Walterâ€s[™]two-layer hypothesis revisited: back to the re

Oecologia 172, 617-630 DOI: 10.1007/s00442-012-2538-y

Citation Report

#	Article	IF	CITATIONS
1	Revisiting the Two-Layer Hypothesis: Coexistence of Alternative Functional Rooting Strategies in Savannas. PLoS ONE, 2013, 8, e69625.	1.1	56
2	Combined Spatial and Temporal Effects of Environmental Controls on Long-Term Monthly NDVI in the Southern Africa Savanna. Remote Sensing, 2013, 5, 6513-6538.	1.8	49
3	A century of woody plant encroachment in the dry Kimberley savanna of South Africa. African Journal of Range and Forage Science, 2014, 31, 107-121.	0.6	65
4	Desert shrub responses to experimental modification of precipitation seasonality and soil depth: relationship to the two″ayer hypothesis and ecohydrological niche. Journal of Ecology, 2014, 102, 989-997.	1.9	60
5	A complex network of interactions controls coexistence and relative abundances in Patagonian grassâ€ s hrub steppes. Journal of Ecology, 2014, 102, 776-788.	1.9	20
6	A Multiscale, Hierarchical Model of Pulse Dynamics in Arid-Land Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2014, 45, 397-419.	3.8	153
8	Fine root distribution and belowground interactions in an alley silvopasture system in northern China. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2014, 38, 644-651.	0.8	5
9	Remote sensing provides a progressive record of vegetation change in northern KwaZulu-Natal, South Africa, from 1944 to 2005. International Journal of Remote Sensing, 2014, 35, 904-926.	1.3	8
10	Cerrado vegetation and global change: the role of functional types, resource availability and disturbance in regulating plant community responses to rising CO2 levels and climate warming. Theoretical and Experimental Plant Physiology, 2014, 26, 19-38.	1.1	91
11	Vegetation change in northern KwaZulu-Natal since the Anglo-Zulu War of 1879: local or global drivers?. African Journal of Range and Forage Science, 2014, 31, 89-105.	0.6	18
12	Plants in Deserts. , 2014, , 297-326.		7
13	Seasonality and facilitation drive tree establishment in a semi-arid floodplain savanna. Oecologia, 2014, 175, 261-271.	0.9	19
14	Do woody and herbaceous species compete for soil water across topographic gradients? Evidence for niche partitioning in a Neotropical savanna. South African Journal of Botany, 2014, 91, 14-18.	1.2	39
15	Terrestrial hydrological controls on land surface phenology of African savannas and woodlands. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1652-1669.	1.3	117
16	Groundwater in the <scp>E</scp> arth's critical zone: Relevance to largeâ€scale patterns and processes. Water Resources Research, 2015, 51, 3052-3069.	1.7	164
17	Edaphic, structural and physiological contrasts across Amazon Basin forest–savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function. Biogeosciences, 2015, 12, 6529-6571.	1.3	55
18	Forests, savannas, and grasslands: bridging the knowledge gap between ecology and Dynamic Global Vegetation Models. Biogeosciences, 2015, 12, 1833-1848.	1.3	88
19	Modelling Water Uptake Provides a New Perspective on Grass and Tree Coexistence. PLoS ONE, 2015, 10, e0144300.	1.1	39

#	Article	IF	CITATIONS
20	Tree-grass competition for soil water in arid and semiarid savannas: The role of rainfall intermittency. Water Resources Research, 2015, 51, 169-181.	1.7	42
21	Transpiration dynamics support resource partitioning in African savanna trees and grasses. Ecology, 2015, 96, 1466-1472.	1.5	23
22	Facilitation in drylands: Modeling a neglected driver of savanna dynamics. Ecological Modelling, 2015, 304, 11-21.	1.2	16
23	Tree–grass competition varies across select savanna tree species: a potential role for rooting depth. Plant Ecology, 2015, 216, 577-588.	0.7	20
24	Postâ€ r anching tree–grass interactions in secondary <i>Acacia zanzibarica</i> woodlands in coastal Tanzania – an experimental study. Applied Vegetation Science, 2015, 18, 297-310.	0.9	3
25	Impacts of alien plant invasion on native plant communities are mediated by functional identity of resident species, not resource availability. Oikos, 2015, 124, 298-306.	1.2	22
26	Hydraulic lift as a determinant of tree–grass coexistence on savannas. New Phytologist, 2015, 207, 1038-1051.	3.5	63
27	Challenging the maximum rooting depth paradigm in grasslands and savannas. Functional Ecology, 2015, 29, 739-745.	1.7	61
28	Spatial heterogeneity of fine root biomass and soil carbon in a California oak savanna illuminates plant functional strategy across periods of high and low resource supply. Ecohydrology, 2015, 8, 294-308.	1.1	11
29	Coupling carbon allocation with leaf and root phenology predicts tree–grass partitioning along a savanna rainfall gradient. Biogeosciences, 2016, 13, 761-779.	1.3	32
30	Bush Encroachment Mapping for Africa: Multi-Scale Analysis with Remote Sensing and GIS. SSRN Electronic Journal, 0, , .	0.4	4
31	Studying longâ€ŧerm, largeâ€scale grassland restoration outcomes to improve seeding methods and reveal knowledge gaps. Journal of Applied Ecology, 2016, 53, 1565-1574.	1.9	25
32	Ecohydrological changes in semiarid ecosystems transformed from shrubland to buffelgrass savanna. Ecohydrology, 2016, 9, 1663-1674.	1.1	18
33	Spatial patterns of encroaching shrub species under different grazing regimes in a semi-arid savanna, eastern Karoo, South Africa. African Journal of Range and Forage Science, 2016, 33, 77-89.	0.6	8
34	Evidence for facultative deciduousness in <scp><i>C</i></scp> <i>olophospermum mopane</i> in semiâ€arid <scp>A</scp> frican savannas. Austral Ecology, 2016, 41, 87-96.	0.7	15
35	Buffering the savanna: fire regimes and disequilibrium ecology in West Africa. Plant Ecology, 2016, 217, 583-596.	0.7	20
36	The impacts of isolation, canopy size, and environmental conditions on patterns of understory species richness in an oak savanna. Plant Ecology, 2016, 217, 825-841.	0.7	2
37	Seasonality of hydraulic redistribution by trees to grasses and changes in their waterâ€source use that change tree–grass interactions. Ecohydrology, 2016, 9, 218-228.	1.1	70

#	Article	IF	CITATIONS
38	Fine-root distribution, production, decomposition, and effect on soil organic carbon of three revegetation shrub species in northwest China. Forest Ecology and Management, 2016, 359, 381-388.	1.4	72
39	Introducing a shrub species in a degraded steppe shifts fine root dynamics and soil organic carbon accumulations, in northwest China. Ecological Engineering, 2017, 100, 277-285.	1.6	13
40	Water and nitrogen uptake are better associated with resource availability than root biomass. Ecosphere, 2017, 8, e01738.	1.0	59
41	Plants anticipating rain – a challenge for modelling climate change impacts. New Phytologist, 2017, 213, 475-477.	3.5	1
42	Using <scp>GIS</scp> and remote sensing to explore the influence of physical environmental factors and historical land use on bushland structure. African Journal of Ecology, 2017, 55, 477-486.	0.4	5
43	Impacts of hydraulic redistribution on grass–tree competition vs facilitation in a semiâ€arid savanna. New Phytologist, 2017, 215, 1451-1461.	3.5	51
44	Modelling tree-grass coexistence in water-limited ecosystems. Ecological Modelling, 2017, 360, 387-398.	1.2	6
45	Strategies trees use to overcome seasonal water limitation in an agroforestry system in semiarid West Africa. Ecohydrology, 2017, 10, e1808.	1.1	25
46	Grazing by bison is a stronger driver of plant ecohydrology in tallgrass prairie than fire history. Plant and Soil, 2017, 411, 423-436.	1.8	12
47	Reviews and syntheses: on the roles trees play in building and plumbing the critical zone. Biogeosciences, 2017, 14, 5115-5142.	1.3	130
48	Bush encroachment detection in Africa $\hat{a} {\in} "$ A multi-scale approach. , 2017, , .		0
49	Effect of Climoedaphic Heterogeneity on Woody Plant Dominance in the Argentine Caldenal Region. Rangeland Ecology and Management, 2018, 71, 409-416.	1.1	4
50	Strong competitive effects of African savanna C4 grasses on tree seedlings do not support rooting differentiation. Journal of Tropical Ecology, 2018, 34, 65-73.	0.5	3
51	Bacterial diversity is positively correlated with soil heterogeneity. Ecosphere, 2018, 9, e02079.	1.0	68
52	Seasonal water use by Larix principis-rupprechtii in an alpine habitat. Forest Ecology and Management, 2018, 409, 47-55.	1.4	28
53	Regional climate and vegetation response to orbital forcing within the mid-Pliocene Warm Period: A study using HadCM3. Global and Planetary Change, 2018, 161, 231-243.	1.6	20
54	Water utilization characteristics of typical vegetation in the rocky mountain area of Beijing, China. Ecological Indicators, 2018, 91, 249-258.	2.6	21
55	The role of heartwood water storage for sem-arid trees under drought. Agricultural and Forest Meteorology, 2018, 256-257, 534-541.	1.9	17

#	Article	IF	CITATIONS
56	Aridity Decouples C:N:P Stoichiometry Across Multiple Trophic Levels in Terrestrial Ecosystems. Ecosystems, 2018, 21, 459-468.	1.6	40
5 7	Large shrubs increase soil nutrients in a semi-arid savanna. Geoderma, 2018, 310, 153-162.	2.3	65
58	The impact of inter-annual rainfall variability on African savannas changes with mean rainfall. Journal of Theoretical Biology, 2018, 437, 92-100.	0.8	12
59	Remotely sensed canopy height reveals three pantropical ecosystem states: aÂcomment. Ecology, 2018, 99, 231-234.	1.5	3
60	Overstorey–Understorey Interactions Intensify After Drought-Induced Forest Die-Off: Long-Term Effects for Forest Structure and Composition. Ecosystems, 2018, 21, 723-739.	1.6	27
61	Rooting depth varies differentially in trees and grasses as a function of mean annual rainfall in an African savanna. Oecologia, 2018, 186, 269-280.	0.9	29
62	Variability in fireâ€induced change to vegetation physiognomy and biomass in semiâ€arid savanna. Ecosphere, 2018, 9, e02514.	1.0	23
63	Woody Plant Encroachment Impacts on Groundwater Recharge: A Review. Water (Switzerland), 2018, 10, 1466.	1.2	45
64	The effects of abiotic factors in South African semi-arid grassland communities on Seriphium plumosum L density and canopy size. PLoS ONE, 2018, 13, e0202809.	1.1	8
65	Human impacts in African savannas are mediated by plant functional traits. New Phytologist, 2018, 220, 10-24.	3.5	114
66	Above- and below-ground allocation and functional trait response to soil water inputs and drying rates of two common savanna grasses. Journal of Arid Environments, 2018, 157, 1-12.	1.2	3
67	Density-dependent spatial patterning of woody plants differs between a semi-arid and a mesic savanna in South Africa. Journal of Arid Environments, 2018, 157, 103-112.	1.2	12
68	Plant Water Use Strategy in Response to Spatial and Temporal Variation in Precipitation Patterns in China: A Stable Isotope Analysis. Forests, 2018, 9, 123.	0.9	21
69	Liana and tree below-ground water competition—evidence for water resource partitioning during the dry season. Tree Physiology, 2018, 38, 1071-1083.	1.4	58
70	Woody Encroachment as a Social-Ecological Regime Shift. Sustainability, 2018, 10, 2221.	1.6	30
71	Using Near-Infrared-Enabled Digital Repeat Photography to Track Structural and Physiological Phenology in Mediterranean Tree–Grass Ecosystems. Remote Sensing, 2018, 10, 1293.	1.8	64
72	Soil texture mediates tree responses to rainfall intensity in African savannas. New Phytologist, 2018, 219, 1363-1372.	3.5	42
73	Soil properties and climate mediate the effects of biotic interactions on the performance of a woody range expander. Ecosphere, 2018, 9, e02186.	1.0	5

#	Article	IF	CITATIONS
74	A dominance shift in arid savanna: An herbaceous legume outcompetes local C ₄ grasses. Ecology and Evolution, 2018, 8, 6779-6787.	0.8	5
75	Grass-Shrub Competition in Arid Lands: An Overlooked Driver in Grassland–Shrubland State Transition?. Ecosystems, 2019, 22, 619-628.	1.6	33
76	Plant water uptake along a diversity gradient provides evidence for complementarity in hydrological niches. Oikos, 2019, 128, 1748-1760.	1.2	18
77	Droughts and the ecological future of tropical savanna vegetation. Journal of Ecology, 2019, 107, 1531-1549.	1.9	65
81	Constraints on shrub cover and shrub–shrub competition in a U.S. southwest desert. Ecosphere, 2019, 10, e02590.	1.0	18
82	Yearâ€Round Transpiration Dynamics Linked With Deep Soil Moisture in a Warm Desert Shrubland. Water Resources Research, 2019, 55, 5679-5695.	1.7	21
83	Forb ecology research in dry African savannas: Knowledge, gaps, and future perspectives. Ecology and Evolution, 2019, 9, 7875-7891.	0.8	47
84	Using water isotopes to analyze water uptake during vegetation succession on abandoned cropland on the Loess Plateau, China. Catena, 2019, 181, 104095.	2.2	26
85	Holocene savanna dynamics in the seasonal tropics of northern Australia. Review of Palaeobotany and Palynology, 2019, 267, 17-31.	0.8	17
86	Root density distribution and biomass allocation of co-occurring woody plants on contrasting soils in a subtropical savanna parkland. Plant and Soil, 2019, 438, 263-279.	1.8	21
87	Effects of Mineral Nitrogen Partitioning on Tree–Grass Coexistence in West African Savannas. Ecosystems, 2019, 22, 1676-1690.	1.6	6
88	Competition suppresses shrubs during early, but not late, stages of arid grassland–shrubland state transition. Functional Ecology, 2019, 33, 1480-1490.	1.7	16
89	Grass and tree cover responses to intra-seasonal rainfall variability vary along a rainfall gradient in African tropical grassy biomes. Scientific Reports, 2019, 9, 2334.	1.6	17
91	Partitioning of Water Between Differently Sized Shrubs and Potential Groundwater Recharge in a Semiarid Savanna in Namibia. Frontiers in Plant Science, 2019, 10, 1411.	1.7	17
92	Does phenology play a role in the feedbacks underlying shrub encroachment?. Science of the Total Environment, 2019, 657, 1064-1073.	3.9	17
93	Nitrogen enrichment suppresses revegetated shrub growth under increased precipitation via herb-induced topsoil water limitation in a desert ecosystem in northern China. Plant and Soil, 2020, 446, 97-110.	1.8	9
94	Hydrologic niches explain species coexistence and abundance in a shrub–steppe system. Journal of Ecology, 2020, 108, 998-1008.	1.9	30
95	How afforestation affects the water cycle in drylands: A processâ€based comparative analysis. Global Change Biology, 2020, 26, 944-959.	4.2	109

#	Article	IF	CITATIONS
96	Rootâ€niche separation between savanna trees and grasses is greater on sandier soils. Journal of Ecology, 2020, 108, 2298-2308.	1.9	31
97	The role of spatial self-organization in the design of agroforestry systems. PLoS ONE, 2020, 15, e0236325.	1.1	10
98	Linking Vegetation-Climate-Fire Relationships in Sub-Saharan Africa to Key Ecological Processes in Two Dynamic Global Vegetation Models. Frontiers in Environmental Science, 2020, 8, .	1.5	6
99	Small differences in root distributions allow resource niche partitioning. Ecology and Evolution, 2020, 10, 9776-9787.	0.8	16
100	Physiological Mechanisms of Foliage Recovery after Spring or Fall Crown Scorch in Young Longleaf Pine (Pinus palustris Mill.). Forests, 2020, 11, 208.	0.9	10
101	Drought Tolerance and Competition in Eastern Redcedar (Juniperus virginiana) Encroachment of the Oak-Dominated Cross Timbers. Frontiers in Plant Science, 2020, 11, 59.	1.7	10
102	The hydraulic redistribution on cashew (Anacardium occidentale L.) at nursery stage. IOP Conference Series: Earth and Environmental Science, 2020, 418, 012072.	0.2	2
103	Neighbourhoodâ€dependent root distributions and the consequences on root separation in arid ecosystems. Journal of Ecology, 2020, 108, 1635-1648.	1.9	20
104	Woody plant growth increases with precipitation intensity in a cold semiarid system. Ecology, 2021, 102, e03212.	1.5	17
105	Water uptake plasticity of savanna trees in encroached grassland: small trees match the mature trees. African Journal of Range and Forage Science, 2021, 38, 231-243.	0.6	2
106	A nurse shrub species helps associated herbaceous plants by preventing shadeâ€induced evaporation in a desert ecosystem. Land Degradation and Development, 2021, 32, 1796-1808.	1.8	10
107	Hydraulic redistribution buffers climate variability and regulates grassâ€ŧree interactions in a semiarid riparian savanna. Ecohydrology, 2021, 14, e2271.	1.1	7
108	Domestic wastewater infiltration process in desert sandy soil and its irrigation prospect analysis. Ecotoxicology and Environmental Safety, 2021, 208, 111419.	2.9	10
109	Intensified Interspecific Competition for Water after Afforestation with Robinia pseudoacacia into a Native Shrubland in the Taihang Mountains, Northern China. Sustainability, 2021, 13, 807.	1.6	5
110	Nitrogen-enhanced herbaceous competition threatens woody species persistence in a desert ecosystem. Plant and Soil, 2021, 460, 333-345.	1.8	10
111	Fine root dynamic characteristics and effect on plantation's carbon sequestration of three <i>Salix</i> shrub plantations in Tibetan Plateau alpine sandy land. Ecology and Evolution, 2021, 11, 2645-2659.	0.8	6
112	Bagging: a cheaper, faster, non-destructive transpiration water sampling method for tracer studies. Plant and Soil, 2021, 462, 603-611.	1.8	5
113	What shapes the range edge of a dominant African savanna tree, <i>Colophospermum mopane</i> ? A demographic approach. Ecology and Evolution, 2021, 11, 3726-3736.	0.8	9

			0
#	ARTICLE	IF	CITATIONS
114	Defining codominance in plant communities. New Phytologist, 2021, 230, 1716-1730.	3.5	2
115	Multi-scale assessment of a grassland productivity model. Biogeosciences, 2021, 18, 2213-2220.	1.3	1
116	Warming promotes growth of seedlings of a woody encroacher in grassland dominated by C4 species. African Journal of Range and Forage Science, 0, , 1-9.	0.6	2
117	Temporal variation and controlling factors of tree water consumption in the thornbush savanna. Journal of Arid Environments, 2021, 189, 104500.	1.2	4
118	Do Woody Tree Thinning and Season Have Effect on Grass Species' Composition and Biomass in a Semi-Arid Savanna? The Case of a Semi-Arid Savanna, Southern Ethiopia. Frontiers in Environmental Science, 2021, 9, .	1.5	4
119	Belowground competition and growth of juvenile trees in a long-unburnt Australian savanna. Forest Ecology and Management, 2021, 491, 119141.	1.4	0
120	Tree-ring δ180 identifies similarity in timing but differences in depth of soil water uptake by trees in mesic and arid climates. Agricultural and Forest Meteorology, 2021, 308-309, 108569.	1.9	7
121	Deepening roots can enhance carbonate weathering by amplifying CO ₂ -rich recharge. Biogeosciences, 2021, 18, 55-75.	1.3	31
122	Influence of Tree Density on Vegetation Composition and Soil Chemical Properties in Savanna Rangeland of Eastern Cape, South Africa. Agricultural Sciences, 2021, 12, 991-1002.	0.2	2
123	Ecohydrology of Arid and Semiarid Ecosystems: An Introduction. , 2019, , 1-27.		3
124	Woody Plant Encroachment: Causes and Consequences. Springer Series on Environmental Management, 2017, , 25-84.	0.3	266
125	The effects of bush control methods on encroaching woody plants in terms of die-off and survival in Borana rangelands, southern Ethiopia. Pastoralism, 2020, 10, .	0.3	8
126	The Effects of Seed Ingestion by Livestock, Dung Fertilization, Trampling, Grass Competition and Fire on Seedling Establishment of Two Woody Plant Species. PLoS ONE, 2015, 10, e0117788.	1.1	24
127	Shade is the most important factor limiting growth of a woody range expander. PLoS ONE, 2020, 15, e0242003.	1.1	6
128	Plant water resource partitioning and xylem-to-leaf deuterium enrichment in Lanzhou, northwest China. Water Science and Technology: Water Supply, 2020, 20, 1127-1140.	1.0	2
132	Divergent Patterns and Spatial Heterogeneity of Soil Nutrients in a Complex and Dynamic Savanna Landscape. Journal of Geophysical Research G: Biogeosciences, 2021, 126, .	1.3	5
133	Plants in Deserts. , 2015, , 1-24.		1
134	Root structure of shrub encroaching plants in the African savannas: insights from Terminalia sericea (Burch. ex dc) across a climate gradient in the Kalahari Basin. European Journal of Ecology, 2020, 6, 17-26.	0.1	1

#	Article	IF	CITATIONS
135	Belowground mechanisms for oak regeneration: Interactions among fire, soil microbes, and plant community alter oak seedling growth. Forest Ecology and Management, 2022, 503, 119774.	1.4	8
136	Monoculture or Mixed Culture? Relevance of Fine Root Dynamics to Carbon Sequestration Oriented Mangrove Afforestation and Restoration. Frontiers in Marine Science, 2021, 8, .	1.2	6
137	Positive Effects of Scattered Trees on Soil Water Dynamics in a Pasture Landscape in the Tropics. Frontiers in Water, 2021, 3, .	1.0	6
138	High-resolution images and drone-based LiDAR reveal striking patterns of vegetation gaps in a wooded spinifex grassland of Western Australia. Landscape Ecology, 2022, 37, 829-845.	1.9	9
139	Occurrence of Australian woody species is driven by soil moisture and available phosphorus across a climatic gradient. Journal of Vegetation Science, 2021, 32, e13095.	1.1	7
140	Experimental drought suppresses grass productivity and passive warming promotes tree sapling performance: Insights from African savanna species. Acta Oecologica, 2022, 114, 103813.	0.5	1
141	Competition for water and species coexistence in phenologically structured annual plant communities. Ecology Letters, 2022, 25, 1110-1125.	3.0	7
142	Reinvasion of Native Invasive Trees After a Tree-Thinning Experiment in an African Savanna. Rangeland Ecology and Management, 2022, 81, 69-77.	1.1	4
143	Qualitative Modeling for Bridging Expert-Knowledge and Social-Ecological Dynamics of an East African Savanna. Land, 2022, 11, 42.	1.2	5
144	Grass-shrub coexistence: understanding root distribution in ecological sites of the Semiarid Chaco, Argentina. Arid Land Research and Management, 2022, 36, 331-343.	0.6	0
145	Do Bush Control Techniques Have an Effect on the Density, Cover and Recruitment of Woody Plants in a Semi-Arid Savanna? The Case of a Semi-Arid Savanna, Southern Ethiopia. Frontiers in Environmental Science, 2021, 9, .	1.5	0
146	Vegetation in Arid Areas of the Loess Plateau Showed More Sensitivity of Water-Use Efficiency to Seasonal Drought. Forests, 2022, 13, 634.	0.9	3
151	Coordination between water uptake depth and the leaf economic spectrum in a Mediterranean shrubland. Journal of Ecology, 2022, 110, 1844-1856.	1.9	14
152	Spatial and seasonal patterns of water use in Mediterranean coastal dune vegetation. Plant and Soil, 2022, 477, 807-828.	1.8	4
153	Interacting water, nutrients, and shrub age control steppe grassâ€onâ€shrub competition: Implications for restoration. Ecosphere, 2022, 13, .	1.0	6
154	Increased precipitation attenuates shrub encroachment by facilitating herbaceous growth in a Mongolian grassland. Functional Ecology, 0, , .	1.7	2
155	Firstâ€year <i>Acacia</i> seedlings are anisohydric "waterâ€spenders―but differ in their rates of water use. American Journal of Botany, 2022, 109, 1251-1261.	0.8	5
156	Plant functional traits affect competitive vigor of pasture grasses during drought and following recovery. Ecosphere, 2022, 13, .	1.0	4

	CITATION	Report	
#	Article	IF	CITATIONS
157	A modern twoâ€layer hypothesis helps resolve the â€~savanna problem'. Ecology Letters, 2022, 25, 1952-	19603.0	6
158	Precipitation Intensification Increases Shrub Dominance in Arid, Not Mesic, Ecosystems. Ecosystems, 2023, 26, 568-584.	1.6	4
159	Trait responses of a grassland shrub invader to altered moisture regimes. Plant and Soil, 0, , .	1.8	1
160	Mean height increase in saplings of a keystone woody savanna species over 15 years similar to that over a single season. Ecosphere, 2022, 13, .	1.0	4
161	Spatial analysis reveals facilitation in young clonal trees and competition in older trees during re-invasion of encroaching trees in an African savanna. Plant Ecology, 2022, 223, 1167-1180.	0.7	1
162	Distribution Characteristics and Drivers of Soil Carbon and Nitrogen in the Drylands of Central Asia. Land, 2022, 11, 1723.	1.2	1
163	Livestock exclusion enhances shrub encroachment in an alpine meadow on the eastern <scp>Qinghaiâ€Tibetan</scp> Plateau. Land Degradation and Development, 2023, 34, 1390-1402.	1.8	1
164	Vegetation responses to variations in climate: A combined ordinary differential equation and sequential Monte Carlo estimation approach. Ecological Informatics, 2023, 73, 101913.	2.3	18
165	Water-use characteristics of two dominant plant species in different community types in the Mu Us Desert. Catena, 2023, 221, 106803.	2.2	5
166	Linking resource―and disturbanceâ€based models to explain tree–grass coexistence in savannas. New Phytologist, 2023, 237, 1966-1979.	3.5	14
167	The vegetation cover dynamics and potential drivers of habitat change over 30Âyears in the Free State National Botanical Garden, South Africa. Regional Environmental Change, 2023, 23, .	1.4	5
168	The rate of environmental change as an important driver across scales in ecology. Oikos, 2023, 2023, .	1.2	3
169	Effects of post oak (Quercus stellata) and smooth brome (Bromus inermis) competition on water uptake and root partitioning of eastern redcedar (Juniperus virginiana). PLoS ONE, 2023, 18, e0280100.	1.1	0
179	Hydraulic redistribution: Co-benefit potential on cashew (Anacardium occidentale L.) cultivation $\hat{a} \in A$ review. AIP Conference Proceedings, 2024, , .	0.3	0