Inverse spin Hall effect in nanometer-thick yttrium iron

Applied Physics Letters 103, 082408

DOI: 10.1063/1.4819157

Citation Report

#	Article	IF	CITATIONS
1	Spin-wave-based computing devices. , 2014, , .		5
2	Spin Hall controlled magnonic microwaveguides. Applied Physics Letters, 2014, 104, .	1.5	38
3	Spin current generation from sputtered Y3Fe5O12 films. Journal of Applied Physics, 2014, 116, .	1.1	52
4	Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization. APL Materials, $2014, 2, \ldots$	2.2	183
5	Nonlinear spin-current enhancement enabled by spin-damping tuning. Nature Communications, 2014, 5, 5730.	5.8	25
6	Conduction of spin currents through insulating antiferromagnetic oxides. Europhysics Letters, 2014, 108, 57005.	0.7	145
7	Spin valve effect of the interfacial spin accumulation in yttrium iron garnet/platinum bilayers. Applied Physics Letters, 2014, 105, 132411.	1.5	11
8	Paramagnetic Spin Pumping. Physical Review Letters, 2014, 113, 266602.	2.9	49
9	Spin-wave excitation and propagation in microstructured waveguides of yttrium iron garnet/Pt bilayers. Applied Physics Letters, 2014, 104 , .	1.5	147
10	Measurement of the intrinsic damping constant in individual nanodisks of Y3Fe5O12 and Y3Fe5O12 Pt. Applied Physics Letters, 2014, 104, .	1.5	65
11	Review and prospects of magnonic crystals and devices with reprogrammable band structure. Journal of Physics Condensed Matter, 2014, 26, 123202.	0.7	449
12	Full Control of the Spin-Wave Damping in a Magnetic Insulator Using Spin-Orbit Torque. Physical Review Letters, 2014, 113, 197203.	2.9	143
13	Spin Pumping and Inverse Spin Hall Effect in Platinum: The Essential Role of Spin-Memory Loss at Metallic Interfaces. Physical Review Letters, 2014, 112, 106602.	2.9	519
14	An angular analysis to separate spin pumping-induced inverse spin Hall effect from spin rectification in a Py/Pt bilayer. Journal Physics D: Applied Physics, 2014, 47, 285001.	1.3	30
15	Proximity Induced High-Temperature Magnetic Order in Topological Insulator - Ferrimagnetic Insulator Heterostructure. Nano Letters, 2014, 14, 3459-3465.	4.5	192
16	Radiative damping in waveguide-based ferromagnetic resonance measured via analysis of perpendicular standing spin waves in sputtered permalloy films. Physical Review B, 2015, 92, .	1.1	91
17	Spin pumping in YIG/Pt bilayers as a function of layer thickness. Physical Review B, 2015, 92, .	1.1	73
18	Spin-current emission governed by nonlinear spin dynamics. Scientific Reports, 2015, 5, 15158.	1.6	12

#	Article	IF	CITATIONS
19	Weak Delocalization in Graphene on a Ferromagnetic Insulating Film. Small, 2015, 11, 6295-6301.	5.2	7
20	Magnon spintronics. Nature Physics, 2015, 11, 453-461.	6.5	1,804
21	Thickness and power dependence of the spin-pumping effect in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Y</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>Fe</mml:mi><mml:mi><mml:mi>="normal">O</mml:mi><mml:mn>12</mml:mn></mml:mi></mml:msub></mml:mrow></mml:math> /Pt heterostructures measured by the inverse spin Hall effect. Physical Review B, 2015, 91, .	ıml ım ın>5<	:/m/m/m/:mn>
22	Magneto-optical investigation of spin–orbit torques in metallic and insulating magnetic heterostructures. Nature Communications, 2015, 6, 8958.	5.8	80
23	Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics. Scientific Reports, 2014, 4, 6848.	1.6	189
24	Broadband stripline ferromagnetic resonance spectroscopy of ferromagnetic films, multilayers and nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 69, 253-293.	1.3	133
25	Hybrid yttrium iron garnet-ferromagnet structures for spin-wave devices. Journal of Applied Physics, 2015, 117, .	1.1	13
26	Optical spectroscopy of sputtered nanometer-thick yttrium iron garnet films. Journal of Applied Physics, 2015, 117, .	1.1	13
27	Magnonic Waveguides Studied by Microfocus Brillouin Light Scattering. IEEE Transactions on Magnetics, 2015, 51, 1-15.	1.2	102
28	Inverse spin Hall effect of antiferromagnetic MnIr in exchange biased NiFe/MnIr films. Journal Physics D: Applied Physics, 2015, 48, 345002.	1.3	8
29	Magnon Spintronics., 2015, , 1-38.		1
30	Spin waves in micro-structured yttrium iron garnet nanometer-thick films. Journal of Applied Physics, 2015, 117, .	1.1	50
31	Thickness- and temperature-dependent magnetodynamic properties of yttrium iron garnet thin films. Journal of Applied Physics, 2015, 117, .	1.1	46
32	Growth and spin-wave properties of thin Y3Fe5O12 films on Si substrates. Journal of Applied Physics, 2015, 118, .	1.1	38
33	Magnetic field induced spin-wave energy focusing. Physical Review B, 2015, 92, .	1.1	15
34	Pseudomorphic Yttrium Iron Garnet Thin Films With Low Damping and Inhomogeneous Linewidth Broadening. IEEE Magnetics Letters, 2015, 6, 1-4.	0.6	65
35	Spin pumping from spinwaves in thin film YIG. Applied Physics Letters, 2015, 107, .	1.5	17
36	Yig Films With Low Magnetic Damping Obtained By Solgel On Silicon (100). Materials Letters, 2015, 161, 384-386.	1.3	29

#	Article	IF	CITATIONS
37	New Pathways Towards Efficient Metallic Spin Hall Spintronics. Spin, 2015, 05, 1530005.	0.6	13
38	Measurements of the exchange stiffness of YIG films using broadband ferromagnetic resonance techniques. Journal Physics D: Applied Physics, 2015, 48, 015001.	1.3	123
39	Yttrium Iron Garnet Thin Films with Very Low Damping Obtained by Recrystallization of Amorphous Material. Scientific Reports, 2016, 6, 20827.	1.6	182
40	Optically-inspired computing based on spin waves. , 2016, , .		2
41	Approaching soft X-ray wavelengths in nanomagnet-based microwave technology. Nature Communications, 2016, 7, 11255.	5.8	137
42	Low-damping sub-10-nm thin films of lutetium iron garnet grown by molecular-beam epitaxy. Applied Physics Letters, 2016, 109, .	1.5	29
43	Direct observation of dynamic modes excited in a magnetic insulator by pure spin current. Scientific Reports, 2016, 6, 32781.	1.6	30
44	Interface effects in nanometer-thick yttrium iron garnet films studied by magneto-optical spectroscopy. Applied Physics Letters, 2016, 108, .	1.5	28
45	Absence of anomalous Nernst effect in spin Seebeck effect of Pt/YIG. AIP Advances, 2016, 6, .	0.6	37
46	Spin-transfer torque based damping control of parametrically excited spin waves in a magnetic insulator. Applied Physics Letters, 2016, 108, .	1.5	36
47	Exceptionally high magnetization of stoichiometric Y3Fe5O12 epitaxial films grown on Gd3Ga5O12. Applied Physics Letters, 2016, 109, .	1.5	37
48	Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties. Journal of Applied Physics, 2016, 119, .	1.1	53
49	High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque. Applied Physics Letters, $2016, 108, \ldots$	1.5	79
50	Spin Funneling for Enhanced Spin Injection into Ferromagnets. Scientific Reports, 2016, 6, 28868.	1.6	15
51	Ultra-low magnetic damping of a metallicÂferromagnet. Nature Physics, 2016, 12, 839-842.	6.5	274
52	Nanomagnonics. Journal Physics D: Applied Physics, 2016, 49, 391002.	1.3	11
53	Time-resolved spectroscopy of spin-current emission from a magnetic insulator. Physical Review B, 2016, 93, .	1.1	1
54	Wave-vector-dependent spin pumping as a probe of exchange-coupled magnons. Physical Review B, 2016, 93, .	1.1	5

#	ARTICLE	IF	Citations
55	Large Spin-Wave Bullet in a Ferrimagnetic Insulator Driven by the Spin Hall Effect. Physical Review Letters, 2016, 116, 057601.	2.9	66
56	Spin–torque generator engineered by natural oxidation of Cu. Nature Communications, 2016, 7, 13069.	5.8	128
57	Short-Wavelength Spin Waves in Yttrium Iron Garnet Micro-Channels on Silicon. IEEE Magnetics Letters, 2016, 7, 1-4.	0.6	13
58	Investigation of the unidirectional spin heat conveyer effect in a 200 nm thin Yttrium Iron Garnet film. Scientific Reports, 2016, 6, 28233.	1.6	52
59	Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque. Nature Communications, 2016, 7, 10377.	5.8	206
60	Epitaxial patterning of nanometer-thick Y ₃ Fe ₅ O ₁₂ films with low magnetic damping. Nanoscale, 2016, 8, 388-394.	2.8	41
61	Thermal spin transfer torque in Fe Ag YIG multilayers. Frontiers of Physics, 2017, 12, 1.	2.4	1
62	Spin Seebeck effect in nanometer-thick YIG micro-fabricated strips. AIP Advances, 2017, 7, 055924.	0.6	5
63	Spin-wave propagation in ultra-thin YIG based waveguides. Applied Physics Letters, 2017, 110, .	1.5	91
64	Magnetic properties of spin waves in thin yttrium iron garnet films. Physical Review B, 2017, 95, .	1.1	26
65	Bolometric detection of ferromagnetic resonance in YIG slab. Journal of Magnetism and Magnetic Materials, 2017, 439, 53-56.	1.0	3
66	Magnonic crystals for data processing. Journal Physics D: Applied Physics, 2017, 50, 244001.	1.3	309
67	Magnetic Proximity Effect Free Spin Hall Magnetoresistance in YIGâ^–Pd. Spin, 2017, 07, 1740005.	0.6	4
68	Gilbert damping of magnetostatic modes in a yttrium iron garnet sphere. Applied Physics Letters, 2017, 110, .	1.5	42
69	Thermal spin torques in magnetic insulators. Physical Review B, 2017, 95, .	1.1	13
70	Annealing effects on the microstructure and magnetic properties of Y3Fe5O12 films deposited on Si/SiO2 substrates by RF magnetron sputtering. Ceramics International, 2017, 43, 7477-7481.	2.3	9
71	Sub-micrometer yttrium iron garnet LPE films with low ferromagnetic resonance losses. Journal Physics D: Applied Physics, 2017, 50, 204005.	1.3	105
72	Role of damping in spin Seebeck effect in yttrium iron garnet thin films. Science Advances, 2017, 3, e1601614.	4.7	42

#	ARTICLE	IF	CITATIONS
73	The room temperature deposition of high-quality epitaxial yttrium iron garnet thin film via RF sputtering. Journal of Alloys and Compounds, 2017, 708, 213-219.	2.8	11
74	Magneto-optical methods for analysis of nanothick magnetodielectric films. Journal of Communications Technology and Electronics, 2017, 62, 78-82.	0.2	1
75	Annealing of amorphous yttrium iron garnet thin films in argon atmosphere. Journal of Applied Physics, 2017, 122, .	1.1	10
76	Metallic ferromagnetic films with magnetic damping under 1.4 × 10â^'3. Nature Communications, 201 234.	7 _{.8} ,	74
77	Unexpected structural and magnetic depth dependence of YIG thin films. Physical Review B, 2017, 96, .	1.1	41
78	Coexistence of Low Damping and Strong Magnetoelastic Coupling in Epitaxial Spinel Ferrite Thin Films. Advanced Materials, 2017, 29, 1701130.	11.1	71
79	Linearly polarized GHz magnetization dynamics of spin helix modes in the ferrimagnetic insulator Cu2OSeO3. Scientific Reports, 2017, 7, 7037.	1.6	17
80	Magnetization reversal in YIG/GGG(111) nanoheterostructures grown by laser molecular beam epitaxy. Science and Technology of Advanced Materials, 2017, 18, 351-363.	2.8	31
81	Sputtering growth of Y ₃ Fe ₅ O ₁₂ /Pt bilayers and spin transfer at Y ₃ Fe ₅ O _{/Pt interfaces. APL Materials, 2017, 5, 126104.}	2.2	16
82	Spin-wave propagation and spin-polarized electron transport in single-crystal iron films. Physical Review B, 2017, 96, .	1.1	8
83	Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect. Nano Letters, 2017, 17, 7234-7241.	4.5	21
84	Ultra-low damping in lift-off structured yttrium iron garnet thin films. Applied Physics Letters, 2017, 111, .	1.5	26
85	Growth and properties of yttrium-iron garnet films with a higher iron content. Journal of Magnetism and Magnetic Materials, 2017, 442, 189-195.	1.0	8
86	Spin waves with large decay length and few 100 nm wavelengths in thin yttrium iron garnet grown at the wafer scale. Applied Physics Letters, 2017, 111, .	1.5	37
87	Increased low-temperature damping in yttrium iron garnet thin films. Physical Review B, 2017, 95, .	1.1	72
88	Paving Spin-Wave Fibers in Magnonic Nanocircuits Using Spin-Orbit Torque. Physical Review Applied, 2017, 7, .	1.5	16
89	Nonlinear spin conductance of yttrium iron garnet thin films driven by large spin-orbit torque. Physical Review B, 2018, 97, .	1.1	35
90	Electrical properties of epitaxial yttrium iron garnet ultrathin films at high temperatures. Physical Review B, 2018, 97, .	1.1	39

#	Article	IF	CITATIONS
91	Topological Magnon Modes in Patterned Ferrimagnetic Insulator Thin Films. Nano Letters, 2018, 18, 3032-3037.	4.5	34
92	Spin Hall-induced auto-oscillations in ultrathin YIG grown on Pt. Scientific Reports, 2018, 8, 1269.	1.6	36
93	Unidirectional Spin-Wave-Propagation-Induced Seebeck Voltage in a PEDOT:PSS/YIG Bilayer. Physical Review Letters, 2018, 120, 047201.	2.9	24
94	Spin-orbit torque and spin pumping in YIG/Pt with interfacial insertion layers. Applied Physics Letters, 2018, 112, .	1.5	28
95	Growth of high quality yttrium iron garnet films using standard pulsed laser deposition technique. Journal of Magnetism and Magnetic Materials, 2018, 453, 254-257.	1.0	9
96	Spin wave propagation in sputter-deposited YIG nanometer films , 2018, , .		0
97	Reduced interfacial magnetic moment of Y3Fe5O12 by capping Pt. Applied Physics Letters, 2018, 113, 182402.	1.5	7
98	Propagating spin waves in nanometer-thick yttrium iron garnet films: Dependence on wave vector, magnetic field strength, and angle. Physical Review B, 2018, 98, .	1.1	39
99	Low-loss YIG-based magnonic crystals with large tunable bandgaps. Nature Communications, 2018, 9, 5445.	5.8	50
100	Lens Design for Computing With Anisotropic Spin Waves. IEEE Magnetics Letters, 2018, 9, 1-5.	0.6	8
101	Temperature Dependence of Magnetic Properties of a Ultrathin Yttrium-Iron Garnet Film Grown by Liquid Phase Epitaxy: Effect of a Pt Overlayer. IEEE Magnetics Letters, 2018, 9, 1-5.	0.6	23
102	Atomic-scale structure and chemistry of YIG/GGG. AIP Advances, 2018, 8, 085117.	0.6	6
103	Static and Dynamic Magnetic Properties of Singleâ€Crystalline Yttrium Iron Garnet Films Epitaxially Grown on Three Garnet Substrates. Advanced Electronic Materials, 2018, 4, 1800106.	2.6	23
104	Ultralow Damping in Nanometer-Thick Epitaxial Spinel Ferrite Thin Films. Nano Letters, 2018, 18, 4273-4278.	4.5	48
105	Spin-Current Generation in Low-Damping <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>Ni</mml:mi><mml .<="" 2018,="" 9,="" applied,="" physical="" review="" td=""><td>1.5 :mrow><r< td=""><td>nml:mn>0.65</td></r<></td></mml></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math>	1.5 :mrow> <r< td=""><td>nml:mn>0.65</td></r<>	nml:mn>0.65
106	Multi-directional emission and detection of spin waves propagating in yttrium iron garnet with wavelengths down to about 100 nm. Applied Physics Letters, 2018, 112, .	1.5	7
107	FMR-driven spin pumping in Y ₃ Fe ₅ O ₁₂ -based structures. Journal Physics D: Applied Physics, 2018, 51, 253001.	1.3	51
108	Magnetocrystalline and magnetoelastic constants determined by magnetization dynamics under static strain. Journal of Physics Condensed Matter, 2018, 30, 394002.	0.7	1

#	ARTICLE	IF	CITATIONS
109	Solution-Processed Ferrimagnetic Insulator Thin Film for the Microelectronic Spin Seebeck Energy Conversion. ACS Applied Materials & Interfaces, 2018, 10, 28608-28614.	4.0	9
110	Pseudomorphic spinel ferrite films with perpendicular anisotropy and low damping. Applied Physics Letters, 2018, 113, .	1.5	18
111	Probe of spin dynamics in superconducting NbN thin films via spin pumping. Physical Review B, 2018, 97,	1.1	49
112	Pure spin currents in magnetically ordered insulator/normal metal heterostructures. Journal Physics D: Applied Physics, 2018, 51, 313001.	1.3	41
113	Tuning of the intrinsic magnetic damping parameter in epitaxial CoNi(001) films: Role of the band-filling effect. Physical Review B, 2019, 100 , .	1.1	5
114	Ultrathin interfacial layer with suppressed room temperature magnetization in magnesium aluminum ferrite thin films. Applied Physics Letters, 2019, 115, .	1.5	12
115	Temperature dependence of spin-wave modes and Gilbert damping in lanthanum-doped yttrium-iron-garnet films. AIP Advances, 2019, 9, .	0.6	15
116	On the Role of Interfaces on Spin Transport in Magnetic Insulator/Normal Metal Heterostructures. Advanced Materials Interfaces, 2019, 6, 1900475.	1.9	15
117	Gilbert damping of CoFe-alloys. Journal Physics D: Applied Physics, 2019, 52, 325001.	1.3	10
118	Luminescent and magnetic properties of cerium-doped yttrium aluminum garnet and yttrium iron garnet composites. Ceramics International, 2019, 45, 9846-9851.	2.3	19
119	Nutation Spectroscopy of a Nanomagnet Driven into Deeply Nonlinear Ferromagnetic Resonance. Physical Review X, 2019, 9, .	2.8	24
120	Damping Enhancement in Coherent Ferrite–Insulating-Paramagnet Bilayers. Physical Review Applied, 2019, 12, .	1.5	8
121	Strain-induced perpendicular magnetic anisotropy and Gilbert damping of Tm3Fe5O12 thin films. Scientific Reports, 2019, 9, 17474.	1.6	35
122	Observation of Longitudinal Spin Seebeck Voltage in YIG Films Chemically Prepared by Co-Precipitation and Spin Coating. IEEE Transactions on Magnetics, 2019, 55, 1-4.	1.2	5
123	Bi-YIG ferrimagnetic insulator nanometer films with large perpendicular magnetic anisotropy and narrow ferromagnetic resonance linewidth. Journal of Magnetism and Magnetic Materials, 2020, 496, 165886.	1.0	27
124	Thermal effect in Pt/YIG heterostructure induced by direct microwave power injection. Journal Physics D: Applied Physics, 2020, 53, 125002.	1.3	1
125	Influence on the Gilbert damping of yttrium-iron-garnet films by the spin-pumping effect. Materials Science in Semiconductor Processing, 2020, 107, 104821.	1.9	2
126	Study on the Gilbert damping of polycrystalline YIG films with different capping layers. Current Applied Physics, 2020, 20, 167-171.	1.1	1

#	Article	IF	Citations
127	High-speed epitaxial growth of Y3Fe5O12 thick film with high magnetization on (4 2 0) Y3Al5O12 substrate using metal-organic chemical vapor deposition. Materials Letters, 2020, 276, 128228.	1.3	3
128	Determining complex spin mixing conductance and spin diffusion length from spin pumping experiments in magnetic insulator/heavy metal bilayers. Applied Physics Letters, 2020, 117, .	1.5	4
129	The thickness of buffer layer and temperature dependent magneto dynamic properties of Ta/FeGaB/Ta tri-layer. Journal of Magnetism and Magnetic Materials, 2020, 515, 167277.	1.0	11
130	Ultra-low magnetic damping in epitaxial Li0.5Fe2.5O4 thin films. Applied Physics Letters, 2020, 117, .	1.5	10
131	Determination of spin Hall angle, spin mixing conductance, and spin diffusion length in CoFeB/Ir for spin-orbitronic devices. Physical Review B, 2020, 102, .	1.1	35
132	Integration and characterization of micron-sized YIG structures with very low Gilbert damping on arbitrary substrates. Applied Physics Letters, 2020, 117, .	1.5	16
133	Quantum Spin-Wave Materials, Interface Effects and Functional Devices for Information Applications. Frontiers in Materials, 2020, 7, .	1.2	4
134	Continuous ferrimagnetic Y3Fe5O12 layers on the ceramic PbZr0·45Ti0·55O3 substrates. Ceramics International, 2020, 46, 22049-22056.	2.3	4
135	Magnetization dynamics in artificial spin ice. Journal of Physics Condensed Matter, 2020, 32, 013001.	0.7	50
136	Ultra Thin Films of Yttrium Iron Garnet with Very Low Damping: A Review. Physica Status Solidi (B): Basic Research, 2020, 257, 1900644.	0.7	61
137	Low Current Densities Toggle Optical Polarization Switching in Pt/Yttrium Iron Garnet Magnetic Heterostructures Using Energy Resolution. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000223.	1.2	0
138	Visualization of stray-field distribution by charged domain-walls in rare-earth substituted iron garnets. Journal of Magnetism and Magnetic Materials, 2020, 504, 166556.	1.0	2
139	Sub-micrometer near-field focusing of spin waves in ultrathin YIG films. Applied Physics Letters, 2020, 116, .	1.5	8
140	Large spin Hall angle in nonmagnetic PtSn alloy films at room temperature. Journal of Magnetism and Magnetic Materials, 2020, 507, 166860.	1.0	10
141	The role of iron in magnetic damping of Mg(Al,Fe)2O4 spinel ferrite thin films. Applied Physics Letters, 2020, 116, .	1.5	12
142	Conductivitylike Gilbert Damping due to Intraband Scattering in Epitaxial Iron. Physical Review Letters, 2020, 124, 157201.	2.9	41
143	Sputtering Growth of Low-Damping Yttrium-Iron-Garnet Thin Films. IEEE Magnetics Letters, 2020, 11, 1-5.	0.6	43
144	Frequency Filtering with a Magnonic Crystal Based on Nanometer-Thick Yttrium Iron Garnet Films. ACS Applied Nano Materials, 2021, 4, 121-128.	2.4	18

#	Article	IF	CITATIONS
145	Recent advances in development of magnetic garnet thin films for applications in spintronics and photonics. Journal of Alloys and Compounds, 2021, 860, 158235.	2.8	45
146	Nanoscale magnonic Fabry-P $\tilde{\rm A}$ ©rot resonator for low-loss spin-wave manipulation. Nature Communications, 2021, 12, 2293.	5.8	53
147	Room-Temperature Antiferromagnetic Resonance and Inverse Spin-Hall Voltage in Canted Antiferromagnets. Physical Review Letters, 2021, 126, 187201.	2.9	39
148	Magnetic equivalent of electric superradiance in yttrium-iron-garnet films. Communications Physics, 2021, 4, .	2.0	2
149	Optimization of YIG/Bi stacks for spin-to-charge conversion and influence of aging. Journal Physics D: Applied Physics, O, , .	1.3	5
150	Structural, Magnetic, and Low-Temperature Electrical Transport Properties of YIG Thin Films with Heavily Reduced Oxygen Contents. ACS Applied Electronic Materials, 2021, 3, 3313-3320.	2.0	3
151	Dispersionless Propagation of Ultrashort Spin-Wave Pulses in Ultrathin Yttrium Iron Garnet Waveguides. Physical Review Applied, 2021, 16, .	1.5	6
152	Magnonics Based on Thin-Film Iron Garnets. Journal of the Physical Society of Japan, 2021, 90, 081005.	0.7	15
153	Ferrimagnetic insulators for spintronics: Beyond garnets. Journal of Applied Physics, 2021, 129, .	1.1	30
154	Evidence of phonon pumping by magnonic spin currents. Applied Physics Letters, 2021, 118, 022409.	1.5	11
155	Magnon Spintronics. , 2016, , 1505-1549.		5
156	Metamaterial-inspired Fabry–Perot resonator antenna-enhanced spin rectification and inverse spin Hall effects. Journal Physics D: Applied Physics, 2020, 53, 37LT01.	1.3	4
157	Predicted strong coupling of solid-state spins via a single magnon mode. Materials for Quantum Technology, 2021, 1, 011001.	1.2	30
158	Role of gallium diffusion in the formation of a magnetically dead layer at the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Y</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>Fe</mml:mi><mml:msub><mml:mo>/</mml:mo>/</mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mm< td=""><td>ımlorın > 5 < mml:mi > 0</td><td>/mæal:mn> <!--<br-->id</td></mm<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mrow></mml:math>	ıml orı n > 5 < mml:mi > 0	/mæal:mn> <br id
159	Physical Review Materials, 2016, 2, . Spin transport parameters of NbN thin films characterized by spin pumping experiments. Physical Review Materials, 2019, 3, .	0.9	30
160	Magnetic properties and domain structure of ultrathin yttrium iron garnet/Pt bilayers. Physical Review Materials, 2019, 3, .	0.9	30
161	Low damping and microstructural perfection of sub-40nm-thin yttrium iron garnet films grown by liquid phase epitaxy. Physical Review Materials, 2020, 4, .	0.9	49
162	Ferromagnetic resonances in single-crystal yttrium iron garnet nanofilms fabricated by metal-organic decomposition. Applied Physics Letters, 2021, 119, .	1.5	3

#	Article	IF	CITATIONS
163	Efficient geometrical control of spin waves in microscopic YIG waveguides. Applied Physics Letters, 2021, 119, .	1.5	3
164	Reduced spin damping in inverse spinel Mn2TiO4 by ordered occupancy of magnetic ions. Journal of Magnetism and Magnetic Materials, 2022, 546, 168864.	1.0	1
165	Interplay Between Nonlinear Spectral Shift and Nonlinear Damping of Spin Waves in Ultrathin Yttrium Iron Garnet Waveguides. Physical Review Applied, 2022, 17, .	1.5	6
166	Transparent spin thermoelectricity with enhanced energy conversion. Nano Energy, 2022, 98, 107224.	8.2	2
167	Anomalous Gilbert damping and Duffing features of the superconductor-ferromagnet-superconductor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>φ</mml:mi><mml:mn>0</mml:mn><td>1,1 1><td>ısub></td></td></mml:msub></mml:math>	1,1 1> <td>ısub></td>	ısub>
168	Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y ₃ Fe ₅ O ₁₂ (111) films. Chinese Physics B, 2023, 32, 027501.	0.7	6
169	Giant nonlinear self-phase modulation of large-amplitude spin waves in microscopic YIG waveguides. Scientific Reports, 2022, 12, 7246.	1.6	8
170	Space-time duality in magnonics: Temporal diffraction in magnonic waveguides. Journal of Magnetism and Magnetic Materials, 2022, 555, 169392.	1.0	0
171	Significant Reorientation Transition of Magnetic Damping Anisotropy in Co ₂ FeAl Heusler Alloy Films at Low Temperatures. ACS Applied Materials & Early; Interfaces, 2022, 14, 24039-24045.	4.0	2
172	Robust perpendicular magnetic anisotropy in Ce substituted yttrium iron garnet epitaxial thin films. Journal of Applied Physics, 2022, 131, 203901.	1.1	3
173	Microscopic nonlinear magnonic phase shifters based on ultrathin films of a magnetic insulator. Applied Physics Letters, 2022, 121, .	1.5	3
174	Origin of high-frequency magnetic loss of Y3Fe5O12 single crystal thin films prepared with high-throughput screening by magnetron sputtering. Vacuum, 2023, 207, 111644.	1.6	2
177	Propagation of Spin Waves in Intersecting Yttrium Iron Garnet Nanowaveguides. Physical Review Applied, 2022, 18, .	1.5	3
178	Simulation of Laser-Heating and Energetic Plasma Plume Expansion in Pulsed Laser Deposition of Y3Fe5O12. Micromachines, 2022, 13, 2012.	1.4	1
179	Antisite Defects and Chemical Expansion in Lowâ€damping, Highâ€magnetization Yttrium Iron Garnet Films. ChemNanoMat, 2023, 9, .	1.5	1
180	Nonlocal Detection of Interlayer Three-Magnon Coupling. Physical Review Letters, 2023, 130, .	2.9	10