, 2022, 162, 112029.	2.9	6
388	OSI and Alzheimer's disease. , 2023, , 401-417.		0
389	Early-life stress affects peripheral, blood-brain barrier, and brain responses to immune challenge in juvenile and adult rats. Brain, Behavior, and Immunity, 2023, 108, 1-15.	2.0	5
390	Linking Cerebrovascular Dysfunction to Age-Related Hearing Loss and Alzheimer's Disease—Are Systemic Approaches for Diagnosis and Therapy Required?. Biomolecules, 2022, 12, 1717.	1.8	2
391	Alzheimer's Disease: A Systems View Provides a Unifying Explanation of Its Development. Journal of Alzheimer's Disease, 2023, 91, 43-70.	1.2	7
392	Is Periodontitis Associated with Age-Related Cognitive Impairment? The Systematic Review, Confounders Assessment and Meta-Analysis of Clinical Studies. International Journal of Molecular Sciences, 2022, 23, 15320.	1.8	6
393	Diabetic Retinopathy and Dementia Association, Beyond Diabetes Severity. American Journal of Ophthalmology, 2023, 249, 90-98.	1.7	3

	CITATION	REPORT	
#	Article	IF	CITATIONS
394	Vascular contributions to Alzheimer's disease. Translational Research, 2023, 254, 41-53.	2.2	26
395	Natural Product Co-Metabolism and the Microbiota–Gut–Brain Axis in Age-Related Diseases. Life, 2023, 13, 41.	1.1	2
396	Analysis of Cerebral Small Vessel Changes in AD Model Mice. Biomedicines, 2023, 11, 50.	1.4	6
397	The neuroimmune axis of Alzheimer's disease. Genome Medicine, 2023, 15, .	3.6	59
398	Role of Nanomedicine-Based Therapeutics in the Treatment of CNS Disorders. Molecules, 2023, 28, 1283.	1.7	5
399	Role of microbial dysbiosis in the pathogenesis of Alzheimer's disease. Neuropharmacology, 2023, 229, 109478.	2.0	10
400	Physical activity for cognitive health promotion: An overview of the underlying neurobiological mechanisms. Ageing Research Reviews, 2023, 86, 101868.	5.0	22
401	Drug delivery to the brain – lipid nanoparticles-based approach. Pharmacia, 2023, 70, 113-120.	0.4	5
402	Investigating the chemical profile of Rheum lhasaense and its main ingredient of piceatannol-3′-O-β-D-glucopyranoside on ameliorating cognitive impairment. Biomedicine and Pharmacotherapy, 2023, 160, 114394.	2.5	0
403	Mechanistic and therapeutic role of <scp>NLRP3</scp> inflammasome in the pathogenesis of Alzheimer's disease. Journal of Neurochemistry, 0, , .	2.1	8
404	Metabolic Syndrome as a Risk Factor for Alzheimer's Disease: A Focus on Insulin Resistance. International Journal of Molecular Sciences, 2023, 24, 4354.	1.8	13
406	Disruptions of Circadian Rhythms and Sleep/Wake Cycles in Neurologic Disorders. Healthy Ageing and Longevity, 2023, , 461-480.	0.2	0
407	Antiretroviral drugs efavirenz, dolutegravir and bictegravir dysregulate blood-brain barrier integrity and function. Frontiers in Pharmacology, 0, 14, .	1.6	1
408	Brain iron acquisition: An overview of homeostatic regulation and disease dysregulation. Journal of Neurochemistry, 2023, 165, 625-642.	2.1	7
409	Recent Development in the Understanding of Molecular and Cellular Mechanisms Underlying the Etiopathogenesis of Alzheimer's Disease. International Journal of Molecular Sciences, 2023, 24, 7258.	1.8	7
412	Phytosome for Targeted Delivery of Natural Compounds: Improving Efficacy, Bioavailability, and Delivery across BBB for the Treatment of Alzheimer's Disease. Frontiers in Clinical Drug Research CNS and Neurological Disorders, 2023, , 262-282.	0.1	0
416	Neurobiological Mechanisms of Cognitive Decline Correlated with Brain Aging. Advances in Experimental Medicine and Biology, 2023, , 127-146.	0.8	0
438	Cellular junction dynamics and Alzheimer's disease: a comprehensive review. Molecular Biology Reports, 2024, 51, .	1.0	Ο

ARTICLE

IF CITATIONS