Ultrathin composite membrane of alkaline polymer elec

Journal of Materials Chemistry A 1, 12497

DOI: 10.1039/c3ta12626a

Citation Report

#	Article	IF	Citations
2	Best Practices for Investigating Anion Exchange Membrane Suitability for Alkaline Electrochemical Devices: Case Study Using Quaternary Ammonium Poly(2,6-dimethyl 1,4-phenylene)oxide Anion Exchange Membranes. Journal of the Electrochemical Society, 2013, 160, F1258-F1274.	2.9	85
3	Highly Stable Alkaline Polymer Electrolyte Based on a Poly(ether ether ketone) Backbone. ACS Applied Materials & Samp; Interfaces, 2013, 5, 13405-13411.	8.0	91
4	SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery. Journal of Materials Chemistry A, 2014, 2, 12423-12432.	10.3	244
5	Anion-exchange membranes in electrochemical energy systems. Energy and Environmental Science, 2014, 7, 3135-3191.	30.8	1,617
6	Preparation and characterization of directional conducting and lower methanol permeable ultrathin membrane based on poly (vinyl alcohol) and imidazolium compounds. International Journal of Hydrogen Energy, 2014, 39, 17191-17200.	7.1	7
7	Anionâ€Exchange Membranes for Fuel Cells: Synthesis Strategies, Properties and Perspectives. Fuel Cells, 2015, 15, 761-780.	2.4	83
8	An Effective Approach for Alleviating Cation-Induced Backbone Degradation in Aromatic Ether-Based Alkaline Polymer Electrolytes. ACS Applied Materials & Enterfaces, 2015, 7, 2809-2816.	8.0	79
9	Manipulating Water in High-Performance Hydroxide Exchange Membrane Fuel Cells through Asymmetric Humidification and Wetproofing. Journal of the Electrochemical Society, 2015, 162, F483-F488.	2.9	71
10	Effect of different ion-aggregating structures on the property of proton conducting membrane based on polyvinyl alcohol. Journal of Membrane Science, 2015, 490, 38-45.	8.2	10
11	Highly branched sulfonated poly(fluorenyl ether ketone sulfone)s membrane for energy efficient vanadium redox flow battery. Journal of Power Sources, 2015, 285, 109-118.	7.8	66
12	Mechanically Tough and Chemically Stable Anion Exchange Membranes from Rigid-Flexible Semi-Interpenetrating Networks. Chemistry of Materials, 2015, 27, 6689-6698.	6.7	149
13	Protein mediated textile dye filtration using graphene oxide–polysulfone composite membranes. RSC Advances, 2015, 5, 71011-71021.	3.6	8
14	Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect?. Energy and Environmental Science, 2015, 8, 177-181.	30.8	418
15	Effect of grafting density of the side chain on the microstructure and properties of proton exchange membranes based on polyvinyl alcohol and poly(ionic liquid). RSC Advances, 2016, 6, 58890-58897.	3.6	7
16	Varying the microphase separation patterns of alkaline polymer electrolytes. Journal of Materials Chemistry A, 2016, 4, 4071-4081.	10.3	61
17	Crosslinked poly(phenylene oxide)-based nanofiber composite membranes for alkaline fuel cells. Journal of Materials Chemistry A, 2016, 4, 132-141.	10.3	81
18	Mechanically Robust Anion Exchange Membranes via Long Hydrophilic Cross-Linkers. Macromolecules, 2017, 50, 2329-2337.	4.8	103
19	Cationic Side-Chain Attachment to Poly(Phenylene Oxide) Backbones for Chemically Stable and Conductive Anion Exchange Membranes. Chemistry of Materials, 2017, 29, 5321-5330.	6.7	133

#	Article	IF	CITATIONS
20	A comprehensive study on the stability and ion transport in cross-linked anion exchange membranes based on polysulfone for solid alkaline fuel cells. International Journal of Hydrogen Energy, 2017, 42, 17229-17241.	7.1	40
21	Elastic Long-Chain Multication Cross-Linked Anion Exchange Membranes. Macromolecules, 2017, 50, 3323-3332.	4.8	159
22	Effect of humidity on the interaction of CO2 with alkaline anion exchange membranes probed using the quartz crystal microbalance. International Journal of Hydrogen Energy, 2017, 42, 24301-24307.	7.1	9
23	Fe/N/C Nanotubes with Atomic Fe Sites: A Highly Active Cathode Catalyst for Alkaline Polymer Electrolyte Fuel Cells. ACS Catalysis, 2017, 7, 6485-6492.	11.2	141
24	Phase separated nanofibrous anion exchange membranes with polycationic side chains. Journal of Materials Chemistry A, 2017, 5, 15326-15341.	10.3	39
25	Advances and challenges in alkaline anion exchange membrane fuel cells. Progress in Energy and Combustion Science, 2018, 66, 141-175.	31.2	388
26	Fuel permeability of anion exchange membranes under electric field. Electrochimica Acta, 2018, 266, 357-363.	5.2	3
27	Enhanced Fe dispersion via "pinning―effect of thiocyanate ion on ferric ion in Fe-N-S-doped catalyst as an excellent oxygen reduction reaction electrode. Journal of Power Sources, 2018, 376, 161-167.	7.8	30
28	Analysis of alkaline exchange membrane fuel cells performance at different operating conditions using DC and AC methods. Journal of Power Sources, 2018, 375, 185-190.	7.8	22
29	Rational design of polyaromatic ionomers for alkaline membrane fuel cells with >1 W cm ^{â°'2} power density. Energy and Environmental Science, 2018, 11, 3283-3291.	30.8	209
30	Sulfonated Nanobamboo Fiber-Reinforced Quaternary Ammonia Poly(ether ether ketone) Membranes for Alkaline Polymer Electrolyte Fuel Cells. ACS Applied Materials & Interfaces, 2018, 10, 33581-33588.	8.0	24
31	Anion Exchange Membranes' Evolution toward High Hydroxide Ion Conductivity and Alkaline Resiliency. ACS Applied Energy Materials, 2018, 1, 2991-3012.	5.1	211
32	Recent advances in multi-scale design and construction of materials for direct methanol fuel cells. Nano Energy, 2019, 65, 104048.	16.0	187
33	Hydrophobic Side-Chain Attached Polyarylether-Based Anion Exchange Membranes with Enhanced Alkaline Stability. ACS Applied Energy Materials, 2019, 2, 8052-8059.	5.1	20
34	Carbon dots for inÂvivo fluorescence imaging of adipose tissue-derived mesenchymal stromal cells. Carbon, 2019, 152, 434-443.	10.3	49
35	Pendent piperidinium-functionalized blend anion exchange membrane for fuel cell application. International Journal of Hydrogen Energy, 2019, 44, 15482-15493.	7.1	58
36	Effect of Micromorphology on Alkaline Polymer Electrolyte Stability. ACS Applied Materials & Samp; Interfaces, 2019, 11, 469-477.	8.0	36
37	Composite membranes from quaternized chitosan reinforced with surface-functionalized PVDF electrospun nanofibers for alkaline direct methanol fuel cells. Journal of Membrane Science, 2020, 611, 118242.	8.2	49

3

#	ARTICLE	IF	CITATIONS
38	A highly stable Cu(OH)2-Poly(vinyl alcohol) nanocomposite membrane for dramatically enhanced direct borohydride fuel cell performance. Journal of Power Sources, 2020, 467, 228312.	7.8	8
39	Alcohol-Treated Porous PTFE Substrate for the Penetration of PTFE-Incompatible Hydrocarbon-Based Ionomer Solutions. Langmuir, 2021, 37, 3694-3701.	3.5	18
40	Ultrathin Self-Cross-Linked Alkaline Polymer Electrolyte Membrane for APEFC Applications. ACS Applied Energy Materials, 2021, 4, 4297-4301.	5.1	5
41	Green preparation of highly alkali-resistant PTFE composite membranes for advanced alkaline water electrolysis. Chemical Engineering Journal, 2021, 426, 131340.	12.7	36
43	Reinforced poly(fluorenyl-co-terphenyl piperidinium) anion exchange membranes for fuel cells. Journal of Membrane Science, 2022, 644, 120160.	8.2	23
44	Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews, 2022, 122, 6117-6321.	47.7	195
45	Cationization of <i>Eucalyptus</i> Kraft LignoBoost Lignin: Preparation, Properties, and Potential Applications. Industrial & Engineering Chemistry Research, 2022, 61, 3503-3515.	3.7	5
46	Ultrathin anion exchange membranes with an improved OH ^{â^'} transfer rate for high-performance AEMFCs. Journal of Materials Chemistry A, 2022, 10, 21503-21511.	10.3	24
47	Tuning the Hydrophobic Component in Reinforced Poly(arylimidazolium)-Based Anion Exchange Membranes for Alkaline Fuel Cells. ACS Applied Energy Materials, 2022, 5, 15211-15221.	5.1	5
49	Design and introduction of quaternary ammonium hydroxide $\hat{a} \in \hat{f}$ unctionalized graphene oxide quantum dots as a pseudo-homogeneous catalyst for epoxidation of $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones. Scientific Reports, 2023, 13, .	3.3	O
51	Sulfonated poly(p-phenylene)-based ionomer/PTFE composite membrane with enhanced performance and durability for energy conversion devices. Journal of Power Sources, 2023, 580, 233422.	7.8	4
52	pH-Swing membrane adsorption of perfluoroalkyl substances: Anion-exchange brushes and role of water chemistry. Separation and Purification Technology, 2024, 329, 124800.	7.9	2
53	Bio-mimetic selectivity in Hg2+ sensing developed via electro-copolymerized PEDOT and benzothiazole-Au nanoparticles composite. Mikrochimica Acta, 2023, 190, .	5.0	1
54	Surface grafting of a zwitterionic copolymer onto a cellulose nanofiber membrane for oil/water separation. Cellulose, 2023, 30, 9635-9645.	4.9	1
56	Ultra-thin, mechanically durable reinforced sulfonated poly(fluorenyl biphenyl) indole proton exchange membrane for fuel cell. Journal of Membrane Science, 2024, 694, 122393.	8.2	0