Catalytic conversion of nitrogen to ammonia by an iron

Nature 501, 84-87 DOI: 10.1038/nature12435

Citation Report

#	Article	IF	CITATIONS
1	6. The iron-molybdenum cofactor of nitrogenase. , 2014, , 89-106.		1
2	Preparation and reactivity of a dinitrogen-bridged dimolybdenum-tetrachloride complex. Chemical Communications, 2013, 49, 11215.	2.2	28
3	Synthesis of a TREN in Which the Aryl Substituents are Part of a 45 Atom Macrocycle. Journal of the American Chemical Society, 2013, 135, 15338-15341.	6.6	25
5	Lowâ€Temperature N ₂ Binding to Twoâ€Coordinate L ₂ Fe ⁰ Enables Reductive Trapping of L ₂ FeN ₂ <â^² and NH ₃ Generation. Angewandte Chemie - International Edition, 2015, 54, 532-535.	7.2	172
6	Gradientâ€driven molecule construction: An inverse approach applied to the design of smallâ€molecule fixating catalysts. International Journal of Quantum Chemistry, 2014, 114, 838-850.	1.0	27
8	Nitrogen Atom Transfer from a Dinitrogen-Derived Vanadium Nitride Complex to Carbon Monoxide and Isocyanide. Journal of the American Chemical Society, 2014, 136, 16990-16993.	6.6	87
9	Cleavage and Formation of Molecular Dinitrogen in a Single System Assisted by Molybdenum Complexes Bearing Ferrocenyldiphosphine. Angewandte Chemie - International Edition, 2014, 53, 11488-11492.	7.2	111
10	Ruthenium Hydrides Containing the Superhindered Polydentate Polyphosphine Ligand P(CH ₂ CH ₂ P ^{<i>t</i>} Bu ₂) ₃ . Inorganic Chemistry, 2014, 53, 12469-12479.	1.9	17
11	Lessons learned and lessons to be learned for developing homogeneous transition metal complexes catalyzed reduction of N2 to ammonia. Journal of Organometallic Chemistry, 2014, 752, 44-58.	0.8	45
12	Photochemically Induced Reductive Elimination as a Route to a Zirconocene Complex with a Strongly Activated N ₂ Ligand. Angewandte Chemie - International Edition, 2014, 53, 9189-9192.	7.2	25
13	Acid-Base Control of Hemilabile Proton-Responsive Protecting Devices in Dimolybdenum, Thiolate-Bridged Complexes. Inorganic Chemistry, 2014, 53, 2200-2210.	1.9	4
14	Development of Molecular Electrocatalysts for Energy Storage. Inorganic Chemistry, 2014, 53, 3935-3960.	1.9	371
15	Protonation Studies of a Tungsten Dinitrogen Complex Supported by a Diphosphine Ligand Containing a Pendant Amine. Organometallics, 2014, 33, 2189-2200.	1.1	26
16	Catalytic Ammonia Synthesis in Homogeneous Solution—Biomimetic at Last?. Angewandte Chemie - International Edition, 2014, 53, 632-634.	7.2	34
17	Synthesis, structure and reactivity of Fe ^{II/III} –NH ₃ complexes bearing a tripodal sulfonamido ligand. Chemical Communications, 2014, 50, 2515-2517.	2.2	20
18	Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage. Chemical Reviews, 2014, 114, 4041-4062.	23.0	1,379
19	Catalytic Reduction of N ₂ to NH ₃ by an Fe–N ₂ Complex Featuring a C-Atom Anchor. Journal of the American Chemical Society, 2014, 136, 1105-1115.	6.6	296
20	Synthesis, Characterization, and Interconversion of Î ² -Diketiminato Nickel NxHyComplexes. European Journal of Inorganic Chemistry, 2014, 2014, 5296-5303.	1.0	10

ITATION REDO

#	Article	IF	CITATIONS
21	Alkali Metal Control over N–N Cleavage in Iron Complexes. Journal of the American Chemical Society, 2014, 136, 16807-16816.	6.6	103
23	Homo- and heteroleptic group 4 2-(diphenylphosphino)pyrrolide complexes: Synthesis, coordination chemistry and solution state dynamics. Polyhedron, 2014, 84, 111-119.	1.0	13
24	(Dinitrogen)molybdenum Complexes Supported by Asymmetric Silicon-Centered Tripod Ligands: Steric and Electronic Influences on the Coordination of Mono- and Diphosphine Coligands. European Journal of Inorganic Chemistry, 2014, 2014, 3564-3571.	1.0	26
25	Small Molecule Activation by POCOPâ€Nickel Complexes. Chemistry - A European Journal, 2014, 20, 12544-12552.	1.7	23
26	Flexible Coordination of Diphosphine Ligands Leading to cis and trans Pd(0), Pd(II), and Rh(I) Complexes. Inorganic Chemistry, 2014, 53, 8517-8528.	1.9	28
27	Catalytic Dinitrogen Reduction at the Molybdenum Center Promoted by a Bulky Tetradentate Phosphine Ligand. Angewandte Chemie - International Edition, 2014, 53, 14206-14210.	7.2	70
28	Identification of a spin-coupled Mo(<scp>iii</scp>) in the nitrogenase iron–molybdenum cofactor. Chemical Science, 2014, 5, 3096-3103.	3.7	164
29	Molybdenum dinitrogen complexes supported by a silicon-centred tripod ligand and dppm or dmpm: tuning the activation of N2. Dalton Transactions, 2014, 43, 2007-2012.	1.6	37
30	Two- and three-coordinate formal iron(<scp>i</scp>) compounds featuring monodentate aminocarbene ligands. Organic Chemistry Frontiers, 2014, 1, 1040-1044.	2.3	31
31	Catalytic Production of Isocyanates via Orthogonal Atom and Group Transfers Employing a Shared Formal Group 6 M(II)/M(IV) Redox Cycle. Organometallics, 2014, 33, 3239-3242.	1.1	18
32	Novel zwitterionic complexes arising from the coordination of an ambiphilic phosphorus–aluminum ligand to gold. Chemical Communications, 2014, 50, 14805-14808.	2.2	76
33	Facile scission of isonitrile carbon–nitrogen triple bond using a diborane(4) reagent. Nature Communications, 2014, 5, 4245.	5.8	111
34	Partial Hydrogenation of a Tetranuclear Titanium Nitrido Complex with Ammonia Borane. Inorganic Chemistry, 2014, 53, 8851-8853.	1.9	10
35	Cooperative Transition Metal/Lewis Acid Bond-Activation Reactions by a Bidentate (Boryl)iminomethane Complex: A Significant Metal–Borane Interaction Promoted by a Small Bite-Angle LZ Chelate. Journal of the American Chemical Society, 2014, 136, 10262-10265.	6.6	127
36	A 10 ⁶ -Fold Enhancement in N ₂ -Binding Affinity of an Fe ₂ (μ-H) ₂ Core upon Reduction to a Mixed-Valence Fe ^{II} Fe ^I State. Journal of the American Chemical Society, 2014, 136, 13853-13862.	6.6	79
37	Retrosynthetic approach to the design of molybdenum–magnesium oxoalkoxides. Dalton Transactions, 2014, 43, 12876-12885.	1.6	4
38	EPR, ENDOR, and Electronic Structure Studies of the Jahn–Teller Distortion in an FeVNitride. Journal of the American Chemical Society, 2014, 136, 12323-12336.	6.6	52
39	N–N Bond Cleavage of 1,2-Diarylhydrazines and N–H Bond Formation via H-Atom Transfer in Vanadium Complexes Supported by a Redox-Active Ligand. Journal of the American Chemical Society, 2014, 136, 12099-12107.	6.6	46

#	ARTICLE	IF	CITATIONS
41	Synthesis and Reactivity of Ruthenium Complexes Bearing Arsenic-Containing Arsenic-Nitrogen-Arsenic-Type Pincer Ligand. Organometallics, 2014, 33, 5295-5300.	1.1	23
42	Challenges in reduction of dinitrogen by proton and electron transfer. Chemical Society Reviews, 2014, 43, 5183-5191.	18.7	1,234
43	[Ge(H)(2 ₆ H ₄ PPh ₂) ₃] as Ligand Precursor at Ruthenium: Formation and Reactivity of [Ru(Cl){Ge(2 ₆ H ₄ PPh ₂) ₃ }]. European Journal of Inorganic Chemistry, 2014, 2014, 4826-4835.	1.0	29
44	<i>Organometallics</i> Roundtable 2013–2014. Organometallics, 2014, 33, 1505-1527.	1.1	24
45	Catalytic Formation of Ammonia from Molecular Dinitrogen by Use of Dinitrogen-Bridged Dimolybdenum–Dinitrogen Complexes Bearing PNP-Pincer Ligands: Remarkable Effect of Substituent at PNP-Pincer Ligand. Journal of the American Chemical Society, 2014, 136, 9719-9731.	6.6	202
46	Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia. Nature Communications, 2014, 5, 3737.	5.8	162
48	How Does Nishibayashi's Molybdenum Complex Catalyze Dinitrogen Reduction to Ammonia?. Inorganic Chemistry, 2014, 53, 4177-4183.	1.9	44
49	Dinitrogen Splitting and Functionalization in the Coordination Sphere of Rhenium. Journal of the American Chemical Society, 2014, 136, 6881-6883.	6.6	172
50	Coordination of a Hemilabile Pincer Ligand with an Olefinic Backbone to Mid-to-Late Transition Metals. Inorganic Chemistry, 2014, 53, 7248-7259.	1.9	34
55	Molybdenum-catalyzed reduction of molecular dinitrogen into ammonia under ambient reaction conditions. Comptes Rendus Chimie, 2015, 18, 776-784.	0.2	20
57	Activation of N ₂ , the Enzymatic Way. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 91-99.	0.6	25
59	Recent Progress in Research on the Structures and Functions of Nitrogenase Active Sites. Bulletin of Japan Society of Coordination Chemistry, 2015, 66, 26-30.	0.1	0
60	Synthesis and Structural Characterization of a Lithium Alkynyl(hydrazinediido)zirconate and its Protonolysis to an Alkynylhydrazido(1–)zirconium Complex. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 40-44.	0.6	1
61	Synthesis of an Iron(II) Ethyl Complex Accompanied by Formation of an Unusual Dinitrogen‣igated Iron(I) Hydride. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 45-48.	0.6	10
62	Reduction of Metal Coordinated N ₂ to NH ₃ with H ₂ by Heterolytic Hydrogen Cleavage induced by External Lewis Bases – a DFT Study. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 72-77.	0.6	7
63	Coordination of a Diphosphine–Ketone Ligand to Ni(0), Ni(I), and Ni(II): Reduction-Induced Coordination. Organometallics, 2015, 34, 2710-2713.	1.1	27
64	Diiron Bridged-Thiolate Complexes That Bind N ₂ at the Fe ^{II} Fe ^{II} , Fe ^{II} Fe ^I , and Fe ^I Fe ^I Redox States. Journal of the American Chemical Society, 2015, 137, 7310-7313.	6.6	87
65	Characterization of an Fe≡N–NH ₂ Intermediate Relevant to Catalytic N ₂ Reduction to NH ₃ . Journal of the American Chemical Society, 2015, 137, 7803-7809.	6.6	155

#	Article	IF	CITATIONS
66	N ₂ Binding to the FeMoâ€Cofactor of Nitrogenase. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 118-122.	0.6	34
67	Late Metal Scaffolds that Activate Both, Dinitrogen and Reduced Dinitrogen Species N <i>_x</i> H <i>_y</i> . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 18-30.	0.6	47
68	A review of the existing and alternative methods for greener nitrogen fixation. Chemical Engineering and Processing: Process Intensification, 2015, 90, 24-33.	1.8	327
69	Evaluating Molecular Cobalt Complexes for the Conversion of N ₂ to NH ₃ . Inorganic Chemistry, 2015, 54, 9256-9262.	1.9	143
70	Pyridonate-Supported Titanium(III). Benzylamine as an Easy-To-Use Reductant. Organometallics, 2015, 34, 4941-4945.	1.1	10
71	The discovery of Mo(III) in FeMoco: reuniting enzyme and model chemistry. Journal of Biological Inorganic Chemistry, 2015, 20, 447-460.	1.1	71
72	Electrocatalytic Reduction of Nitrogen and Carbon Dioxide to Chemical Fuels: Challenges and Opportunities for a Solar Fuel Device. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 47-57.	1.7	37
73	Hydricity of an Fe–H Species and Catalytic CO ₂ Hydrogenation. Inorganic Chemistry, 2015, 54, 5124-5135.	1.9	105
74	Synthesis and Protonation Studies of Molybdenum(0) Bis(diÂnitrogen) Complexes Supported by Diphosphine Ligands ÂContaining Pendant Amines. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 105-117.	0.6	15
75	When iron met phosphines: a happy marriage for reduction catalysis. Green Chemistry, 2015, 17, 2283-2303.	4.6	85
76	Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chemical Society Reviews, 2015, 44, 1172-1239.	18.7	316
77	Reactivity of Dinitrogen Bound to Mid―and Lateâ€Transitionâ€Metal Centers. European Journal of Inorganic Chemistry, 2015, 2015, 567-598.	1.0	108
78	Photochemical Nitrogen Conversion to Ammonia in Ambient Conditions with FeMoS-Chalcogels. Journal of the American Chemical Society, 2015, 137, 2030-2034.	6.6	287
79	Synthesis and Catalytic Activity of Molybdenum–Nitride Complexes Bearing Pincer Ligands. European Journal of Inorganic Chemistry, 2015, 2015, 1789-1794.	1.0	35
80	Moving Protons and Electrons in Biomimetic Systems. Biochemistry, 2015, 54, 1863-1878.	1.2	88
81	Is nitrogen fixation (once again) "vital to the progress of civilized humanity�. Clean Technologies and Environmental Policy, 2015, 17, 301-307.	2.1	15
82	Nickel and Palladium Complexes of Ferrocene-Backbone Bisphosphine-Borane and Trisphosphine Ligands. Organometallics, 2015, 34, 4093-4101.	1.1	33
83	Computational Study of Metal–Dinitrogen Keggin-Type Polyoxometalate Complexes Bonding Nature and Dinitrogen Splitting. Inorganic Chemistry, 2015, 54, 7929-7935.	1.9	19

#	Article	IF	CITATIONS
84	Bis-hydrocarbyl Platinum(II) Ambiphilic Ligand Complexes: Alkyl–Aryl Exchange between Platinum and Boron. Organometallics, 2015, 34, 2737-2746.	1.1	30
85	Recent Progress in Transition-Metal-Catalyzed Reduction of Molecular Dinitrogen under Ambient Reaction Conditions. Inorganic Chemistry, 2015, 54, 9234-9247.	1.9	209
86	N ₂ Activation by an Iron Complex with a Strong Electron-Donating Iminophosphorane Ligand. Inorganic Chemistry, 2015, 54, 9271-9281.	1.9	40
87	A Terminal N ₂ Complex of High-Spin Iron(I) in a Weak, Trigonal Ligand Field. Journal of the American Chemical Society, 2015, 137, 8940-8943.	6.6	47
88	Free Reaction Enthalpy Profile of the Schrock Cycle Derived from Density Functional Theory Calculations on the Full [Mo ^{HIPT} N ₃ N] Catalyst. Inorganic Chemistry, 2015, 54, 9248-9255.	1.9	43
89	Niobium-nitrides derived from nitrogen splitting. Chemical Communications, 2015, 51, 3526-3528.	2.2	34
90	Strong π-interactions between tantalum and apical ligands in square pyramidal complexes supported by a rigid tetradentate spectator ligand. Inorganica Chimica Acta, 2015, 435, 1-6.	1.2	1
91	Bimetallic Cobalt–Dinitrogen Complexes: Impact of the Supporting Metal on N ₂ Activation. Inorganic Chemistry, 2015, 54, 9263-9270.	1.9	77
92	Protonation Studies of a Mono-Dinitrogen Complex of Chromium Supported by a 12-Membered Phosphorus Macrocycle Containing Pendant Amines. Inorganic Chemistry, 2015, 54, 4827-4839.	1.9	32
93	Coordination of a Triphosphine–Silane to Gold: Formation of a Trigonal Pyramidal Complex Featuring Au ⁺ →Si Interaction. Organometallics, 2015, 34, 1449-1453.	1.1	26
94	Nitrogen fixation catalyzed by ferrocene-substituted dinitrogen-bridged dimolybdenum–dinitrogen complexes: unique behavior of ferrocene moiety as redox active site. Chemical Science, 2015, 6, 3940-3951.	3.7	100
95	Catalytic Reduction of Dinitrogen to Ammonia by Use of Molybdenum–Nitride Complexes Bearing a Tridentate Triphosphine as Catalysts. Journal of the American Chemical Society, 2015, 137, 5666-5669.	6.6	215
96	Three bonding modes of bis(2-picolyl)phenylphosphine at iron: isolation of a dinuclear iron complex featuring dearomatized pyridine moieties. Dalton Transactions, 2015, 44, 7500-7505.	1.6	7
97	Cobaltâ€Catalyzed Transformation of Molecular Dinitrogen into Silylamine under Ambient Reaction Conditions. Chemistry - A European Journal, 2015, 21, 8905-8909.	1.7	80
98	Homolytic or Heterolytic Dihydrogen Splitting with Ditantalum/Dizirconium Dinitrogen Complexes? A Computational Study. Organometallics, 2015, 34, 1255-1263.	1.1	8
99	Silane-Functionalized <i>N</i> -Heterocyclic Carbene–Cobalt Complexes Containing a Five-Coordinate Silicon with a Covalent Co–Si Bond. Organometallics, 2015, 34, 1546-1551.	1.1	34
100	Nitrogen Fixation Revisited on Iron(0) Dinitrogen Phosphine Complexes. Inorganic Chemistry, 2015, 54, 4768-4776.	1.9	38
101	Catalytic Silylation of Dinitrogen with a Dicobalt Complex. Journal of the American Chemical Society, 2015, 137, 4638-4641.	6.6	162

	CITATION	CITATION REPORT	
# 102	ARTICLE Preface for Small-Molecule Activation: From Biological Principles to Energy Applications. Part 2: Small Molecules Related to the Global Nitrogen Cycle. Inorganic Chemistry, 2015, 54, 9229-9233.	IF 1.9	CITATIONS
103	Nitric Oxide Activation by Distal Redox Modulation in Tetranuclear Iron Nitrosyl Complexes. Journal of the American Chemical Society, 2015, 137, 14094-14106.	6.6	37
104	Binding of dinitrogen to an iron–sulfur–carbon site. Nature, 2015, 526, 96-99.	13.7	223
105	Heterobimetallic Ti/Co Complexes That Promote Catalytic N–N Bond Cleavage. Inorganic Chemistry, 2015, 54, 10909-10917.	1.9	51
106	Linear and T-Shaped Iron(I) Complexes Supported by N-Heterocyclic Carbene Ligands: Synthesis and Structure Characterization. Inorganic Chemistry, 2015, 54, 8808-8816.	1.9	36
107	N ₂ Reduction into Silylamine at Tridentate Phosphine/Mo Center: Catalysis and Mechanistic Study. ACS Catalysis, 2015, 5, 6902-6906.	5.5	79
108	Synthesis and characterization of ammonia-responsive polymer microgels. Polymer Chemistry, 2015, 6, 8331-8342.	1.9	5
109	Activation of a Hydroamination Gold Catalyst by Oxidation of a Redox-Noninnocent Chlorostibine Z-Ligand. Journal of the American Chemical Society, 2015, 137, 13425-13432.	6.6	135
110	Synthesis and Characterization of a Family of Air-Stable Ferrocene- and Ruthenocene-Containing Primary, Secondary, and Tertiary Phosphines. Organometallics, 2015, 34, 4272-4280.	1.1	13
111	Iron Catalysis: Historic Overview and Current Trends. Topics in Organometallic Chemistry, 2015, , 1-18.	0.7	38
112	Mechanistic insights into nitrogen fixation by nitrogenase enzymes. Physical Chemistry Chemical Physics, 2015, 17, 29541-29547.	1.3	84
114	Dinitrogen Activation Upon Reduction of a Triiron(II) Complex. Angewandte Chemie - International Edition, 2015, 54, 1499-1503.	7.2	113
116	Air‣table Cationic Gold(I) Catalyst Featuring a Zâ€Type Ligand: Promoting Enyne Cyclizations. Angewandte Chemie - International Edition, 2015, 54, 818-822.	7.2	113
117	Photolytic N ₂ Splitting: A Road to Sustainable NH ₃ Production?. Angewandte Chemie - International Edition, 2015, 54, 42-44.	7.2	49
119	A New Sideâ€on Endâ€On Ditantalum Dinitrogen Complex and Its Reaction with BuSiH ₃ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 123-127.	0.6	12
120	Synthesis and Reactivity of Molybdenumâ€Dinitrogen Complexes Bearing PNNâ€Type Pincer Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 100-104.	0.6	23
121	The Irony of Iron – Biogenic Iron Oxides as an Iron Source to the Ocean. Frontiers in Microbiology, 2015, 6, 1502.	1.5	38
122	Silylation of Dinitrogen Catalyzed by Hydridodinitrogentris(Triphenylphosphine)Cobalt(I). Inorganics, 2016, 4, 21.	1.2	9

#	Article	IF	CITATIONS
124	Promising prospects for 2D d ² –d ⁴ M ₃ C ₂ transition metal carbides (MXenes) in N ₂ capture and conversion into ammonia. Energy and Environmental Science, 2016, 9, 2545-2549.	15.6	395
125	Strukturen, Reaktionen und Mechanismen: Stereochemie im weitesten Sinn auf der 51. Bürgenstockâ€Konferenz. Angewandte Chemie, 2016, 128, 8626-8628.	1.6	0
126	Structures, Reactions, and Mechanisms: Stereochemistry in the Broadest Sense at the 51st Bürgenstock Conference. Angewandte Chemie - International Edition, 2016, 55, 8486-8488.	7.2	0
127	Cold curation of pristine astromaterials: Insights from the Tagish Lake meteorite. Meteoritics and Planetary Science, 2016, 51, 499-519.	0.7	20
128	Putting chromium on the map for N ₂ reduction: production of hydrazine and ammonia. A study of cis-M(N ₂) ₂ (M = Cr, Mo, W) bis(diphosphine) complexes. Chemical Communications, 2016, 52, 9343-9346.	2.2	26
129	Highlights from the 51st EUCHEM conference on stereochemistry, Bürgenstock, Switzerland, May 2016. Chemical Communications, 2016, 52, 9173-9177.	2.2	0
130	Synthesis and reactions of a zirconium naphthalene complex bearing a tetraanionic C-capped triaryloxide ligand. Dalton Transactions, 2016, 45, 15879-15885.	1.6	18
131	Catalytic Dinitrogen Fixation to Form Ammonia at Ambient Reaction Conditions Using Transition Metal-Dinitrogen Complexes. Chemical Record, 2016, 16, 1549-1577.	2.9	82
132	Conversion of Dinitrogen to Ammonia by FeN ₃ -Embedded Graphene. Journal of the American Chemical Society, 2016, 138, 8706-8709.	6.6	562
133	Thermodynamics of N–H bond formation in bis(phosphine) molybdenum(<scp>ii</scp>) diazenides and the influence of the trans ligand. Dalton Transactions, 2016, 45, 15922-15930.	1.6	14
134	Essential role of hydride ion in ruthenium-based ammonia synthesis catalysts. Chemical Science, 2016, 7, 4036-4043.	3.7	195
135	Conversion of Dinitrogen into Acetonitrile under Ambient Conditions. Angewandte Chemie, 2016, 128, 4864-4867.	1.6	46
136	Direct Synthesis of Silylamine from N ₂ and a Silane: Mediated by a Tridentate Phosphine Molybdenum Fragment. Angewandte Chemie, 2016, 128, 11378-11382.	1.6	37
137	Sulfur-Supported Iron Complexes for Understanding N2 Reduction. Topics in Organometallic Chemistry, 2016, , 197-213.	0.7	3
138	A Synthetic Single-Site Fe Nitrogenase: High Turnover, Freeze-Quench ⁵⁷ Fe Mössbauer Data, and a Hydride Resting State. Journal of the American Chemical Society, 2016, 138, 5341-5350.	6.6	259
139	Solid State Collapse of a High-Spin Square-Planar Fe(II) Complex, Solution Phase Dynamics, and Electronic Structure Characterization of an Fe(II) ₂ Dimer. Inorganic Chemistry, 2016, 55, 5191-5200.	1.9	12
140	Insight into the Iron–Molybdenum Cofactor of Nitrogenase from Synthetic Iron Complexes with Sulfur, Carbon, and Hydride Ligands. Journal of the American Chemical Society, 2016, 138, 7200-7211.	6.6	146
141	Teaching old compounds new tricks: efficient N ₂ fixation by simple Fe(N ₂)(diphosphine) ₂ complexes. Dalton Transactions, 2016, 45, 7550-7554.	1.6	41

#	Article	IF	CITATIONS
142	N-Heterocyclic Carbene Complexes of Three- and Four-Coordinate Fe(I). Organometallics, 2016, 35, 1368-1375.	1.1	14
143	Interplay between Theory and Experiment for Ammonia Synthesis Catalyzed by Transition Metal Complexes. Accounts of Chemical Research, 2016, 49, 987-995.	7.6	200
144	Thiopyridazine-Based Copper Boratrane Complexes Demonstrating the Z-type Nature of the Ligand. Inorganic Chemistry, 2016, 55, 4980-4991.	1.9	25
145	Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5530-5535.	3.3	211
146	Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony. Accounts of Chemical Research, 2016, 49, 857-867.	7.6	140
148	Proton oupled Reduction of an Iron Cyanide Complex to Methane and Ammonia. Angewandte Chemie, 2016, 128, 12450-12453.	1.6	2
149	Proton oupled Reduction of an Iron Cyanide Complex to Methane and Ammonia. Angewandte Chemie - International Edition, 2016, 55, 12262-12265.	7.2	27
150	Ammonia Synthesis by N ₂ and Steam Electrolysis in Solid-State Cells at 220°C and Atmospheric Pressure. Journal of the Electrochemical Society, 2016, 163, E282-E287.	1.3	24
151	Selective Catalytic Reduction of N ₂ to N ₂ H ₄ by a Simple Fe Complex. Journal of the American Chemical Society, 2016, 138, 13521-13524.	6.6	154
152	Evaluating the Thermodynamics of Electrocatalytic N ₂ Reduction in Acetonitrile. ACS Energy Letters, 2016, 1, 698-704.	8.8	115
153	Efficient and Stable Ammonia Synthesis by Self-Organized Flat Ru Nanoparticles on Calcium Amide. ACS Catalysis, 2016, 6, 7577-7584.	5.5	129
154	Exploring Electron/Proton Transfer and Conformational Changes in the Nitrogenase MoFe Protein and FeMoâ€cofactor Through Cryoreduction/EPR Measurements. Israel Journal of Chemistry, 2016, 56, 841-851.	1.0	13
155	Direct Synthesis of Silylamine from N ₂ and a Silane: Mediated by a Tridentate Phosphine Molybdenum Fragment. Angewandte Chemie - International Edition, 2016, 55, 11212-11216.	7.2	91
156	Stepwise N–H bond formation from N2-derived iron nitride, imide and amide intermediates to ammonia. Chemical Science, 2016, 7, 5736-5746.	3.7	76
157	Substituent Directed Phototransformations of BN-Heterocycles: Elimination vs Isomerization via Selective B–C Bond Cleavage. Journal of the American Chemical Society, 2016, 138, 11513-11516.	6.6	72
158	Anion-Controlled Positional Switching of a Phenyl Group about the Dinuclear Core of a AuSb Complex. Inorganic Chemistry, 2016, 55, 9162-9172.	1.9	34
159	Molybdenum(0) Dinitrogen Complexes Supported by Pentadentate Tetrapodal Phosphine Ligands: Structure, Synthesis, and Reactivity toward Acids. Inorganic Chemistry, 2016, 55, 8712-8722.	1.9	26
160	Direct Transformation of Molecular Dinitrogen into Ammonia Catalyzed by Cobalt Dinitrogen Complexes Bearing Anionic PNP Pincer Ligands. Angewandte Chemie - International Edition, 2016, 55, 14291-14295.	7.2	184

#	Article	IF	CITATIONS
161	Electron Transfer Reactions in Biological Nitrogen Fixation. Israel Journal of Chemistry, 2016, 56, 682-692.	1.0	12
162	Thermodynamic investigation of hydrogen enrichment and carbon suppression using chemical additives in ethanol dry reforming. International Journal of Hydrogen Energy, 2016, 41, 15149-15157.	3.8	23
163	Coordination and Redox Non-innocent Behavior of Hybrid Ligands Containing Tellurium. Chemistry Letters, 2016, 45, 376-384.	0.7	35
164	Self-assembly of (NH4)0.3TiO1.1F2.1 crystal by dinitrogen fixation as a precursor of N-doped TiO2 nanosheets. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	3
165	Catalytic Proton Coupled Electron Transfer from Metal Hydrides to Titanocene Amides, Hydrazides and Imides: Determination of Thermodynamic Parameters Relevant to Nitrogen Fixation. Journal of the American Chemical Society, 2016, 138, 13379-13389.	6.6	69
166	Functional group migrations between boron and metal centres within transition metal–borane and –boryl complexes and cleavage of H–H, E–H and E–E′ bonds. Chemical Communications, 2016, 52, 10712-10726.	2.2	91
167	Insights into small molecule activation by multinuclear first-row transition metal cyclophanates. Dalton Transactions, 2016, 45, 14499-14507.	1.6	13
168	Coordination of Lewis Acids to Transition Metals: Z-Type Ligands. Structure and Bonding, 2016, , 141-201.	1.0	21
169	Dimension and bridging ligand effects on Mo-mediated catalytic transformation of dinitrogen to ammonia: Chain-like extended models of Nishibayashi's catalyst. Computational and Theoretical Chemistry, 2016, 1095, 134-141.	1.1	3
170	Nitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement. Nature Communications, 2016, 7, 10902.	5.8	131
171	Formation of Di- <i>tert</i> -butylurea from a Mononuclear Iron Tris(isocyanide) Complex. Organometallics, 2016, 35, 3720-3727.	1.1	3
172	Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand. Nature Communications, 2016, 7, 12181.	5.8	244
173	Direct Transformation of Molecular Dinitrogen into Ammonia Catalyzed by Cobalt Dinitrogen Complexes Bearing Anionic PNP Pincer Ligands. Angewandte Chemie, 2016, 128, 14503-14507.	1.6	56
174	Recent Advances in Transition Metal-Catalyzed Dinitrogen Activation. Advances in Organometallic Chemistry, 2016, , 261-377.	0.5	45
175	Synthesis of a Tris(phosphaalkene)phosphine Ligand and Fundamental Organometallic Reactions on Its Sterically Shielded Metal Complexes. Organometallics, 2016, 35, 2224-2231.	1.1	14
176	Conversion of Dinitrogen into Acetonitrile under Ambient Conditions. Angewandte Chemie - International Edition, 2016, 55, 4786-4789.	7.2	128
177	Group 6 metal pentacarbonyl complexes of air-stable primary, secondary, and tertiary ferrocenylethylphosphines. Dalton Transactions, 2016, 45, 2859-2867.	1.6	7
178	Fresh insight to functioning of selected enzymes of the nitrogen cycle. Current Opinion in Chemical Biology, 2016, 31, 103-112.	2.8	13

#	Article	IF	CITATIONS
179	An Fe-N ₂ Complex That Generates Hydrazine and Ammonia via Feâ•NNH ₂ : Demonstrating a Hybrid Distal-to-Alternating Pathway for N ₂ Reduction. Journal of the American Chemical Society, 2016, 138, 4243-4248.	6.6	197
180	The enantioselectivity in asymmetric ketone hydrogenation catalyzed by RuH ₂ (diphosphine)(diamine) complexes: insights from a 3D-QSSR and DFT study. Catalysis Science and Technology, 2016, 6, 4450-4457.	2.1	27
181	Facile Insertion of Rh and Ir into a Boron–Phenyl Bond, Leading to Boryl/Bis(phosphine) PBP Pincer Complexes. Journal of the American Chemical Society, 2016, 138, 2086-2089.	6.6	95
182	Theoretical Investigation on the Role of the Central Carbon Atom and Close Protein Environment on the Nitrogen Reduction in Mo Nitrogenase. ACS Catalysis, 2016, 6, 1567-1577.	5.5	57
183	Application of 93Nb NMR spectroscopy to (silox)3Nb(Xn/Lm) complexes (silox =tBu3SiO): Where does (silox)3Nb(NN)Nb(silox)3 appear?. Polyhedron, 2016, 103, 105-114.	1.0	12
184	Three- and Four-Coordinate Homoleptic Iron(I)–NHC Complexes: Synthesis and Characterization. Organometallics, 2016, 35, 1361-1367.	1.1	15
185	Electrochemical conversion of dinitrogen to ammonia induced by a metal complex–supported ionic liquid. Electrochemistry Communications, 2016, 67, 6-10.	2.3	31
186	Electronic Structures of the [Fe(N ₂)(SiP ^{iPr} ₃)] ^{+1/0/–1} Electron Transfer Series: A Counterintuitive Correlation between Isomer Shifts and Oxidation States. Inorganic Chemistry, 2016, 55, 3468-3474.	1.9	46
187	Complexes of ambiphilic ligands: reactivity and catalytic applications. Chemical Society Reviews, 2016, 45, 1065-1079.	18.7	271
188	Including Memory Friction in Single- and Two-State Quantum Dynamics Simulations. Journal of Physical Chemistry B, 2016, 120, 1461-1475.	1.2	1
189	Dinitrogen activation by group 4 and group 5 metal complexes supported by phosphine-amido containing ligand manifolds. Coordination Chemistry Reviews, 2017, 334, 84-99.	9.5	97
190	Leveraging molecular metal–support interactions for H2 and N2 activation. Coordination Chemistry Reviews, 2017, 334, 100-111.	9.5	148
191	Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catalysis Today, 2017, 286, 57-68.	2.2	573
192	Dinitrogen Fixation by Transition Metal Hydride Complexes. Topics in Organometallic Chemistry, 2017, , 23-43.	0.7	25
193	Catalytic NH ₃ Synthesis using N ₂ /H ₂ at Molecular Transition Metal Complexes: Concepts for Lead Structure Determination using Computational Chemistry. Chemistry - A European Journal, 2017, 23, 11992-12003.	1.7	35
194	Dinitrogen Activation by Dihydrogen and a PNP-Ligated Titanium Complex. Journal of the American Chemical Society, 2017, 139, 1818-1821.	6.6	83
195	N–H Bond Dissociation Enthalpies and Facile H Atom Transfers for Early Intermediates of Fe–N ₂ and Fe–CN Reductions. Journal of the American Chemical Society, 2017, 139, 3161-3170	6.6	50
196	Vanadium-catalyzed Reduction of Molecular Dinitrogen into Silylamine under Ambient Reaction Conditions. Chemistry Letters, 2017, 46, 466-468.	0.7	53

#	Article	IF	CITATIONS
197	Straightforward Access to Stable, 16-Valence-Electron Phosphine-Stabilized Fe ⁰ Olefin Complexes and Their Reactivity. Organometallics, 2017, 36, 605-613.	1.1	16
198	Computational Approach to Nitrogen Fixation on Molybdenum–Dinitrogen Complexes. Topics in Organometallic Chemistry, 2017, , 171-196.	0.7	7
199	Synthetic Nitrogen Fixation with Mononuclear Molybdenum(0) Phosphine Complexes: Occupying the trans-Position of Coordinated N2. Topics in Organometallic Chemistry, 2017, , 113-152.	0.7	8
200	Catalytic N ₂ -to-NH ₃ Conversion by Fe at Lower Driving Force: A Proposed Role for Metallocene-Mediated PCET. ACS Central Science, 2017, 3, 217-223.	5.3	194
201	Impact of ligands and media on the structure and properties of biological and biomimetic iron-sulfur clusters. Coordination Chemistry Reviews, 2017, 338, 207-225.	9.5	36
202	Structure and dynamic NMR behavior of rhodium complexes supported by Lewis acidic group 13 metallatranes. Dalton Transactions, 2017, 46, 5689-5701.	1.6	31
203	Cleavage of Dinitrogen from Forming Gas by a Titanium Molecular System under Ambient Conditions. Chemistry - A European Journal, 2017, 23, 3558-3561.	1.7	18
204	Ammonia Oxidation by Abstraction of Three Hydrogen Atoms from a Mo–NH ₃ Complex. Journal of the American Chemical Society, 2017, 139, 2916-2919.	6.6	54
205	Nitrogenase Cofactor: Inspiration for Model Chemistry. Chemistry - an Asian Journal, 2017, 12, 1447-1455.	1.7	24
206	Reactivity of hydride bridges in a high-spin [Fe ₃ (μ-H) ₃] ³⁺ cluster: reversible H ₂ /CO exchange and Fe–H/B–F bond metathesis. Chemical Science, 2017, 8, 4123-4129.	3.7	18
207	Dinitrogen Splitting Coupled to Protonation. Angewandte Chemie - International Edition, 2017, 56, 5872-5876.	7.2	88
208	N ₂ â€ŧoâ€NH ₃ Conversion by a triphos–Iron Catalyst and Enhanced Turnover under Photolysis. Angewandte Chemie - International Edition, 2017, 56, 6921-6926.	7.2	154
209	Dinitrogen Splitting Coupled to Protonation. Angewandte Chemie, 2017, 129, 5966-5970.	1.6	29
210	Hydride & dihydrogen complexes of earth abundant metals: structure, reactivity, and applications to catalysis. Chemical Communications, 2017, 53, 669-676.	2.2	54
211	Cationic silyldiazenido complexes of the Fe(diphosphine) ₂ (N ₂) platform: structural and electronic models for an elusive first intermediate in N ₂ fixation. Chemical Communications, 2017, 53, 7657-7660.	2.2	28
212	Feasibility of N ₂ Binding and Reduction to Ammonia on Feâ€Deposited MoS ₂ 2D Sheets: A DFT Study. Chemistry - A European Journal, 2017, 23, 8275-8279.	1.7	173
213	Reduction of Dinitrogen to Ammonia Catalyzed by Molybdenum Diamido Complexes. Journal of the American Chemical Society, 2017, 139, 9132-9135.	6.6	129
214	Nitrogen Fixation. Topics in Organometallic Chemistry, 2017, , .	0.7	30

#	Article	IF	Citations
215	Ambient nitrogen reduction cycle using a hybrid inorganic–biological system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6450-6455.	3.3	167
216	The Formation of Surface Lithium–Iron Ternary Hydride and its Function on Catalytic Ammonia Synthesis at Low Temperatures. Angewandte Chemie, 2017, 129, 8842-8846.	1.6	16
217	The Formation of Surface Lithium–Iron Ternary Hydride and its Function on Catalytic Ammonia Synthesis at Low Temperatures. Angewandte Chemie - International Edition, 2017, 56, 8716-8720.	7.2	58
218	EPR/ENDOR and Theoretical Study of the Jahn–Teller-Active [HIPTN ₃ N]Mo ^V L Complexes (L = N [–] , NH). Inorganic Chemistry, 2017, 56, 6906-6919.	1.9	14
219	N ₂ â€ŧoâ€NH ₃ Conversion by a triphos–Iron Catalyst and Enhanced Turnover under Photolysis. Angewandte Chemie, 2017, 129, 7025-7030.	1.6	35
220	Catalytic N ₂ Reduction to Silylamines and Thermodynamics of N ₂ Binding at Square Planar Fe. Journal of the American Chemical Society, 2017, 139, 9291-9301.	6.6	72
221	Synthesis and Reactivity of Iron– and Cobalt–Dinitrogen Complexes Bearing PSiPâ€Type Pincer Ligands toward Nitrogen Fixation. European Journal of Inorganic Chemistry, 2017, 2017, 3769-3778.	1.0	70
222	[Fe ₄] and [Fe ₆] Hydride Clusters Supported by Phosphines: Synthesis, Characterization, and Application in N ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 5596-5606.	6.6	92
223	Remarkable catalytic activity of dinitrogen-bridged dimolybdenum complexes bearing NHC-based PCP-pincer ligands toward nitrogen fixation. Nature Communications, 2017, 8, 14874.	5.8	198
224	Ammonia Synthesis from a Pincer Ruthenium Nitride via Metal–Ligand Cooperative Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2017, 139, 5305-5308.	6.6	40
225	Functionalization of N2 by Mid to Late Transition Metals via N–N Bond Cleavage. Topics in Organometallic Chemistry, 2017, , 71-112.	0.7	50
226	Catalytic Transformations of Molecular Dinitrogen by Iron and Cobalt–Dinitrogen Complexes as Catalysts. Topics in Organometallic Chemistry, 2017, , 215-234.	0.7	15
227	Determining and Understanding N-H Bond Strengths in Synthetic Nitrogen Fixation Cycles. Topics in Organometallic Chemistry, 2017, , 1-21.	0.7	27
228	Examining the relationship between coordination mode and reactivity of dinitrogen. Nature Reviews Chemistry, 2017, 1, .	13.8	235
229	Electrochemical Ammonia Synthesis—The Selectivity Challenge. ACS Catalysis, 2017, 7, 706-709.	5.5	689
230	Exploring secondary-sphere interactions in Fe–N _x H _y complexes relevant to N ₂ fixation. Chemical Science, 2017, 8, 2321-2328.	3.7	57
231	Synthesis and Characterization of PBP Pincer Iridium Complexes and Their Application in Alkane Transfer Dehydrogenation. Organometallics, 2017, 36, 228-233.	1.1	60
232	Catalytic Nitrogen-to-Ammonia Conversion by Osmium and Ruthenium Complexes. Journal of the American Chemical Society, 2017, 139, 16105-16108.	6.6	157

#	Article	IF	CITATIONS
233	Production of Liquid Solar Fuels and Their Use in Fuel Cells. Joule, 2017, 1, 689-738.	11.7	149
234	Nitrogen Fixation via a Terminal Fe(IV) Nitride. Journal of the American Chemical Society, 2017, 139, 15312-15315.	6.6	120
235	Mechanistic Consequences of Chelate Ligand Stabilization on Nitrogen Fixation by Yandulov–Schrock-Type Complexes. ACS Sustainable Chemistry and Engineering, 2017, 5, 10527-10537.	3.2	8
236	Three-Fold-Symmetric Selenium-Donor Metallaboratranes of Cobalt and Nickel. Inorganic Chemistry, 2017, 56, 12670-12673.	1.9	11
237	T-Shaped Gold→Stiborane Complexes as Carbophilic Catalysts: Influence of the Peripheral Substituents. Organometallics, 2017, 36, 4224-4230.	1.1	43
238	Synthesis and reactivity of iron–dinitrogen complexes bearing anionic methyl- and phenyl-substituted pyrrole-based PNP-type pincer ligands toward catalytic nitrogen fixation. Chemical Communications, 2017, 53, 12040-12043.	2.2	63
239	DFT Mechanistic Study on Alkene Hydrogenation Catalysis of Iron Metallaboratrane: Characteristic Features of Iron Species. Organometallics, 2017, 36, 3530-3538.	1.1	18
240	Protonation of Coordinated Dinitrogen Using Protons Generated from Molecular Hydrogen. European Journal of Inorganic Chemistry, 2017, 2017, 4239-4245.	1.0	23
241	Towards Catalytic Ammonia Oxidation to Dinitrogen: A Synthetic Cycle by Using a Simple Manganese Complex. Chemistry - A European Journal, 2017, 23, 11479-11484.	1.7	48
242	Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide. Journal of the American Chemical Society, 2017, 139, 10929-10936.	6.6	721
243	Aqueous geochemistry in icy world interiors: Equilibrium fluid, rock, and gas compositions, and fate of antifreezes and radionuclides. Geochimica Et Cosmochimica Acta, 2017, 212, 324-371.	1.6	74
244	Catalytic Nitrogen Fixation via Direct Cleavage of Nitrogen–Nitrogen Triple Bond of Molecular Dinitrogen under Ambient Reaction Conditions. Bulletin of the Chemical Society of Japan, 2017, 90, 1111-1118.	2.0	156
246	Catalytic Conversion of Dinitrogen into Ammonia under Ambient Reaction Conditions by Using Proton Source from Water. Chemistry - an Asian Journal, 2017, 12, 2544-2548.	1.7	26
247	Molecular Catalysts for N ₂ Reduction: State of the Art, Mechanism, and Challenges. ChemPhysChem, 2017, 18, 2606-2617.	1.0	83
248	Single Mo Atom Supported on Defective Boron Nitride Monolayer as an Efficient Electrocatalyst for Nitrogen Fixation: A Computational Study. Journal of the American Chemical Society, 2017, 139, 12480-12487.	6.6	1,006
249	Substituent Effects in the Cyclization of Yne-Diols Catalyzed by Gold Complexes Featuring L ₂ /Z-Type Diphosphinoborane Ligands. Organometallics, 2017, 36, 3005-3008.	1.1	30
250	Increased thermal stability of activated N2 adsorbed on K-promoted Ni{110}. Physical Chemistry Chemical Physics, 2017, 19, 21848-21855.	1.3	3
251	Hydrazine Capture and N–N Bond Cleavage at Iron Enabled by Flexible Appended Lewis Acids. Journal of the American Chemical Society, 2017, 139, 18194-18197	6.6	65

#	Article	IF	CITATIONS
252	Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy and Environmental Science, 2017, 10, 2516-2520.	15.6	497
253	Highly enhanced stability and efficiency for atmospheric ammonia photocatalysis by hot electrons from a graphene composite catalyst with Al2O3. Carbon, 2017, 124, 72-78.	5.4	28
254	Unusual C–N Coupling Reactivity of Thiopyridazines: Efficient Synthesis of Iron Diorganotrisulfide Complexes. Inorganic Chemistry, 2017, 56, 8159-8165.	1.9	5
255	An Unsaturated Four oordinate Dimethyl Dimolybdenum Complex with a Molybdenum–Molybdenum Quadruple Bond. Chemistry - A European Journal, 2017, 23, 194-205.	1.7	10
256	Synthetic nitrogen fixation with mononuclear molybdenum complexes: Electronic-structural and mechanistic insights from DFT. Coordination Chemistry Reviews, 2017, 345, 263-280.	9.5	19
257	Metal-ligand cooperation between palladium and a diphosphine ligand with an olefinic backbone. Inorganica Chimica Acta, 2017, 460, 35-42.	1.2	15
258	Di-tert-butyl thiopyridazine boratrane complexes of Co, Ni and Cu. Polyhedron, 2017, 125, 122-129.	1.0	11
259	Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nature Chemistry, 2017, 9, 64-70.	6.6	451
260	Coordination chemistry insights into the role of alkali metal promoters in dinitrogen reduction. Catalysis Today, 2017, 286, 21-40.	2.2	88
261	The Chemical Bond III. Structure and Bonding, 2017, , .	1.0	3
262	Bis- and tris-phosphinostannane gold complexes featuring Au → Sn dative interactions: Synthesis, structures, and DFT calculations. Polyhedron, 2017, 125, 18-25.	1.0	18
263	Exploring the role of pendant amines in transition metal complexes for the reduction of N2 to hydrazine and ammonia. Coordination Chemistry Reviews, 2017, 334, 67-83.	9.5	39
264	A new synthesis route of ammonia production through hydrolysis of metal – Nitrides. International Journal of Hydrogen Energy, 2017, 42, 24897-24903.	3.8	30
265	Pitfalls and Limitations in Group 6 Triamidophosphane Chemistry: Cageâ€Closure Restrictions in Squareâ€Pyramidal Nitrido Complexes and Degradation via Spiroâ€[4.4]â€î» ⁵ â€Amidophosphorane Formation. European Journal of Inorganic Chemistry, 2017, 2017, 5442-5450.	1.0	2
266	8. The iron-molybdenum cofactor of nitrogenase. , 2017, , 205-222.		1
267	Efficient Catalytic Conversion of Dinitrogen to N(SiMe ₃) ₃ Using a Homogeneous Mononuclear Cobalt Complex. ACS Catalysis, 2018, 8, 3011-3015.	5.5	61
268	Direct and indirect hyperpolarisation of amines using <i>para</i> hydrogen. Chemical Science, 2018, 9, 3677-3684.	3.7	53
269	Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Research, 2018, 11, 2992-3008.	5.8	221

#	Article	IF	CITATIONS
270	Construction of the Oxazolidinone Framework from Propargylamine and CO ₂ in Air at Ambient Temperature: Catalytic Effect of a Gold Complex Featuring an L ₂ /Zâ€Type Ligand. European Journal of Organic Chemistry, 2018, 2018, 2972-2976.	1.2	24
271	Catalytic Reduction of Molecular Dinitrogen to Ammonia and Hydrazine Using Vanadium Complexes. Angewandte Chemie, 2018, 130, 9202-9206.	1.6	20
272	An <i>S</i> = ¹ / ₂ Iron Complex Featuring N ₂ , Thiolate, and Hydride Ligands: Reductive Elimination of H ₂ and Relevant Thermochemical Fe–H Parameters. Journal of the American Chemical Society, 2018, 140, 6374-6382.	6.6	42
273	Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nature Communications, 2018, 9, 1610.	5.8	409
274	Discovery of cobweb-like MoC ₆ and its application for nitrogen fixation. Journal of Materials Chemistry A, 2018, 6, 9623-9628.	5.2	83
275	Influence of a Metal Substrate on Smallâ€Molecule Activation Mediated by a Surfaceâ€Adsorbed Complex. Chemistry - A European Journal, 2018, 24, 10732-10744.	1.7	11
276	Fe-Mediated Nitrogen Fixation with a Metallocene Mediator: Exploring p <i>K</i> _a Effects and Demonstrating Electrocatalysis. Journal of the American Chemical Society, 2018, 140, 6122-6129.	6.6	132
277	Catalytic Reduction of Molecular Dinitrogen to Ammonia and Hydrazine Using Vanadium Complexes. Angewandte Chemie - International Edition, 2018, 57, 9064-9068.	7.2	109
278	Alkali Cation Effects on Redox-Active Formazanate Ligands in Iron Chemistry. Inorganic Chemistry, 2018, 57, 9580-9591.	1.9	30
279	Catalytic Dinitrogen Reduction to Ammonia at a Triamidoamine–Titanium Complex. Angewandte Chemie - International Edition, 2018, 57, 6314-6318.	7.2	113
280	Efficient Nitrogen Fixation via a Redox-Flexible Single-Iron Site with Reverse-Dative Iron → Boron σ Bonding. Journal of Physical Chemistry A, 2018, 122, 4530-4537.	1.1	23
281	Preparation and reactivity of iron complexes bearing anionic carbazole-based PNP-type pincer ligands toward catalytic nitrogen fixation. Dalton Transactions, 2018, 47, 1117-1121.	1.6	61
282	Catalytic Silylation of N2and Synthesis of NH3and N2H4by Net Hydrogen Atom Transfer Reactions Using a Chromium P4Macrocycle. Journal of the American Chemical Society, 2018, 140, 2528-2536.	6.6	78
283	Non-Transition-Metal Catalytic System for N ₂ Reduction to NH ₃ : AÂDensity Functional Theory Study of Al-Doped Graphene. Journal of Physical Chemistry Letters, 2018, 9, 570-576.	2.1	43
284	Carbometalated Complexes Possessing Tripodal Pseudo- <i>C</i> ₃ -Symmetric Triptycene-Based Ligands. Organometallics, 2018, 37, 526-529.	1.1	21
285	The Role of Seven-Coordination in Ru-Catalyzed Water Oxidation. ACS Catalysis, 2018, 8, 2039-2048.	5.5	41
286	Synthesis and Characterization of Heterobimetallic Iridium–Aluminum and Rhodium–Aluminum Complexes. Inorganic Chemistry, 2018, 57, 1148-1157.	1.9	17
287	MXene-derived TiO ₂ @C/g-C ₃ N ₄ heterojunctions for highly efficient nitrogen photofixation. Journal of Materials Chemistry A, 2018, 6, 4102-4110.	5.2	333

#	Article	IF	CITATIONS
288	Mechanism of N ₂ Reduction Catalyzed by Fe-Nitrogenase Involves Reductive Elimination of H ₂ . Biochemistry, 2018, 57, 701-710.	1.2	80
289	Bis(dinitrogen)cobalt(â^'1) Complexes with NHC Ligation: Synthesis, Characterization, and Their Dinitrogen Functionalization Reactions Affording Side-on Bound Diazene Complexes. Journal of the American Chemical Society, 2018, 140, 2239-2250.	6.6	95
291	Ambiphilic Molecules: From Organometallic Curiosity to Metal-Free Catalysts. Accounts of Chemical Research, 2018, 51, 454-464.	7.6	99
292	Fe-Mediated HER vs N ₂ RR: Exploring Factors That Contribute to Selectivity in P ₃ ^E Fe(N ₂) (E = B, Si, C) Catalyst Model Systems. ACS Catalysis, 2018, 8, 1448-1455.	5.5	81
293	Using <i>para</i> hydrogen to hyperpolarize amines, amides, carboxylic acids, alcohols, phosphates, and carbonates. Science Advances, 2018, 4, eaao6250.	4.7	109
294	Ultrafast Photophysics of a Dinitrogen-Bridged Molybdenum Complex. Journal of the American Chemical Society, 2018, 140, 6298-6307.	6.6	13
295	Catalytic Dinitrogen Reduction to Ammonia at a Triamidoamine–Titanium Complex. Angewandte Chemie, 2018, 130, 6422-6426.	1.6	26
296	Efficient nitrogen fixation to ammonia on MXenes. Physical Chemistry Chemical Physics, 2018, 20, 14504-14512.	1.3	82
297	Nitrogen reduction utilizing solvated electrons produced by thermal excitation of trapped electrons in reduced titanium oxide. New Journal of Chemistry, 2018, 42, 6084-6090.	1.4	8
298	Functionalized Self-Assembled Monolayers Bearing Diiminate Complexes Immobilized through Covalently Anchored Ligands. Langmuir, 2018, 34, 13472-13480.	1.6	1
299	Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects. Materials Horizons, 2018, 5, 9-27.	6.4	586
300	Surface Single-Cluster Catalyst for N ₂ -to-NH ₃ Thermal Conversion. Journal of the American Chemical Society, 2018, 140, 46-49.	6.6	233
301	Nitrogen Fixation Catalyzed by Transition Metal Complexes: Recent Developments. European Journal of Inorganic Chemistry, 2018, 2018, 1337-1355.	1.0	105
302	Nitrogen Reduction to Ammonia on a Biomimetic Mononuclear Iron Centre: Insights into the Nitrogenase Enzyme. Chemistry - A European Journal, 2018, 24, 5293-5302.	1.7	44
304	Looking at Nitrogenase: Insights from Modern Structural Approaches. Structure and Bonding, 2018, , 1-13.	1.0	1
305	Molybdenum Complexes that Contain a Calix[6]azacryptand Ligand as Catalysts for Reduction of N ₂ to Ammonia. Inorganic Chemistry, 2018, 57, 15566-15574.	1.9	8
306	Potholeâ€rich Ultrathin WO ₃ Nanosheets that Trigger N≡N Bond Activation of Nitrogen for Direct Nitrate Photosynthesis. Angewandte Chemie, 2019, 131, 741-745.	1.6	21
307	Application of affinity purification methods for analysis of the nitrogenase system from Azotobacter vinelandii. Methods in Enzymology, 2018, 613, 231-255.	0.4	13

#	Article	IF	CITATIONS
308	Serpentinization: Connecting Geochemistry, Ancient Metabolism and Industrial Hydrogenation. Life, 2018, 8, 41.	1.1	61
309	Triphos–Fe dinitrogen and dinitrogen–hydride complexes: relevance to catalytic N ₂ reductions. Chemical Communications, 2018, 54, 11953-11956.	2.2	28
310	Design, modification and application of semiconductor photocatalysts. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 590-602.	2.7	94
311	Singleâ€Site Molybdenum on Solid Support Materials for Catalytic Hydrogenation of N ₂ â€intoâ€NH ₃ . Angewandte Chemie - International Edition, 2018, 57, 15812-15816.	7.2	33
312	The Gold-catalyzed Formal Hydration, Decarboxylation, and [4+2] Cycloaddition of Alkyne Derivatives Featuring L ₂ /Z-type Diphosphinoborane Ligands. Chemistry Letters, 2018, 47, 1321-1323.	0.7	13
313	Ta ₂ ⁺ -mediated ammonia synthesis from N ₂ and H ₂ at ambient temperature. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11680-11687.	3.3	84
314	Single‣ite Molybdenum on Solid Support Materials for Catalytic Hydrogenation of N ₂ â€intoâ€NH ₃ . Angewandte Chemie, 2018, 130, 16038-16042.	1.6	6
315	Selective Double Addition Reaction of an E‒H Bond (E = Si, B) to a C≡N Triple Bond of Organonitriles. Molecules, 2018, 23, 2769.	1.7	14
316	Molybdenum Complexes Supported by PN ³ P Pincer Ligands: Synthesis, Characterization, and Application to Synthetic Nitrogen Fixation. European Journal of Inorganic Chemistry, 2018, 2018, 5108-5116.	1.0	6
317	Development of Catalytic Nitrogen Fixation Using Transition Metal Dinitrogen Complexes. Bulletin of Japan Society of Coordination Chemistry, 2018, 71, 49-55.	0.1	0
318	Adaptable ligand donor strength: tracking transannular bond interactions in tris(2-pyridylmethyl)-azaphosphatrane (TPAP). Dalton Transactions, 2018, 47, 14101-14110.	1.6	12
319	Nitrogen Fixation Reaction Derived from Nanostructured Catalytic Materials. Advanced Functional Materials, 2018, 28, 1803309.	7.8	212
320	Dinitrogen Fixation by Vanadium Complexes with a Triamidoamine Ligand. Inorganic Chemistry, 2018, 57, 11884-11894.	1.9	25
321	Double-atom catalysts: transition metal dimer-anchored C ₂ N monolayers as N ₂ fixation electrocatalysts. Journal of Materials Chemistry A, 2018, 6, 18599-18604.	5.2	224
322	Greening Ammonia toward the Solar Ammonia Refinery. Joule, 2018, 2, 1055-1074.	11.7	603
323	Beyond fossil fuel–driven nitrogen transformations. Science, 2018, 360, .	6.0	1,379
324	Redox Activity, Ligand Protonation, and Variable Coordination Modes of Diimino-Pyrrole Complexes of Palladium. Inorganic Chemistry, 2018, 57, 7044-7050.	1.9	15
325	The use of [2-C 6 R 4 PPh 2] â^' (R = H, F) and related carbanions as building blocks in coordination chemistry Reviews, 2018, 370, 69-128.	9.5	11

#	Article	IF	CITATIONS
326	Dinitrogen functionalization at a ditantalum center. Balancing N ₂ displacement and N ₂ functionalization in the reaction of coordinated N ₂ with CS ₂ . Dalton Transactions, 2018, 47, 7983-7991.	1.6	5
327	Refining Defect States in W ₁₈ O ₄₉ by Mo Doping: A Strategy for Tuning N ₂ Activation towards Solar-Driven Nitrogen Fixation. Journal of the American Chemical Society, 2018, 140, 9434-9443.	6.6	722
328	The Critical E ₄ State of Nitrogenase Catalysis. Biochemistry, 2018, 57, 5497-5504.	1.2	65
329	Identifying the Rate-Limiting Elementary Steps of Nitrogen Fixation with Single-Site Fe Model Complexes. Inorganic Chemistry, 2018, 57, 8499-8508.	1.9	19
330	Electron-driven heterogeneous catalytic synthesis of ammonia: Current states and perspective. Carbon Resources Conversion, 2018, 1, 2-31.	3.2	50
331	Effects of N ₂ Binding Mode on Iron-Based Functionalization of Dinitrogen to Form an Iron(III) Hydrazido Complex. Journal of the American Chemical Society, 2018, 140, 8586-8598.	6.6	42
332	Electrophile-promoted Fe-to-N ₂ hydride migration in highly reduced Fe(N ₂)(H) complexes. Chemical Science, 2018, 9, 6264-6270.	3.7	19
333	Single atom accelerates ammonia photosynthesis. Science China Chemistry, 2018, 61, 1187-1196.	4.2	107
334	Synthesis and reactivity of an N-triphos Mo(0) dinitrogen complex. Dalton Transactions, 2018, 47, 11386-11396.	1.6	12
335	Roomâ€Temperature Functionalization of N ₂ to Borylamine at a Molybdenum Complex. Angewandte Chemie, 2018, 130, 13047-13050.	1.6	15
336	Roomâ€Temperature Functionalization of N ₂ to Borylamine at a Molybdenum Complex. Angewandte Chemie - International Edition, 2018, 57, 12865-12868.	7.2	39
337	Development of catalytic nitrogen fixation using transition metal–dinitrogen complexes under mild reaction conditions. Dalton Transactions, 2018, 47, 11290-11297.	1.6	85
338	Synthesis and reactivity of titanium- and zirconium-dinitrogen complexes bearing anionic pyrrole-based PNP-type pincer ligands. Dalton Transactions, 2018, 47, 11322-11326.	1.6	28
339	Modulating the Ï∱-Accepting Properties of an Antimony Z-type Ligand via Anion Abstraction: Remote-Controlled Reactivity of the Coordinated Platinum Atom. Journal of the American Chemical Society, 2018, 140, 9644-9651.	6.6	64
340	Synthesis of Benzonitrile from Dinitrogen. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 916-919.	0.6	22
341	Synthesis and properties of heterobimetallic rhodium complexes featuring Li ^I , Cu ^I or Zn ^{II} as a Lewis acidic metalloligand. Dalton Transactions, 2018, 47, 10439-10442.	1.6	15
342	Electrocatalytic Nitrogen Reduction at Low Temperature. Joule, 2018, 2, 846-856.	11.7	429
343	On the Role of Ferromagnetic Interactions in Highly Active Moâ€Based Catalysts for Ammonia Synthesis. ChemPhysChem, 2018, 19, 2843-2847.	1.0	16

#	Article	IF	CITATIONS
344	Direct Biomimetic Synthesis of β-Carboline Alkaloids from Two Amino Acids. Journal of Organic Chemistry, 2018, 83, 12247-12254.	1.7	23
345	Thiopyridazine-Based Palladium and Platinum Boratrane Complexes. Inorganic Chemistry, 2018, 57, 6921-6931.	1.9	8
346	High-Efficiency "Working-in-Tandem―Nitrogen Photofixation Achieved by Assembling Plasmonic Gold Nanocrystals on Ultrathin Titania Nanosheets. Journal of the American Chemical Society, 2018, 140, 8497-8508.	6.6	382
347	Fe-doped phosphorene for the nitrogen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 13790-13796.	5.2	144
348	Electronic and Structural Comparisons between Iron(II/III) and Ruthenium(II/III) Imide Analogs. Inorganic Chemistry, 2019, 58, 11699-11715.	1.9	8
349	Nitrogenase-Relevant Reactivity of a Synthetic Iron–Sulfur–Carbon Site. Journal of the American Chemical Society, 2019, 141, 13148-13157.	6.6	34
350	<i>In situ</i> nano Au triggered by a metal boron organic polymer: efficient electrochemical N ₂ fixation to NH ₃ under ambient conditions. Journal of Materials Chemistry A, 2019, 7, 20945-20951.	5.2	46
351	An Antimony(V) Dication as a Zâ€Type Ligand: Turning on Styrene Activation at Gold. Angewandte Chemie, 2019, 131, 10300-10303.	1.6	10
352	Metal-Free B@ <i>g</i> -CN: Visible/Infrared Light-Driven Single Atom Photocatalyst Enables Spontaneous Dinitrogen Reduction to Ammonia. Nano Letters, 2019, 19, 6391-6399.	4.5	236
353	The 4-Electron Cleavage of a Nâ•N Double Bond by a Trimetallic TiNi2 Complex. Inorganic Chemistry, 2019, 58, 11762-11772.	1.9	11
354	Revisiting mechanistic studies on dinitrogen reduction to ammonia by an iron dinitrogen complex as nitrogenase mimic. International Journal of Quantum Chemistry, 2019, 119, e26025.	1.0	3
355	Recent progress in the electrochemical ammonia synthesis under ambient conditions. EnergyChem, 2019, 1, 100011.	10.1	151
356	Strategies toward Selective Electrochemical Ammonia Synthesis. ACS Catalysis, 2019, 9, 8316-8324.	5.5	145
357	Palladium–Borane Cooperation: Evidence for an Anionic Pathway and Its Application to Catalytic Hydroâ€∤Deuteroâ€dechlorination. Angewandte Chemie - International Edition, 2019, 58, 18783-18787.	7.2	48
358	Rhodium atalyzed Câ^'H Activation Enabled by an Indium Metalloligand. Angewandte Chemie - International Edition, 2019, 58, 17251-17254.	7.2	27
359	In Situ Transmission Electron Microscopy Study of Nanocrystal Formation for Electrocatalysis. ChemNanoMat, 2019, 5, 1439-1455.	1.5	14
360	Rethinking the Nitrogenase Mechanism: Activating the Active Site. Joule, 2019, 3, 2662-2678.	11.7	62
361	Planar three-coordinate iron sulfide in a synthetic [4Fe-3S] cluster with biomimetic reactivity. Nature Chemistry, 2019, 11, 1019-1025.	6.6	45

#	Article	IF	CITATIONS
362	Rhodium atalyzed Câ^'H Activation Enabled by an Indium Metalloligand. Angewandte Chemie, 2019, 131, 17411-17414.	1.6	6
363	Stabilized Carbenium Ions as Latent, Zâ€ŧype Ligands. Angewandte Chemie - International Edition, 2019, 58, 18266-18270.	7.2	35
364	Controlled Incorporation of Nitrides into Wâ€Feâ€S Clusters. Angewandte Chemie, 2019, 131, 16621-16625.	1.6	1
365	Controlled Incorporation of Nitrides into Wâ€Feâ€S Clusters. Angewandte Chemie - International Edition, 2019, 58, 16469-16473.	7.2	13
366	Palladium–Borane Cooperation: Evidence for an Anionic Pathway and Its Application to Catalytic Hydroâ€∤Deuteroâ€dechlorination. Angewandte Chemie, 2019, 131, 18959-18963.	1.6	11
367	Solventâ€Induced Clusterâ€to luster Transformation of Homoleptic Gold(I) Thiolates between Catenane and Ringâ€inâ€Ring Structures. Angewandte Chemie, 2019, 131, 16443-16452.	1.6	11
368	Single Electron Transfer to Diazomethane–Borane Adducts Prompts Câ^'H Bond Activations. Angewandte Chemie, 2019, 131, 18658-18662.	1.6	4
369	Single Electron Transfer to Diazomethane–Borane Adducts Prompts Câ^'H Bond Activations. Angewandte Chemie - International Edition, 2019, 58, 18487-18491.	7.2	24
370	Ultrathin Twoâ€Dimensional Semiconductors for Photocatalysis in Energy and Environment Applications. ChemCatChem, 2019, 11, 6147-6165.	1.8	55
371	Ammonia Synthesis through Hydrolysis of a Trianionic Pincer Ligand‣upported Molybdenum–Nitride Complex. Chemistry - A European Journal, 2019, 25, 14059-14063.	1.7	5
372	Recent topics of gold catalyst featuring Z-type ligands. Tetrahedron Letters, 2019, 60, 151231.	0.7	12
373	Electrochemical Nitrogen Reduction Reaction Performance of Single-Boron Catalysts Tuned by MXene Substrates. Journal of Physical Chemistry Letters, 2019, 10, 6984-6989.	2.1	120
374	Does access to internet promote innovation? A look at the U.S. broadband industry. Growth and Change, 2019, 50, 1423-1440.	1.3	47
375	Probing Photocatalytic Nitrogen Reduction to Ammonia with Water on the Rutile TiO ₂ (110) Surface by First-Principles Calculations. ACS Catalysis, 2019, 9, 9178-9187.	5.5	56
376	Nitrogenase Inhibition Limited Oxygenation of Earth's Proterozoic Atmosphere. Trends in Plant Science, 2019, 24, 1022-1031.	4.3	36
377	Synthesis and Catalytic Reactivity of Polystyrene-supported Molybdenum Pincer Complexes toward Ammonia Formation. Chemistry Letters, 2019, 48, 693-695.	0.7	8
378	Beyond the Thermal Equilibrium Limit of Ammonia Synthesis with Dual Temperature Zone Catalyst Powered by Solar Light. CheM, 2019, 5, 2702-2717.	5.8	91
379	Electrocatalytic Ammonia Oxidation Mediated by a Polypyridyl Iron Catalyst. ACS Catalysis, 2019, 9, 10101-10108.	5.5	72

#	Article	IF	CITATIONS
380	Hydrogen Activation and Hydrogenolysis Facilitated By Late-Transition-Metal–Aluminum Heterobimetallic Complexes. Inorganic Chemistry, 2019, 58, 12635-12645.	1.9	12
381	Spectroscopic X-ray and Mössbauer Characterization of M ₆ and M ₅ Iron(Molybdenum)-Carbonyl Carbide Clusters: High Carbide-Iron Covalency Enhances Local Iron Site Electron Density Despite Cluster Oxidation. Inorganic Chemistry, 2019, 58, 12918-12932.	1.9	13
382	Reduced State of the Graphene Oxide@Polyoxometalate Nanocatalyst Achieving High-Efficiency Nitrogen Fixation under Light Driving Conditions. ACS Applied Materials & Interfaces, 2019, 11, 37927-37938.	4.0	45
383	Complete cleavage of the N≡N triple bond by Ta ₂ N ⁺ via degenerate ligand exchange at ambient temperature: A perfect catalytic cycle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21416-21420.	3.3	60
384	Highly efficient palladium-catalysed carbon dioxide hydrosilylation employing PMP ligands. Dalton Transactions, 2019, 48, 1017-1022.	1.6	44
385	One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for electrocatalytic nitrogen reduction to ammonia. Journal of Materials Chemistry A, 2019, 7, 801-805.	5.2	136
386	Effect of substituents on molybdenum triiodide complexes bearing PNP-type pincer ligands toward catalytic nitrogen fixation. Dalton Transactions, 2019, 48, 3182-3186.	1.6	33
387	Conversion of dinitrogen to ammonia on Ru atoms supported on boron sheets: a DFT study. Journal of Materials Chemistry A, 2019, 7, 4771-4776.	5.2	251
390	Molybdenum dinitrogen complex supported by a cyclohexane-based triphosphine ligand and dmpm. Dalton Transactions, 2019, 48, 6019-6025.	1.6	5
391	Metal-free electrocatalyst for reducing nitrogen to ammonia using a Lewis acid pair. Journal of Materials Chemistry A, 2019, 7, 4865-4871.	5.2	115
392	Experimental and Computational Studies of Dinitrogen Activation and Hydrogenation at a Tetranuclear Titanium Imide/Hydride Framework. Journal of the American Chemical Society, 2019, 141, 2713-2720.	6.6	45
393	Exploring Hydrogen Evolution Accompanying Nitrogen Reduction on Biomimetic Nitrogenase Analogs: Can Fe–NxHyIntermediates Be Active Under Turnover Conditions?. Inorganic Chemistry, 2019, 58, 7969-7977.	1.9	8
394	Synthesis and characterization of rhodium–aluminum heterobimetallic complexes tethered by a 1,3-bis(diphenylphosphino)-2-propanoxy group. Dalton Transactions, 2019, 48, 8782-8790.	1.6	4
395	Silver halide complexes of a borane/bis(phosphine) ligand. Dalton Transactions, 2019, 48, 9959-9961.	1.6	6
396	Biohybrid photoheterotrophic metabolism for significant enhancement of biological nitrogen fixation in pure microbial cultures. Energy and Environmental Science, 2019, 12, 2185-2191.	15.6	61
397	Synthesis and Catalytic Reactivity of Bis(molybdenum-trihalide) Complexes Bridged by Ferrocene Skeleton toward Catalytic Nitrogen Fixation. Organometallics, 2019, 38, 2863-2872.	1.1	13
398	Theoretical Screening of Single Transition Metal Atoms Embedded in MXene Defects as Superior Electrocatalyst of Nitrogen Reduction Reaction. Small Methods, 2019, 3, 1900337.	4.6	213
399	Molybdenum-Catalyzed Ammonia Formation Using Simple Monodentate and Bidentate Phosphines as Auxiliary Ligands. Inorganic Chemistry, 2019, 58, 8927-8932.	1.9	48

#	Article	IF	CITATIONS
400	Whether Corrugated or Planar Vacancy Graphene-like Carbon Nitride (g-C ₃ N ₄) Is More Effective for Nitrogen Reduction Reaction?. Journal of Physical Chemistry C, 2019, 123, 17296-17305.	1.5	46
401	Redox-Active, Boron-Based Ligands in Iron Complexes with Inverted Hydride Reactivity in Dehydrogenation Catalysis. ACS Catalysis, 2019, 9, 7300-7309.	5.5	13
402	Jahn–Teller Distorted Effects To Promote Nitrogen Reduction over Keggin-Type Phosphotungstic Acid Catalysts: Insight from Density Functional Theory Calculations. Inorganic Chemistry, 2019, 58, 7852-7862.	1.9	16
403	Light-Driven Chemical Looping for Ammonia Synthesis. ACS Energy Letters, 2019, 4, 1505-1512.	8.8	67
404	The df–d Dative Bonding in a Uranium–Cobalt Heterobimetallic Complex for Efficient Nitrogen Fixation. Inorganic Chemistry, 2019, 58, 7433-7439.	1.9	19
405	Carbon–Metal Bonds: Rare and Primordial in Metabolism. Trends in Biochemical Sciences, 2019, 44, 807-818.	3.7	18
406	Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling. Chemical Reviews, 2019, 119, 6509-6560.	23.0	130
407	An Antimony(V) Dication as a Zâ€Type Ligand: Turning on Styrene Activation at Gold. Angewandte Chemie - International Edition, 2019, 58, 10194-10197.	7.2	36
408	The electronic structure underlying electrocatalysis of twoâ€dimensional materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1418.	6.2	17
409	Hydrogen Bonding to a Dinitrogen Complex at Room Temperature: Impacts on N ₂ Activation. Journal of the American Chemical Society, 2019, 141, 8550-8556.	6.6	36
410	Tunable Ï <i>f</i> -Accepting, Z-Type Ligands for Organometallic Catalysis. Trends in Chemistry, 2019, 1, 485-496.	4.4	85
411	Redox Catalysis for Artificial Photosynthesis. European Journal of Inorganic Chemistry, 2019, 2019, 2019, 2017-2019.	1.0	1
412	Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water. Nature, 2019, 568, 536-540.	13.7	330
413	Phosphoreneâ€Supported Transitionâ€Metal Dimer for Effective N ₂ Electroreduction. ChemPhysChem, 2019, 20, 3141-3146.	1.0	24
414	Transition Metal Diborides: A New Type of Highâ€performance Electrocatalysts for Nitrogen Reduction. ChemCatChem, 2019, 11, 2624-2633.	1.8	37
415	Photo(electro)catalytic Nitrogen Fixation: Problems and Possibilities. Advanced Materials Interfaces, 2019, 6, 1900091.	1.9	76
416	Characterization of the Earliest Intermediate of Fe-N ₂ Protonation: CW and Pulse EPR Detection of an Fe-NNH Species and Its Evolution to Fe-NNH ₂ ⁺ . Journal of the American Chemical Society, 2019, 141, 8116-8127.	6.6	37
417	Bimetallic Cooperative Cleavage of Dinitrogen to Nitride and Tandem Frustrated Lewis Pair Hydrogenation to Ammonia. Angewandte Chemie, 2019, 131, 6746-6749.	1.6	6

#	Article	IF	CITATIONS
418	Evaluation of excited state bond weakening for ammonia synthesis from a manganese nitride: stepwise proton coupled electron transfer is preferred over hydrogen atom transfer. Chemical Communications, 2019, 55, 5595-5598.	2.2	16
419	Synthesis, structure and palladium coordination of ambiphilic, pyridine- and phosphine-tethered <i>N</i> -boryl imine ligands. Dalton Transactions, 2019, 48, 5766-5772.	1.6	0
420	Bimetallic Cooperative Cleavage of Dinitrogen to Nitride and Tandem Frustrated Lewis Pair Hydrogenation to Ammonia. Angewandte Chemie - International Edition, 2019, 58, 6674-6677.	7.2	42
422	Multiple magnetic relaxation pathways in T-shaped N-heterocyclic carbene-supported Fe(i) single-ion magnets. Inorganic Chemistry Frontiers, 2019, 6, 1050-1057.	3.0	6
423	Light Enhanced Fe-Mediated Nitrogen Fixation: Mechanistic Insights Regarding H ₂ Elimination, HER, and NH ₃ Generation. ACS Catalysis, 2019, 9, 4286-4295.	5.5	40
424	Recent advances in catalytic silylation of dinitrogen using transition metal complexes. Coordination Chemistry Reviews, 2019, 389, 73-93.	9.5	70
425	Catalytic Reactivity of Molybdenum–Trihalide Complexes Bearing PCPâ€Type Pincer Ligands. Chemistry - an Asian Journal, 2019, 14, 2091-2096.	1.7	24
426	Catalytic hydrazine disproportionation mediated by a thiolate-bridged VFe complex. Chemical Communications, 2019, 55, 5363-5366.	2.2	25
427	Dinitrogen Activation and Functionalization Using βâ€Điketiminate Iron Complexes. European Journal of Inorganic Chemistry, 2019, 2019, 1861-1869.	1.0	26
428	Theory-guided materials design: two-dimensional MXenes in electro- and photocatalysis. Nanoscale Horizons, 2019, 4, 809-827.	4.1	218
429	Protonation Studies of Molybdenum(VI) Nitride Complexes That Contain the [2,6-(ArNCH ₂) ₂ NC ₅ H ₃] ^{2–} Ligand (Ar =) Tj ET	¯Q д9 00r	g&T /Overlo
430	N–H Bond Formation in a Manganese(V) Nitride Yields Ammonia by Light-Driven Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2019, 141, 4795-4799.	6.6	43
432	Seven Coordinated Molecular Ruthenium–Water Oxidation Catalysts: A Coordination Chemistry Journey. Chemical Reviews, 2019, 119, 3453-3471.	23.0	148
433	Dinitrogen Functionalization Affording Chromium Hydrazido Complex. Journal of the American Chemical Society, 2019, 141, 4241-4247.	6.6	88
434	Conversion of dinitrogen to tris(trimethylsilyl)amine catalyzed by titanium triamido-amine complexes. Chemical Communications, 2019, 55, 3231-3234.	2.2	43
435	Cp* Noninnocence Leads to a Remarkably Weak C–H Bond via Metallocene Protonation. Journal of the American Chemical Society, 2019, 141, 4721-4729.	6.6	63
436	Ammonia and Hydrazine from Coordinated Dinitrogen by Complexes of Iron(0). European Journal of Inorganic Chemistry, 2019, 2019, 2006-2011.	1.0	6
437	Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chemical Reviews, 2019, 119, 2752-2875.	23.0	615

#	Article	IF	CITATIONS
438	Highly dispersive and stable Fe ³⁺ active sites on 2D graphitic carbon nitride nanosheets for efficient visible-light photocatalytic nitrogen fixation. Journal of Materials Chemistry A, 2019, 7, 27547-27559.	5.2	142
440	Catalytic reduction of dinitrogen to tris(trimethylsilyl)amine using rhodium complexes with a pyrrole-based PNP-type pincer ligand. Chemical Communications, 2019, 55, 14886-14889.	2.2	26
441	Controlling dinitrogen functionalization at rhenium through alkali metal ion pairing. Dalton Transactions, 2019, 48, 17936-17944.	1.6	22
442	Single-atom catalysts templated by metal–organic frameworks for electrochemical nitrogen reduction. Journal of Materials Chemistry A, 2019, 7, 26371-26377.	5.2	152
443	Ruthenium(<scp>iii</scp>) polyethyleneimine complexes for bifunctional ammonia production and biomass upgrading. Journal of Materials Chemistry A, 2019, 7, 25433-25440.	5.2	55
444	Stabilized Carbenium Ions as Latent, Zâ€ŧype Ligands. Angewandte Chemie, 2019, 131, 18434-18438.	1.6	11
445	Dawson-type polyoxometalate-based vacancies <i>g</i> -C ₃ N ₄ composite-nanomaterials for efficient photocatalytic nitrogen fixation. Inorganic Chemistry Frontiers, 2019, 6, 3315-3326.	3.0	32
446	Synergy between Fe and Promoter Ions Supported on Nanoceria Influences NOx Reduction Catalysis. ACS Applied Nano Materials, 2019, 2, 7593-7603.	2.4	2
447	A model for dinitrogen binding in the E ₄ state of nitrogenase. Chemical Science, 2019, 10, 11110-11124.	3.7	48
448	Selectivity of tungsten mediated dinitrogen splitting <i>vs.</i> proton reduction. Chemical Science, 2019, 10, 10275-10282.	3.7	38
449	FeMo Heterobimetallic Dithiolate Complexes: Investigation of Their Electron Transfer Chemistry and Reactivity toward Acids, a Density Functional Theory Rationalization. Inorganic Chemistry, 2019, 58, 679-694.	1.9	7
450	Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019, 48, 72-133.	18.7	1,354
451	The role of bridging ligands in dinitrogen reduction and functionalization by uranium multimetallic complexes. Nature Chemistry, 2019, 11, 154-160.	6.6	100
452	Recent Progress on Electrocatalyst and Photocatalyst Design for Nitrogen Reduction. Small Methods, 2019, 3, 1800388.	4.6	252
453	Electrocatalytic Reduction of Nitrogen: From Haber-Bosch to Ammonia Artificial Leaf. CheM, 2019, 5, 263-283.	5.8	339
454	Potholeâ€rich Ultrathin WO ₃ Nanosheets that Trigger N≡N Bond Activation of Nitrogen for Direct Nitrate Photosynthesis. Angewandte Chemie - International Edition, 2019, 58, 731-735.	7.2	202
455	Advances in Electrocatalytic N ₂ Reduction—Strategies to Tackle the Selectivity Challenge. Small Methods, 2019, 3, 1800337.	4.6	387
456	N 2 Reduction on Feâ€Based Complexes with Different Supporting Mainâ€Group Elements: Critical Roles of Anchor and Peripheral Ligands. Small Methods, 2019, 3, 1800340.	4.6	17

#	Article	IF	CITATIONS
457	Recent advances in nitrogen fixation upon vanadium complexes. Coordination Chemistry Reviews, 2019, 381, 135-150.	9.5	35
458	Rational Design of Fe–N/C Hybrid for Enhanced Nitrogen Reduction Electrocatalysis under Ambient Conditions in Aqueous Solution. ACS Catalysis, 2019, 9, 336-344.	5.5	278
459	Strain engineering the D-band center for Janus MoSSe edge: Nitrogen fixation. Journal of Energy Chemistry, 2019, 33, 155-159.	7.1	32
460	Coordination tailoring towards efficient single-atom catalysts for N2 fixation: A case study of iron-nitrogen-carbon (Fe@N-C) systems. Catalysis Today, 2020, 350, 91-99.	2.2	45
461	The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chemical Reviews, 2020, 120, 734-813.	23.0	201
462	2D Electrocatalysts for Converting Earthâ€Abundant Simple Molecules into Valueâ€Added Commodity Chemicals: Recent Progress and Perspectives. Advanced Materials, 2020, 32, e1904870.	11.1	76
463	Recent Advanced Materials for Electrochemical and Photoelectrochemical Synthesis of Ammonia from Dinitrogen: One Step Closer to a Sustainable Energy Future. Advanced Energy Materials, 2020, 10, 1902020.	10.2	113
464	Electrochemical Characterization of Isolated Nitrogenase Cofactors from <i>Azotobacter vinelandii</i> . ChemBioChem, 2020, 21, 1773-1778.	1.3	9
465	Cobalt-Group 13 Complexes Catalyze CO ₂ Hydrogenation via a Co(â^'I)/Co(I) Redox Cycle. ACS Catalysis, 2020, 10, 2459-2470.	5.5	55
466	Variational Forward–Backward Charge Transfer Analysis Based on Absolutely Localized Molecular Orbitals: Energetics and Molecular Properties. Journal of Chemical Theory and Computation, 2020, 16, 1073-1089.	2.3	21
467	Addition reactions and diazomethane capture by the intramolecular P–O–B FLP: <i>t</i> Bu ₂ POBcat. Dalton Transactions, 2020, 49, 901-910.	1.6	28
468	Using the Nĩ€,N dipole as a theoretical indicator for estimating the electrocatalytic performance of active sites in the nitrogen reduction reaction: single transition metal atoms embedded in two dimensional phthalocyanine. Journal of Materials Chemistry A, 2020, 8, 3598-3605.	5.2	47
469	Efficient Electronic Structure to Stabilize N ₂ â€Bridged Dinuclear Complexes Intended for N ₂ Activation: Iminophosphorane Iron(I) and Cobalt(I). European Journal of Inorganic Chemistry, 2020, 2020, 1411-1417.	1.0	5
470	Support effect boosting the electrocatalytic N ₂ reduction activity of Ni ₂ P/N,P-codoped carbon nanosheet hybrids. Journal of Materials Chemistry A, 2020, 8, 2691-2700.	5.2	32
471	Fe Enhanced Visible-Light-Driven Nitrogen Fixation on BiOBr Nanosheets. Chemistry of Materials, 2020, 32, 1488-1494.	3.2	113
472	Oligodentate Phosphine Ligands with Phospholane End Groups: New Synthetic Access and Application to Molybdenumâ€Based Synthetic Nitrogen Fixation. European Journal of Inorganic Chemistry, 2020, 2020, 1437-1448.	1.0	9
473	Nitrogen Fixation Catalyzed by Dinitrogenâ€Bridged Dimolybdenum Complexes Bearing PCP―and PNPâ€Type Pincer Ligands: A Shortcut Pathway Deduced from Free Energy Profiles. European Journal of Inorganic Chemistry, 2020, 2020, 1490-1498.	1.0	17
474	Syntheses, Characterizations, and Crystal Structures of Dinitrogenâ€Divanadium Complexes Bearing Triamidoamine Ligands. European Journal of Inorganic Chemistry, 2020, 2020, 1456-1464.	1.0	12

#	Δρτιςι ε	IF	CITATIONS
475	High-throughput screening of transition metal single atom catalysts anchored on molybdenum	0.0	194
475	disulfide for nitrogen fixation. Nano Energy, 2020, 68, 104304.	8.2	130
476	MXene Materials for the Electrochemical Nitrogen Reduction—Functionalized or Not?. ACS Catalysis, 2020, 10, 253-264.	5.5	107
477	Cycling between Molybdenumâ€Dinitrogen and â€Nitride Complexes to Support the Reaction Pathway for Catalytic Formation of Ammonia from Dinitrogen. Chemistry - A European Journal, 2020, 26, 13321-13321.	1.7	4
478	Demonstrating the Direct Relationship between Hydrogen Evolution Reaction and Catalyst Deactivation in Synthetic Fe Nitrogenases. ACS Catalysis, 2020, 10, 12555-12568.	5.5	13
479	Exploring the Limits of Dative Boratrane Bonding: Iron as a Strong Lewis Base in Low-Valent Non-Heme Iron-Nitrosyl Complexes. Inorganic Chemistry, 2020, 59, 14967-14982.	1.9	10
480	Determination of the N–H Bond Dissociation Free Energy in a Pyridine(diimine)molybdenum Complex Prepared by Proton-Coupled Electron Transfer. Inorganic Chemistry, 2020, 59, 15394-15401.	1.9	8
481	Prediction of Highly Selective Electrocatalytic Nitrogen Reduction at Low Overpotential on a Mo-Doped g-GaN Monolayer. ACS Catalysis, 2020, 10, 12841-12857.	5.5	92
482	Electrocatalytic Reduction of Nitrogen to Hydrazine Using a Trinuclear Nickel Complex. Journal of the American Chemical Society, 2020, 142, 17312-17317.	6.6	41
483	Recent Progress with Pincer Transition Metal Catalysts for Sustainability. Catalysts, 2020, 10, 773.	1.6	71
484	Atom-Pair Catalysts Supported by N-Doped Graphene for the Nitrogen Reduction Reaction: <i>d</i> -Band Center-Based Descriptor. Journal of Physical Chemistry Letters, 2020, 11, 6320-6329.	2.1	82
485	Hydrodesulfurization of Dibenzothiophene on TiO _{2–<i>x</i>} -Modified Fe-Based Catalysts: Electron Transfer Behavior between TiO _{2–<i>x</i>} and Fe Species. ACS Catalysis, 2020, 10, 9019-9033.	5.5	31
486	Construction of Synthetic Models for Nitrogenase-Relevant NifB Biogenesis Intermediates and Iron-Carbide-Sulfide Clusters. Catalysts, 2020, 10, 1317.	1.6	4
487	Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29462-29468.	3.3	104
488	Ni complexes of an alane/tris(phosphine) ligand built around a strongly Lewis acidic tris(<i>N</i> -pyrrolyl)aluminum. Chemical Communications, 2020, 56, 14845-14848.	2.2	18
489	Achieving High Activity and Selectivity of Nitrogen Reduction via Fe–N ₃ Coordination on Iron Single-Atom Electrocatalysts at Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2020, 8, 12809-12816.	3.2	41
490	Dinitrogen Cleavage by a Heterometallic Cluster Featuring Multiple Uranium–Rhodium Bonds. Journal of the American Chemical Society, 2020, 142, 15004-15011.	6.6	64
491	Bimetallic iron–tin catalyst for N ₂ to NH ₃ and a silyldiazenido model intermediate. Chemical Communications, 2020, 56, 11030-11033.	2.2	23
492	Copper nanocrystals anchored on an O-rich carbonized corn gel for nitrogen electroreduction to ammonia. Inorganic Chemistry Frontiers, 2020, 7, 3555-3560.	3.0	5

#	Article	IF	CITATIONS
493	Cathodic NH ₄ ⁺ leaching of nitrogen impurities in CoMo thin-film electrodes in aqueous acidic solutions. Sustainable Energy and Fuels, 2020, 4, 5080-5087.	2.5	14
494	Considering Electrocatalytic Ammonia Synthesis via Bimetallic Dinitrogen Cleavage. ACS Catalysis, 2020, 10, 10826-10846.	5.5	60
495	Synthesis and Characterization of Rh ^{III} –M ^{II} (M = Pt, Pd) Heterobimetallic Complexes Based on a Bisphosphine Ligand: Tandem Reactions Using Ethanol. Organometallics, 2020, 39, 3879-3891.	1.1	6
496	Exceptional size-dependent activity enhancement in the catalytic electroreduction of N2 over Mo nanoparticles. International Journal of Hydrogen Energy, 2020, 45, 31841-31848.	3.8	9
497	Efficient Ambient Electrocatalytic Ammonia Synthesis by Nanogold Triggered via Boron Clusters Combined with Carbon Nanotubes. ACS Applied Materials & Interfaces, 2020, 12, 42821-42831.	4.0	27
498	Oxidation of Ammonia with Molecular Complexes. Journal of the American Chemical Society, 2020, 142, 17845-17858.	6.6	70
499	Glycerine-based synthesis of a highly efficient Fe ₂ O ₃ electrocatalyst for N ₂ fixation. RSC Advances, 2020, 10, 29575-29579.	1.7	13
500	Dinitrogen activation by a penta-pyridyl molybdenum complex. Dalton Transactions, 2020, 49, 12945-12949.	1.6	6
501	Isolated Mixed-Valence Iron Vanadium Malate and Its Metal Hydrates (M = Fe ²⁺ ,) Tj ETQq0 0 0 rgBT Inorganic Chemistry, 2020, 59, 12768-12777.	/Overlock 1.9	10 Tf 50 422 7
502	One-pot, room-temperature conversion of dinitrogen to ammonium chloride at a main-group element. Nature Chemistry, 2020, 12, 1076-1080.	6.6	81
503	Systematic evaluation of the electronic effect of aluminum-containing ligands in iridium–aluminum and rhodium–aluminum bimetallic complexes. Dalton Transactions, 2020, 49, 13029-13043.	1.6	0
504	A Chattâ€Type Catalyst with One Coordination Site for Dinitrogen Reduction to Ammonia. Chemistry - A European Journal, 2020, 26, 14807-14812.	1.7	17
505	Activation of Dinitrogen by Polynuclear Metal Complexes. Chemical Reviews, 2020, 120, 5517-5581.	23.0	134
506	Metallacyclic actinide catalysts for dinitrogen conversion to ammonia and secondary amines. Nature Chemistry, 2020, 12, 654-659.	6.6	65
507	N-Sorption Capability of Al2O3-Supported Mn-/Fe-Based Nitrogen Carriers during Chemical Looping Ammonia Synthesis Technology. Energy & Fuels, 2020, 34, 10247-10255.	2.5	21
508	Coordination Chemistry of Iron-Dinitrogen Complexes With Relevance to Biological N2 Fixation. , 2020, , .		5
509	The importance of atomic charge distributions of solid boron material in N2 electrochemical reduction. Applied Surface Science, 2020, 526, 146606.	3.1	13
510	Metal–Sulfur Compounds in N ₂ Reduction and Nitrogenase-Related Chemistry. Chemical Reviews, 2020, 120, 5194-5251.	23.0	117

#	Article	IF	CITATIONS
511	Rational Catalyst Design for N ₂ Reduction under Ambient Conditions: Strategies toward Enhanced Conversion Efficiency. ACS Catalysis, 2020, 10, 6870-6899.	5.5	273
512	Iridium-catalyzed Formation of Silylamine from Dinitrogen under Ambient Reaction Conditions. Chemistry Letters, 2020, 49, 794-797.	0.7	9
513	Recent Advances and Challenges of Electrocatalytic N ₂ Reduction to Ammonia. Chemical Reviews, 2020, 120, 5437-5516.	23.0	718
514	Structural Enzymology of Nitrogenase Enzymes. Chemical Reviews, 2020, 120, 4969-5004.	23.0	194
515	Ru-doped phosphorene for electrochemical ammonia synthesis. Rare Metals, 2020, 39, 874-880.	3.6	52
516	BCN-Encapsulated Nano-nickel Synergistically Promotes Ambient Electrochemical Dinitrogen Reduction. ACS Applied Materials & Interfaces, 2020, 12, 31419-31430.	4.0	33
517	Cycling between Molybdenumâ€Dinitrogen and â€Nitride Complexes to Support the Reaction Pathway for Catalytic Formation of Ammonia from Dinitrogen. Chemistry - A European Journal, 2020, 26, 13383-13389.	1.7	25
518	Complementary SEM-AFM of Swelling Bi-Fe-O Film on HOPG Substrate. Materials, 2020, 13, 2402.	1.3	31
519	Three-dimensional Pd–Ag–S porous nanosponges for electrocatalytic nitrogen reduction to ammonia. Nanoscale, 2020, 12, 13507-13512.	2.8	49
520	Tunable carbocation-based redox active ambiphilic ligands: synthesis, coordination and characterization. Dalton Transactions, 2020, 49, 16095-16105.	1.6	19
521	Synthesis of Dinuclear Moâ^'Fe Hydride Complexes and Catalytic Silylation of N 2. Chemistry - A European Journal, 2020, 26, 9537-9546.	1.7	13
522	Reduction of Dinitrogen via 2,3′-Bipyridine-Mediated Tetraboration. Journal of the American Chemical Society, 2020, 142, 6244-6250.	6.6	35
523	An oxygen vacancy-rich two-dimensional Au/TiO ₂ hybrid for synergistically enhanced electrochemical N ₂ activation and reduction. Journal of Materials Chemistry A, 2020, 8, 6586-6596.	5.2	54
524	Synthesis and Electronic Characterization of Iridiumâ€Aluminum and Rhodiumâ€Aluminum Heterobimetallic Complexes Bridged by 3â€Oxypyridine and 4â€Oxypyridine. European Journal of Inorganic Chemistry, 2020, 2020, 1192-1198.	1.0	3
525	Unusual Dinitrogen Binding and Electron Storage in Dinuclear Iron Complexes. Journal of the American Chemical Society, 2020, 142, 8147-8159.	6.6	24
526	The Spectroscopy of Nitrogenases. Chemical Reviews, 2020, 120, 5005-5081.	23.0	132
527	NH3 formation from N2 and H2 mediated by molecular tri-iron complexes. Nature Chemistry, 2020, 12, 740-746.	6.6	42
528	8. The Cofactors of Nitrogenases. , 2020, 20, 257-312.		0

#	Article	IF	CITATIONS
529	Electronic state optimization for electrochemical N ₂ reduction reaction in aqueous solution. Journal of Materials Chemistry A, 2020, 8, 13896-13915.	5.2	45
530	Electrochemical Reduction of Samarium Triiodide into Samarium Diiodide. Chemistry Letters, 2020, 49, 1171-1173.	0.7	11
531	Heteroleptic Coordination Environments in Metal-Mediated DNA G-Quadruplexes. Frontiers in Chemistry, 2020, 8, 26.	1.8	6
532	Tackling the Activity and Selectivity Challenges of Electrocatalysts toward the Nitrogen Reduction Reaction via Atomically Dispersed Biatom Catalysts. Journal of the American Chemical Society, 2020, 142, 5709-5721.	6.6	664
533	N ₂ Silylation Catalyzed by a Bis(silylene)-Based [SiCSi] Pincer Hydrido Iron(II) Dinitrogen Complex. Organometallics, 2020, 39, 757-766.	1.1	38
534	Evaluating Metal Ion Identity on Catalytic Silylation of Dinitrogen Using a Series of Trimetallic Complexes. European Journal of Inorganic Chemistry, 2020, 2020, 1519-1524.	1.0	23
535	Preparation of electron-rich Fe-based catalyst via electronic structure regulation and its promotion to hydrodesulfurization of dibenzothiophene. Applied Catalysis B: Environmental, 2020, 269, 118779.	10.8	13
536	Kegginâ€Type Polyoxometalateâ€Based ZIFâ€67 for Enhanced Photocatalytic Nitrogen Fixation. ChemSusChem, 2020, 13, 2769-2778.	3.6	59
537	Fe doping promoted electrocatalytic N2 reduction reaction of 2H MoS2. Chinese Chemical Letters, 2020, 31, 2487-2490.	4.8	39
538	Single-Atom Pt–N ₃ Sites on the Stable Covalent Triazine Framework Nanosheets for Photocatalytic N ₂ Fixation. ACS Catalysis, 2020, 10, 2431-2442.	5.5	171
539	<i>N</i> , <i>N′</i> â€Ethyleneâ€Bridged Bisâ€2â€Arylâ€Pyrrolinium Cations to <i>E</i> â€Diaminoalkenes: Nonâ€Identical Stepwise Reversible Doubleâ€Redox Coupled Bond Activation Reactions. Chemistry - A European Journal, 2020, 26, 4425-4431.	1.7	11
540	Excitonic Au ₄ Ru ₂ (PPh ₃) ₂ (SC ₂ H ₄ Ph) _{8 cluster for light-driven dinitrogen fixation. Chemical Science, 2020, 11, 2440-2447.}	3< ≴sī ub>	41
541	Activation and Functionalization of Dinitrogen in the Presence of Molecular Hydrogen Promoted by Transition Metal Complexes. European Journal of Inorganic Chemistry, 2020, 2020, 1383-1395.	1.0	6
542	Engineering Abundant Edge Sites of Bismuth Nanosheets toward Superior Ambient Electrocatalytic Nitrogen Reduction via Topotactic Transformation. ACS Sustainable Chemistry and Engineering, 2020, 8, 2735-2741.	3.2	33
543	Ionic-caged heterometallic bismuth–platinum complex exhibiting electrocatalytic CO ₂ reduction. Dalton Transactions, 2020, 49, 2652-2660.	1.6	9
544	Catalytic N ₂ -to-NH ₃ (or -N ₂ H ₄) Conversion by Well-Defined Molecular Coordination Complexes. Chemical Reviews, 2020, 120, 5582-5636.	23.0	234
545	Feasibility of N ₂ Reduction on the V Anchored 1Tâ^'MoS ₂ Monolayer: A Density Functional Theory Study. ChemPhysChem, 2020, 21, 1235-1242.	1.0	14
546	Relating N–H Bond Strengths to the Overpotential for Catalytic Nitrogen Fixation. European Journal of Inorganic Chemistry, 2020, 2020, 1353-1357.	1.0	22

#	Article	IF	CITATIONS
547	Alternative Strategies Toward Sustainable Ammonia Synthesis. Transactions of Tianjin University, 2020, 26, 67-91.	3.3	51
548	Bioinspired Mo tape-porphyrin as an efficient and selective electrocatalyst for ammonia synthesis. Applied Surface Science, 2020, 520, 146202.	3.1	11
549	Online characterization of a large but overlooked human excreta source of ammonia in China's urban atmosphere. Atmospheric Environment, 2020, 230, 117459.	1.9	4
550	Structural characterization of molybdenum–dinitrogen complex as key species toward ammonia formation by dispersive XAFS spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 12368-12372.	1.3	9
551	Catalytic Hydrogenation of a Manganese(V) Nitride to Ammonia. Journal of the American Chemical Society, 2020, 142, 9518-9524.	6.6	22
552	Dinitrogen Activation and Hydrogenation by C ₅ Me ₄ SiMe ₃ -Ligated Di- and Trinuclear Chromium Hydride Complexes. Journal of the American Chemical Society, 2020, 142, 9007-9016.	6.6	39
553	Establishing a Theoretical Landscape for Identifying Basal Plane Active 2D Metal Borides (MBenes) toward Nitrogen Electroreduction. Advanced Functional Materials, 2021, 31, 2008056.	7.8	97
554	Ammonia Production Technologies. , 2021, , 41-83.		28
555	Identifying electrocatalytic activity and mechanism of Ce1/3NbO3 perovskite for nitrogen reduction to ammonia at ambient conditions. Applied Catalysis B: Environmental, 2021, 280, 119419.	10.8	60
556	Efficient Visible Light Driven Ammonia Synthesis on Sandwich Structured C3N4/MoS2/Mn3O4 catalyst. Applied Catalysis B: Environmental, 2021, 281, 119476.	10.8	37
557	Singleâ€Step Sulfur Insertions into Iron Carbide Carbonyl Clusters: Unlocking the Synthetic Door to FeMoco Analogues. Angewandte Chemie - International Edition, 2021, 60, 3433-3437.	7.2	12
558	Transition metal doping BiOBr nanosheets with oxygen vacancy and exposed {102} facets for visible light nitrogen fixation. Applied Catalysis B: Environmental, 2021, 281, 119516.	10.8	141
559	Nitrogenase inspired artificial photosynthetic nitrogen fixation. CheM, 2021, 7, 1431-1450.	5.8	43
560	Anchoring Mo on C9N4 monolayers as an efficient single atom catalyst for nitrogen fixation. Journal of Energy Chemistry, 2021, 57, 443-450.	7.1	41
561	Structural insight into [Fe–S ₂ –Mo] motif in electrochemical reduction of N ₂ over Fe ₁ -supported molecular MoS ₂ . Chemical Science, 2021, 12, 688-695.	3.7	20
562	Cobalt ferrite nanozyme for efficient symbiotic nitrogen fixation via regulating reactive oxygen metabolism. Environmental Science: Nano, 2021, 8, 188-203.	2.2	18
563	Facile Dinitrogen and Dioxygen Cleavage by a Uranium(III) Complex: Cooperativity Between the Nonâ€Innocent Ligand and the Uranium Center. Angewandte Chemie, 2021, 133, 477-483.	1.6	5
564	In situ modification of cobalt on MXene/TiO2 as composite photocatalyst for efficient nitrogen fixation. Journal of Colloid and Interface Science, 2021, 585, 20-29.	5.0	62

#	Article	IF	CITATIONS
565	Mechanochemistry for ammonia synthesis under mild conditions. Nature Nanotechnology, 2021, 16, 325-330.	15.6	141
566	Bimetallic, Silyleneâ€Mediated Multielectron Reductions of Carbon Dioxide and Ethylene. Angewandte Chemie, 2021, 133, 1639-1643.	1.6	5
567	Catalytic conversion of nitrogen molecule into ammonia using molybdenum complexes under ambient reaction conditions. Chemical Communications, 2021, 57, 1176-1189.	2.2	36
568	Singleâ€Step Sulfur Insertions into Iron Carbide Carbonyl Clusters: Unlocking the Synthetic Door to FeMoco Analogues. Angewandte Chemie, 2021, 133, 3475-3479.	1.6	0
569	Catalysis using transition metal complexes featuring main group metal and metalloid compounds as supporting ligands. Chemical Science, 2021, 12, 1964-1981.	3.7	100
570	Fe(III)-C3N4 hybrids photocatalyst for efficient visible-light driven nitrogen fixation. Materials Chemistry and Physics, 2021, 258, 123830.	2.0	11
571	Dinitrogen Fixation: Rationalizing Strategies Utilizing Molecular Complexes. Chemistry - A European Journal, 2021, 27, 3892-3928.	1.7	62
572	Facile Dinitrogen and Dioxygen Cleavage by a Uranium(III) Complex: Cooperativity Between the Nonâ€Innocent Ligand and the Uranium Center. Angewandte Chemie - International Edition, 2021, 60, 473-479.	7.2	42
573	Coordination Chemistry of Phosphine Ligands With Pendant Amines. , 2021, , 90-130.		0
574	Defective Fe ₃ GeTe ₂ monolayer as a promising electrocatalyst for spontaneous nitrogen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 6945-6954.	5.2	18
575	Recent advances on electrocatalytic fixation of nitrogen under ambient conditions. Materials Chemistry Frontiers, 2021, 5, 5516-5533.	3.2	14
576	Nitrogenases and Model Complexes in Bioorganometallic Chemistry. , 2022, , 41-72.		2
577	Photocatalytic N2 fixation using chalcogenide-based nanomaterials. , 2021, , 285-294.		1
578	Highly stable Mo-doped Fe ₂ P and Fe ₃ P monolayers as low-onset-potential electrocatalysts for nitrogen fixation. Catalysis Science and Technology, 2021, 11, 1419-1429.	2.1	35
579	Defect induced nitrogen reduction reaction of carbon nanomaterials. Sustainable Energy and Fuels, 2021, 5, 3765-3790.	2.5	9
580	Metal-Carbon Bonds of Iron and Manganese. , 2021, , 82-122.		0
581	Tripodal P ₃ ^X Fe–N ₂ Complexes (X = B, Al, Ga): Effect of the Apical Atom on Bonding, Electronic Structure, and Catalytic N ₂ -to-NH ₃ Conversion. Inorganic Chemistry, 2021, 60, 1220-1227.	1.9	28
582	Semiconductor photocatalysts and mechanisms of carbon dioxide reduction and nitrogen fixation under UV and visible light. Russian Chemical Reviews, 2021, 90, 1520-1543.	2.5	6

#	ARTICLE	IF	CITATIONS
583	and dinitrogen to value-added products: a review. Energy and Environmental Science, 2021, 14, 1959-2008.	15.6	243
584	Economies of scale in ammonia synthesis loops embedded with iron- and ruthenium-based catalysts. International Journal of Hydrogen Energy, 2021, , .	3.8	20
585	Enhanced activity of catalysts on substrates with surface protonic current in an electrical field – a review. Chemical Communications, 2021, 57, 5737-5749.	2.2	21
586	Low-Coordinate Chemistry of Manganese and Iron. , 2021, , 2-27.		0
587	Transition Metal Complexes for Dinitrogen Coordination and Activation. , 2021, , 363-409.		1
588	Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction. Catalysis Science and Technology, 2021, 11, 705-725.	2.1	114
589	Structure, reactivity, and spectroscopy of nitrogenase-related synthetic and biological clusters. Chemical Society Reviews, 2021, 50, 8743-8761.	18.7	13
590	Reactivity and Structure of Complexes of Small Molecules: Dinitrogen. , 2021, , 875-958.		5
591	Activation of ammonia and hydrazine by electron rich Fe(<scp>ii</scp>) complexes supported by a dianionic pentadentate ligand platform through a common terminal Fe(<scp>iii</scp>) amido intermediate. Chemical Science, 2021, 12, 2231-2241.	3.7	21
592	The Activation and Reduction of N ₂ by Single/Doubleâ€Atom Electrocatalysts: A Firstâ€Principle Study. ChemistrySelect, 2021, 6, 1787-1794.	0.7	6
593	Advances in Materials and Applications of Inorganic Electrides. Chemical Reviews, 2021, 121, 3121-3185.	23.0	125
594	The sequential activation of H2 and N2 mediated by the gas-phase Sc3N+ clusters: Formation of amido unit. Journal of Chemical Physics, 2021, 154, 054307.	1.2	11
595	Development of catalytic nitrogen fixation using transition metal complexes not relevant to nitrogenases. Tetrahedron, 2021, 83, 131986.	1.0	19
596	Electrochemically Induced Generation of Extraneous Nitrite and Ammonia in Organic Electrolyte Solutions During Nitrogen Reduction Experiments. ChemElectroChem, 2021, 8, 1596-1604.	1.7	17
597	Ammonia production using iron nitride and water as hydrogen source under mild temperature and pressure. International Journal of Hydrogen Energy, 2021, 46, 10642-10652.	3.8	2
598	Promotion of biological nitrogen fixation activity of an anaerobic consortium using humin as an extracellular electron mediator. Scientific Reports, 2021, 11, 6567.	1.6	11
599	Conversion of Dinitrogen into Nitrile: Crossâ€Metathesis of N ₂ â€Derived Molybdenum Nitride with Alkynes. Angewandte Chemie - International Edition, 2021, 60, 12242-12247.	7.2	37
601	Conversion of Dinitrogen into Nitrile: Crossâ€Metathesis of N ₂ â€Derived Molybdenum Nitride with Alkynes. Angewandte Chemie, 2021, 133, 12350-12355.	1.6	10

#	Article	IF	CITATIONS
602	Enhanced Activity of Titanocene Complex for Electrocatalytic Nitrogen Reduction Reaction. Catalysts, 2021, 11, 389.	1.6	2
603	Catalytic Ammonia Formation with Electrochemically Reduced Samarium Diiodide from Samarium Triiodide and Water from Dinitrogen. Chemistry Letters, 2021, 50, 1356-1358.	0.7	5
604	Amidinate Supporting Ligands Influence Molecularity in Formation of Uranium Nitrides. Inorganic Chemistry, 2021, 60, 6672-6679.	1.9	8
605	Structurally-Responsive Ligands for High-Performance Catalysts. ACS Catalysis, 2021, 11, 5416-5437.	5.5	17
606	Interplay of Alkali, Transition Metals, Nitrogen, and Hydrogen in Ammonia Synthesis and Decomposition Reactions. Accounts of Chemical Research, 2021, 54, 2434-2444.	7.6	36
607	Ein neuer Aufbau zur Untersuchung der Struktur und Funktion von solvatisierten, lyophilisierten und kristallinen Metalloenzymen – veranschaulicht anhand von [NiFe]â€Hydrogenasen. Angewandte Chemie, 2021, 133, 15988-15996.	1.6	0
608	Bioinspired Activation of <scp>N₂</scp> on Asymmetrical Coordinated Fe Grafted <scp>1T MoS₂</scp> at Room Temperature ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1898-1904.	2.6	7
609	Ammonia Formation Catalyzed by a Dinitrogenâ€Bridged Dirhenium Complex Bearing PNPâ€Pincer Ligands under Mild Reaction Conditions**. Angewandte Chemie - International Edition, 2021, 60, 13906-13912.	7.2	21
610	Exploring Structure and Function of Redox Intermediates in [NiFe]â€Hydrogenases by an Advanced Experimental Approach for Solvated, Lyophilized and Crystallized Metalloenzymes. Angewandte Chemie - International Edition, 2021, 60, 15854-15862.	7.2	15
612	Electrochemical synthesis of ammonia from water and nitrogen: A Fe-mediated approach. Korean Journal of Chemical Engineering, 2021, 38, 1272-1276.	1.2	2
613	Ammonia Formation Catalyzed by a Dinitrogenâ€Bridged Dirhenium Complex Bearing PNPâ€Pincer Ligands under Mild Reaction Conditions**. Angewandte Chemie, 2021, 133, 14025-14031.	1.6	2
614	Pulsed Laser in Liquids Made Nanomaterials for Catalysis. Chemical Reviews, 2021, 121, 7568-7637.	23.0	100
615	Enhanced Photofixation of Dinitrogen to Ammonia over a Biomimetic Metal (Fe,Mo)-Doped Mesoporous MCM-41 Zeolite Catalyst under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 8748-8758.	3.2	17
616	Machine-learning-accelerated discovery of single-atom catalysts based on bidirectional activation mechanism. Chem Catalysis, 2021, 1, 183-195.	2.9	50
617	Carbon-Based Catalysts for Selective Electrochemical Nitrogen-to-Ammonia Conversion. ACS Sustainable Chemistry and Engineering, 2021, 9, 7687-7703.	3.2	41
618	Theoretical scanning of bimetallic alloy for designing efficient N2 electroreduction catalyst. Materials Today Energy, 2021, 20, 100684.	2.5	21
619	Bonding and Activation of N 2 in Molybdenum(0) Complexes Supported by Tripod Ligands with Phospholane End Groups. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1778-1788.	0.6	1
620	Computational study of ammonia generation by iron(III) and iron(IV) complexes supported by trigonal bipyramidal iron. International Journal of Quantum Chemistry, 2021, 121, e26775.	1.0	0

#	Article	IF	CITATIONS
621	Diastereoselective tricyclization/dimerization of yne-indoles catalyzed by a Au(III) complex featuring an L2/Z-type ligand. Tetrahedron Letters, 2021, 78, 153267.	0.7	3
622	Identification of Mâ€NH 2 â€NH 2 Intermediate and Rate Determining Step for Nitrogen Reduction with Bioinspired Sulfurâ€Bonded FeW Catalyst. Angewandte Chemie, 2021, 133, 20494-20504.	1.6	11
623	Catalytic Reduction of N ₂ to Borylamine at a Molybdenum Complex. Angewandte Chemie - International Edition, 2021, 60, 20210-20214.	7.2	25
624	Modulation effect in adjacent dual metal single atom catalysts for electrochemical nitrogen reduction reaction. Chinese Chemical Letters, 2022, 33, 1455-1458.	4.8	21
625	Revealing Ammonia Quantification Minefield in Photo/Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 21728-21731.	7.2	63
626	Revealing Ammonia Quantification Minefield in Photo/Electrocatalysis. Angewandte Chemie, 2021, 133, 21896-21899.	1.6	8
627	Theoretical Investigation into Thermodynamics and Electronic Structure of an Ammonia-productive Molybdenum-centered Catalyst. Inorganic Chemistry, 2021, 60, 11878-11882.	1.9	3
628	Catalytic Reduction of N 2 to Borylamine at a Molybdenum Complex. Angewandte Chemie, 2021, 133, 20372-20376.	1.6	9
629	Identification of Mâ€NH ₂ â€NH ₂ Intermediate and Rate Determining Step for Nitrogen Reduction with Bioinspired Sulfurâ€Bonded FeW Catalyst. Angewandte Chemie - International Edition, 2021, 60, 20331-20341.	7.2	65
630	Superior surface electron energy level endows WP2 nanowire arrays with N2 fixation functions. Journal of Energy Chemistry, 2021, 59, 55-62.	7.1	14
631	Fixation of Dinitrogen at an Asymmetric Binuclear Titanium Complex. Inorganic Chemistry, 2021, 60, 12813-12822.	1.9	13
632	Understanding, Modulating, and Leveraging Transannular M → Z Interactions. Inorganic Chemistry, 2021, 60, 12790-12800.	1.9	3
633	Black phosphorus-based materials for energy storage and electrocatalytic applications. JPhys Energy, 2021, 3, 042002.	2.3	8
634	Shedding Light on the Role of Chemical Bond in Catalysis of Nitrogen Fixation. Advanced Materials, 2021, 33, e2007891.	11.1	32
635	Rare Earth Metal Complexes Supported by a Tripodal Tris(amido) Ligand System Featuring an Arene Anchor. Inorganic Chemistry, 2021, 60, 15321-15329.	1.9	5
636	Recent Advances and Perspective on Electrochemical Ammonia Synthesis under Ambient Conditions. Small Methods, 2021, 5, e2100460.	4.6	33
637	Synergistic Effect of Active Sites of Doubleâ€Atom Catalysts for Nitrogen Reduction Reaction. ChemSusChem, 2021, 14, 4593-4600.	3.6	18
638	The impact of alkali and alkaline earth metals on green ammonia synthesis. CheM, 2021, 7, 3203-3220.	5.8	19

#	Article	IF	Citations
639	Electronic and Interface Regulation of Wurtzite Surfaces Promotes Photocatalytic Ammonia Synthesis under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2021, 9, 13630-13639.	3.2	6
640	Progress in green ammonia production as potential carbon-free fuel. Fuel, 2021, 299, 120845.	3.4	161
641	First-principles study of two-dimensional material Cr2B2 as catalyst for electrochemical nitrogen reduction reaction. Journal of Electroanalytical Chemistry, 2021, 899, 115677.	1.9	7
642	Enhanced ambient ammonia photosynthesis by Mo-doped Bi5O7Br nanosheets with light-switchable oxygen vacancies. Chinese Journal of Catalysis, 2021, 42, 2020-2026.	6.9	32
643	Single, double, and triple transition metal atoms embedded in defective V3C2O2 for nitrogen reduction reaction: A DFT study. Applied Surface Science, 2021, 569, 151020.	3.1	22
644	Synergistic ultra-high activity of double B doped graphyne for electrocatalytic nitrogen reduction. Chemical Engineering Journal, 2022, 428, 131318.	6.6	26
645	Reduction of highly bulky triphenolamine molybdenum nitrido and chloride complexes. Dalton Transactions, 2021, 50, 14139-14143.	1.6	0
646	Nanomaterials for the electrochemical nitrogen reduction reaction under ambient conditions. Nanoscale Advances, 2021, 3, 5525-5541.	2.2	13
647	Formation of an Ag→Al dative bond is avoided in reactions of an alane/tris(phosphine) ligand with monovalent silver. Dalton Transactions, 2021, 50, 5776-5778.	1.6	2
648	Coordination Chemistry of Lewis Acidic Ligands. , 2021, , 717-805.		7
649	Photocatalytic nitrogen fixation of metal–organic frameworks (MOFs) excited by ultraviolet light: insights into the nitrogen fixation mechanism of missing metal cluster or linker defects. Nanoscale, 2021, 13, 7801-7809.	2.8	54
650	Bimetallic CeZr ₅ -UiO-66 as a highly efficient photocatalyst for the nitrogen reduction reaction. Sustainable Energy and Fuels, 2021, 5, 4053-4059.	2.5	13
651	Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber–Bosch processes?. Energy and Environmental Science, 2021, 14, 2535-2548.	15.6	162
652	Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. Chemical Society Reviews, 2021, 50, 5201-5242.	18.7	87
653	A General Strategy to Glassy Mâ€Te (M = Ru, Rh, Ir) Porous Nanorods for Efficient Electrochemical N ₂ Fixation. Advanced Materials, 2020, 32, e1907112.	11.1	111
654	Bimetallic, Silyleneâ€Mediated Multielectron Reductions of Carbon Dioxide and Ethylene. Angewandte Chemie - International Edition, 2021, 60, 1615-1619.	7.2	15
655	Preparation and reactivity of molybdenum complexes bearing pyrrole-based PNP-type pincer ligand. Chemical Communications, 2020, 56, 6933-6936.	2.2	17
656	(Acetamide-κO){2,2′,2′′-boranetriyltris[6-tert-butyl-4-methylpyridazine-3(2H)-thione]-κ4 B,S,S′,S′á	i€²}coppe 0.1	r(l)

#	Article	IF	CITATIONS
657	Recent Progress in Catalytic Nitrogen Fixation by Using Transition Metal-Dinitrogen Complexes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 529-537.	0.0	1
658	Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chemical Society Reviews, 2021, 50, 12744-12787.	18.7	75
659	Directed charge transfer in all solid state heterojunction of Fe doped MoS2 and C–TiO2 nanosheet for enhanced nitrogen photofixation. Materials Today Physics, 2021, 21, 100563.	2.9	9
660	Science of Nitrogen Fixation Developed by Cooperation between Chemistry and Biology. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 346-357.	0.0	0
662	Iron-Indium Complex Catalyzing Selective Double Hydrosilylation, Double Hydroborylation, and Dihydroborylsilylation of a C≡N Bond in Organonitriles. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 220-226.	0.0	0
663	Vanadium Catalysis Relevant to Nitrogenase. RSC Catalysis Series, 2020, , 564-576.	0.1	0
665	Synthesis of Gold Catalyst Featuring Z-Type Ligand and Its Catalyic Reaction. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 619-626.	0.0	0
666	Photocatalysis: Fundamentals. , 2021, , 1-36.		3
667	Ubiquity of cubanes in bioinorganic relevant compounds. Coordination Chemistry Reviews, 2022, 450, 214168.	9.5	5
668	Localized surface plasmon resonance enhanced electrochemical nitrogen reduction reaction. Applied Catalysis B: Environmental, 2022, 301, 120808.	10.8	20
669	Dinitrogen Binding and Functionalization. , 2022, , 521-554.		5
670	Synthesis of silyl iron dinitrogen complexes for activation of dihydrogen and catalytic silylation of dinitrogen. Dalton Transactions, 2021, 50, 17594-17602.	1.6	8
671	Computational studies of adsorption of dinitrogen over the group 8 metal-borazine complexes. Chemical Papers, 2022, 76, 1539-1552.	1.0	0
672	A comparative analysis of the mechanisms of ammonia synthesis on various catalysts using density functional theory. Royal Society Open Science, 2021, 8, 210952.	1.1	15
673	Tris(6-diphenylphosphinoacenaphth-5-yl)gallium: Z-Type Ligand and Transmetalation Reagent. Organometallics, 2021, 40, 3785-3796.	1.1	3
674	Photocatalytic Ammonia Synthesis: Mechanistic Insights into N ₂ Activation at Oxygen Vacancies under Visible Light Excitation. ACS Catalysis, 2021, 11, 14058-14066.	5.5	35
675	Ru-Doped Pd Nanoparticles for Nitrogen Electrooxidation to Nitrate. ACS Catalysis, 2021, 11, 14032-14037.	5.5	56
676	Small Molecule Activation by Organo-iron Complexes. , 2021, , .		Ο

#	Article	IF	CITATIONS
677	Computational screening of highly selective and active electrocatalytic nitrogen reduction on single-atom-embedded artificial holey SnN3 monolayers. Journal of Colloid and Interface Science, 2022, 610, 546-556.	5.0	15
678	Ternary ruthenium complex hydrides for ammonia synthesis via the associative mechanism. Nature Catalysis, 2021, 4, 959-967.	16.1	67
679	Theoretical Views on Catalytic Reaction Pathways for Nitrogen Fixation by Dinitrogen-Bridging Dimolybdenum Complexes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 1041-1049.	0.0	1
680	Electrocatalysis enabled transformation of earth-abundant water, nitrogen and carbon dioxide for a sustainable future. Materials Advances, 2022, 3, 1359-1400.	2.6	17
681	A polyoxometalate cluster-based single-atom catalyst for NH ₃ synthesis <i>via</i> an enzymatic mechanism. Journal of Materials Chemistry A, 2022, 10, 6165-6177.	5.2	23
682	Nitrogen fixation from air at normal temperature and pressure via Cobalt-iron photocatalyst day and night. Molecular Catalysis, 2022, 518, 112091.	1.0	3
683	Evidence for Charge Delocalization in Diazafluorene Ligands Supporting Lowâ€Valent [Cp*Rh] Complexes**. Chemistry - A European Journal, 2022, 28, .	1.7	4
684	Ammonia as a carrier of renewable energy: Recent progress of ammonia synthesis by homogeneous catalysts, heterogeneous catalysts, and electrochemical method. , 2022, , 265-291.		1
685	N ₂ Cleavage on d ⁴ /d ⁴ Molybdenum Centers and Its Further Conversion into Iminophosphorane under Mild Conditions. Journal of the American Chemical Society, 2022, 144, 2444-2449.	6.6	15
686	Reactivity of molybdenum–nitride complex bearing pyridine-based PNP-type pincer ligand toward carbon-centered electrophiles. Dalton Transactions, 2022, 51, 1946-1954.	1.6	6
687	Artificial photocatalytic nitrogen fixation: Where are we now? Where is its future?. Molecular Catalysis, 2022, 518, 112107.	1.0	11
688	Efficient full-spectrum driven ammonia synthesis over heterostructured TiO2 nanosheet arrays. Chemical Communications, 2021, 58, 278-281.	2.2	3
689	Dualâ€metal singleâ€atomic catalyst: The challenge in synthesis, characterization, and mechanistic investigation for electrocatalysis. SmartMat, 2022, 3, 533-564.	6.4	35
690	Boron doped C3N5 for photocatalytic nitrogen fixation to ammonia: The key role of boron in nitrogen activation and mechanism. Chemical Engineering Journal, 2022, 435, 135017.	6.6	51
691	The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chemical Reviews, 2021, 121, 14682-14905.	23.0	109
692	A thiolate-bridged FeIVFeIV μ-nitrido complex and its hydrogenation reactivity toward ammonia formation. Nature Chemistry, 2022, 14, 46-52.	6.6	25
693	Synthesis and reactivity of PC(sp ³)P-pincer iridium complexes bearing a diborylmethyl anion. Dalton Transactions, 2022, 51, 5009-5015.	1.6	2
694	Sulfonium cations as versatile strongly π-acidic ligands. Chemical Science, 2022, 13, 4770-4778.	3.7	4

#	Article	IF	CITATIONS
695	Facile conversion of ammonia to a nitride in a rhenium system that cleaves dinitrogen. Chemical Science, 2022, 13, 4010-4018.	3.7	11
696	Applications of Low-Valent Transition Metalates: Development of a Reactive Noncarbonyl Rhenium(I) Anion. Accounts of Chemical Research, 2022, 55, 783-793.	7.6	9
697	One-step hydrothermal synthesis of Co–Ni–S/Ni foam as an electrocatalyst for nitrogen reduction reaction. Materials Today Energy, 2022, 26, 100995.	2.5	6
698	Catalytic Reduction of Dinitrogen into Ammonia and Hydrazine by Using Chromium Complexes Bearing PCPâ€Type Pincer Ligands**. Chemistry - A European Journal, 2022, 28, .	1.7	13
699	Catalytic Reduction of Dinitrogen to Ammonia and Hydrazine Using Iron–Dinitrogen Complexes Bearing Anionic Benzene-Based PCP-Type Pincer Ligands. Bulletin of the Chemical Society of Japan, 2022, 95, 683-692.	2.0	11
700	Direct Amination of Benzene with Molecular Nitrogen Enabled by Plasma‣iquid Interactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
701	Wellâ€defined Nickel P ₃ C Complexes as Hydrogenation Catalysts of <i>N</i> â€Heteroarenes Under Mild Conditions. ChemCatChem, 2022, 14, .	1.8	5
702	Direct Amination of Benzene with Molecular Nitrogen Enabled by Plasma‣iquid Interactions. Angewandte Chemie, 0, , .	1.6	0
703	Synthesis and Reactivity of Cobalt–Dinitrogen Complexes Bearing Anionic PCP-Type Pincer Ligands toward Catalytic Silylamine Formation from Dinitrogen. Inorganic Chemistry, 2022, 61, 5190-5195.	1.9	8
704	A Parent Iron Amido Complex in Catalysis of Ammonia Oxidation. Journal of the American Chemical Society, 2022, 144, 4365-4375.	6.6	26
705	Revealing the Origin of Nitrogen Electroreduction Activity of Molybdenum Disulfide Supported Iron Atoms. Journal of Physical Chemistry C, 2022, 126, 5180-5188.	1.5	22
706	Probing the Potential of Hitherto Unexplored Baseâ€Stabilized Borylenes in Dinitrogen Binding. Chemistry - A European Journal, 2022, 28, .	1.7	5
707	Ammonia synthesis by photocatalytic hydrogenation of a N2-derived molybdenum nitride. , 2022, 1, 297-303.		16
708	Synthesis and Reactivity of Manganese Complexes Bearing Anionic PNP- and PCP-Type Pincer Ligands toward Nitrogen Fixation. Molecules, 2022, 27, 2373.	1.7	3
709	Synergy effect of Cu-Ru dual atoms anchored to N-doped phosphorene for nitrogen reduction reaction. Fuel, 2022, 321, 124101.	3.4	20
710	Synthesis of atomic platinum with high loading on metal-organic sulfide. Science China Materials, 2022, 65, 1294-1302.	3.5	6
711	Hydroboration and Hydrosilylation of a Molybdenum–Nitride Complex Bearing a PNP-Type Pincer Ligand. Organometallics, 2022, 41, 366-373.	1.1	5
714	Nitrogen fixation and transformation with main group elements. Chemical Society Reviews, 2022, 51, 3846-3861.	18.7	34

#	Article	IF	CITATIONS
715	A radical mechanism for C–H bonds cross-coupling and N2 activation catalysed by β-diketiminate iron complexes. Catalysis Science and Technology, 0, , .	2.1	2
716	The Mechanism of Nitrogen Reduction Reaction on Defective Bn Monolayer with Monatomic Co, Ni, and Mo Doped-A First Principles Study. SSRN Electronic Journal, 0, , .	0.4	0
717	Electrochemical ammonia synthesis: Mechanism, recent developments, and challenges in catalyst design. , 2022, , 497-514.		3
718	Spectroscopic Characterization of the Synergistic Mechanism of Ruthenium–Lithium Hydrides for Dinitrogen Cleavage. Journal of Physical Chemistry Letters, 2022, 13, 3937-3941.	2.1	2
719	Distribution Pattern of Metal Atoms in Bimetal-Doped Pyridinic–N ₄ Pores Determines Their Potential for Electrocatalytic N ₂ Reduction. Journal of Physical Chemistry A, 2022, 126, 3080-3089.	1.1	0
720	Unique Catalytic Mechanism for Ru-Loaded Ternary Intermetallic Electrides for Ammonia Synthesis. Journal of the American Chemical Society, 2022, 144, 8683-8692.	6.6	38
721	Insights into the effect of substrate adsorption behavior over heme-like Fe1/AC single-atom catalyst. Nano Research, 2022, 15, 5970-5976.	5.8	10
722	H ₂ and N ₂ Binding Affinities Are Coupled in Synthetic Fe Nitrogenases Limiting N ₂ Fixation. Organometallics, 2022, 41, 1134-1146.	1.1	3
723	The mechanism of nitrogen reduction reaction on defective boron nitride (BN) monolayer doped with monatomic Co, Ni, and Mo–A first principles study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129072.	2.3	6
724	Theoretical Evaluation of Effect of Bimetallic Au-based Alloy Catalysts on Initial N2 Electroreduction Pathways. Physical Chemistry Chemical Physics, 0, , .	1.3	1
725	Insight into effects of SO42- species on hydrodesulfurization of dibenzothiophene over an Fe-based bulk catalyst. Catalysis Today, 2022, , .	2.2	0
726	Dinitrogen Binding at a Trititanium Chloride Complex and Its Conversion to Ammonia under Ambient Conditions. Angewandte Chemie, 0, , .	1.6	1
727	Dinitrogen Binding at a Trititanium Chloride Complex and Its Conversion to Ammonia under Ambient Conditions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
728	Engineered zinc oxide-based nanotherapeutics boost systemic antibacterial efficacy against phloem-restricted diseases. Environmental Science: Nano, 2022, 9, 2869-2886.	2.2	7
729	Legumes for nutrient management in the cropping system. , 2022, , 93-112.		0
730	Nitrogen reduction by the Fe sites of synthetic [Mo3S4Fe] cubes. Nature, 2022, 607, 86-90.	13.7	55
731	Four-Coordinate Fe N ₂ and Imido Complexes Supported by a Hemilabile NNC Heteroscorpionate Ligand. Inorganic Chemistry, 2022, 61, 12318-12326.	1.9	4
732	Dinitrogen cleavage and hydrogenation to ammonia with a uranium complex. National Science Review, 2023, 10, .	4.6	18

#	Article	IF	CITATIONS
733	Preparation and Reactivity of Rhenium–Nitride Complexes Bearing PNP-Type Pincer Ligands toward Nitrogen Fixation. Organometallics, 0, , .	1.1	2
734	Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex**. Angewandte Chemie, 0, , .	1.6	0
736	Characterization of a Proposed Terminal Iron(III) Nitride Intermediate of Nitrogen Fixation Stabilized by a Trisphosphineâ€Borane Ligand. Angewandte Chemie - International Edition, 0, , .	7.2	2
737	Nitrogen Electroreduction on Boropheneâ€Supported Atomic and Diatomic Transition Metals: Stability, Activity and Selectivity Improvements via Defectâ€Engineering. ChemSusChem, 2022, 15, .	3.6	3
738	A Rearrangement Reaction to Yield a NH ₄ ⁺ Ion Driven by Polyoxometalate Formation. ACS Omega, 0, , .	1.6	0
739	Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
740	Characterization of a Proposed Terminal Iron(III) Nitride Intermediate of Nitrogen Fixation Stabilized by a Trisphosphineâ€Borane Ligand. Angewandte Chemie, 0, , .	1.6	0
741	Recent advances in catalytic nitrogen fixation using transition metal–dinitrogen complexes under mild reaction conditions. Coordination Chemistry Reviews, 2022, 472, 214783.	9.5	18
742	Dinitrogen activation and transformation by multimetallic polyhydride complexes. Coordination Chemistry Reviews, 2022, 472, 214766.	9.5	16
743	Enhanced electrocatalytic nitrogen reduction inspired by a lightning rod effect on urchin-like Co3O4 catalyst. Chemical Engineering Journal, 2022, 450, 138316.	6.6	10
744	Tandem Catalysts Based on Bimetallic Single Atoms Embedded in 2D CCFs for Efficient Nitrogen Reduction Reaction. Catalysis Letters, 2023, 153, 2196-2209.	1.4	2
745	Emerging single-atom iron catalysts for advanced catalytic systems. Nanoscale Horizons, 2022, 7, 1340-1387.	4.1	12
746	Photoinduced CO2 and N2 reductions on plasmonically enabled gallium oxide. Journal of Colloid and Interface Science, 2023, 629, 654-666.	5.0	2
747	Tandem electrocatalytic N2 fixation via proton-coupled electron transfer. Nature, 2022, 609, 71-76.	13.7	82
748	Cationic Complexes with Au→Ge Bonds – Synthesis and Carbophilic Reactivity. Israel Journal of Chemistry, 0, , .	1.0	1
749	Chemical looping based ammonia production—A promising pathway for production of the noncarbon fuel. Science Bulletin, 2022, 67, 2124-2138.	4.3	23
750	Boosting nitrogen reduction reaction with boron sites supported by defective Mo2B2O2 MBene. Applied Catalysis A: General, 2022, 646, 118866.	2.2	5
751	Electrochemical nitrogen fixation in metal-N2 batteries: A paradigm for simultaneous NH3 synthesis and energy generation. Energy Storage Materials, 2023, 54, 98-119.	9.5	16

#	Article	IF	CITATIONS
752	Cracked spindle morphology of MIL-101(Fe) for improved photocatalytic nitrogen reduction. Journal of Solid State Chemistry, 2022, 316, 123610.	1.4	5
753	Mechanistic understanding of the effect of alloying Au with Ni on N ₂ electroreduction into NH ₃ : theoretical considerations. New Journal of Chemistry, 2022, 46, 21911-21920.	1.4	1
754	Dinitrogen activation by a phosphido-bridged binuclear cobalt complex. Dalton Transactions, 2022, 51, 16811-16815.	1.6	2
755	Mixture screening strategy of efficient transition metal heteronuclear dual-atom electrocatalysts toward nitrogen fixation. Physical Chemistry Chemical Physics, 2022, 24, 26776-26784.	1.3	6
756	Rational catalyst design and mechanistic evaluation for electrochemical nitrogen reduction at ambient conditions. Green Energy and Environment, 2023, 8, 1567-1595.	4.7	6
757	Unveiling the Protonation Kineticsâ€Dependent Selectivity in Nitrogen Electroreduction: Achieving 75.05 % Selectivity. Angewandte Chemie, 2022, 134, .	1.6	1
758	Unveiling the Protonation Kineticsâ€Dependent Selectivity in Nitrogen Electroreduction: Achieving 75.05 % Selectivity. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
759	Electron deficient boron-doped amorphous carbon nitride to uphill N2 photo-fixation through π back donation. Applied Catalysis B: Environmental, 2023, 321, 122070.	10.8	25
760	Biological and synthetic nitrogen fixation. , 2022, , .		0
761	Catalytic Ammonia Synthesis Mediated by Molybdenum Complexes with PN3P Pincer Ligands: Influence of P/N Substituents and Molecular Mechanism. Molecules, 2022, 27, 7843.	1.7	4
762	Advancing Critical Chemical Processes for a Sustainable Future: Challenges for Industry and the Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT). Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
763	Advancing Critical Chemical Processes for a Sustainable Future: Challenges for Industry and the Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT). Angewandte Chemie, 2022, 134, .	1.6	1
764	N ₂ solar activation: ammonia as a hydrogen vector for energy storage. Faraday Discussions, 0, 243, 388-401.	1.6	1
765	Catalysis of dinitrogen activation and reduction by a single Fe ₁₃ cluster and its doped systems. Physical Chemistry Chemical Physics, 2023, 25, 1196-1204.	1.3	1
766	Progress in the catalytic applications of cobalt N–heterocyclic carbene complexes: Emphasis on their synthesis, structure and mechanism. Molecular Catalysis, 2023, 535, 112850.	1.0	3
767	Catalytic reduction of dinitrogen to ammonia using molybdenum porphyrin complexes. Faraday Discussions, 0, 243, 429-449.	1.6	4
768	Ammonia from dinitrogen at ambient conditions by organometallic catalysts. RSC Advances, 2022, 12, 33567-33583.	1.7	3

ARTICLE IF CITATIONS Ammonia Production Plantsâ€"A Review. Fuels, 2022, 3, 408-435. 770 1.3 16 On the Nature of Three-Atom Metal Cluster Catalysis for N₂ Reduction to Ammonia. ACS 771 5.5 Catalysis, 2022, 12, 14964-14975. Reactivity and Recyclability of Ligandâ€Protected Metal Cluster Catalysts for CO₂ 772 7.2 11 Transformation. Angewandte Chemie - International Edition, 2023, 62, . N₂ Reduction versus H₂ Evolution in a Molybdenum―or Tungstenâ€Based Smallâ€Molecule Model System of Nitrogenase. Chemistry - A European Journal, 2023, 29, . Reactivity and Recyclability of Ligandâ€Protected Metal Cluster Catalysts for CO₂ 774 1.6 1 Transformation. Angewandte Chemie, 2023, 135, . Photocatalytic nitrogen fixation under an ambient atmosphere using a porous coordination polymer with bridging dinitrogen anions. Nature Chemistry, 2023, 15, 286-293. 24 6.6 Vanadium-Catalyzed Dinitrogen Reduction to Ammonia via a [V]â+NNH₂ Intermediate. Journal 776 6.6 9 of the American Chemical Society, 2023, 145, 811-821. Light Alters the NH₃ vs N₂H₄ Product Profile in Ironâ€catalyzed Nitrogen Reduction via Dual Reactivity from an Iron Hydrazido (Fe=NNH₂) Intermediate. 7.2 Angewandte Chemie - International Edition, 2023, 62, . Light Alters the NH3 vs N2H4 Product Profile in Iron atalyzed Nitrogen Reduction via Dual Reactivity 778 0 1.6 from an Iron Hydrazido (Fe=NNH2) Intermediate. Angewandte Chemie, 0, , . N2-to-NH3 conversion by excess electrons trapped in point vacancies on 5f-element dioxide surfaces. 779 1.8 Frontiers in Chemistry, 0, 10, Advances in iron-based electrocatalysts for nitrate reduction. Science of the Total Environment, 780 3.9 16 2023, 866, 161444. The Use of Redox Mediators in Electrocatalysis and Electrosynthesis. Chemistry - an Asian Journal, 2023, 18, . Spectroscopic Identification of the Dinitrogen Fixation and Activation by Metal Carbide Cluster 782 1.9 5 <i>ortho</i>-Phenylene-bridged phosphorus/silicon Lewis pairs. Dalton Transactions, 0, , . 1.6 Sulfur-Ligated [2Fe-2C] Clusters as Synthetic Model Systems for Nitrogenase. Inorganic Chemistry, 784 1.9 1 2023, 62, 2663-2671. Advancing electrocatalytic nitrogen fixation: insights from molecular systems. Faraday Discussions, 0, 243, 450-472. Normal vs. Inverted Ordering of Reduction Potentials in [FeFe]â€Hydrogenases Biomimetics: Effect of 786 1.7 2 the Dithiolate Bulk. Chemistry - A European Journal, 2023, 29, . Snapshots of Early-Stage Quantitative N₂ Electrophilic Functionalization. Journal of the 6.6 American Chemical Society, 2023, 145, 9746-9754.

#	Article	IF	CITATIONS
788	Near ambient N2 fixation on solid electrodes versus enzymes and homogeneous catalysts. Nature Reviews Chemistry, 2023, 7, 184-201.	13.8	15
789	Dinitrogen Complexes of Cobalt(â``I) Supported by Rare-Earth Metal-Based Metalloligands. Inorganic Chemistry, 2023, 62, 3836-3846.	1.9	7
790	Heterogeneous metal trimer catalysts on Mo2TiC2O2 MXene for highly active N2 conversion to NH3. Molecular Catalysis, 2023, 539, 113036.	1.0	2
791	Molybdenum based 2D conductive Metal–Organic frameworks as efficient single-atom electrocatalysts for N2 reduction: A density functional theory study. International Journal of Hydrogen Energy, 2023, 48, 19972-19983.	3.8	8
792	Diazene Chemistry: Metal-Free Models of N ₂ Reduction Intermediates. Journal of the American Chemical Society, 2023, 145, 7101-7106.	6.6	7
793	Syntheses, Characterizations, Crystal Structures, and Protonation Reactions of Dinitrogen Chromium Complexes Supported with Triamidoamine Ligands. Inorganic Chemistry, 2023, 62, 5320-5333.	1.9	1
794	Defective Mo ₂ C as a promising electrocatalyst for the nitrogen reduction reaction. Physical Chemistry Chemical Physics, 2023, 25, 12371-12378.	1.3	1
795	Catalytic production of ammonia from dinitrogen employing molybdenum complexes bearing N-heterocyclic carbene-based PCP-type pincer ligands. , 2023, 2, 635-644.		12
821	The impact of Lewis acids variation on reactions with di-tert-butyl diazo diester. Dalton Transactions, 0, , .	1.6	0