Glycerol: Production, consumption, prices, characteriza combustion

Renewable and Sustainable Energy Reviews 27, 475-493

DOI: 10.1016/j.rser.2013.06.017

Citation Report

#	Article	IF	CITATIONS
1	Identification of chemicals resulted in selective glycerol conversion as sustainable fuel on Pd-based anode nanocatalysts. RSC Advances, 2014, 4, 64476-64483.	1.7	22
2	Alkaline and Alkaline-Earth Ceramic Oxides for CO2 Capture, Separation and Subsequent Catalytic Chemical Conversion., 0,,.		9
3	Elevated production of 3-hydroxypropionic acid by metabolic engineering of the glycerol metabolism in Escherichia coli. Metabolic Engineering, 2014, 23, 116-122.	3.6	66
4	Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures. Water Research, 2014, 58, 9-20.	5.3	91
5	Trends in Biodiesel Production: Present Status and Future Directions. , 2014, , 281-302.		6
6	Ecological efficiency in glycerol combustion. Applied Thermal Engineering, 2014, 63, 97-104.	3.0	34
7	Phase Behavior and Fuel Properties of Bio-Oil/Glycerol/Methanol Blends. Energy & Ene	2.5	30
8	A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters. Energy Conversion and Management, 2014, 88, 484-497.	4.4	151
9	Assessing anaerobic co-digestion of pig manure with agroindustrial wastes: The link between environmental impacts and operational parameters. Science of the Total Environment, 2014, 497-498, 475-483.	3.9	46
10	A study of the preparation conditions of aluminum oxide on its catalytic activity and stability in vapor-phase dehydration of glycerol to acrolein. Russian Journal of Applied Chemistry, 2014, 87, 754-760.	0.1	O
11	Poly(3-Hydroxypropionate): a Promising Alternative to Fossil Fuel-Based Materials. Applied and Environmental Microbiology, 2014, 80, 6574-6582.	1.4	64
12	Glycerol for renewable acrolein production by catalytic dehydration. Renewable and Sustainable Energy Reviews, 2014, 40, 28-59.	8.2	129
13	Green chemistry, sustainable agriculture and processing systems: a Brazilian overview. Chemical and Biological Technologies in Agriculture, 2014, 1 , .	1.9	31
14	A renewable chemistry linked to the Brazilian biofuel production. Chemical and Biological Technologies in Agriculture, 2014, 1 , .	1.9	8
15	Crude glycerol as a raw material for the liquid phase oxidation reaction. Applied Catalysis A: General, 2014, 482, 245-257.	2.2	44
16	Cultivation of oleaginous yeast using aqueous fractions derived from hydrothermal pretreatments of biomass. Bioresource Technology, 2014, 170, 413-420.	4.8	11
17	Production of propanal from 1,2-propanediol over silica-supported WO 3 catalyst. Applied Catalysis A: General, 2014, 487, 234-241.	2.2	25
18	Influence of the operon structure on poly(3-hydroxypropionate) synthesis in Shimwellia blattae. Applied Microbiology and Biotechnology, 2014, 98, 7409-7422.	1.7	8

#	Article	IF	CITATIONS
19	Formulation and Combustion of Glycerol–Diesel Fuel Emulsions. Energy & E	2.5	35
20	Glycerol Etherification with TBA: High Yield to Poly-Ethers Using a Membrane Assisted Batch Reactor. Environmental Science & Environmental Science & E	4.6	36
21	Clean combustion of different liquid fuels using a novel injector. Experimental Thermal and Fluid Science, 2014, 57, 275-284.	1.5	47
22	High Speed Visualization and PIV Measurements in the Near Field of Spray Produced by Flow-Blurring Atomization. , 2014, , .		8
23	Biodegradation of deproteinized potato wastewater and glycerol during cultivation of Rhodotorula glutinis yeast. Electronic Journal of Biotechnology, 2015, 18, 428-432.	1.2	10
24	Advancement in heterogeneous base catalyzed technology: An efficient production of biodiesel fuels. Journal of Renewable and Sustainable Energy, 2015, 7, .	0.8	40
25	Biodiesel production from waste salmon oil: kinetic modeling, properties of methyl esters, and economic feasibility of a low capacity plant. Biofuels, Bioproducts and Biorefining, 2015, 9, 516-528.	1.9	11
26	Early sustainability assessment for potential configurations of integrated biorefineries. Screening of bioâ€based derivatives from platform chemicals. Biofuels, Bioproducts and Biorefining, 2015, 9, 722-748.	1.9	19
27	Catalytic Synthesis of Glycerol tert-Butyl Ethers as Fuel Additives from the Biodiesel By-Product Glycerol. Journal of Chemistry, 2015, 2015, 1-6.	0.9	10
28	Glycerine associated molecules with herbicide for controlling Adenocalymma peregrinum in cultivated pastures. African Journal of Biotechnology, 2015, 14, 3075-3081.	0.3	O
29	A new vehicle for herbicide application using crude glycerin, a by-product of biodiesel production. African Journal of Biotechnology, 2015, 14, 1832-1837.	0.3	1
30	Optimization of agroindustrial medium for the production of carotenoids by wild yeast Sporidiobolus pararoseus. African Journal of Microbiology Research, 2015, 9, 209-219.	0.4	15
31	Thermodynamically Leveraged Tandem Catalysis for Ester RC(O)O–R′ Bond Hydrogenolysis. Scope and Mechanism. ACS Catalysis, 2015, 5, 3675-3679.	5.5	26
32	Comparative study of the hydrogenolysis of glycerol over Ru-based catalysts supported on activated carbon, graphite, carbon nanotubes and KL-zeolite. Chemical Engineering Journal, 2015, 262, 326-333.	6.6	59
33	Kinetics of the production of glycerol carbonate by transesterification of glycerol with dimethyl and ethylene carbonate using potassium methoxide, a highly active catalyst. Fuel Processing Technology, 2015, 138, 243-251.	3.7	66
34	Exergetic evaluation of incorporation of hydrogen production in a biodiesel plant. International Journal of Hydrogen Energy, 2015, 40, 8797-8805.	3.8	11
35	Vegetable Oil Biorefineries. , 2015, , 247-270.		2
36	Batch reactor coupled with water permselective membrane: Study of glycerol etherification reaction with butanol. Chemical Engineering Journal, 2015, 282, 187-193.	6.6	29

#	ARTICLE	IF	Citations
37	Evaluation of using alternative routes of glycerin obtained in the biodiesel production: a review. IngenierÃa Y Desarrollo, 2015, 33, 126-148.	0.0	3
38	Glycerol as an Efficient Medium for the Petasis Borono–Mannich Reaction. ChemistryOpen, 2015, 4, 39-46.	0.9	31
39	Rhamnolipid based glycerol-in-diesel microemulsion fuel: Formation and characterization. Fuel, 2015, 147, 76-81.	3.4	57
40	Comparison between Vapor Generation Methods Coupled to Atomic Absorption Spectrometry for Determination of Hg in Glycerin Samples. Energy & Samp; Fuels, 2015, 29, 1635-1640.	2.5	9
41	Green solvents for green technologies. Journal of Chemical Technology and Biotechnology, 2015, 90, 1631-1639.	1.6	306
42	Simultaneously Converting Carbonate/Bicarbonate and Biomass to Value-added Carboxylic Acid Salts by Aqueous-phase Hydrogen Transfer. ACS Sustainable Chemistry and Engineering, 2015, 3, 195-203.	3.2	26
43	Green Solvents for Eco-friendly Synthesis of Bioactive Heterocyclic Compounds., 2015,, 101-139.		8
44	Cell immobilization for microbial production of 1,3-propanediol. Critical Reviews in Biotechnology, 2016, 36, 1-13.	5.1	32
45	Multielement Crystalline and Pseudocrystalline Oxides as Efficient Catalysts for the Direct Transformation of Glycerol into Acrylic Acid. ChemSusChem, 2015, 8, 398-406.	3.6	44
46	Environmental, economic and social impact of aviation biofuel production in Brazil. New Biotechnology, 2015, 32, 263-271.	2.4	26
47	Purification of glycerol from biodiesel production by sequential extraction monitored by 1H NMR. Fuel Processing Technology, 2015, 132, 99-104.	3.7	34
48	Investigation of Glycerol Atomization in the Near-Field of a Flow-Blurring Injector using Time-Resolved PIV and High-Speed Visualization. Flow, Turbulence and Combustion, 2015, 94, 323-338.	1.4	37
49	Forward osmosis with waste glycerol for concentrating microalgae slurries. Algal Research, 2015, 8, 168-173.	2.4	25
50	Cu/ZnO-USY: an efficient bifunctional catalyst for the hydrogenolysis of glycerol. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115, 377-388.	0.8	9
51	Quality of residues of the biodiesel chain in the energy field. Industrial Crops and Products, 2015, 75, 91-97.	2.5	14
52	Thermodynamic study of potassium chloride in glycerol–water mixed solvents using electromotive force measurements at (298.2, 303.2 and 310.2)K. Journal of Electroanalytical Chemistry, 2015, 754, 109-117.	1.9	1
53	Waste glycerol from biodiesel synthesis as a component in deep eutectic solvents. Fuel Processing Technology, 2015, 138, 419-423.	3.7	30
54	Alternative fuel additives from glycerol by etherification with isobutene: Structure–performance relationships in solid catalysts. Fuel Processing Technology, 2015, 138, 780-804.	3.7	48

#	Article	IF	CITATIONS
55	New efficient and recyclable catalysts for the synthesis of di- and tri-glycerol carbonates. RSC Advances, 2015, 5, 64433-64443.	1.7	8
56	Life Cycle Assessment of New Oxy-Fuels from Biodiesel-Derived Glycerol. Energies, 2015, 8, 1628-1643.	1.6	19
57	Supramolecular interactions of carbon nanotubes with biosourced polyurethanes from 2-(2,5-dimethyl-1H-pyrrol-1-yl)-1,3-propanediol. Polymer, 2015, 63, 62-70.	1.8	17
58	A thermodynamic analysis of hydrogen production via aqueous phase reforming of glycerol. Fuel Processing Technology, 2015, 134, 107-115.	3.7	32
59	Strain and process development for poly(3HB-co-3HP) fermentation by engineered Shimwellia blattae from glycerol. AMB Express, 2015, 5, 18.	1.4	9
60	Spray features in the near field of a flow-blurring injector investigated by high-speed visualization and time-resolved PIV. Experiments in Fluids, 2015, 56, 1.	1.1	32
61	Influence of the niobium supported species on the catalytic dehydration of glycerol to acrolein. Applied Catalysis B: Environmental, 2015, 179, 139-149.	10.8	60
62	Temperature-treated polyaniline layers as support for Pd catalysts: electrooxidation of glycerol in alkaline medium. Journal of Solid State Electrochemistry, 2015, 19, 2811-2818.	1.2	7
63	Properties of fatty acid glycerol formal ester (FAGE) for use as a component in blends for diesel engines. Biomass and Bioenergy, 2015, 76, 130-140.	2.9	27
64	Gas-phase dehydration of glycerol over commercial Pt/\hat{l}^3 -Al2O3 catalysts. Chinese Journal of Chemical Engineering, 2015, 23, 1138-1146.	1.7	12
65	Photocatalytic-Fenton Degradation of Glycerol Solution over Visible Light-Responsive CuFe2O4. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	19
66	Synergetic hydrothermal co-liquefaction of crude glycerol and aspen wood. Energy Conversion and Management, 2015, 106, 886-891.	4.4	47
67	Aerobic biotransformation of 3-methylindole to ring cleavage products by Cupriavidus sp. strain KK10. Biodegradation, 2015, 26, 359-373.	1.5	20
68	Catalytic esterification of bioglycerol to value-added products. Reviews in Chemical Engineering, 2015, 31, .	2.3	29
69	Improved utilization of crude glycerol from biodiesel industries: Synthesis and characterization of sustainable biobased polyesters. Industrial Crops and Products, 2015, 78, 141-147.	2.5	83
70	Sustainability metrics for a fossil- and renewable-based route for 1,2-propanediol production: A comparison. Catalysis Today, 2015, 239, 31-37.	2.2	51
71	Reactivity of Alcohols with Three-Carbon Atom Chain on Pt in Acidic Medium. Electrocatalysis, 2015, 6, 7-19.	1.5	14
72	Progress, prospect and challenges in glycerol purification process: A review. Renewable and Sustainable Energy Reviews, 2015, 42, 1164-1173.	8.2	201

#	ARTICLE	IF	CITATIONS
73	Preparation of bio-based surfactants from glycerol and dodecanol by direct etherification. Green Chemistry, 2015, 17, 882-892.	4.6	27
74	Life cycle assessment: heterotrophic cultivation of thraustochytrids for biodiesel production. Journal of Applied Phycology, 2015, 27, 639-647.	1.5	38
75	Synthesis and Characterization of Polyurethane Rigid Foams from Soybean Oil-Based Polyol and Glycerol. Journal of Renewable Materials, 2016, 4, 275-284.	1.1	4
76	A Review of Process-Design Challenges for Industrial Fermentation of Butanol from Crude Glycerol by Non-Biphasic Clostridium pasteurianum. Fermentation, 2016, 2, 13.	1.4	35
77	Synthesis of the Fatty Esters of Solketal and Glycerol-Formal: Biobased Specialty Chemicals. Molecules, 2016, 21, 170.	1.7	12
78	Construction and optimization of <i>trans</i> àê€4â€hydroxyâ€Lâ€proline production recombinant <i>E. coli</i> strain taking the glycerol as carbon source. Journal of Chemical Technology and Biotechnology, 2016, 91, 2389-2398.	1.6	12
79	Pd-modified PEDOT layers obtained through electroless metal depositionâ€"electrooxidation of glycerol. Journal of Solid State Electrochemistry, 2016, 20, 3015-3023.	1.2	8
80	Selective hydrogenolysis of glycerol to 1,2â€propanediol over highly active copper–magnesia catalysts: reaction parameter, catalyst stability and mechanism study. Journal of Chemical Technology and Biotechnology, 2016, 91, 2063-2075.	1.6	41
81	Superstructure-based synthesis and optimisation of an oil palm eco-industrial town: a case study in Iskandar Malaysia. Clean Technologies and Environmental Policy, 2016, 18, 2119-2129.	2.1	6
82	Herstellung von Glycerinâ€×i>tertà€butylethern – Entwicklung vom Labor bis zur Miniplant. Chemie-Ingenieur-Technik, 2016, 88, 1082-1094.	0.4	3
83	Method for studying high temperature aqueous electrochemical systems: Methanol and glycerol oxidation. Electrochimica Acta, 2016, 222, 1792-1799.	2.6	12
84	Production of glycerol carbonate from glycerol with aid of ionic liquid as catalyst. Chemical Engineering Journal, 2016, 297, 128-138.	6.6	72
85	Phenomenological evaluation of industrial reformers for glycerol steam reforming. International Journal of Hydrogen Energy, 2016, 41, 13811-13819.	3.8	13
86	Experimental and modelling approach to the catalytic coproduction of glycerol carbonate and ethylene glycol as a means to valorise glycerol. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63, 89-100.	2.7	22
87	Glycerol hydrogenolysis into useful C3 chemicals. Applied Catalysis B: Environmental, 2016, 193, 75-92.	10.8	243
88	Consolidating biofuel platforms through the fermentative bioconversion of crude glycerol to butanol. World Journal of Microbiology and Biotechnology, 2016, 32, 103.	1.7	17
89	A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 2016, 41, 21310-21344.	3.8	320
90	Conversion of Glycerol to Hydrocarbon Fuels via Bifunctional Catalysts. ACS Energy Letters, 2016, 1, 963-968.	8.8	41

#	Article	IF	CITATIONS
91	Enhanced microwave catalytic-esterification of industrial grade glycerol over BrÃ,nsted-based methane sulfonic acid in production of biolubricant. Chemical Engineering Research and Design, 2016, 104, 323-333.	2.7	15
92	Isocyanate-Free Route to Poly(carbohydrate–urethane) Thermosets and 100% Bio-Based Coatings Derived from Glycerol Feedstock. Macromolecules, 2016, 49, 7268-7276.	2.2	52
93	Plasmonic Au/TiO ₂ nanostructures for glycerol oxidation. Catalysis Science and Technology, 2016, 6, 7307-7315.	2.1	50
94	Design and economic analysis of 1,2-propanediol derived from Crude glycerol. Computer Aided Chemical Engineering, 2016, , 1323-1328.	0.3	0
96	Etherification of glycerol with tert-butyl alcohol over sulfonated hybrid silicas. Applied Catalysis A: General, 2016, 526, 155-163.	2.2	37
97	Technology of efficient continuous erythritol production from glycerol. Journal of Cleaner Production, 2016, 139, 905-913.	4.6	33
98	Potential applications of crude glycerol in polymer technology–Current state and perspectives. Renewable and Sustainable Energy Reviews, 2016, 66, 449-475.	8.2	109
99	Measuring the Density, Viscosity, Surface Tension, and Refractive Index of Binary Mixtures of Cetane with Solketal, a Novel Fuel Additive. Energy &	2.5	17
101	A review on glycerol valorization to acrolein over solid acid catalysts. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 29-44.	2.7	59
102	Thermal degradation of ethanolic biodiesel: Physicochemical and thermal properties evaluation. Energy, 2016, 114, 1093-1099.	4.5	23
103	Environmental benefits of co-combustion of light fuel oil with waste glycerol. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 2510-2516.	1.2	7
104	Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol. Biotechnology for Biofuels, 2016, 9, 205.	6.2	97
105	Characteristics of post-impregnated SBA-15 with 12-Tungstophosphoric acid and its correlation with catalytic activity in selective esterification of glycerol to monolaurate. IOP Conference Series: Earth and Environmental Science, 2016, 36, 012037.	0.2	0
106	A new green process for biodiesel production from waste oils via catalytic distillation using a solid acid catalyst $\hat{a} \in \text{``Modeling, economic and environmental analysis. Green Energy and Environment, 2016, 1, 62-74.}$	4.7	51
107	MRE: a web tool to suggest foreign enzymes for the biosynthesis pathway design with competing endogenous reactions in mind. Nucleic Acids Research, 2016, 44, W217-W225.	6.5	45
108	Electrooxidation of crude glycerol as waste from biodiesel in a nanofluidic fuel cell using Cu@Pd/C and Cu@Pt/C. Fuel, 2016, 183, 195-205.	3.4	44
109	Industrial trial of high-quality all green sizes composed of soy-derived protein and glycerol. Journal of Cleaner Production, 2016, 135, 1-8.	4.6	27
110	Purification of crude glycerol using a sequential physico-chemical treatment, membrane filtration, and activated charcoal adsorption. Separation and Purification Technology, 2016, 168, 101-106.	3.9	48

#	Article	IF	Citations
111	Conversion of crude and pure glycerol into derivatives: A feasibility evaluation. Renewable and Sustainable Energy Reviews, 2016, 63, 533-555.	8.2	144
112	Crude bio-glycerol aqueous phase reforming and hydrogenolysis over commercial SiO2Al2O3 nickel catalyst. Renewable Energy, 2016, 97, 373-379.	4.3	36
113	A framework for techno-economic & amp; environmental sustainability analysis by risk assessment for conceptual process evaluation. Biochemical Engineering Journal, 2016, 116, 146-156.	1.8	34
114	A study of glycerol hydrogenolysis over Ru–Cu/Al2O3 and Ru–Cu/ZrO2 catalysts. Journal of Molecular Catalysis A, 2016, 415, 27-36.	4.8	50
115	Hydrothermal conversion of glycerol to lactic acid catalyzed by Cu/hydroxyapatite, Cu/MgO, and Cu/ZrO2 and reaction kinetics. Chemical Engineering Journal, 2016, 288, 332-343.	6.6	88
116	Mono- and tri-ester hydrogenolysis using tandem catalysis. Scope and mechanism. Energy and Environmental Science, 2016, 9, 550-564.	15.6	36
117	Alumina supported bimetallic Pt–Fe catalysts applied to glycerol hydrogenolysis and aqueous phase reforming. Applied Catalysis B: Environmental, 2016, 185, 77-87.	10.8	86
118	Combustion behavior of low-rank coal impregnated with glycerol. Biomass and Bioenergy, 2016, 87, 122-130.	2.9	30
119	Oxidative Dehydration of Glycerol to Acrylic Acid over Vanadium-Substituted Cesium Salts of Keggin-Type Heteropolyacids. ACS Catalysis, 2016, 6, 2785-2791.	5.5	54
120	The expression of the <i>Cuphea palustris</i> thioesterase CpFatB2 in <i>Yarrowia lipolytica</i> triggers oleic acid accumulation. Biotechnology Progress, 2016, 32, 26-35.	1.3	8
121	Consecutive lipase immobilization and glycerol carbonate production under continuous-flow conditions. Catalysis Science and Technology, 2016, 6, 4743-4748.	2.1	31
122	A Prolific Catalyst for Selective Conversion of Neat Glycerol to Lactic Acid. ACS Catalysis, 2016, 6, 2014-2017.	5.5	82
123	Process design and optimization for etherification of glycerol with isobutene. Chemical Engineering Science, 2016, 144, 326-335.	1.9	16
124	Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol. Environmental Science and Pollution Research, 2016, 23, 10114-10123.	2.7	36
125	Development and validation of a HILIC-UPLC-ELSD method based on optimized chromatographic and detection parameters for the quantification of polyols from bioconversion processes. Analytical Methods, 2016, 8, 2048-2057.	1.3	3
126	Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass. Advances in Biochemical Engineering/Biotechnology, 2016, 156, 323-361.	0.6	30
127	The potential of glycerol as a value-added commodity. Chemical Engineering Journal, 2016, 295, 119-130.	6.6	243
128	Cooperative catalysis for the direct hydrodeoxygenation of vegetable oils into diesel-range alkanes over Pd/NbOPO ₄ . Chemical Communications, 2016, 52, 5160-5163.	2.2	43

#	Article	IF	CITATIONS
129	Continuous production of lactic acid from glycerol in alkaline medium using supported copper catalysts. Fuel Processing Technology, 2016, 144, 170-180.	3.7	52
130	Highly Efficient Process for the Conversion of Glycerol to Acrylic Acid via Gas Phase Catalytic Oxidation of an Allyl Alcohol Intermediate. ACS Catalysis, 2016, 6, 143-150.	5.5	65
131	Aqueous phase reforming (APR) of glycerol over platinum supported on Al 2 O 3 catalyst. Renewable Energy, 2016, 85, 1116-1126.	4.3	52
132	Hydrogenolysis of glycerol to propylene glycol by in situ produced hydrogen from aqueous phase reforming of glycerol over SiO2–Al2O3 supported nickel catalyst. Fuel Processing Technology, 2016, 142, 135-146.	3.7	60
133	Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. Green Chemistry, 2016, 18, 342-359.	4.6	254
134	Co-valorization of Crude Glycerol Waste Streams with Conventional and/or Renewable Fuels for Power Generation and Industrial Symbiosis Perspectives. Waste and Biomass Valorization, 2016, 7, 135-150.	1.8	33
135	Synthesis of glycerol free-fatty acid methyl esters from Jatropha oil over Ca–La mixed-oxide catalyst. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58, 181-188.	2.7	28
136	Alcoxycle: A novel route for glycerol reform into H 2 and CO x in separate stages. Catalysis Today, 2017, 289, 127-132.	2.2	4
137	Towards improved butanol production through targeted genetic modification of Clostridium pasteurianum. Metabolic Engineering, 2017, 40, 124-137.	3.6	61
138	Utilization of the residual glycerol from biodiesel production for renewable energy generation. Renewable and Sustainable Energy Reviews, 2017, 71, 63-76.	8.2	144
139	Use of curcumin and glycerol as an effective photoinitiating system in the polymerization of urethane dimethacrylate. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1671-1682.	2.0	13
140	Glycerol electro-oxidation in alkaline media using Pt and Pd catalysts electrodeposited on three-dimensional porous carbon electrodes. New Journal of Chemistry, 2017, 41, 1854-1863.	1.4	46
141	Systematic development of a two-stage fed-batch process for lipid accumulation in Rhodotorula glutinis. Journal of Biotechnology, 2017, 246, 4-15.	1.9	25
142	A review on recent developments and progress in the kinetics and deactivation of catalytic acetylation of glycerol—A byproduct of biodiesel. Renewable and Sustainable Energy Reviews, 2017, 74, 387-401.	8.2	84
143	Unexpected Activity for Glycerol Electroâ€Oxidation of Nanostructured Pdâ^'Pt and Pdâ^'Ptâ^'Ru Catalysts. ChemElectroChem, 2017, 4, 1314-1319.	1.7	20
144	Non-catalytic conversion of glycerol to syngas at intermediate temperatures: Numerical methods with detailed chemistry. Fuel, 2017, 195, 190-200.	3.4	8
145	Gas-phase dehydration of glycerol over hierarchical silicoaluminophosphate SAPO-40. Catalysis Communications, 2017, 95, 16-20.	1.6	18
146	The Role of Low-Coordinated Sites on the Adsorption of Glycerol on Defected Pt _{<i>n</i>} /Pt(111) Substrates: A Density Functional Investigation within the D3 van der Waals Correction. Journal of Physical Chemistry C, 2017, 121, 3445-3454.	1.5	14

#	Article	IF	CITATIONS
147	Green catalytic conversion of hydrogenated rosin to glycerol esters using subcritical CO 2 in water and the associated kinetics. Journal of Supercritical Fluids, 2017, 125, 12-21.	1.6	17
148	A Sustainable Bioeconomy. , 2017, , .		31
149	Using an environmentally benign and degradable elastomer in soft robotics. International Journal of Intelligent Robotics and Applications, 2017, 1, 124-142.	1.6	24
150	Biochemicals., 2017,, 141-183.		O
151	Microwave-assisted etherification of glycerol with tert-butyl alcohol over amorphous organosilica-aluminum phosphates. Applied Catalysis B: Environmental, 2017, 213, 42-52.	10.8	24
152	Continuous niobium phosphate catalysed Skraup reaction for quinoline synthesis from solketal. Green Chemistry, 2017, 19, 2439-2447.	4.6	34
153	Synthesis of glycerol carbonate from biodiesel by-product glycerol over calcined dolomite. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70, 179-187.	2.7	65
154	Biodegradable sizing agents from soy protein via controlled hydrolysis and dis-entanglement for remediation of textile effluents. Journal of Environmental Management, 2017, 188, 26-31.	3.8	8
155	Stability of emulsion fuels prepared from fast pyrolysis bio-oil and glycerol. Fuel, 2017, 206, 230-238.	3.4	30
156	Ecotoxicity and QSAR studies of glycerol ethers in Daphnia magna. Chemosphere, 2017, 183, 277-285.	4.2	36
157	Biotechnology of Glycerol Production and Conversion in Yeasts. , 2017, , 117-148.		4
158	Hydroxyacetone: A Glycerolâ€Based Platform for Electrocatalytic Hydrogenation and Hydrodeoxygenation Processes. ChemSusChem, 2017, 10, 3105-3110.	3.6	23
159	Aluminum doped mesoporous silica SBA-15 for glycerol dehydration to value-added chemicals. Journal of Sol-Gel Science and Technology, 2017, 83, 342-354.	1.1	9
160	Microbial selection strategies for polyhydroxyalkanoates production from crude glycerol: Effect of OLR and cycle length. New Biotechnology, 2017, 39, 22-28.	2.4	43
161	High-Value Propylene Glycol from Low-Value Biodiesel Glycerol: A Techno-Economic and Environmental Assessment under Uncertainty. ACS Sustainable Chemistry and Engineering, 2017, 5, 5723-5732.	3.2	52
162	Evaluation of straw with absorbed glycerol thermal degradation during pyrolysis and combustion by TG-FTIR and TG-GC/MS. Fuel, 2017, 204, 227-235.	3.4	34
163	Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review. Renewable and Sustainable Energy Reviews, 2017, 79, 1400-1413.	8.2	115
164	Biotechnology of Yeasts and Filamentous Fungi. , 2017, , .		8

#	ARTICLE	IF	CITATIONS
165	A review of progress in (bio)catalytic routes from/to renewable succinic acid. Biofuels, Bioproducts and Biorefining, 2017, 11, 908-931.	1.9	66
166	An Experimental Investigation into the Effect of Soap on Ignition and Combustion Characteristics of Single Droplets of Glycerol. Combustion Science and Technology, 2017, 189, 1540-1550.	1.2	1
167	Insight into the gasâ€phase glycerol dehydration on transition metal modified aluminium phosphates and zeolites. Journal of Chemical Technology and Biotechnology, 2017, 92, 2661-2672.	1.6	9
168	Spray breakup and structure of spray flames for low-volatility wet fuels. Combustion and Flame, 2017, 180, 102-109.	2.8	9
169	Investigation of the promoting effect of Mn on a Pt/C catalyst for the steam and aqueous phase reforming of glycerol. Journal of Catalysis, 2017, 349, 75-83.	3.1	40
170	Biodegradable poly (I-lactic acid) (PLLA) and PLLA-3-arm blend membranes: The use of PLLA-3-arm as a plasticizer. Polymer Testing, 2017, 60, 84-93.	2.3	33
171	Conversion of glycerol to polyglycerol over waste duck-bones as a catalyst in solvent free etherification process. IOP Conference Series: Materials Science and Engineering, 2017, 226, 012073.	0.3	6
172	Green Approaches To Engineer Tough Biobased Epoxies: A Review. ACS Sustainable Chemistry and Engineering, 2017, 5, 9528-9541.	3.2	100
173	Zn-Modified CuCr ₂ O ₄ as Stable and Active Catalyst for the Synthesis of 2,6-Dimethylpyrazine: Valorization of Crude Glycerol Obtained from a Biodiesel Plant. Industrial & Engineering Chemistry Research, 2017, 56, 11664-11671.	1.8	4
174	Synthesis and characterization of polyurethane foams derived of fully renewable polyester polyols from sorbitol. European Polymer Journal, 2017, 97, 319-327.	2.6	34
175	Green Synthesis of Double Longâ€Chain Diglycerol Diacetal and Its Application as Lubricating Base Oil. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 1301-1311.	0.8	3
176	Influence of Acidic Property on Catalytic Activity and Selectivity in Dehydration of Glycerol. ChemistrySelect, 2017, 2, 5524-5531.	0.7	9
177	Current Prospects on Production of Microbial Lipid and Other Value-Added Products Using Crude Glycerol Obtained from Biodiesel Industries. Bioenergy Research, 2017, 10, 1117-1137.	2.2	22
178	An extended techno-economic analysis of the utilization of glycerol as an alternative feedstock for methanol production. Clean Technologies and Environmental Policy, 2017, 19, 1855-1865.	2.1	2
179	Glycerol hydrogenolysis over a Pt–Ni bimetallic catalyst with hydrogen generated in situ. RSC Advances, 2017, 7, 38251-38256.	1.7	13
180	Synthesis of 3-alkoxypropan-1,2-diols from glycidol: experimental and theoretical studies for the optimization of the synthesis of glycerol derived solvents. Green Chemistry, 2017, 19, 4176-4185.	4.6	24
181	Effects of partial replacement of maize in the diet with crude glycerin and/or soyabean oil on ruminal fermentation and microbial population in Nellore steers. British Journal of Nutrition, 2017, 118, 651-660.	1.2	15
182	Sustainable Water Reclamation from Different Feed Streams by Forward Osmosis Process Using Deep Eutectic Solvents as Reusable Draw Solution. Industrial & Engineering Chemistry Research, 2017, 56, 14623-14632.	1.8	32

#	Article	IF	CITATIONS
183	Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles. Journal of Catalysis, 2017, 356, 14-21.	3.1	128
184	Development of algae biorefinery concepts for biofuels and bioproducts; a perspective on process-compatible products and their impact on cost-reduction. Energy and Environmental Science, 2017, 10, 1716-1738.	15.6	193
185	Production of lactic acid from glycerol via chemical conversion using solid catalyst: A review. Applied Catalysis A: General, 2017, 543, 234-246.	2.2	103
186	Numerical prediction of the chemical composition of gas products at biomass combustion and co-combustion in a domestic boiler. E3S Web of Conferences, 2017, 14, 02043.	0.2	4
187	Influence of MgO content as an additive on the performance of Ni/MgO SiO2 catalysts for the steam reforming of glycerol. International Journal of Hydrogen Energy, 2017, 42, 16979-16990.	3.8	32
188	Effect of Postâ€Treatment on Structure and Catalytic Activity of CuCoâ€based Materials for Glycerol Oxidation. ChemCatChem, 2017, 9, 610-619.	1.8	14
189	A conceptual framework for the analysis of the effect of institutions on biofuel supply chains. Applied Energy, 2017, 185, 895-915.	5.1	29
190	Cogasification of Crude Glycerol and Black Liquor Blends: Char Morphology and Gasification Kinetics. Energy Technology, 2017, 5, 1272-1281.	1.8	6
191	Renewable syngas production from thermal cracking of glycerol over praseodymium-promoted Ni/Al 2 O 3 catalyst. Applied Thermal Engineering, 2017, 112, 871-880.	3.0	15
192	Potential application of glycerol in the production of plant beneficial microorganisms. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 735-743.	1.4	29
193	Glycerol conversion into a single cell oil by engineered <i>Yarrowia lipolytica</i> . Engineering in Life Sciences, 2017, 17, 325-332.	2.0	21
194	The multiple benefits of glycerol conversion to acrolein and acrylic acid catalyzed by vanadium oxides supported on micro-mesoporous MFI zeolites. Catalysis Today, 2017, 289, 20-28.	2.2	35
195	Glycerol Electrooxidation on Platinum-Tin Electrodeposited Films: Inducing Changes in Surface Composition by Cyclic Voltammetry. Electrocatalysis, 2017, 8, 1-10.	1.5	10
196	Erythritol, glycerol, their blends, and olive oil, as sustainable phase change materials. Energy Procedia, 2017, 135, 249-262.	1.8	14
197	Analysis of the physicochemical properties of post-manufacturing waste derived from production of methyl esters from rapeseed oil. International Agrophysics, 2017, 31, 175-182.	0.7	29
198	Selective Production of Acid-form Sophorolipids from Glycerol by <i>Candida floricola</i> . Journal of Oleo Science, 2017, 66, 1365-1373.	0.6	22
199	Bioglycerol as an Alternative Raw Material for Basic Organic Synthesis. Russian Journal of Applied Chemistry, 2017, 90, 1727-1737.	0.1	5
200	Utilization of Crude Glycerin for Synthetic Gas Production and Potential Electricity Generation. Innovative Energy & Research, 2017, 06, .	0.2	0

#	Article	IF	CITATIONS
201	Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors. Membranes, 2017, 7, 17.	1.4	118
202	Sulfonic Acid Functionalization of Different Zeolites and Their Use as Catalysts in the Microwave-Assisted Etherification of Glycerol with tert-Butyl Alcohol. Molecules, 2017, 22, 2206.	1.7	24
203	Production of Renewable Hydrogen from Glycerol Steam Reforming over Bimetallic Ni-(Cu,Co,Cr) Catalysts Supported on SBA-15 Silica. Catalysts, 2017, 7, 55.	1.6	65
204	Catalytic Dehydration of Glycerol to Acrolein over a Catalyst of Pd/LaY Zeolite and Comparison with the Chemical Equilibrium. Catalysts, 2017, 7, 73.	1.6	36
205	Microbial Production of Malic Acid from Biofuel-Related Coproducts and Biomass. Fermentation, 2017, 3, 14.	1.4	40
206	Anaerobic and micro-aerobic 1,3-propanediol production by engineered Escherichia coli with dha genes from Klebsiella pneumoniae GLC29. African Journal of Biotechnology, 2017, 16, 1800-1809.	0.3	1
207	Obtaining glycerol carbonate and glycols using thermomorphic systems based on glycerol and cyclic organic carbonates: Kinetic studies. Journal of Industrial and Engineering Chemistry, 2018, 63, 124-132.	2.9	16
208	Combustion of Fuel Mixtures Containing Crude Glycerol (CG): Important Role of Interactions between CG and Fuel Components in Particulate Matter Emission. Industrial & Engineering Chemistry Research, 2018, 57, 4132-4138.	1.8	7
209	Next-Generation Water-Soluble Homogeneous Catalysts for Conversion of Glycerol to Lactic Acid. Organometallics, 2018, 37, 1400-1409.	1.1	46
210	A comparative study of the separation stage of rapeseed oil transesterification products obtained using various catalysts. Fuel Processing Technology, 2018, 173, 153-164.	3.7	22
211	Environmental benefits and drawbacks of composite fuels based on industrial wastes and different ranks of coal. Journal of Hazardous Materials, 2018, 347, 359-370.	6.5	29
212	Effect of substituting barley with glycerol as energy feed on feed intake, milk production and milk quality in dairy cows in mid or late lactation. Livestock Science, 2018, 209, 25-31.	0.6	5
213	Exploring the effects of heat and UV exposure on glycerol-based Ag-SiO2 nanofluids for PV/T applications. Renewable Energy, 2018, 120, 266-274.	4.3	55
214	Dual catalysis over ZnAl mixed oxides in the glycerolysis of urea: Homogeneous and heterogeneous reaction routes. Applied Catalysis A: General, 2018, 552, 1-10.	2.2	27
215	Thermodynamic insights on the viscometric and volumetric properties of binary mixtures of ketals and polyols. Journal of Molecular Liquids, 2018, 263, 125-138.	2.3	11
216	Glycerol from biodiesel production: Technological paths for sustainability. Renewable and Sustainable Energy Reviews, 2018, 88, 109-122.	8.2	358
217	Towards selective electrochemical conversion of glycerol to 1,3-propanediol. RSC Advances, 2018, 8, 10818-10827.	1.7	15
218	Keggin-type molybdovanadophosphoric acids loaded on ZSM-5 zeolite as a bifunctional catalyst for oxidehydration of glycerol. Molecular Catalysis, 2018, 449, 85-92.	1.0	13

#	Article	IF	CITATIONS
219	Continuous Flow Organic Chemistry: Successes and Pitfalls at the Interface with Current Societal Challenges. European Journal of Organic Chemistry, 2018, 2018, 2301-2351.	1.2	188
220	Intensified crude glycerol conversion to butanol by immobilized Clostridium pasteurianum. Biochemical Engineering Journal, 2018, 134, 114-119.	1.8	22
221	Application of Industrial Wastes for the Production of Microbial Single-Cell Protein by Fodder Yeast Candida utilis. Waste and Biomass Valorization, 2018, 9, 57-64.	1.8	62
222	Optimization of Cellulase Production by Trichoderma Strains Using Crude Glycerol as a Primary Carbon Source with a 24 Full Factorial Design. Waste and Biomass Valorization, 2018, 9, 357-367.	1.8	2
223	Attenuation of liver cancer development by oral glycerol supplementation in the rat. European Journal of Nutrition, 2018, 57, 1215-1224.	1.8	13
224	Energy and exergy analysis of glycerol combustion in an innovative flameless power plant. Journal of Cleaner Production, 2018, 172, 3817-3824.	4.6	28
225	Immobilization of lipase B from <i>Candida antarctica</i> on epoxyâ€functionalized silica: characterization and improving biocatalytic parameters. Journal of Chemical Technology and Biotechnology, 2018, 93, 105-111.	1.6	28
226	Synthesis of bioadditives of fuels from biodiesel-derived glycerol by esterification with acetic acid on solid catalysts. Environmental Technology (United Kingdom), 2018, 39, 1955-1966.	1.2	16
227	Biodiesel production from soybean oil and dimethyl carbonate catalyzed by potassium methoxide. Fuel, 2018, 212, 101-107.	3.4	46
228	Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source. Biotechnology Advances, 2018, 36, 150-167.	6.0	84
229	Simple Preparation of Thiol–Ene Particles in Glycerol and Surface Functionalization by Thiol–Ene Chemistry (TEC) and Surface Chain Transfer Free Radical Polymerization (SCTâ€FRP). Macromolecular Rapid Communications, 2018, 39, 1700394.	2.0	12
230	Sustainable Production of Fine Chemicals and Materials Using Nontoxic Renewable Sources. Toxicological Sciences, 2018, 161, 214-224.	1.4	14
231	Overview on utilization of biodiesel by-product for biohydrogen production. Journal of Cleaner Production, 2018, 172, 314-324.	4.6	36
232	Effect of unrefined crude glycerol composition on the properties of polyurethane foams. Journal of Cellular Plastics, 2018, 54, 633-649.	1.2	22
233	Insight into a catalytic process for simultaneous production of biodiesel and glycerol carbonate from triglycerides. Catalysis Today, 2018, 309, 161-171.	2.2	21
234	A closed loop biowaste to biofuel integrated process fed with waste frying oil, organic waste and algal biomass: Feasibility at pilot scale. Renewable Energy, 2018, 124, 61-74.	4.3	21
235	Effect of the treatment with H3PO4 on the catalytic activity of Nb2O5 supported on Zr-doped mesoporous silica catalyst. Case study: Glycerol dehydration. Applied Catalysis B: Environmental, 2018, 221, 158-168.	10.8	52
236	Catalytic valorization of biomass derived glycerol under methane: Effect of catalyst synthesis method. Fuel, 2018, 216, 218-226.	3.4	16

#	Article	IF	CITATIONS
237	Utilization of Crude Glycerol from Biodiesel Industry for the Production of Value-Added Bioproducts. Energy, Environment, and Sustainability, 2018, , 65-82.	0.6	14
238	Integrating proteomics, metabolomics and typical analysis to investigate the uptake and oxidative stress of graphene oxide and polycyclic aromatic hydrocarbons. Environmental Science: Nano, 2018, 5, 115-129.	2.2	38
239	Applicability of Crude Glycerol as the Multifunctional Additive for the Preparation of Mulching Coatings. Waste and Biomass Valorization, 2018, 9, 1855-1865.	1.8	4
240	Production of novel applicable derivatives from biodiesel glycerin. Green Processing and Synthesis, 2018, 7, 323-333.	1.3	O
241	ANÃŁISE DA GESTÃO DO GLICEROL: RISCOS E OPORTUNIDADES SOBRE SUA DESTINAÇÃO FRENTE À LACUN NORMATIVA E ASPECTOS SUSTENTÃVEIS. REAd: Revista EletrÃ′nica De Administração, 2018, 24, 217-243.	A _{0.1}	0
242	Effect of Operating Variables and Kinetics of the Lipase Catalyzed Transesterification of Ethylene Carbonate and Glycerol. Fermentation, 2018, 4, 75.	1.4	13
243	Transition metal-promoted hierarchical ETS-10 solid base for glycerol transesterification. RSC Advances, 2018, 8, 33473-33486.	1.7	14
244	Improved dispersibility of once-dried cellulose nanofibers in the presence of glycerol. Nordic Pulp and Paper Research Journal, 2018, 33, 647-650.	0.3	19
245	Novel Design for Simultaneous Production of Biodiesel and Glycerol Carbonate from Soybean Oil. Industrial & Engineering Chemistry Research, 2018, 57, 16809-16816.	1.8	11
246	Valorization of Waste Glycerol to Dihydroxyacetone with Biocatalysts Obtained from Gluconobacter oxydans. Applied Sciences (Switzerland), 2018, 8, 2517.	1.3	11
247	Technologies for Processing of Crude Glycerol from Biodiesel Production: Synthesis of Solketal and Its Hydrolysis to Obtain Pure Glycerol. Russian Journal of Applied Chemistry, 2018, 91, 1478-1485.	0.1	18
249	Experimental Determination of Optimal Conditions for Reactive Coupling of Biodiesel Production With in situ Glycerol Carbonate Formation in a Triglyceride Transesterification Process. Frontiers in Chemistry, 2018, 6, 625.	1.8	17
250	Acetalization Catalysts for Synthesis of Valuable Oxygenated Fuel Additives from Glycerol. Catalysts, 2018, 8, 595.	1.6	40
251	Sustainable Waste-to-Energy Technologies: Transesterification. , 2018, , 89-109.		10
252	A Coupled Density Functional Theory–Microkinetic Modeling for the Hydrodeoxygenation of Glycerol to Propylene on MoO ₃ . ACS Sustainable Chemistry and Engineering, 2018, 6, 16169-16178.	3.2	15
253	Synthesis of glycerol carbonate from dimethyl carbonate and glycerol using CaO derived from eggshells. MATEC Web of Conferences, 2018, 192, 03045.	0.1	8
254	Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes. Applied Energy, 2018, 230, 1347-1379.	5.1	55
255	Ethanol absorption from CO ₂ using solutions of glycerol and glycols. Chemical Engineering Communications, 2018, 205, 1507-1519.	1.5	7

#	Article	IF	CITATIONS
256	Crude glycerin as an alternative to corn as a supplement for beef cattle grazing in pasture during the dry season. Semina: Ciencias Agrarias, 2018, 39, 2215.	0.1	3
257	Methanol production via black liquor co-gasification with expanded raw material base – Techno-economic assessment. Applied Energy, 2018, 225, 570-584.	5.1	53
258	Effects of glycerol and chestnut tannin addition in cassava leaves <i>(Manihot esculenta</i> Crantz) on silage quality and <i>in vitro</i> rumen fermentation profiles. Journal of Applied Animal Research, 2018, 46, 1207-1213.	0.4	6
259	Separation of tartronic and glyceric acids by simulated moving bed chromatography. Journal of Chromatography A, 2018, 1563, 62-70.	1.8	15
260	Combustion characteristics of spent coffee ground mixed with crude glycerol briquette fuel. Combustion Science and Technology, 2018, 190, 2030-2043.	1.2	17
262	Biomass-Derived Building Block Chemicals. , 2018, , 177-200.		2
263	Promoting Role of Bismuth on Hydrotalcite-Supported Platinum Catalysts in Aqueous Phase Oxidation of Glycerol to Dihydroxyacetone. Catalysts, 2018, 8, 20.	1.6	23
264	Navigating Glycerol Conversion Roadmap and Heterogeneous Catalyst Selection Aided by Density Functional Theory: A Review. Catalysts, 2018, 8, 44.	1.6	27
265	The influence of liquid plant additives on the anthropogenic gas emissions from the combustion of coal-water slurries. Environmental Pollution, 2018, 242, 31-41.	3.7	28
266	Technoeconomic Analysis of Alternative Pathways of Isopropanol Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 10260-10272.	3.2	32
267	Synthesis of glycerol carbonate over a 2D coordination polymer built with Nd ³⁺ ions and organic ligands. Dalton Transactions, 2018, 47, 10976-10988.	1.6	3
268	Turning Biodiesel Waste Glycerol into 1,3-Propanediol: Catalytic Performance of Sulphuric acid-Activated Montmorillonite Supported Platinum Catalysts in Glycerol Hydrogenolysis. Scientific Reports, 2018, 8, 7484.	1.6	54
269	Application of pervaporation in the bio-production of glycerol carbonate. Chemical Engineering and Processing: Process Intensification, 2018, 132, 127-136.	1.8	13
270	Glycerine emulsions of diesel-biodiesel blends and their performance and emissions in a diesel engine. Applied Energy, 2018, 230, 148-159.	5.1	38
271	Engineered Microorganisms for the Production of Food Additives Approved by the European Union—A Systematic Analysis. Frontiers in Microbiology, 2018, 9, 1746.	1.5	49
272	Enzymatic synthesis of poly(glycerol sebacate) pre-polymer with crude glycerol, by-product from biodiesel prodution. AIP Conference Proceedings, 2018 , , .	0.3	6
273	In-situ glycerol aqueous phase reforming and phenol hydrogenation over Raney Ni \hat{A}^{\otimes} . Chemical Engineering Journal, 2018, 350, 181-191.	6.6	41
274	Iridium-based hydride transfer catalysts: from hydrogen storage to fine chemicals. Chemical Communications, 2018, 54, 7711-7724.	2.2	32

#	ARTICLE	IF	CITATIONS
275	Electrocatalytic valorisation of biomass derived chemicals. Catalysis Science and Technology, 2018, 8, 3216-3232.	2.1	105
276	Glycerol carbonate as a fuel additive for a sustainable future. Sustainable Energy and Fuels, 2018, 2, 2171-2178.	2.5	38
277	Thermodynamic and kinetic studies for synthesis of glycerol carbonate from glycerol and diethyl carbonate over Ce–NiO catalyst. Chemical Papers, 2018, 72, 2909-2919.	1.0	11
278	Modeling of Thermochemical Conversion of Glycerol: Pyrolysis and H2O and CO2 Gasification. Waste and Biomass Valorization, 2018, 9, 2361-2371.	1.8	4
279	Experimental analysis of the effect of nano-metals and novel organic additives on performance and emissions of a diesel engine. Fuel Processing Technology, 2019, 196, 106166.	3.7	15
280	Synthesis and optimization of sago-based biochemical value chain. AIP Conference Proceedings, 2019, , .	0.3	0
281	Yeasts for Bioconversion of Crude Glycerol to High-Value Chemicals., 2019,, 389-451.		3
282	Construction of a synthetic pathway for the production of 1,3-propanediol from glucose. Scientific Reports, 2019, 9, 11576.	1.6	29
283	Green Optimization of the First Steps for the Synthesis of a Novel Surfactant: Towards the Elimination of CMR Solvents and the Drastic Reduction of the Used Solvent Volume. ChemistrySelect, 2019, 4, 8621-8625.	0.7	2
284	Acrylic Acid. , 2019, , 521-569.		0
285	Co-production of 1,3 propanediol and long-chain alkyl esters from crude glycerol. New Biotechnology, 2019, 53, 81-89.	2.4	11
286	A promising strategy for nutrient recovery using heterotrophic indigenous microflora from liquid biogas digestate. Science of the Total Environment, 2019, 690, 492-501.	3.9	19
287	On the kinetics of multiphase etherification of glycerol with isobutene. Chemical Engineering Journal, 2019, 375, 122037.	6.6	16
288	Decomposition by film boiling heat transfer of glycerol. International Journal of Heat and Mass Transfer, 2019, 139, 873-880.	2.5	3
289	Toward Selective Dehydrogenation of Glycerol to Lactic Acid over Bimetallic Pt–Co/CeO _{<i>x</i>} Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 14548-14558.	1.8	25
290	An intrinsic kinetic model for liquidâ€phase photocatalytic hydrogen production. AICHE Journal, 2019, 65, e16724.	1.8	20
291	Glycerol to Solketal for Fuel Additive: Recent Progress in Heterogeneous Catalysts. Energies, 2019, 12, 2872.	1.6	50
292	Development of denitrification in semi-automated moving bed biofilm reactors operated in a marine recirculating aquaculture system. Aquaculture International, 2019, 27, 1485-1501.	1.1	7

#	Article	IF	CITATIONS
293	Esterification of glycerol with acetic acid over SO3H-functionalized phenolic resin. Fuel, 2019, 255, 115842.	3.4	42
294	Microwave-assisted synthesis of glycerol carbonate by the transesterification of glycerol with dimethyl carbonate using Musa acuminata peel ash catalyst. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 276-282.	2.7	46
295	Glycerol-Derived Solvents: Synthesis and Properties of Symmetric Glyceryl Diethers. ACS Sustainable Chemistry and Engineering, 2019, 7, 13004-13014.	3.2	27
296	Non-toxic printed supercapacitors operating in sub-zero conditions. Scientific Reports, 2019, 9, 14059.	1.6	22
298	Xanthan gum production by <i>Xanthomonas axonopodis pv. mangiferaeindicae</i> from glycerin of biodiesel in different media and addition of glucose. Acta Scientiarum - Biological Sciences, 2019, 41, 43661.	0.3	7
299	Developing a mathematical model for reforming of glycerol towards a comparative evaluation of the liquid vs. gas phase medium. International Journal of Hydrogen Energy, 2019, 44, 26764-26772.	3.8	4
300	Techno-economic aspects of a safflower-based biorefinery plant co-producing bioethanol and biodiesel. Energy Conversion and Management, 2019, 201, 112184.	4.4	59
301	Solketal Production from Glycerol Ketalization with Acetone: Catalyst Selection and Thermodynamic and Kinetic Reaction Study. Industrial & Engineering Chemistry Research, 2019, 58, 17746-17759.	1.8	48
302	Development of choline-based deep eutectic solvents for efficient concentrating of hemicelluloses in oil palm empty fruit bunches. Korean Journal of Chemical Engineering, 2019, 36, 1619-1625.	1.2	6
303	Efficient and simultaneous cleaner production of biodiesel and glycerol carbonate in solvent-free system via statistical optimization. Journal of Cleaner Production, 2019, 218, 985-992.	4.6	20
304	The continuous combustion of glycerol in a fluidised bed. Combustion and Flame, 2019, 200, 60-68.	2.8	7
305	Canola oil/glycerol mixtures in a continously operated FCC pilot plant and comparison with vacuum gas oil/glycerol mixtures. Chemical Engineering and Processing: Process Intensification, 2019, 142, 107553.	1.8	5
306	Highly Active and Selective Nano H-ZSM-5 Catalyst with Short Channels along <i>b</i> -Axis for Glycerol Dehydration to Acrolein. Industrial & Engineering Chemistry Research, 2019, 58, 12611-12622.	1.8	42
307	Enhanced Butanol Production Using Non-ionic Surfactant–Based Extractive Fermentation: Effect of Substrates and Immobilization of Cell. Applied Biochemistry and Biotechnology, 2019, 189, 1209-1222.	1.4	4
308	Production of propylene glycol (1,2-propanediol) by the hydrogenolysis of glycerol in a fixed-bed downflow tubular reactor over a highly effective Cu–Zn bifunctional catalyst: effect of an acidic/basic support. New Journal of Chemistry, 2019, 43, 10073-10086.	1.4	24
309	The combustion of liquids and low-density solids in a cenospheric fluidised bed. Combustion and Flame, 2019, 206, 476-489.	2.8	17
310	Thermal arc plasma gasification of waste glycerol to syngas. Applied Energy, 2019, 251, 113306.	5.1	34
311	Simultaneous Production of Lipids and Carotenoids by the Red Yeast Rhodotorula from Waste Glycerol Fraction and Potato Wastewater. Applied Biochemistry and Biotechnology, 2019, 189, 589-607.	1.4	75

#	Article	IF	CITATIONS
312	Peculiarities of Glycerol Conversion to Chemicals Over Zeolite-Based Catalysts. Frontiers in Chemistry, 2019, 7, 233.	1.8	26
313	Gas-phase conversion of glycerol to allyl alcohol over vanadium-supported zeolite beta. Catalysis Communications, 2019, 127, 20-24.	1.6	18
314	Hydrogen production from crude glycerol in an alkaline microbial electrolysis cell. International Journal of Hydrogen Energy, 2019, 44, 17204-17213.	3.8	42
315	Production of propylene glycol (propane-1,2-diol) in vapor phase over Cu–Ni/γ-Al2O3 catalyst in a down flow tubular reactor: effect of catalyst calcination temperature and kinetic study. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 523-542.	0.8	11
316	Effective biodiesel synthesis from palm fatty acid distillate (PFAD) using carbon-based solid acid catalyst derived glycerol. Renewable Energy, 2019, 142, 658-667.	4.3	30
317	Rhizomucor miehei Lipase Supported on Inorganic Solids, as Biocatalyst for the Synthesis of Biofuels: Improving the Experimental Conditions by Response Surface Methodology. Energies, 2019, 12, 831.	1.6	10
318	Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nature Communications, 2019, 10, 1779.	5.8	185
319	Overexpression of the genes of glycerol catabolism and glycerol facilitator improves glycerol conversion to ethanol in the methylotrophic thermotolerant yeast <i>Ogataea polymorpha</i>). Yeast, 2019, 36, 329-339.	0.8	13
320	Improved production of bacterial cellulose from waste glycerol through investigation of inhibitory effects of crude glycerol-derived compounds by Gluconacetobacter xylinus. Journal of Industrial and Engineering Chemistry, 2019, 75, 158-163.	2.9	50
321	Process design and economics for production of advanced biofuels from genetically modified lipid-producing sorghum. Applied Energy, 2019, 239, 1459-1470.	5.1	14
322	The role of impurities in the La2O3 catalysed carboxylation of crude glycerol. Catalysis Letters, 2019, 149, 1403-1414.	1.4	35
323	Determining butanol inhibition kinetics on the growth of Clostridium pasteurianumbased on continuous operation and pulse substrate additions. Journal of Chemical Technology and Biotechnology, 2019, 94, 1559-1566.	1.6	2
324	Adaptability of Klebsiella pneumoniae 2e, a Newly Isolated 1,3-Propanediol-Producing Strain, to Crude Glycerol as Revealed by Genomic Profiling. Applied and Environmental Microbiology, 2019, 85, .	1.4	11
325	Esterification of Glycerol With Oleic Acid Over Hydrophobic Zirconia-Silica Acid Catalyst and Commercial Acid Catalyst: Optimization and Influence of Catalyst Acidity. Frontiers in Chemistry, 2019, 7, 205.	1.8	30
326	Influence of Boron, Tungsten and Molybdenum Modifiers on Zirconia Based Pt Catalyst for Glycerol Valorization. Nanomaterials, 2019, 9, 509.	1.9	13
327	Biodiesel and Crude Glycerol from Waste Frying Oil: Production, Characterization and Evaluation of Biodiesel Oxidative Stability with Diesel Blends. Sustainability, 2019, 11, 1937.	1.6	21
328	Assessment of the Dispersion of Glycerol in Dimethyl Carbonate in a Stirred Tank. Industrial & Stirred	1.8	4
329	Glycerin waste as sustainable precursor for activated carbon production: Adsorption properties and application in supercapacitors. Journal of Environmental Chemical Engineering, 2019, 7, 103059.	3.3	28

#	Article	IF	CITATIONS
330	Improvement of cold flow properties of a new biofuel derived from glycerol. Fuel, 2019, 242, 794-803.	3.4	27
331	Recent Advances in the Catalytic Production of Platform Chemicals from Holocellulosic Biomass. ChemCatChem, 2019, 11, 2022-2042.	1.8	92
332	Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterification. DYNA (Colombia), 2019, 86, 75-83.	0.2	3
333	Selective Catalytic Transfer Hydrogenolysis of Glycerol to 2-Isopropoxy-Propan-1-Ol over Noble Metal Ion-Exchanged Mordenite Zeolite. Catalysts, 2019, 9, 885.	1.6	11
334	Kinetic study of the effects of pH on the photocatalytic hydrogen production from alcohols. International Journal of Hydrogen Energy, 2019, 44, 32030-32041.	3.8	32
335	Glycerol Electro-Oxidation in Alkaline Media and Alkaline Direct Glycerol Fuel Cells. Catalysts, 2019, 9, 980.	1.6	55
336	Waste Cooking Oil into Biodiesel Transformation and its Economical Potency through Circular Economic Model in Semarang Barat Area Indonesia. E3S Web of Conferences, 2019, 125, 14010.	0.2	2
337	Biodiesel at the Crossroads: A Critical Review. Catalysts, 2019, 9, 1033.	1.6	57
338	Test method for determination of different biodiesels (fatty acid alkyl esters) content in diesel fuel using FTIR-ATR. Renewable Energy, 2019, 133, 1231-1235.	4.3	23
339	Competitiveness analysis of "social soybeans―in biodiesel production in Brazil. Renewable Energy, 2019, 133, 1147-1157.	4.3	66
340	Two-stage microbial conversion of crude glycerol to 1,3-propanediol and polyhydroxyalkanoates after pretreatment. Journal of Environmental Management, 2019, 232, 615-624.	3.8	25
341	Kinetic Modeling of Supercritical Interesterification with Heterogeneous Catalyst to Produce Methyl Esters Considering Degradation Effects. Industrial & Engineering Chemistry Research, 2019, 58, 816-827.	1.8	20
342	Thermoplasmonic-induced energy-efficient catalytic oxidation of glycerol over gold supported catalysts using visible light at ambient temperature. Applied Catalysis A: General, 2019, 572, 9-14.	2.2	10
343	An Overview of Recent Research in the Conversion of Glycerol into Biofuels, Fuel Additives and other Bio-Based Chemicals. Catalysts, 2019, 9, 15.	1.6	127
344	Synthesis, Performance and Emission Quality Assessment of Ecodiesel from Castor Oil in Diesel/Biofuel/Alcohol Triple Blends in a Diesel Engine. Catalysts, 2019, 9, 40.	1.6	27
345	Synthesis and characterization of a biopolymer of glycerol and macadamia oil. Journal of Thermal Analysis and Calorimetry, 2019, 137, 161-170.	2.0	10
346	Evaluation of a Passive Anionâ€Exchange Membrane Micro Fuel Cell Using Glycerol from Several Sources. Fuel Cells, 2019, 19, 10-18.	1.5	5
347	Enhanced Productivity in Glycerol Carbonate Synthesis under Continuous Flow Conditions: Combination of Immobilized Lipases from Porcine Pancreas and <i>Candida antarctica</i> (CALB) on Epoxy Resins. ACS Omega, 2019, 4, 860-869.	1.6	30

#	Article	IF	Citations
348	Elucidating Molecular Interactions in Glycerol Adsorption at the Metal–Water Interface with Density Functional Theory. Langmuir, 2019, 35, 4791-4805.	1.6	10
349	Gold Catalysts for the Selective Oxidation of Biomassâ€Derived Products. ChemCatChem, 2019, 11, 309-323.	1.8	47
350	Development of a Glycerol Based Polymer for Additive Manufacturing. Waste and Biomass Valorization, 2019, 10, 3115-3124.	1.8	2
351	The influence of SiO2 doping on the Ni/ZrO2 supported catalyst for hydrogen production through the glycerol steam reforming reaction. Catalysis Today, 2019, 319, 206-219.	2.2	67
352	Possibility of the Utilization of Waste Glycerol as an Addition to Wood Pellets. Waste and Biomass Valorization, 2019, 10, 2193-2199.	1.8	27
353	Batch and Repeated-Batch Fermentation for 1,3-Dihydroxyacetone Production from Waste Glycerol Using Free, Immobilized and Resting Gluconobacter oxydans Cells. Waste and Biomass Valorization, 2019, 10, 2455-2465.	1.8	15
354	CO2 role on the glycerol conversion over catalyst containing CaO-SiO2 doped with Ag and Pt. Catalysis Today, 2020, 344, 199-211.	2.2	8
355	Integral process for obtaining acetins from crude glycerol and their effect on the octane index. Chemical Engineering Communications, 2020, 207, 231-241.	1.5	11
356	Methanolysis of Simarouba Glauca DC oil with hydrotalcite-type ZnCuAl catalysts. Catalysis Today, 2020, 349, 48-56.	2.2	5
357	One-pot synthesis of lactic acid from glycerol over a Pt/L-Nb2O5 catalyst under base-free conditions. Fuel Processing Technology, 2020, 197, 106202.	3.7	24
358	Model-fitting approach to kinetic analysis of non-isothermal pyrolysis of pure and crude glycerol. Renewable Energy, 2020, 145, 1693-1708.	4.3	23
359	Factors affecting the activity and selectivity of niobia-based gold catalysts in liquid phase glycerol oxidation. Catalysis Today, 2020, 354, 36-43.	2.2	7
360	Surface treatment of eucalyptus wood for improved HDPE composites properties. Journal of Applied Polymer Science, 2020, 137, 48619.	1.3	14
361	Development of a green one-step neutralization process for valorization of crude glycerol obtained from biodiesel. Environmental Science and Pollution Research, 2020, 27, 28500-28509.	2.7	13
362	Kinetic study of fuel bio-additive synthesis from glycerol esterification with acetic acid over acid polymeric resin as catalyst. Fuel, 2020, 264, 116879.	3.4	34
363	Readily Scalable Methodology for the Synthesis of Nonsymmetric Glyceryl Diethers by a Tandem Acid-/Base-Catalyzed Process. Organic Process Research and Development, 2020, 24, 154-162.	1.3	5
364	Assessment of crude glycerol utilization for sustainable development of biorefineries., 2020,, 195-212.		13
365	Investigation of glycerolysis of urea over various ZnMeO (Me = Co, Cr, and Fe) mixed oxide catalysts. Catalysis Today, 2020, 352, 80-87.	2.2	8

#	Article	IF	CITATIONS
366	Malic acid production from renewables: a review. Journal of Chemical Technology and Biotechnology, 2020, 95, 513-526.	1.6	98
367	Electrochemical valorization of crude glycerol in alkaline medium for energy conversion using Pd, Au and PdAu nanomaterials. Fuel, 2020, 262, 116556.	3.4	29
368	Perspectives and challenges of small scale plant microalgae cultivation. Evidences from Southern Italy. Algal Research, 2020, 45, 101693.	2.4	9
369	A review of recent developments on kinetics parameters for glycerol electrochemical conversion – A by-product of biodiesel. Science of the Total Environment, 2020, 705, 135137.	3.9	57
370	A review on recent trends in reactor systems and azeotrope separation strategies for catalytic conversion of biodiesel-derived glycerol. Science of the Total Environment, 2020, 719, 134595.	3.9	25
371	Production of long alkyl ethers in homogeneous systems: A study of glyceryl monododecyl ethers. Reaction Kinetics, Mechanisms and Catalysis, 2020, 131, 829-844.	0.8	2
372	Uncovering the True Cost of Ionic Liquids using Monetization. Computer Aided Chemical Engineering, 2020, 48, 1825-1830.	0.3	6
373	Comparative process modeling and techno-economic evaluation of renewable hydrogen production by glycerol reforming in aqueous and gaseous phases. Energy Conversion and Management, 2020, 225, 113483.	4.4	37
374	Influence of Heterogeneous Catalysts and Reaction Parameters on the Acetylation of Glycerol to Acetin: A Review. Applied Sciences (Switzerland), 2020, 10, 7155.	1.3	20
375	Energetic and Kinetic Control Aspects to Explain the Performances and Elucidate the Mechanisms of Oriented Membrane Processes for Extraction and Recovery of Glycerol Compound. ACS Sustainable Chemistry and Engineering, 2020, 8, 15967-15979.	3.2	2
376	Green Synthesis of Silver Nanoparticles with Size Distribution Depending on Reducing Species in Glycerol at Ambient pH and Temperatures. ACS Omega, 2020, 5, 16246-16254.	1.6	46
377	Optimization of process parameters using response surface methodology (RSM) for power generation via electrooxidation of glycerol in T-Shaped air breathing microfluidic fuel cell (MFC). International Journal of Hydrogen Energy, 2020, 45, 33968-33979.	3.8	21
378	Coupling Hydrogenation of Guaiacol with In Situ Hydrogen Production by Glycerol Aqueous Reforming over Ni/Al2O3 and Ni-X/Al2O3 (X = Cu, Mo, P) Catalysts. Nanomaterials, 2020, 10, 1420.	1.9	10
379	Hydrophobic-hydrophilic balance of ZSM-5 zeolites on the two-phase ketalization of glycerol with acetone. Catalysis Today, 2020, , .	2.2	11
380	Green extractions to obtain value-added elephant grass co-products in an ethanol biorefinery. Journal of Cleaner Production, 2020, 274, 122769.	4.6	9
381	Utilization of Solid Waste from Refined Sugar Industry (Filter Cake) as Biodegradable Foam (Biofoam). IOP Conference Series: Earth and Environmental Science, 2020, 473, 012108.	0.2	1
382	Recent Advances in Heterogeneous Photoâ€Driven Oxidation of Organic Molecules by Reactive Oxygen Species. ChemSusChem, 2020, 13, 5173-5184.	3.6	53
383	Bio-inspired redox mediated electrolyte for high performance flexible supercapacitor applications over broad temperature domain. Journal of Power Sources, 2020, 474, 228544.	4.0	47

#	Article	IF	CITATIONS
384	Hepatic Glycerol Metabolism-Related Genes in Carnivorous Rainbow Trout (Oncorhynchus mykiss): Insights Into Molecular Characteristics, Ontogenesis, and Nutritional Regulation. Frontiers in Physiology, 2020, 11, 882.	1.3	8
385	Fuel additive synthesis by acetylation of glycerol using activated carbon/UiO-66 composite materials. Fuel, 2020, 281, 118584.	3.4	26
386	Catalytic reforming of oxygenated hydrocarbons for the hydrogen production: an outlook. Biomass Conversion and Biorefinery, 2023, 13, 8441-8464.	2.9	27
387	Biomass-glycerol briquettes are not necessarily mechanically stable and energetically effective. Waste Disposal & Sustainable Energy, 2020, 2, 291-303.	1.1	1
388	Synthesis and Properties of 1,2,3-Triethoxypropane: A Glycerol-Derived Green Solvent Candidate. Industrial & Derived Candidate. 1,2020, 59, 20190-20200.	1.8	15
389	Effects of immobilization of Actinobacillus succinogenes on efficiency of bio-succinic acid production from glycerol. Biomass Conversion and Biorefinery, 2022, 12, 643-654.	2.9	9
390	Metabolism, Ketosis Treatment and Milk Production after Using Glycerol in Dairy Cows: A Review. Animals, 2020, 10, 1379.	1.0	10
391	Optimisation of xanthan production on glycerol-based medium using response surface methodology. Brazilian Journal of Chemical Engineering, 2020, 37, 617-627.	0.7	2
392	Evidence of the illegitimacy of the additive approach to the determination of the thermophysical properties of coalâ€water fuel with glycerol. International Journal of Energy Research, 2020, 44, 12056-12065.	2.2	7
393	Thermo-Mechanical Properties of a Wood Fiber Insulation Board Using a Bio-Based Adhesive as a Binder. Buildings, 2020, 10, 152.	1.4	21
394	Glycerol Oxidation over Supported Gold Catalysts: The Combined Effect of Au Particle Size and Basicity of Support. Processes, 2020, 8, 1016.	1.3	8
395	Advances in solid catalysts for selective hydrogenolysis of glycerol to 1,3-propanediol. Catalysis Reviews - Science and Engineering, 2021, 63, 639-703.	5.7	24
396	Glycerol and Glycerol-Based Deep Eutectic Mixtures as Emerging Green Solvents for Polyphenol Extraction: The Evidence So Far. Molecules, 2020, 25, 5842.	1.7	38
397	Effective Combustion of Glycerol in a Compression Ignition Engine Equipped with Double Direct Fuel Injection. Energies, 2020, 13, 6349.	1.6	8
398	Rib shaped carbon catalyst derived from <i>Zea mays L.</i> cob for ketalization of glycerol. RSC Advances, 2020, 10, 43334-43342.	1.7	7
399	Nanoparticle cages as microreactors for producing acrolein from glycerol in the liquid phase. New Journal of Chemistry, 2020, 44, 21332-21337.	1.4	3
400	Short-Chain Polyglycerol Production via Microwave-Assisted Solventless Glycerol Polymerization Process Over Lioh-Modified Aluminium Pillared Clay Catalyst: Parametric Study. Processes, 2020, 8, 1093.	1.3	2
401	A review on influencing parameters of biodiesel production and purification processes. Current Research in Green and Sustainable Chemistry, 2020, 1-2, 1-6.	2.9	110

#	Article	IF	CITATIONS
402	Sn(II)-Exchanged Keggin Silicotungstic Acid-Catalyzed Etherification of Glycerol and Ethylene Glycol with Alkyl Alcohols. Industrial & Engineering Chemistry Research, 2020, 59, 9858-9868.	1.8	25
404	Environmentally Friendly and Regioselective One-Pot Synthesis of Imines and Oxazolidines Serinol Derivatives and Their Use for Rubber Cross-Linking. ACS Sustainable Chemistry and Engineering, 2020, 8, 9356-9366.	3.2	9
405	A review of aerobic glycerol oxidation processes using heterogeneous catalysts: a sustainable pathway for the production of dihydroxyacetone. Catalysis Reviews - Science and Engineering, 2021, 63, 422-511.	5.7	34
406	Techno-economic analysis of processes for biodiesel production with integrated co-production of higher added value products from glycerol. Biofuels, 2022, 13, 489-496.	1.4	10
407	Performance Modelling of the Bioelectrochemical Glycerol Oxidation by a Coâ€Culture of <i>Geobacter Sulfurreducens</i> and <i>Raoultella Electrica</i> ChemElectroChem, 2020, 7, 1877-1888.	1.7	6
408	Preparation of activated charcoal from Acrocomia aculeata for purification of pretreated crude glycerol. Biomass Conversion and Biorefinery, 2022, 12, 2441-2449.	2.9	12
409	Ultrafast Glycerol Conversion to Lactic Acid over Magnetically Recoverable Ni–NiO⟨i⟩⟨sub⟩x⟨ sub⟩⟨ i⟩@C Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 9912-9925.	1.8	26
410	Continuous production of fatty acid methyl esters and high-purity glycerol over a dolomite-derived extrudate catalyst in a countercurrent-flow trickle-bed reactor. Renewable Energy, 2020, 157, 626-636.	4.3	11
411	A new kinetic model for simultaneous interesterification and esterification reactions from methyl acetate and highly acidic oil. Renewable Energy, 2020, 156, 579-590.	4.3	12
412	Valorisation of glycerol and CO2 to produce biodegradable polymer nanoparticles with a high percentage of bio-based components. Journal of CO2 Utilization, 2020, 40, 101192.	3.3	13
413	Exhaust gas recirculation with highly oxygenated fuels in gas turbines. Fuel, 2020, 278, 118285.	3.4	17
414	Efficient synthesis of 3-methylindole using biomass-derived glycerol and aniline over ZnO and CeO2 modified Ag/SBA-15 catalysts. Molecular Catalysis, 2020, 493, 111038.	1.0	4
415	Environmental and Economic Aspects of Combustion of Biomass Pellets Containing a Waste Glycerol. Combustion Science and Technology, 2021, 193, 1998-2008.	1.2	10
416	Water removal in the alkaline electrochemical valorization of glycerol by pervaporation. Separation and Purification Technology, 2020, 248, 116943.	3.9	6
417	Bioalcohol Reforming: An Overview of the Recent Advances for the Enhancement of Catalyst Stability. Catalysts, 2020, 10, 665.	1.6	39
418	The Cultivation of Lipid-Rich Microalgae Biomass as Anaerobic Digestate Valorization Technology—A Pilot-Scale Study. Processes, 2020, 8, 517.	1.3	29
419	100 Years Later, What Is New in Glycerol Bioproduction?. Trends in Biotechnology, 2020, 38, 907-916.	4.9	28
420	Electrical Conductivity and Electromagnetic Shielding Effectiveness of Bio-Composites. Journal of Composites Science, 2020, 4, 28.	1.4	16

#	Article	IF	CITATIONS
421	Sustainable production of bio-based chemicals and polymers via integrated biomass refining and bioprocessing in a circular bioeconomy context. Bioresource Technology, 2020, 307, 123093.	4.8	104
422	Highly Efficient and Sustainable Synthesis of Neoglycoproteins Using Galactosidases. ACS Sustainable Chemistry and Engineering, 2020, 8, 6282-6292.	3.2	7
423	Obtaining of value added chemicals from catalityc dehydration of glycerol. Catalysis Today, 2020, 356, 349-358.	2.2	8
424	Effect of heat-treated canola meal and glycerol inclusion on performance and gastrointestinal development of Holstein calves. Journal of Dairy Science, 2020, 103, 7998-8019.	1.4	6
425	Fungal mycelium classified in different material families based on glycerol treatment. Communications Biology, 2020, 3, 334.	2.0	37
426	Valorization of solid waste from oil refining and biodiesel industries for the biorecovery of rare earth elements. Biomass Conversion and Biorefinery, 2022, 12, 2891-2900.	2.9	3
427	Renewable hydrogen production from steam reforming of glycerol (SRG) over ceria-modified \hat{I}^3 -alumina supported Ni catalyst. Chinese Journal of Chemical Engineering, 2020, 28, 2328-2336.	1.7	13
428	Electrocatalysis by design: Enhanced electro-oxidation of glycerol at NiOx nanoparticle modified 3D porous carbon felts. International Journal of Hydrogen Energy, 2020, 45, 9658-9668.	3.8	30
429	Vapor-liquid equilibrium of 3-ethoxy-1,2-propanediolÂ+ water/ethanol/diethyl ether/glycerol/1,2-propanediol at different pressures. Fluid Phase Equilibria, 2020, 512, 112519.	1.4	2
430	Enzymatic one-pot synthesis of renewable and biodegradable surfactants in supercritical carbon dioxide (scCO ₂). Green Chemistry, 2020, 22, 1308-1318.	4.6	12
431	Development of Au and 1D Hydroxyapatite Nanohybrids Supported on 2D Boron Nitride Sheets as Highly Efficient Catalysts for Dehydrogenating Glycerol to Lactic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 7278-7289.	3.2	26
432	Controlling the selectivity and deactivation of H-ZSM-5 by tuning b-axis channel length for glycerol dehydration to acrolein. Journal of Industrial and Engineering Chemistry, 2020, 88, 127-136.	2.9	30
433	Role of life-cycle externalities in the valuation of protic ionic liquids – a case study in biomass pretreatment solvents. Green Chemistry, 2020, 22, 3132-3140.	4.6	76
435	Effect of utilization of crude glycerol as substrate on fatty acid composition of an oleaginous yeast Rhodotorula mucilagenosa IIPL32: Assessment of nutritional indices. Bioresource Technology, 2020, 309, 123330.	4.8	33
436	A Review of Catalytic Upgrading of Biodiesel Waste Glycerol to Valuable Products. Current Green Chemistry, 2020, 7, 259-266.	0.7	7
437	Use of glycerol, waste glycerol from biodiesel production and other protic solvents in bioactive $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones synthesis. Sustainable Chemistry and Pharmacy, 2020, 16, 100250.	1.6	5
438	Catalytic upgrading of glycerol, a promising biodiesel coproduct., 2020,, 395-405.		2
439	Vehicle Emissions from a Glycerol-Derived Biofuel under Cold and Warm Conditions. Energy & Samp; Fuels, 2020, 34, 6020-6029.	2.5	8

#	Article	IF	Citations
440	Structure–selectivity relationship of a zirconia-based heterogeneous acid catalyst in the production of green mono- and dioleate product. Clean Technologies and Environmental Policy, 2021, 23, 19-29.	2.1	4
441	Glycerolysis of free fatty acids: A review. Renewable and Sustainable Energy Reviews, 2021, 137, 110501.	8.2	35
442	Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects. Renewable and Sustainable Energy Reviews, 2021, 136, 110375.	8.2	134
443	Economic assessment of hydrogen and electricity cogeneration through steam reforming-SOFC system in the Brazilian biodiesel industry. Journal of Cleaner Production, 2021, 279, 123814.	4.6	18
444	Aqueous phase hydrogenolysis of glycerol over Ni/Al-Fe catalysts without external hydrogen addition. Applied Catalysis B: Environmental, 2021, 283, 119598.	10.8	30
445	Leachate after aerobic stabilization of municipal solid waste supplemented by waste glycerine from saponification to improve biogas production during co-digestion. Biomass and Bioenergy, 2021, 144, 105908.	2.9	3
446	Hyperbranched poly(glycerol esteramide): A biocompatible drug carrier from glycerol feedstock and dicarboxylic acid. Journal of Applied Polymer Science, 2021, 138, 50126.	1.3	2
447	Glycerol-modified cashew nut shell liquid as eco-friendly flow improvers for waxy crude oil. Petroleum Science and Technology, 2021, 39, 101-114.	0.7	9
448	Influence analysis of glycerol in fumaric acid co-fermentation process by Rhizopus arrhizus. Journal of Environmental Chemical Engineering, 2021, 9, 104750.	3.3	2
449	Exergoenvironmental analysis of hydrogen production through glycerol steam reforming. International Journal of Hydrogen Energy, 2021, 46, 1385-1402.	3.8	27
450	Biodiesel fuel synthesis by interesterification of triglycerides with carboxylate esters of low molecular weight. Reviews in Chemical Engineering, 2021, 37, 259-276.	2.3	7
451	Parametric study and optimization of bio-hydrogen production using steam reforming of glycerol and biodiesel fuel mixtures. Biomass Conversion and Biorefinery, 2023, 13, 8713-8725.	2.9	6
452	Green solvents for eco-friendly synthesis of bioactive heterocycles., 2021,, 393-470.		4
453	Biosolvents as green solvents in the pharmaceutical industry. , 2021, , 105-149.		1
454	Glycerol in energy transportation: a state-of-the-art review. Green Chemistry, 2021, 23, 7865-7889.	4.6	29
455	A new amido-phosphane as ligand for copper and silver complexes. Synthesis, characterization and catalytic application for azide–alkyne cycloaddition in glycerol. Dalton Transactions, 2021, 50, 6109-6125.	1.6	10
456	Advancing photoreforming of organics: highlights on photocatalyst and system designs for selective oxidation reactions. Energy and Environmental Science, 2021, 14, 1140-1175.	15.6	128
457	Insight into the Mechanism of Glycerol Dehydration and Subsequent Pyridine Synthesis. ACS Sustainable Chemistry and Engineering, 2021, 9, 3095-3103.	3.2	23

#	Article	IF	Citations
458	Lightâ€Driven Alcohol Splitting by Heterogeneous Photocatalysis: Recent Advances, Mechanism and Prospects. Chemistry - an Asian Journal, 2021, 16, 460-473.	1.7	16
459	Uma revisão sobre: tratamento biológico de drenagem de mina — cenário atualizado, perspectivas e recomendações de futuros trabalhos. Engenharia Sanitaria E Ambiental, 2021, 26, 69-76.	0.1	0
460	Electrochemical Routes for the Valorization of Biomass-Derived Feedstocks: From Chemistry to Application. ACS Energy Letters, 0, , 1205-1270.	8.8	130
461	An overview on the conversion of glycerol to valueâ€added industrial products via chemical and biochemical routes. Biotechnology and Applied Biochemistry, 2022, 69, 2794-2818.	1.4	87
462	Selective Hydrogenolysis of Biomassâ€Derived Xylitol to Glycols: Reaction Network and Kinetics. Chemical Engineering and Technology, 2021, 44, 761-772.	0.9	5
463	Optimization of glycerol consumption in wildâ€type Escherichia coli using central carbon modeling as an alternative approach. Biofuels, Bioproducts and Biorefining, 2021, 15, 825-839.	1.9	2
464	Selection, Sizing, and Modeling of a Trickle Bed Reactor to Produce 1,2 Propanediol from Biodiesel Glycerol Residue. Processes, 2021, 9, 479.	1.3	6
465	Technical feasibility of biodiesel production from virgin oil and waste cooking oil: Comparison between traditional and innovative process based on hydrodynamic cavitation. Waste Management, 2021, 122, 15-25.	3.7	39
466	Dietary glycerol inclusion decreases growth performance and nitrogen retention efficiency in rainbow trout (Oncorhynchus mykiss). Aquaculture, 2021, 535, 736383.	1.7	5
467	Poly(3-hydroxypropionate): Biosynthesis Pathways and Malonyl-CoA Biosensor Material Properties. Frontiers in Bioengineering and Biotechnology, 2021, 9, 646995.	2.0	8
468	Valorisation of low fatty acid content waste cooking oil into biodiesel through transesterification using a basic heterogeneous calcium-based catalyst. Biomass and Bioenergy, 2021, 146, 105984.	2.9	34
469	Platform molecule from sustainable raw materials; case study succinic acid. Brazilian Journal of Chemical Engineering, 2021, 38, 215-239.	0.7	8
470	Use of Bioproducts Derived from Mixed Microbial Cultures Grown with Crude Glycerol to Protect Recycled Concrete Surfaces. Materials, 2021, 14, 2057.	1.3	1
471	Flame characteristics of glycerol/methanol blends in a swirl-stabilised gas turbine burner. Fuel, 2021, 290, 119968.	3.4	11
472	Environmentally friendly adhesives derived from glycerol-based polymers. Journal of Adhesion Science and Technology, 0, , 1-11.	1.4	3
473	Dihydroxyacetone Production: From Glycerol Catalytic Oxidation with Commercial Catalysts to Chromatographic Separation. Industrial & Engineering Chemistry Research, 2021, 60, 10551-10565.	1.8	6
474	Hydrogenolysis of glycerol to propanediols over silicotungstic acid catalysts intercalated with CuZnFe hydrotalcite-like compounds. Catalysis Today, 2021, 368, 224-231.	2.2	15
475	Challenges & Chall	0.5	3

#	Article	IF	CITATIONS
476	Potential of the crude glycerol and citric acid mixture as a binder in medium-density fiberboard manufacturing. European Journal of Wood and Wood Products, 2021, 79, 1141.	1.3	4
477	Detailed examination of the combustion of diesel and glycerol emulsions in a compression ignition engine. Fuel, 2021, 291, 120147.	3.4	14
478	Acetylation of biodiesel glycerin using glycerin and glucose derived catalysts. Journal of Cleaner Production, 2021, 297, 126686.	4.6	20
479	Biodiesel Glycerin Valorization into Oxygenated Fuel Additives. Catalysis Letters, 2022, 152, 513-522.	1.4	4
480	Cobalt oxide promoted tin oxide catalysts for highly selective glycerol acetalization reaction. Inorganic Chemistry Communication, 2021, 128, 108578.	1.8	14
481	Role of Glycerol Oxidation Pathways in the Reductive Acid Leaching Kinetics of Manganese Nodules Using Glycerol. ACS Omega, 2021, 6, 14903-14910.	1.6	6
482	Techno-economic feasibility of industrial production of biofuels by glycerol etherification reaction with isobutene or tert-butyl alcohol assisted by vapor-permeation membrane. Journal of Industrial and Engineering Chemistry, 2021, 98, 413-424.	2.9	11
483	Effects of ultrasound irradiations time over Ni–Mo/l³-Al2O3 catalyst synthesis for 1,3 – Propanediol selectively via aqueous phase reforming of glycerol. Case Studies in Chemical and Environmental Engineering, 2021, 3, 100096.	2.9	10
484	Drying properties and DNA content of saliva samples taken before, during and after chewing gum. Australian Journal of Forensic Sciences, 2022, 54, 861-870.	0.7	2
485	Enzymes, <i>In Vivo</i> Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chemical Reviews, 2021, 121, 10367-10451.	23.0	111
486	Poly (glycerol adipate) (PGA) backbone modifications with a library of functional diols: Chemical and physical effects. Polymer, 2021, 228, 123912.	1.8	18
487	A conceptual evaluation of a new multifunctional reactor containing glycerol steam reforming and nitrobenzene hydrogenation. Chemical Engineering and Processing: Process Intensification, 2021, 164, 108405.	1.8	12
488	Hydrogenolysis of glycerol to 1,3-propanediol over H-ZSM-5-supported iridium and rhenium oxide catalysts. Catalysis Today, 2022, 397-399, 356-364.	2.2	7
489	1,2—Propanediol Production from Glycerol Derived from Biodiesel's Production: Technical and Economic Study. Energies, 2021, 14, 5081.	1.6	9
490	The influence of oriented external electric field on lipase catalyzed triglyceride hydrolysis. Chemical Engineering and Processing: Process Intensification, 2021, 165, 108452.	1.8	3
491	Market Prospecting and Assessment of the Economic Potential of Glycerol from Biodiesel. , 0, , .		12
492	Co-assembly and Structure of Sodium Dodecylsulfate and other n-Alkyl Sulfates in Glycerol: n-Alkyl Sulfate-Glycerol Crystal Phase. Journal of Colloid and Interface Science, 2021, 596, 442-454.	5.0	3
493	An Active Kâ€OMSâ€⊋ Supported Catalyst for Hydrogenolysis of Glycerol. ChemistrySelect, 2021, 6, 8700-8708.	0.7	2

#	Article	IF	CITATIONS
494	Synthesis and Properties of Symmetric Glycerol-Derived 1,2,3-Triethers and 1,3-Diether-2-Ketones for CO2 Absorption. Chemical Engineering Science, 2021, 248, 117150.	1.9	9
495	E-Cigarette Toxicology. Annual Review of Pharmacology and Toxicology, 2022, 62, 301-322.	4.2	54
496	Oxidative steam reforming of glycerol. A review. Renewable and Sustainable Energy Reviews, 2021, 148, 111299.	8.2	19
497	Nuclear-driven production of renewable fuel additives from waste organics. Communications Chemistry, 2021, 4, .	2.0	4
498	Biobased poly(glycerol citrate) synthesis optimization via design of experiments. Polymers for Advanced Technologies, 2021, 32, 3982-3994.	1.6	8
499	Specific Features of the Ignition Behavior of Coal-Water Fuel with the Addition of Glycerol. Combustion Science and Technology, 2023, 195, 1084-1105.	1.2	8
500	Catalytic deoxygenation of palm oil and its residue in green diesel production: A current technological review. Chemical Engineering Research and Design, 2021, 174, 158-187.	2.7	27
501	Bioinspired co-polyesters of hydroxy-fatty acids extracted from tomato peel agro-wastes and glycerol with tunable mechanical, thermal and barrier properties. Industrial Crops and Products, 2021, 170, 113718.	2.5	17
502	Fabrication of MOFs' derivatives assisted perovskite nanocrystal on TiO2 photoanode for photoelectrochemical glycerol oxidation with simultaneous hydrogen production. Applied Catalysis B: Environmental, 2021, 296, 120382.	10.8	30
503	An experimental study of gas solubility in glycerin based drilling fluid applied to well control. Journal of Petroleum Science and Engineering, 2021, 207, 109194.	2.1	6
504	Effect of impurities of CH3OH, CH3COOH, and KOH on aqueous phase reforming of glycerol over mesoporous Ni–Cu/CeO2 catalyst. Journal of the Energy Institute, 2021, 99, 198-208.	2.7	14
505	Aqueous phase reforming of biodiesel byproduct glycerol over mesoporous Ni-Cu/CeO2 for renewable hydrogen production. Fuel, 2022, 308, 122014.	3.4	44
506	Application of deep eutectic solvent in biodiesel reaction: RSM optimization, CI engine test, cost analysis and research dynamics. Fuel, 2022, 307, 121933.	3.4	18
507	Catalytic Conversion of Biomass-Derived Glycerol to Value-Added Chemicals., 2021,, 459-504.		2
508	Experimental and computational study on roles of WOx promoting strong metal support promoter interaction in Pt catalysts during glycerol hydrogenolysis. Scientific Reports, 2021, 11, 530.	1.6	8
509	Sustainable treatment of real-mine drainage using crude glycerol and brewery waste as electron donors in a micro-aerobic system. Journal of Water Process Engineering, 2020, 36, 101297.	2.6	5
510	A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects. Renewable and Sustainable Energy Reviews, 2020, 134, 110143.	8.2	71
511	Development of Kinetic Model for Hydrogenolysis of Glycerol over Cu/MgO Catalyst in a Slurry Reactor. Industrial & Engineering Chemistry Research, 2018, 57, 101-110.	1.8	28

#	Article	IF	Citations
512	Electrocatalytic Oxidation of Glycerol to Formic Acid by CuCo ₂ O ₄ Spinel Oxide Nanostructure Catalysts. ACS Catalysis, 2020, 10, 6741-6752.	5 . 5	221
513	Green Fuels and Fuel Additives Production in Simulated Moving Bed Reactors. RSC Green Chemistry, 2018, , 145-165.	0.0	2
515	Delignification of softwood by glycerol from biodiesel by-product I: model reaction using glycerol and fatty acid sodium soap mixture for pretreatment on bioethanol production. Journal of Wood Science, 2019, 65, .	0.9	8
516	Kinetic Analysis of Sodium Lactate Synthesis from Glycerol in Alkaline Aqueous Solution at High Temperature and Prediction of Optimum Conditions. Kagaku Kogaku Ronbunshu, 2016, 42, 148-154.	0.1	2
517	The aspects of microbial biomass use in the utilization of selected waste from the agro-food industry. Open Life Sciences, 2020, 15, 787-796.	0.6	22
518	SIMULTANEOUS LIPID AND CAROTENOID PRODUCTION BY STEPWISE FED-BATCH CULTIVATION OF Rhodotorula mucilaginosa WITH CRUDE GLYCEROL. Brazilian Journal of Chemical Engineering, 2019, 36, 1099-1108.	0.7	8
519	Produção biotecnológica de produtos de valor agregado utilizando glicerol residual proveniente da sÃntese de biodiesel. Evidência, 2017, 17, 63-86.	0.1	2
520	Investigation of glycerol doping on ignition delay times and laminar burning velocities of gasoline and diesel fuel. Silniki Spalinowe, 2017, 169, 167-175.	0.4	3
521	Effect of the initial glycerol concentration in the medium on the xanthan biosynthesis. Acta Periodica Technologica, 2014, , 239-246.	0.5	6
522	Solvent-Free Acetalization of Glycerol with n-Octanal using Combined BrÃ,nsted Acid-Surfactant Catalyst. Tenside, Surfactants, Detergents, 2017, 54, 54-63.	0.5	4
523	Polyether from a biobased Janus molecule as surfactant for carbon nanotubes. EXPRESS Polymer Letters, 2016, 10, 548-558.	1.1	6
524	Contribution to the production and use of biomass-derived solvents – a review. Acta Innovations, 2020, , 29-56.	0.4	21
525	Analysis of the Growth and Metabolites of a Pyruvate Dehydrogenase Complex-Deficient <i>Klebsiella pneumoniae</i> Mutant in a Glycerol-Based Medium. Journal of Microbiology and Biotechnology, 2020, 30, 753-761.	0.9	4
526	Fat, meat quality and sensory attributes of Large White × Landrace barrows fed with crude glycerine. Spanish Journal of Agricultural Research, 2014, 12, 717.	0.3	3
527	Reutilization of Glycerol Derived from Biodiesel Production Using HPW-Based Catalysts Supported on Niobium for Obtention of Additives. Revista Virtual De Quimica, 2014, 6, .	0.1	1
528	Glycerol carbonylation with CO2 to form glycerol carbonate: A review of recent developments and challenges. Current Research in Green and Sustainable Chemistry, 2021, 4, 100199.	2.9	16
529	Metabolic engineering design to enhance (R,R)-2,3-butanediol production from glycerol in Bacillus subtilis based on flux balance analysis. Microbial Cell Factories, 2021, 20, 196.	1.9	8
530	Directed glycerol conversion to 2,5-hexanedione and more advanced poly-oxygenates as platform chemicals and high energy-density fuel additives. Chemical Engineering Journal, 2021, , 132981.	6.6	4

#	Article	IF	CITATIONS
531	Kinetic and Nonideal VLE Modeling for Transesterification Reactions from FFA and Methyl Acetate at High Temperature and Pressure Considering Volatilization Effects/Influence. Industrial & Empiration Effects/Influence. Industrial & Engineering Chemistry Research, 2021, 60, 14815-14829.	1.8	0
532	Skin-friendly dressing with alcohols treatment for enhancement of mechanical and biocompatible properties. Journal of the Taiwan Institute of Chemical Engineers, 2021, 129, 256-263.	2.7	1
533	Performance and Exhaust Emissions of a Spark Ignition Internal Combustion Engine Fed with Butanol–Glycerol Blend. Energies, 2021, 14, 6473.	1.6	3
534	EVALUATION BY ATOMIC SPECTROMETRY OF SOLUBILIZATION METHODS FOR THE DETERMINATION OF METALS IN GLYCERIN FROM BIODIESEL PRODUCTION. Quimica Nova, 2014, , .	0.3	1
535	Próba zastosowania glicerolu i ziemniaczanej wody sokowej do produkcji karotenoidów przez droÅ⅓dÅ⅓e Rhodotorula Gracilis. Zeszyty Problemowe Postępów Nauk Rolniczych, 2017, , 49-57.	0.1	1
536	ESTUDO DO COMPORTAMENTO DA ULTRAFILTRA $ ilde{A}$ ‡ $ ilde{A}$ f O DE MISTURAS CONTENDO GLICERINA. , 0, , .		0
537	Das Koppelprodukt der Oleochemie. , 2018, , 85-105.		0
538	EMISSÕES DE GASES POLUENTES DA PRODUÇÃO SIMULTÃ,NEA DE BIODIESEL E HIDROGÊNIO. Revista Triangulo, 2018, 11, 346.	0.1	0
540	Optimization of bio-succinic fermentation process from crude glycerol by Actinobacillus succinogenes. Environmental Engineering Research, 2021, 26, 200121-0.	1.5	5
541	Biodiesel production in oil biorefinery and by-products utilization. , 2022, , 109-150.		1
542	Numerical investigation of glycerol/diesel emulsion combustion in compression ignition conditions using Stochastic Reactor Model. Fuel, 2022, 310, 122246.	3.4	3
543	Investigation on ethanol-glycerol blend combustion in the internal combustion sparkignited engine. Engine performance and exhaust emissions. Fuel Processing Technology, 2022, 226, 107085.	3.7	10
544	Potential of different Xanthomonas campestris strains for xanthan biosynthesis on waste glycerol from biodiesel production. Journal on Processing and Energy in Agriculture, 2020, 24, 62-66.	0.3	3
546	Solventes verdes obtidos de biomassa: propriedades e aplicações. , 2020, , 45-84.		0
547	The Coproduct of Oleochemistry , 2020, , 89-109.		0
548	Ranking of By-products for Single Cell Oil Production. Case of Latvia. Environmental and Climate Technologies, 2020, 24, 258-271.	0.5	2
549	A Technical Approach of Solubility Enhancement of Poorly Soluble Drugs: Liquisolid Technique. Current Drug Delivery, 2020, 17, 638-650.	0.8	4
550	Technology toward biochemicals precursors and bioplastic production. , 2022, , 265-341.		1

#	Article	IF	CITATIONS
551	Glycerin-based adsorbents for the separation of ethane and ethylene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127975.	2.3	6
552	Techno-economic analysis of enzymatic biodiesel co-produced in palm oil mills from sludge palm oil for improving renewable energy access in rural areas. Energy, 2022, 243, 122745.	4.5	14
553	Crude Glycerol as a Potential Feedstock for Future Energy via Thermochemical Conversion Processes: A Review. Sustainability, 2021, 13, 12813.	1.6	21
554	Raw Glycerol Based Medium for DHA and Lipids Production, Using the Marine Heterotrophic Microalga Crypthecodinium cohnii. Processes, 2021, 9, 2005.	1.3	7
555	Glycerolâ€derived Solvents Containing Two or Three Distinct Functional Groups Enabled by Trifluoroethyl Glycidyl Ether. AlCHE Journal, 0, , e17533.	1.8	8
556	Rigid polyurethane foams based on dextrin and glycerol. Industrial Crops and Products, 2022, 177, 114479.	2.5	11
557	Highly efficient fermentation of glycerol and 1,3-propanediol using a novel starch as feedstock. Food Bioscience, 2022, 46, 101521.	2.0	4
558	Glicerol: suplemento alimenticio y su respuesta en bovinos de leche. Agronomy Mesoamerican, 0, , 821-833.	0.1	1
559	Ultrasound promoted green synthesis, anticancer evaluation, and molecular docking studies of hydrazines: a pilot trial. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 135-144.	2.5	2
560	High Production of Trametes cinnabarina Laccase (lac1) by Suspended and Immobilized Cells of Recombinant Pichia pastoris from Crude Glycerol. Waste and Biomass Valorization, 2022, 13, 2149-2168.	1.8	6
561	An Overview of the Latest Advances in the Catalytic Synthesis of Glycerol Carbonate. Catalysts, 2022, 12, 50.	1.6	25
562	Synergistic effect of Ni-NbW with binuclear acidity for the hydrogenolysis of Glycerol. Molecular Catalysis, 2022, 518, 112112.	1.0	1
563	Circular bioeconomy for biodiesel industry: Upgradation of waste glycerol to value-added products., 2022,, 419-438.		3
564	Recent Advances in Biorefineries for Energy and Nutrient Recovery from Food Waste. Energy, Environment, and Sustainability, 2022, , 449-485.	0.6	2
565	Crude glycerol and glycerol as fuels and fuel additives in combustion applications. Renewable and Sustainable Energy Reviews, 2022, 159, 112206.	8.2	29
566	Microbial assisted production of alcohols, acetone and glycerol. , 2022, , 47-92.		0
567	Green solvents for organic electronics processing. , 2022, , 425-462.		1
568	Allâ€Climate Stretchable Dendriteâ€Free Znâ€Ion Hybrid Supercapacitors Enabled by Hydrogel Electrolyte Engineering. Energy and Environmental Materials, 2023, 6, .	7.3	29

#	ARTICLE	IF	Citations
569	Mechanistic Kinetic Modelling Framework for the Conversion of Waste Crude Glycerol to Value-Added Hydrogen-Rich Gas. Catalysts, 2022, 12, 200.	1.6	3
570	Sarocladium strictum lipase (LipSs) produced using crude glycerol as sole carbon source: A promising enzyme for biodiesel production. Biocatalysis and Agricultural Biotechnology, 2022, 40, 102299.	1.5	2
571	Synthesis of Mesoporous Zeolites and Their Opportunities in Heterogeneous Catalysis. Catalysts, 2021, 11, 1541.	1.6	20
572	Synthesis and Characterization of Bio-Glycerol from Cameroon Palm Kernel Seed Oil. Green and Sustainable Chemistry, 2022, 12, 28-40.	0.8	0
573	Single-atom catalysts for the upgrading of biomass-derived molecules: an overview of their preparation, properties and applications. Green Chemistry, 2022, 24, 2722-2751.	4.6	17
574	Cobalt-based catalysts for hydrogen production by thermochemical valorization of glycerol: a review. Environmental Chemistry Letters, 2022, 20, 2361-2384.	8.3	2
575	Current Trends in Acetins Production: Green versus Non-Green Synthesis. Molecules, 2022, 27, 2255.	1.7	7
576	Sulfated-Alumina-Catalyzed Triacetin Synthesis: An Optimization Study of Glycerol Esterification. Industrial & Engineering Chemistry Research, 2022, 61, 4235-4243.	1.8	5
577	Metabolic engineered <i>E. coli</i> for the production of <i>(R</i>)-1,2-propanediol from biodiesel derived glycerol. Biofuels, 2022, 13, 965-974.	1.4	1
578	A review on catalytic role of heterogeneous acidic catalysts during glycerol acetylation to yield acetins. Journal of the Indian Chemical Society, 2022, 99, 100459.	1.3	12
579	Enhanced waste glycerol recycling by yeast for efficient biodiesel production: Towards waste biorefinery. Biomass and Bioenergy, 2022, 159, 106410.	2.9	14
580	Economic feasibility of a solketal production process from glycerol at small industrial scale. Renewable Energy, 2022, 190, 540-547.	4.3	8
581	Bench scale production of methanol from crude glycerol (1,2,3-Propanetriol) using Zirconium loaded fluorine doped tin oxide. Fuel, 2022, 318, 123650.	3.4	2
582	Use of biobased crude glycerol, obtained biocatalytically, to obtain biofuel additives by catalytic acetalization of furfural using SAPO catalysts. Fuel, 2022, 319, 123803.	3.4	10
583	Mechanistic Origins of the pH Dependency in Au-Catalyzed Glycerol Electro-oxidation: Insight from First-Principles Calculations. ACS Catalysis, 2022, 12, 662-675.	5.5	22
584	The combustion of waste, industrial glycerol in a fluidised bed. Fuel, 2022, 322, 124169.	3.4	2
587	Biodiesel Is Dead: Long Life to Advanced Biofuelsâ€"A Comprehensive Critical Review. Energies, 2022, 15, 3173.	1.6	24
588	Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol. Energies, 2022, 15, 3381.	1.6	9

#	Article	IF	CITATIONS
589	The Evaluation of Quality of the Co-Firing Process of Glycerine Fraction with Coal in the High Power Boiler. Journal of Carbon Research, 2022, 8, 28.	1.4	1
591	Lignin depolymerization and monomeric evolution during fast pyrolysis oil upgrading with hydrogen from glycerol aqueous phase reforming. Fuel, 2022, 324, 124556.	3.4	1
592	Zirconium silicate-ionic liquid membranes for high-temperature hydrogen PEM fuel cells. International Journal of Hydrogen Energy, 2024, 52, 894-908.	3.8	12
593	Evaluation of production processes of glycerol acetals using process intensification by flow chemistry. Chemical Engineering and Processing: Process Intensification, 2022, 177, 108997.	1.8	3
594	Simultaneous refining of biodiesel-derived crude glycerol and synthesis of value-added powdered catalysts for biodiesel production: A green chemistry approach for sustainable biodiesel industries. Journal of Cleaner Production, 2022, 363, 132448.	4.6	9
595	Sustainable synthesis of acetals from glycerol as potential additives for biofuels under solvent-free conditions. Reaction Chemistry and Engineering, 2022, 7, 2132-2140.	1.9	5
597	Glycerol: Its properties, polymer synthesis, and applications in starch based films. European Polymer Journal, 2022, 175, 111377.	2.6	34
598	Enhancing glycerol electrooxidation from synergistic interactions of platinum and transition metal carbides. Applied Catalysis B: Environmental, 2022, 316, 121648.	10.8	10
599	Fermentation and downstream processing: Part 1., 2022, , 13-68.		1
600	Direct conversion of glycerol to <i>n</i> -propanol over a tandem catalytic dehydration–hydrogenation system. Catalysis Science and Technology, 0, , .	2.1	1
601	Waste animal fats as feedstock for biodiesel production using non-catalytic supercritical alcohol transesterification: A perspective by the PRISMA methodology. Energy for Sustainable Development, 2022, 69, 150-163.	2.0	32
602	Progress in the Photoreforming of Carboxylic Acids for Hydrogen Production. Photochem, 2022, 2, 580-605.	1.3	4
604	PRODUCTION OF VOLATILE ORGANIC COMPOUNDS BY YEASTS IN BIOREFINERIES: ECOLOGICAL, ENVIRONMENTAL, AND BIOTECHNOLOGICAL OUTLOOKS. , 0, , 64-78.		0
605	Photocurable Glycerol- and Vanillin-Based Resins for the Synthesis of Vitrimers. ACS Applied Polymer Materials, 2022, 4, 6103-6110.	2.0	17
606	Chemicals Production from Glycerol through Heterogeneous Catalysis: A Review. Catalysts, 2022, 12, 897.	1.6	17
607	Vapor pressure curves and isobaric vapor–liquid equilibrium for binary systems with compounds obtained from glycerol to be used as components of a bio-diesel mixture. Journal of Chemical Thermodynamics, 2022, 175, 106882.	1.0	0
608	From glycerol production to its value-added uses: A critical review. Fuel, 2022, 329, 125044.	3.4	26
609	Continuous Production of Lactic Acid from Glycerol over Bifunctional Catalysts under Base-Free Conditions Using a Liquid-Phase Flow Reactor. ACS Sustainable Chemistry and Engineering, 2022, 10, 12072-12081.	3.2	5

#	Article	IF	CITATIONS
610	Copper-Modified Titania-Based Photocatalysts for the Efficient Hydrogen Production under UV and Visible Light from Aqueous Solutions of Glycerol. Nanomaterials, 2022, 12, 3106.	1.9	7
611	Vapor-phase hydrogenolysis of glycerol to value-added 1,2-propanediol over copper-nickel bimetallic catalysts supported on activated carbon. Korean Journal of Chemical Engineering, 2022, 39, 2652-2663.	1.2	2
612	Roles of mass transfer and cell architecture in electrochemical desalination performance using polyglycerol activated carbon electrodes. Chemical Engineering Journal, 2023, 452, 139226.	6.6	5
613	Fermentation for the production of biobased chemicals in a circular economy: a perspective for the period 2022–2050. Green Chemistry, 2022, 24, 6373-6405.	4.6	29
614	Manganese-catalysed dehydrogenative oxidation of glycerol to lactic acid. Green Chemistry, 2022, 24, 8477-8483.	4.6	12
615	Recovery of Value-Added Products from Industrial Wastewaters: A Review to Potential Feedstocks. , 2022, , 201-283.		1
616	Roles of Mass Transfer and Cell Architecture in Electrochemical Desalination Performance Using Polyglycerol Activated Carbon Electrodes. SSRN Electronic Journal, 0, , .	0.4	0
617	Glycerolysis of Lauric Acid with Strontium Enhanced 12-Tungstophosphoric Acid Incorporated SBA-15: Material Characterization and Reusability Elucidation. Key Engineering Materials, 0, 930, 97-104.	0.4	0
618	Influence of Glycerol on Methanol Fuel Characteristics and Engine Combustion Performance. Energies, 2022, 15, 6585.	1.6	4
619	The support influence of <scp>Au</scp> â€based catalysts in glycerin selective oxidation to glyceric acid. Journal of Chemical Technology and Biotechnology, 0, , .	1.6	1
620	Advances for Biorefineries: Glycerol Hydrogenolysis to 1,3-Propylene Glycol. Reactions, 2022, 3, 451-498.	0.9	7
621	A comprehensive review on catalytic etherification of glycerol to value-added products. Reviews in Chemical Engineering, 2022, .	2.3	3
622	Study of the Glycerol Hydrogenolysis Reaction on Cu, Cu–Zn, and Cu–ZnO Clusters. ACS Omega, 2022, 7, 33629-33636.	1.6	3
623	Selective Hydrogenolysis of Biodiesel Waste Bioglycerol Over Titanium Phosphate (TiP) Catalysts: The Effect of Pt & Datalysts: The Lambian Science (TiP) Catalysts: The Effect of Pt & Datalysts: The Effect of Pt & Datalysts: The Lambian Science (TiP) Catalysts: The Effect of Pt & Datalysts: The Effect of P	1.8	2
624	Characterization Studies for Derived Biodiesel from the Fluid Catalytic Cracking (FCC) of Waste Cooking Oil through a Fixed Fluidized Bed (FFB). Energies, 2022, 15, 7115.	1.6	1
625	Pt1 enhanced C-H activation synergistic with Ptn catalysis for glycerol cascade oxidation to glyceric acid. Nature Communications, 2022, 13, .	5.8	33
626	Synthesis of stabilizers based on glycerides of monocarboxylic acids for industrial chloroparaffins. Fine Chemical Technologies, 2022, 17, 298-310.	0.1	0
627	Glycerol Valorization—The Role of Biochar Catalysts. Molecules, 2022, 27, 5634.	1.7	2

#	Article	IF	CITATIONS
628	Predictive control of selective secondary alcohol oxidation of glycerol on NiOOH. Nature Communications, 2022, 13 , .	5.8	40
629	<i>Hornification</i> : Lessons learned from the wood industry for attenuating this phenomenon in plantâ€based dietary fibers from food wastes. Comprehensive Reviews in Food Science and Food Safety, 2023, 22, 4-45.	5.9	10
630	Generating Oscillatory Behavior by Applying a Magnetic Field during Electrocatalytic Oxidation of Glycerol. Journal of Physical Chemistry C, 2022, 126, 18159-18169.	1.5	1
631	Profil Bahan Perisa Kritis Halal dalam Peraturan BPOM No. 13/2020. Jurnal Mutu Pangan Indonesia: Indonesian Journal of Food Quality, 2022, 9, 92-102.	0.1	0
632	A Novel PolyHIPEâ€like Catalyst for Esterification Reactions: on the Synthesis of Sulfonated Poly(styreneâ€∢i>coà€nâ€acylglycerol) and its Use for Efficient Conversion of Oleic Acid to Methyl Oleate. Macromolecular Reaction Engineering, 2023, 17, .	0.9	1
633	Synthesis of Boron-Doped Non-Flammable Anhydrous Electrolytes for Flexible Quasi-Solid-State Supercapacitor Applications. Energy & Energy & 2022, 36, 13229-13237.	2.5	5
634	Esterification of Glycerol Derived from Biodiesel with Fatty Acids to Monoglycerides – Malaysian Perspective. ChemBioEng Reviews, 2023, 10, 22-36.	2.6	0
635	Sustainable Process Design of Propionic Acid Production from Glycerol: A Comparative Study of Bio-Based and Petroleum-Based Technologies. ACS Sustainable Chemistry and Engineering, 2022, 10, 14761-14774.	3.2	4
636	Perception of glycerol carbonate as green chemical: Synthesis and applications. Catalysis Communications, 2022, 172, 106542.	1.6	11
637	Performance analysis of selective exhaust gas recirculation integrated with fogging cooling system for gas turbine power plants. Energy, 2023, 263, 125849.	4.5	7
638	One-pot preparation of micro-fibrillated cellulose fiber (MCF) through the synergistic action of g-C ₃ N ₄ and a diluted acid. Green Chemistry, 2022, 24, 9595-9601.	4.6	2
639	Constructing core-shell structured Au/Snβ@mesosilica composite for one-pot base-free conversion of glycerol to methyl lactate. Microporous and Mesoporous Materials, 2023, 347, 112348.	2.2	4
640	Valorization of glycerol into value-added products: A comprehensive review on biochemical route. Bioresource Technology Reports, 2022, 20, 101290.	1.5	4
641	Recent advances and perspectives on production of value-added organic acids through metabolic engineering. Biotechnology Advances, 2023, 62, 108076.	6.0	17
642	Synthesis, structure analysis and catalytic activity of two Ln-coordination polymers containing benzophenone-4,4′-dicarboxylate linker. New Journal of Chemistry, 2023, 47, 2230-2239.	1.4	1
643	Ni modified distillation waste derived heterogeneous catalyst utilized for the production of glycerol carbonate from a biodiesel by-product glycerol: Optimization and green metric studies. Waste Management, 2023, 156, 148-158.	3.7	8
644	Renewable carbon sources to biochemicals and -fuels: contributions of the smut fungi Ustilaginaceae. Current Opinion in Biotechnology, 2023, 79, 102849.	3.3	4
645	Different methods of synthesizing poly(glycerol sebacate) (PGS): A review. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	5

#	Article	IF	CITATIONS
646	A robust and efficient bioprocess of hydrogen production from crude glycerol by Clostridium beijerinckii G117. International Journal of Hydrogen Energy, 2023, 48, 7604-7620.	3.8	4
647	Copper-Catalyzed Asymmetric Sulfonylative Desymmetrization of Glycerol. Molecules, 2022, 27, 9025.	1.7	1
648	State-of-the-art catalysts for clean fuel (methyl esters) productionâ€"a comprehensive review. JPhys Energy, 2023, 5, 014005.	2.3	7
649	Tailor-designed binary Ni–Cu nano dendrites decorated 3D-carbon felts for efficient glycerol electrooxidation. RSC Advances, 2023, 13, 895-905.	1.7	5
650	The effect of water content on lignin solubilization in deep eutectic solvents. Journal of Molecular Liquids, 2023, 374, 121271.	2.3	10
651	Earth-abundant photoelectrodes for water splitting and alternate oxidation reactions: Recent advances and future perspectives. Progress in Materials Science, 2023, 134, 101073.	16.0	15
652	Non-isothermal kinetics of biomass waste pyrolysis by TG-MS/DSC. Carbon Capture Science & Technology, 2023, 6, 100097.	4.9	15
653	Second generation Pichia pastoris strain and bioprocess designs. , 2022, 15, .		9
654	Integrated biorefineries for the co-production of biofuels and high-value products., 2023,, 513-541.		0
655	Green solvents for multiphase systems. , 2023, , 111-132.		0
656	ĐŸĐ¾Đ»ÑƒÑ‡ĐμĐ½Đ¸Đμ Đ±Đ¸Đ¾ĐѢ¸Đ∙ĐμĐ»ÑŒĐ½Đ¾Đ³Đ¾ Ñ,Đ¾Đ¿Đ»Đ¸Đ²Đ° иĐ∙ Ñ€Đ°ÑŘ,иÑ,ĐμĐ»ÑŒ	EÐ ‰ 8∂¾Ð	³Đ£∕4 ÑÑ∢Ñ€Î
657	Highly Selective Transformation of Biomass Derivatives to Valuable Chemicals by Singleâ€Atom Photocatalyst Ni/TiO ₂ . Advanced Materials, 2023, 35, .	11.1	23
658	Synthesis and Properties of 2-Halo-1,3-diether-propanes: Diversifying the Range of Functionality in Glycerol-Derived Compounds. Industrial & Diversify Research, 2023, 62, 2959-2967.	1.8	1
659	Optimization of Medium Constituents for the Production of Citric Acid from Waste Glycerol Using the Central Composite Rotatable Design of Experiments. Molecules, 2023, 28, 3268.	1.7	2
660	The development and application of a novel hazard scoring tool for assessing impacts of cosmetic ingredients on aquatic ecosystems: A case study of rinseâ€off cosmetics. Integrated Environmental Assessment and Management, 2023, 19, 1619-1635.	1.6	1
661	Theoretical investigation on oxygen source for selective oxidation of glycerol at Au/CeO2â ⁻ and Pt/CeO2â ⁻ interfaces. Fuel, 2023, 342, 127884.	3.4	4
662	Improving electrocatalytic performance of Ni-based catalysts: fuel blend strategy and DFT calculations. Electrochimica Acta, 2023, 452, 142325.	2.6	4
663	Succinic Acid Production from Glycerol by Actinobacillus succinogenes: Techno-economic, environmental, and exergy analyses. Journal of Cleaner Production, 2023, 404, 136927.	4.6	6

#	Article	IF	CITATIONS
664	Development of novel dimethyl ether – Glycerol blends with improved viscosity and miscibility for potential compression-ignition engine application. Fuel, 2023, 346, 128301.	3.4	1
665	Turning glycerol surplus into renewable syngas through glycerol steam reforming over a sol-gel Ni–Mo2C-Al2O3 catalyst. International Journal of Hydrogen Energy, 2023, 48, 16614-16629.	3.8	5
666	Current and Future Trends for Crude Glycerol Upgrading to High Value-Added Products. Sustainability, 2023, 15, 2979.	1.6	13
667	Efficient adsorption of carbon dioxide and methane on activated carbon prepared from glycerol with potassium acetate. Environmental Chemistry Letters, 2023, 21, 1265-1270.	8.3	1
668	Environmentally Friendly Diesel Fuel Obtained from Vegetable Raw Materials and Hydrocarbon Crude. Energies, 2023, 16, 2121.	1.6	17
669	Functional naturally derived materials to improve the environment: Chemical structures, modifications, applications, and future perspectives. Advances in Bioenergy, 2023, , 93-144.	0.5	0
670	Purification of glycerol and its conversion to value-added chemicals: A review. Separation Science and Technology, 2023, 58, 1383-1402.	1.3	6
671	Glycerol cascade oxidation on nearby Pt1-Ptn sites stabilized by Cu-CuZrOx. Chem Catalysis, 2023, 3, 100574.	2.9	0
672	Assessment of glycerol gasification: devolatilization kinetics and parametric analysis. Chemical Papers, 0, , .	1.0	0
673	Microbial bioprospecting of biodiesel industry-derived crude glycerol waste conversion into value-added products., 2023,, 71-87.		0
676	Multifunctional small biomolecules as key building blocks in the development of hydrogel-based strain sensors. Journal of Materials Chemistry A, 2023, 11, 13844-13875.	5.2	5
684	Conversion of glycerol to acrylic acid: a review of strategies, recent developments and prospects. Reaction Chemistry and Engineering, 2023, 8, 1819-1838.	1.9	2
688	Bioglycerol-to-Propylene Routes: From Fundamental Catalysis to Process Design and Marketing. ACS Catalysis, 2023, 13, 7019-7054.	5.5	1
693	Utilization of zeolite catalysts in biomass exploitation: a minireview. Monatshefte Für Chemie, 2023, 154, 815-835.	0.9	1
699	Experimental Investigation of Glycerol Derivatives as Low-Concentration Additives for Diesel Fuel., 0,		0
704	Catalysis for Glycerol Production and Its Applications. , 0, , .		0
733	Effect of Methane in Global Combustion Characteristics of Glycerol and Methanol blend by Using a Novel Swirl Burst Injector. , 2024, , .		0
743	Catalytic hydrogen generation from biomass and its derivatives. , 2024, , 547-568.		0

Article IF Citations