Repackaging Attack on Android Banking Applications a

Wireless Personal Communications 73, 1421-1437 DOI: 10.1007/s11277-013-1258-x

Citation Report

#	Article	IF	CITATIONS
1	Towards a scalable resource-driven approach for detecting repackaged Android applications. , 2014, , .		75
2	RealCatch: A community-based real-time platform for financial fraud protection on smartphones. , 2014, , .		3
3	Personal Information Leaks with Automatic Login in Mobile Social Network Services. Entropy, 2015, 17, 3947-3962.	2.2	7
4	Tamper detection scheme using signature segregation on android platform. , 2015, , .		1
5	A review of mobile pervasive learning: Applications and issues. Computers in Human Behavior, 2015, 46, 239-244.	8.5	42
6	Exfiltrating data from Android devices. Computers and Security, 2015, 48, 74-91.	6.0	72
7	Serverâ€based code obfuscation scheme for APK tamper detection. Security and Communication Networks, 2016, 9, 457-467.	1.5	22
8	Research on Android Access Control Based on Isolation Mechanism. , 2016, , .		1
9	Dissecting developer policy violating apps: characterization and detection. , 2016, , .		2
10	Automated Detection and Classification for Packed Android Applications. , 2016, , .		6
11	Structural analysis of packing schemes for extracting hidden codes in mobile malware. Eurasip Journal on Wireless Communications and Networking, 2016, 2016, .	2.4	9
12	Attacks on Android banking applications. , 2016, , .		10
13	Mobile application tamper detection scheme using dynamic code injection against repackaging attacks. Journal of Supercomputing, 2016, 72, 3629-3645.	3.6	1
14	A Study on the Authentication and Security of Financial Settlement Using the Finger Vein Technology in Wireless Internet Environment. Wireless Personal Communications, 2016, 89, 761-775.	2.7	11
15	Cyber threats to mobile messenger apps from identity cloning. Intelligent Automation and Soft Computing, 2016, 22, 379-387.	2.1	4
16	Hardware-assisted credential management scheme for preventing private data analysis from cloning attacks. Multimedia Tools and Applications, 2016, 75, 14833-14848.	3.9	3
17	Anti-debugging scheme for protecting mobile apps on android platform. Journal of Supercomputing, 2016, 72, 232-246.	3.6	14
18	Security analysis of modern mission critical android mobile applications. , 2017, , .		8

CITATION REPORT

#	Article	IF	CITATIONS
19	Security Assessment of Code Obfuscation Based on Dynamic Monitoring in Android Things. IEEE Access, 2017, 5, 6361-6371.	4.2	22
20	DroidPill., 2017,,.		1
21	A survey on security issues, vulnerabilities and attacks in Android based smartphone. , 2017, , .		14
22	Private Data Protection of Android Application. Lecture Notes in Electrical Engineering, 2018, , 1470-1475.	0.4	1
23	Forensic analysis and security assessment of Android m-banking apps. Australian Journal of Forensic Sciences, 2018, 50, 3-19.	1.2	25
24	Anti-reversible dynamic tamper detection scheme using distributed image steganography for IoT applications. Journal of Supercomputing, 2018, 74, 4261-4280.	3.6	11
25	Risk assessment of mobile applications based on machine learned malware dataset. Multimedia Tools and Applications, 2018, 77, 5027-5042.	3.9	19
26	A Framework for Recognition and Confronting of Obfuscated Malwares Based on Memory Dumping and Filter Drivers. Wireless Personal Communications, 2018, 98, 119-137.	2.7	8
27	Machine Learning to Identify Android Malware. , 2018, , .		1
28	Establishment of intrusion detection testbed for CyberManufacturing systems. Procedia Manufacturing, 2018, 26, 1053-1064.	1.9	10
29	DexMonitor: Dynamically Analyzing and Monitoring Obfuscated Android Applications. IEEE Access, 2018, 6, 71229-71240.	4.2	10
30	Understanding Android Financial MalwareAttacks:Taxonomy, Characterization,and Challenges. Journal of Cyber Security and Mobility, 2018, 7, 1-52.	0.7	8
31	Honey, I Shrunk Your App Security: The State of Android App Hardening. Lecture Notes in Computer Science, 2018, , 69-91.	1.3	12
32	Efficient Protection of Android Applications through User Authentication Using Peripheral Devices. Sustainability, 2018, 10, 1290.	3.2	2
33	Forensic Analysis of Mobile Banking Apps. Lecture Notes in Computer Science, 2019, , 613-626.	1.3	11
34	Mobile Code Anti-Reversing Scheme Based on Bytecode Trapping in ART. Sensors, 2019, 19, 2625.	3.8	2
35	Research on Android Application Reinforcement Method for Mobile Medical Service. Journal of Physics: Conference Series, 2019, 1314, 012195.	0.4	1
36	CloneSpot: Fast detection of Android repackages. Future Generation Computer Systems, 2019, 94, 740-748.	7.5	6

CITATION REPORT

#	Article	IF	CITATIONS
37	Self-Controllable Mobile App Protection Scheme Based on Binary Code Splitting. Mobile Information Systems, 2020, 2020, 1-11.	0.6	1
38	Two-Factor Authentication Scheme for Mobile Money: A Review of Threat Models and Countermeasures. Future Internet, 2020, 12, 160.	3.8	21
39	Development of testbed for cyber-manufacturing security issues. International Journal of Computer Integrated Manufacturing, 2020, 33, 302-320.	4.6	3
40	Risk Assessment Scheme for Mobile Applications Based on Tree Boosting. IEEE Access, 2020, 8, 48503-48514.	4.2	5
41	Identifying parasitic malware as outliers byÂcode clustering. Journal of Computer Security, 2020, 28, 157-189.	0.8	0
42	Rebooting Research on Detecting Repackaged Android Apps: Literature Review and Benchmark. IEEE Transactions on Software Engineering, 2021, 47, 676-693.	5.6	42
43	Automated Multi-Layered Bytecode Generation for Preventing Sensitive Information Leaks From Android Applications. IEEE Access, 2021, 9, 119578-119590.	4.2	0
44	A survey of android application and malware hardening. Computer Science Review, 2021, 39, 100365.	15.3	37
45	Detecting Camouflaged Applications on Mobile Application Markets. Lecture Notes in Computer Science, 2015, , 241-254.	1.3	6
46	Borrowing your enemy's arrows: the case of code reuse in Android via direct inter-app code invocation. , 2020, , .		10
47	A Practical Attack on In-Vehicle Network Using Repacked Android Applications. Journal of the Korea Institute of Information Security and Cryptology, 2016, 26, 679-691.	0.1	1
48	Structural and Functional Analyses of ProGuard Obfuscation Tool. The Journal of Korean Institute of Communications and Information Sciences, 2013, 38B, 654-662.	0.1	9
49	A Scheme for Identifying Malicious Applications Based on API Characteristics. Journal of the Korea Institute of Information Security and Cryptology, 2016, 26, 187-196.	0.1	0
50	Systematic Mapping Study on Verification and Validation of Industrial Third-party lot Applications. Advances in Cyber-Physical Systems, 2017, 5, 30-44.	0.4	0
51	Event Reconstruction of Indonesian E-Banking Services on Windows Phone Devices. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2018, , 507-521.	0.3	0
52	Revealing malicious remote engineering attempts on Android apps with magic numbers. , 2019, , .		0
53	A Novel Approach for Analysing and Detection of Obfuscated Malware Payloads in Android Platform Using DexMonitor. Lecture Notes in Networks and Systems, 2021, , 1-9.	0.7	0
54	Application Integrity Assurance System. , 2023, , .		0

#

55