Graphene oxide covalently grafted upconversion nanop imaging and photothermal/photodynamic cancer thera

Biomaterials 34, 7715-7724 DOI: 10.1016/j.biomaterials.2013.06.045

Citation Report

#	Article	IF	CITATIONS
4	Recent Patents on Light Based Therapies: Photodynamic Therapy, Photothermal Therapy and Photoimmunotherapy. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2014, 8, 1-8.	0.7	17
5	ZnSe/ZnS quantum dots - photosensitizer complexes: optical properties and cancer cell photodynamic destruction effect. , 2014, , .		4
6	A long-wave optical pH sensor based on red upconversion luminescence of NaGdF ₄ nanotubes. RSC Advances, 2014, 4, 55897-55899.	1.7	16
7	The development of graphene-based devices for cell biology research. Frontiers of Materials Science, 2014, 8, 107-122.	1.1	13
8	Integrated graphene/nanoparticle hybrids for biological and electronic applications. Nanoscale, 2014, 6, 6245-6266.	2.8	114
9	Cysteine modified rare-earth up-converting nanoparticles for inÂvitro and inÂvivo bioimaging. Biomaterials, 2014, 35, 387-392.	5.7	83
10	Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials, 2014, 35, 4499-4507.	5.7	168
11	Near-infrared light-responsive nanomaterials in cancer therapeutics. Chemical Society Reviews, 2014, 43, 6254-6287.	18.7	746
12	The Combination of Chemotherapy and Radiotherapy towards More Efficient Drug Delivery. Chemistry - an Asian Journal, 2014, 9, 48-57.	1.7	72
13	ZnOâ€Functionalized Upconverting Nanotheranostic Agent: Multiâ€Modality Imagingâ€Guided Chemotherapy with Onâ€Demand Drug Release Triggered by pH. Angewandte Chemie - International Edition, 2015, 54, 536-540.	7.2	131
14	Facile fabrication of a C ₆₀ –polydopamine–graphene nanohybrid for single light induced photothermal and photodynamic therapy. Chemical Communications, 2014, 50, 10815.	2.2	57
15	Graphene loading water-soluble phthalocyanine for dual-modality photothermal/photodynamic therapy via a one-step method. Journal of Materials Chemistry B, 2014, 2, 7141-7148.	2.9	70
16	Upconversion Nanoparticles: From Hydrophobic to Hydrophilic Surfaces. Accounts of Chemical Research, 2014, 47, 3481-3493.	7.6	225
17	"Pulling―π-conjugated polyene biomolecules into water: enhancement of light-thermal stability and bioactivity by a facile graphene oxide-based phase-transfer approach. RSC Advances, 2014, 4, 48765-48769.	1.7	5
18	Engineering lanthanide-based materials for nanomedicine. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 20, 71-96.	5.6	85
19	Lanthanideâ€Doped LiLuF ₄ Upconversion Nanoprobes for the Detection of Disease Biomarkers. Angewandte Chemie - International Edition, 2014, 53, 1252-1257.	7.2	397
20	WS ₂ nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale, 2014, 6, 10394-10403.	2.8	301
21	Surface Engineering of Graphene-Based Nanomaterials for Biomedical Applications. Bioconjugate Chemistry, 2014, 25, 1609-1619.	1.8	116

		CITATION REPORT	
# 22	ARTICLE Functional Nanomaterials for Phototherapies of Cancer. Chemical Reviews, 2014, 114, 10869-1093	IF 39. 23.(CITATIONS 0 2,120
23	Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. Biomaterials, 2014, 35, 2915-2923.	5.7	297
24	One-step synthesis of water-soluble hexagonal NaScF4:Yb/Er nanocrystals with intense red emissior Dalton Transactions, 2014, 43, 10202.	n. 1.6	38
27	Recent Advances in Upconversion Nanoparticlesâ€Based Multifunctional Nanocomposites for Com Cancer Therapy. Advanced Materials, 2015, 27, 7692-7712.	bined 11.1	. 243
28	A New Single 808 nm NIR Lightâ€Induced Imagingâ€Guided Multifunctional Cancer Therapy Platfor Advanced Functional Materials, 2015, 25, 3966-3976.	m. 7.8	178
29	Enhanced Antitumor Efficacy by 808 nm Laserâ€Induced Synergistic Photothermal and Photodynar Therapy Based on a Indocyanineâ€Greenâ€Attached W ₁₈ O ₄₉ Nanostruc Advanced Functional Materials, 2015, 25, 7280-7290.	nic cture. 7.8	161
30	Nanocompositeâ€Based Photodynamic Therapy Strategies for Deep Tumor Treatment. Small, 2015 5860-5887.	, 11, 5.2	229
31	Phthalocyanine-loaded graphene nanoplatform for imaging-guided combinatorial phototherapy. International Journal of Nanomedicine, 2015, 10, 2347.	3.3	68
32	Graphene-based nanovehicles for photodynamic medical therapy. International Journal of Nanomedicine, 2015, 10, 2451.	3.3	45
33	Current applications of graphene oxide in nanomedicine. International Journal of Nanomedicine, 20 10 Spec Iss, 9.	15, _{3.3}	77
34	Near-Infrared-Absorbing Gold Nanopopcorns with Iron Oxide Cluster Core for Magnetically Amplifie Photothermal and Photodynamic Cancer Therapy. ACS Applied Materials & Interfaces, 2015, 7 11637-11647.	d , 4.0	107
35	Graphene as Cancer Theranostic Tool: Progress and Future Challenges. Theranostics, 2015, 5, 710-7	723. 4.6	236
36	Functionalized graphene/C ₆₀ nanohybrid for targeting photothermally enhanced photodynamic therapy. RSC Advances, 2015, 5, 654-664.	1.7	35
37	Design, Synthesis, and Characterization of Graphene–Nanoparticle Hybrid Materials for Bioapplications. Chemical Reviews, 2015, 115, 2483-2531.	23.0	0 603
38	Photothermal Therapeutic Response of Cancer Cells to Aptamer–Gold Nanoparticle-Hybridized Graphene Oxide under NIR Illumination. ACS Applied Materials & Interfaces, 2015, 7, 5097-510	96. 4.0	199
39	Porphyrin nanoparticles in photomedicine. , 2015, , 511-526.		4
40	Y ₂ O ₃ :Yb,Er@mSiO ₂ –Cu _x S double-shelled ho spheres for enhanced chemo-/photothermal anti-cancer therapy and dual-modal imaging. Nanoscale 2015, 7, 12180-12191.		55
41	Singlet oxygen generation under NIR light and visible light excitations of photosensitizers on upconversion nanoparticle surface. RSC Advances, 2015, 5, 67892-67895.	1.7	5

#	Article	IF	CITATIONS
42	Synthesis of Mesoporous Silica/Reduced Graphene Oxide Sandwich-Like Sheets with Enlarged and "Funneling―Mesochannels. Chemistry of Materials, 2015, 27, 5577-5586.	3.2	39
43	Multifunctional upconversion–nanoparticles–trismethylpyridylporphyrin–fullerene nanocomposite: a near-infrared light-triggered theranostic platform for imaging-guided photodynamic therapy. NPG Asia Materials, 2015, 7, e205-e205.	3.8	84
44	Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chemical Reviews, 2015, 115, 10725-10815.	23.0	946
45	Upconversion Nanoparticle-Based Nanocomposites. Nanostructure Science and Technology, 2015, , 121-157.	0.1	3
46	Facile synthesis of RGD peptide-modified iron oxide nanoparticles with ultrahigh relaxivity for targeted MR imaging of tumors. Biomaterials Science, 2015, 3, 721-732.	2.6	61
47	Grapheneâ€based nanomaterials as molecular imaging agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 737-758.	3.3	38
48	Single W18O49 nanowires: A multifunctional nanoplatform for computed tomography imaging and photothermal/photodynamic/radiation synergistic cancer therapy. Nano Research, 2015, 8, 3580-3590.	5.8	100
49	A highly effective in vivo photothermal nanoplatform with dual imaging-guided therapy of cancer based on the charge reversal complex of dye and iron oxide. Journal of Materials Chemistry B, 2015, 3, 8321-8327.	2.9	12
50	PEGylated Gd(OH) ₃ nanorods as metabolizable contrast agents for computed tomography imaging. New Journal of Chemistry, 2015, 39, 8999-9005.	1.4	5
51	Au ₂₅ cluster functionalized metal–organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light. Nanoscale, 2015, 7, 19568-19578.	2.8	99
52	Graphene-based nanoprobes for molecular diagnostics. Analyst, The, 2015, 140, 6439-6451.	1.7	8
53	Gold nanostars mediated combined photothermal and photodynamic therapy and X-ray imaging for cancer theranostic applications. Journal of Biomaterials Applications, 2015, 30, 547-557.	1.2	33
54	Naphthalocyanine-Based Biodegradable Polymeric Nanoparticles for Image-Guided Combinatorial Phototherapy. Chemistry of Materials, 2015, 27, 6155-6165.	3.2	70
55	A Single 808 nm Near-Infrared Light-Mediated Multiple Imaging and Photodynamic Therapy Based on Titania Coupled Upconversion Nanoparticles. Chemistry of Materials, 2015, 27, 7957-7968.	3.2	129
56	Optical and photoacoustic dual-modality imaging guided synergistic photodynamic/photothermal therapies. Nanoscale, 2015, 7, 2520-2526.	2.8	87
57	Carbon nanomaterials combined with metal nanoparticles for theranostic applications. British Journal of Pharmacology, 2015, 172, 975-991.	2.7	72
58	The advancing uses of nano-graphene in drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 601-612.	2.4	104
59	PEDOT nanocomposites mediated dual-modal photodynamic and photothermal targeted sterilization in both NIR I and II window. Biomaterials, 2015, 41, 132-140.	5.7	121

#	Article	IF	CITATIONS
60	Large-scale synthesis of PEGylated lutetium hydroxycarbonates as nanoparticulate contrast agents for X-ray CT imaging. New Journal of Chemistry, 2015, 39, 589-594.	1.4	6
61	Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy. Nanoscale, 2015, 7, 3888-3902.	2.8	118
63	Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. Chemical Society Reviews, 2015, 44, 1379-1415.	18.7	748
64	Current advances in lanthanide ion (Ln ³⁺)-based upconversion nanomaterials for drug delivery. Chemical Society Reviews, 2015, 44, 1416-1448.	18.7	676
65	Advances on the Use of Biodegradable Proteins/Peptides in Photothermal Theranostics. Journal of Nanomaterials, 2016, 2016, 1-10.	1.5	6
66	Recent Progress in Light-Triggered Nanotheranostics for Cancer Treatment. Theranostics, 2016, 6, 948-968.	4.6	182
67	Carbon-Based Materials for Photo-Triggered Theranostic Applications. Molecules, 2016, 21, 1585.	1.7	47
68	Multifunctional Inorganic Nanoparticles: Recent Progress in Thermal Therapy and Imaging. Nanomaterials, 2016, 6, 76.	1.9	96
69	Photo-decomposable Organic Nanoparticles for Combined Tumor Optical Imaging and Multiple Phototherapies. Theranostics, 2016, 6, 2367-2379.	4.6	61
70	Upconversion nanocomposites for photo-based cancer theranostics. Journal of Materials Chemistry B, 2016, 4, 5331-5348.	2.9	25
71	Cancerâ€Targeted Nanotheranostics: Recent Advances and Perspectives. Small, 2016, 12, 4936-4954.	5.2	158
73	Graphene-based nanomaterials for bioimaging. Advanced Drug Delivery Reviews, 2016, 105, 242-254.	6.6	281
74	Facile Assembly of Functional Upconversion Nanoparticles for Targeted Cancer Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2016, 8, 11945-11953.	4.0	86
75	g-C ₃ N ₄ Coated Upconversion Nanoparticles for 808 nm Near-Infrared Light Triggered Phototherapy and Multiple Imaging. Chemistry of Materials, 2016, 28, 7935-7946.	3.2	163
76	Overcoming the Achilles' heel of photodynamic therapy. Chemical Society Reviews, 2016, 45, 6488-6519.	18.7	1,251
77	9 Upconversion Nanoparticles for Phototherapy. Nanomaterials and Their Applications, 2016, , 255-290.	0.0	0
78	5 Synergistic Effects in Organic-Coated Upconversion Nanoparticles. Nanomaterials and Their Applications, 2016, , 101-138.	0.0	5
79	Targeted multimodal nano-reporters for pre-procedural MRI and intra-operative image-guidance. Biomaterials, 2016, 109, 69-77.	5.7	40

	Сітатіо	N REPORT	
#	Article	IF	CITATIONS
80	Enhanced up/down-conversion luminescence and heat: Simultaneously achieving in one single core-shell structure for multimodal imaging guided therapy. Biomaterials, 2016, 105, 77-88.	5.7	61
81	Combined phototherapy in anti-cancer treatment: therapeutics design and perspectives. Journal of Pharmaceutical Investigation, 2016, 46, 505-517.	2.7	34
82	Grafting of ZnS:Mnâ€Doped Nanocrystals and an Anticancer Drug onto Graphene Oxide for Delivery and Cell Labeling. ChemPlusChem, 2016, 81, 100-107.	1.3	26
83	Recent advances in different modal imaging-guided photothermal therapy. Biomaterials, 2016, 106, 144-166.	5.7	228
84	Effective PDT/PTT dual-modal phototherapeutic killing of pathogenic bacteria by using ruthenium nanoparticles. Journal of Materials Chemistry B, 2016, 4, 6258-6270.	2.9	71
85	Upconversion Phenomena inÂNanofluorides. , 2016, , 35-63.		4
86	Current Advances in Lanthanideâ€Đoped Upconversion Nanostructures for Detection and Bioapplication. Advanced Science, 2016, 3, 1600029.	5.6	147
87	Increasing electrical conductivity of upconversion materials by <i>in situ</i> binding with graphene. Nanotechnology, 2016, 27, 345703.	1.3	8
88	Luminescent Ions in Advanced Composite Materials for Multifunctional Applications. Advanced Functional Materials, 2016, 26, 6330-6350.	7.8	198
89	Synthesis and structure change of graphene oxide/GdF 3 : Yb, Er nanocomposites with improved upconversion luminescence. Materials Research Bulletin, 2016, 84, 283-287.	2.7	7
90	Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Particle and Fibre Toxicology, 2016, 13, 57.	2.8	540
91	Microwave heating synthesis and visible upconversion luminescence of NaGdF4:Yb, Er/reduced graphene oxide nanocomposites. Journal of Materials Science: Materials in Electronics, 2016, 27, 11720-11725.	1.1	4
92	Lanthanide-Doped Upconversion Nanoprobes. , 2016, , 237-287.		0
93	A Bifunctional Biomaterial with Photothermal Effect forÂTumor Therapy and Bone Regeneration. Advanced Functional Materials, 2016, 26, 1197-1208.	7.8	238
94	On The Latest Threeâ€ 5 tage Development of Nanomedicines based on Upconversion Nanoparticles. Advanced Materials, 2016, 28, 3987-4011.	11.1	221
95	Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Advanced Drug Delivery Reviews, 2016, 105, 190-204.	6.6	385
96	Self-assembled gold nanostar–NaYF ₄ :Yb/Er clusters for multimodal imaging, photothermal and photodynamic therapy. Journal of Materials Chemistry B, 2016, 4, 4455-4461.	2.9	50
97	Gadolinium polytungstate nanoclusters: a new theranostic with ultrasmall size and versatile properties for dual-modal MR/CT imaging and photothermal therapy/radiotherapy of cancer. NPG Asia Materials, 2016, 8, e273-e273.	3.8	75

#	Article	IF	CITATIONS
98	Fluorescent MoS ₂ Quantum Dots: Ultrasonic Preparation, Up-Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2016, 8, 3107-3114.	4.0	267
99	Magnetic-optical-thermal properties assembled into MWCNTs/NaGdF 4 :Yb 3+ , Er 3+ multifunctional nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 283-290.	2.3	6
100	Determination of photothermal conversion efficiency of graphene and graphene oxide through an integrating sphere method. Carbon, 2016, 103, 134-141.	5.4	113
101	Single-layer MoS ₂ nanosheet grafted upconversion nanoparticles for near-infrared fluorescence imaging-guided deep tissue cancer phototherapy. Nanoscale, 2016, 8, 7861-7865.	2.8	84
102	Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy. Journal of Colloid and Interface Science, 2016, 469, 8-16.	5.0	42
103	Graphene induces spontaneous cardiac differentiation in embryoid bodies. Nanoscale, 2016, 8, 7075-7084.	2.8	39
104	Graphene for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, 2016, , 241-267.	0.7	0
105	Photosensitizer-assembled PEGylated graphene-copper sulfide nanohybrids as a synergistic near-infrared phototherapeutic agent. Expert Opinion on Drug Delivery, 2016, 13, 155-165.	2.4	32
106	MoO _{3â^'x} quantum dots for photoacoustic imaging guided photothermal/photodynamic cancer treatment. Nanoscale, 2017, 9, 2020-2029.	2.8	131
107	Graphene Oxide Decorated with Ru(II)–Polyethylene Glycol Complex for Lysosome-Targeted Imaging and Photodynamic/Photothermal Therapy. ACS Applied Materials & Interfaces, 2017, 9, 6761-6771.	4.0	154
108	A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped & Ce6-doped mesoporous silica nanorods. Biomaterials, 2017, 122, 188-200.	5.7	129
109	Nanostructures for NIR light-controlled therapies. Nanoscale, 2017, 9, 3698-3718.	2.8	92
110	Reduced Graphene Oxide@Mesoporous Silica–Doxorubicin/Hydroxyapatite Inorganic Nanocomposites: Preparation and pH–Light Dualâ€Triggered Synergistic Chemoâ€Photothermal Therapy. European Journal of Inorganic Chemistry, 2017, 2017, 2236-2246.	1.0	16
111	Fabricating Aptamerâ€Conjugated PEGylatedâ€MoS ₂ /Cu _{1.8} S Theranostic Nanoplatform for Multiplexed Imaging Diagnosis and Chemoâ€Photothermal Therapy of Cancer. Advanced Functional Materials, 2017, 27, 1605592.	7.8	107
112	Multifunctional Theranostic Agent of Cu ₂ (OH)PO ₄ Quantum Dots for Photoacoustic Image-Guided Photothermal/Photodynamic Combination Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 9348-9358.	4.0	72
113	New advances on the marrying of UCNPs and photothermal agents for imaging-guided diagnosis and the therapy of tumors. Journal of Materials Chemistry B, 2017, 5, 2209-2230.	2.9	82
114	A colon targeted drug delivery system based on alginate modificated graphene oxide for colorectal liver metastasis. Materials Science and Engineering C, 2017, 79, 185-190.	3.8	69
115	Upconversion processes: versatile biological applications and biosafety. Nanoscale, 2017, 9, 12248-12282.	2.8	88

#	Article	IF	CITATIONS
116	NIR-driven water splitting by layered bismuth oxyhalide sheets for effective photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 4152-4161.	2.9	42
117	Material chemistry of graphene oxide-based nanocomposites for theranostic nanomedicine. Journal of Materials Chemistry B, 2017, 5, 6451-6470.	2.9	37
118	A multifunctional nanoplatform based on mesoporous silica nanoparticles for imaging-guided chemo/photodynamic synergetic therapy. RSC Advances, 2017, 7, 31133-31141.	1.7	39
119	Carbon nanomaterials as versatile platforms for theranostic applications. Drug Discovery Today, 2017, 22, 1430-1437.	3.2	36
120	Fabrication of Zinc Oxide Composite Microfibers for Nearâ€Infraredâ€Lightâ€Mediated Photocatalysis. ChemCatChem, 2017, 9, 3611-3617.	1.8	17
121	Fabrication of a graphene/C60 nanohybrid via γ-cyclodextrin host–guest chemistry for photodynamic and photothermal therapy. Nanoscale, 2017, 9, 8825-8833.	2.8	85
122	Multifunctional core/satellite polydopamine@Nd3+-sensitized upconversion nanocomposite: A single 808 nm near-infrared light-triggered theranostic platform for in vivo imaging-guided photothermal therapy. Nano Research, 2017, 10, 3434-3446.	5.8	69
123	A Versatile Near Infrared Light Triggered Dual-Photosensitizer for Synchronous Bioimaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2017, 9, 12993-13008.	4.0	66
124	Assembly of Au Plasmonic Photothermal Agent and Iron Oxide Nanoparticles on Ultrathin Black Phosphorus for Targeted Photothermal and Photodynamic Cancer Therapy. Advanced Functional Materials, 2017, 27, 1700371.	7.8	254
125	The advantage of hollow mesoporous carbon as a near-infrared absorbing drug carrier in chemo-photothermal therapy compared with IR-820. European Journal of Pharmaceutical Sciences, 2017, 99, 66-74.	1.9	21
126	Diketopyrrolopyrrole–Triphenylamine Organic Nanoparticles as Multifunctional Reagents for Photoacoustic Imaging-Guided Photodynamic/Photothermal Synergistic Tumor Therapy. ACS Nano, 2017, 11, 1054-1063.	7.3	359
127	Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers. Biomaterials Science, 2017, 5, 190-210.	2.6	150
128	Aptamer-Conjugated Graphene Quantum Dots/Porphyrin Derivative Theranostic Agent for Intracellular Cancer-Related MicroRNA Detection and Fluorescence-Guided Photothermal/Photodynamic Synergetic Therapy. ACS Applied Materials & Interfaces, 2017, 9, 159-166.	4.0	180
129	Advanced sensing, imaging, and therapy nanoplatforms based on Nd ³⁺ -doped nanoparticle composites exhibiting upconversion induced by 808 nm near-infrared light. Nanoscale, 2017, 9, 18153-18168.	2.8	37
130	MoS ₂ -Based multipurpose theranostic nanoplatform: realizing dual-imaging-guided combination phototherapy to eliminate solid tumor <i>via</i> a liquefaction necrosis process. Journal of Materials Chemistry B, 2017, 5, 9015-9024.	2.9	54
131	Au Nanoclusters Sensitized Black TiO _{2â^} <i>_x</i> Nanotubes for Enhanced Photodynamic Therapy Driven by Nearâ€Infrared Light. Small, 2017, 13, 1703007.	5.2	62
132	Semiconductor Quantum Dots for Photothermal Cancer Therapy. , 2017, , 111-139.		1
133	Recent Progress in Near Infrared Light Triggered Photodynamic Therapy. Small, 2017, 13, 1702299.	5.2	247

#	Article	IF	CITATIONS
134	Multifunctional UCNPs@MnSiO ₃ @g-C ₃ N ₄ nanoplatform: improved ROS generation and reduced glutathione levels for highly efficient photodynamic therapy. Biomaterials Science, 2017, 5, 2456-2467.	2.6	58
135	Combination of Fluorescence-Guided Surgery With Photodynamic Therapy for the Treatment of Cancer. Molecular Imaging, 2017, 16, 153601211772291.	0.7	32
136	Multifunctional mesoporous ZrO2 encapsulated upconversion nanoparticles for mild NIR light activated synergistic cancer therapy. Biomaterials, 2017, 147, 39-52.	5.7	52
137	Lanthanide-doped bismuth oxobromide nanosheets for self-activated photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 7939-7948.	2.9	29
138	Upconversion Nanoparticles/Hyaluronate–Rose Bengal Conjugate Complex for Noninvasive Photochemical Tissue Bonding. ACS Nano, 2017, 11, 9979-9988.	7.3	81
139	The effect of indocyanine green loaded on a novel nano-graphene oxide for high performance of photodynamic therapy against Enterococcus faecalis. Photodiagnosis and Photodynamic Therapy, 2017, 20, 148-153.	1.3	63
140	Application of Graphene and its Derivatives in Cancer Diagnosis and Treatment. Drug Research, 2017, 67, 681-687.	0.7	5
141	Environmental impact and potential health risks of 2D nanomaterials. Environmental Science: Nano, 2017, 4, 1617-1633.	2.2	68
142	Transferrin-coated magnetic upconversion nanoparticles for efficient photodynamic therapy with near-infrared irradiation and luminescence bioimaging. Nanoscale, 2017, 9, 11214-11221.	2.8	47
143	Stable and Multifunctional Dye-Modified Black Phosphorus Nanosheets for Near-Infrared Imaging-Guided Photothermal Therapy. Chemistry of Materials, 2017, 29, 7131-7139.	3.2	158
144	Shape controllable synthesis and enhanced upconversion photoluminescence of \${{eta }}\$-NaGdF 4 :Yb 3+ , Er 3+ nanocrystals by introducing Mg 2+. Chinese Physics B, 2017, 26, 087801.	0.7	7
145	An NIR-sensitive layered supramolecular nanovehicle for combined dual-modal imaging and synergistic therapy. Nanoscale, 2017, 9, 10367-10374.	2.8	45
146	Chemical modification of graphene oxide through poly(ethylene oxide)-conjugations. Macromolecular Research, 2017, 25, 452-460.	1.0	3
147	Polydopamine-functionalized nanographene oxide: a versatile nanocarrier for chemotherapy and photothermal therapy. Nanotechnology, 2017, 28, 295102.	1.3	37
148	Recent trends in targeted therapy of cancer using graphene oxide-modified multifunctional nanomedicines. Journal of Drug Targeting, 2017, 25, 202-215.	2.1	54
149	Radiolabeling of graphene oxide by Tchnetium-99m for infection imaging in rats. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314, 2189-2199.	0.7	22
150	Graphene-Based Nanomaterials for Theranostic Applications. Reports in Advances of Physical Sciences, 2017, 01, 1750011.	0.6	27
151	The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy. Cancer Nanotechnology, 2017, 8, 6.	1.9	93

#	Article	IF	CITATIONS
152	Self-assembled Graphene/Graphene Oxide-Based Nanocomposites Toward Photodynamic Therapy Applications. , 2018, , 227-254.		1
153	Magnetically-targeted and near infrared fluorescence/magnetic resonance/photoacoustic imaging-guided combinational anti-tumor phototherapy based on polydopamine-capped magnetic Prussian blue nanoparticles. Journal of Materials Chemistry B, 2018, 6, 2460-2473.	2.9	41
154	A Self-Targeting, Dual ROS/pH-Responsive Apoferritin Nanocage for Spatiotemporally Controlled Drug Delivery to Breast Cancer. Biomacromolecules, 2018, 19, 1026-1036.	2.6	54
155	Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. Materials Science and Engineering C, 2018, 86, 173-197.	3.8	212
156	Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalton Transactions, 2018, 47, 3931-3939.	1.6	88
157	Plasmonic Resonance Energy Transfer Enhanced Photodynamic Therapy with Au@SiO ₂ @Cu ₂ O/Perfluorohexane Nanocomposites. ACS Applied Materials & Interfaces, 2018, 10, 6991-7002.	4.0	74
158	Multifunctional Bismuth Nanoparticles as Theranostic Agent for PA/CT Imaging and NIR Laser-Driven Photothermal Therapy. ACS Applied Nano Materials, 2018, 1, 820-830.	2.4	57
159	Smart Self-Assembled Nanosystem Based on Water-Soluble Pillararene and Rare-Earth-Doped Upconversion Nanoparticles for pH-Responsive Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 4910-4920.	4.0	104
160	Nanobubble-embedded inorganic 808Ânm excited upconversion nanocomposites for tumor multiple imaging and treatment. Chemical Science, 2018, 9, 3141-3151.	3.7	53
162	Silica nanoparticles with Tb(III)-centered luminescence decorated by Ag0 as efficient cellular contrast agent with anticancer effect. Journal of Inorganic Biochemistry, 2018, 182, 170-176.	1.5	7
163	Controllable Generation of Free Radicals from Multifunctional Heat-Responsive Nanoplatform for Targeted Cancer Therapy. Chemistry of Materials, 2018, 30, 526-539.	3.2	103
164	A New Coâ€P Nanocomposite with Ultrahigh Relaxivity for In Vivo Magnetic Resonance Imagingâ€Guided Tumor Eradication by Chemo/Photothermal Synergistic Therapy. Small, 2018, 14, 1702431.	5.2	29
165	Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: new regulators and its implications. Stem Cell Research and Therapy, 2018, 9, 44.	2.4	74
166	Fluorinated graphene as an anticancer nanocarrier: an experimental and DFT study. Journal of Materials Chemistry B, 2018, 6, 2769-2777.	2.9	38
167	Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coordination Chemistry Reviews, 2018, 364, 10-32.	9.5	157
168	Carbonâ€Ðotâ€Ðecorated TiO ₂ Nanotubes toward Photodynamic Therapy Based on Waterâ€Splitting Mechanism. Advanced Healthcare Materials, 2018, 7, e1800042.	3.9	49
169	Polymer-based gadolinium oxide nanocomposites for FL/MR/PA imaging guided and photothermal/photodynamic combined anti-tumor therapy. Journal of Controlled Release, 2018, 277, 77-88.	4.8	55
170	Controlled synthesis of upconverting nanoparticles/ZnxCd1-xS yolk-shell nanoparticles for efficient photocatalysis driven by NIR light. Applied Catalysis B: Environmental, 2018, 224, 854-862.	10.8	105

ARTICLE IF CITATIONS # Theranostic nanocomposite from upconversion luminescent nanoparticles and black phosphorus 171 1.7 17 nanosheets. RSC Advances, 2018, 8, 35706-35718. Recent advances in nanomaterials for enhanced photothermal therapy of tumors. Nanoscale, 2018, 10, 2.8 309 22657-22672. 173 Biomedical Applications of Graphene-Based Structures. Nanomaterials, 2018, 8, 944. 1.9 168 Codelivery of Hydrophobic and Hydrophilic Drugs by Graphene-Decorated Magnetic Dendrimers. 174 Langmuir, 2018, 34, 15304-15318. Indocyanine green–encapsulated nanoscale metal–organic frameworks for highly effective 175 2.3 50 chemo-photothermal combinationÂcancer therapy. Materials Today Nano, 2018, 2, 50-57. A Systematic Review and Critical Analysis of the Role of Graphene-Based Nanomaterialsin Cancer 24 Theranostics. Pharmaceutics, 2018, 10, 282. Cisplatinâ€Loaded Polymeric Micelles with Aggregationâ€Induced Emission Feature for Cellular Imaging and Chemotherapy. ChemistrySelect, 2018, 3, 13682-13691. 177 0.7 4 Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. 178 4.8 162 Journal of Controlled Release, 2018, 290, 56-74. Honeycomb-Satellite Structured pH/H₂O₂-Responsive Degradable 179 Nanoplatform for Efficient Photodynamic Therapy and Multimodal Imaging. ACS Applied Materials 4.0 86 & Interfaces, 2018, 10, 33901-33912. Metabolomic response of osteosarcoma cells to nanographene oxide-mediated hyperthermia. 3.8 Materials Science and Engineering C, 2018, 91, 340-348. Palladium nanoparticle-decorated 2-D graphene oxide for effective photodynamic and photothermal 181 2.5 44 therapy of prostate solid tumors. Colloids and Surfaces B: Biointerfaces, 2018, 169, 429-437. Enhancing the photothermal conversion efficiency of graphene oxide by doping with NaYF4: Yb, Er 2.7 upconverting luminescent nanocomposites. Matérials Research Bulletin, 2018, 106, 365-370. Graphene and Grapheneâ€Based Materials in Biomedical Science. Particle and Particle Systems 183 1.2 21 Characterization, 2018, 35, 1800105. Graphene-Based Nanomaterials in Bioimaging., 2018, , 247-287. 184 24 Quad-Model Imaging-Guided High-Efficiency Phototherapy Based on Upconversion Nanoparticles and 185 1.9 35 ZnFe₂O₄ Integrated Graphene Oxide. Inorganic Chemistry, 2018, 57, 9988-9998. Black Phosphorus and its Biomedical Applications. Theranostics, 2018, 8, 1005-1026. 186 253 In Vivo Near-Infrared Fluorescence Imaging., 2018, , 67-125. 187 1 Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model. Journal of Nanobiotechnology, 2018, 188 4.2 16, 9.

#	Article	IF	CITATIONS
189	Nearly Pure Red Color Upconversion Luminescence of Ln-Doped Sc ₂ O ₃ with Unexpected RE-MOFs Molecular Alloys as Precursor. Inorganic Chemistry, 2018, 57, 10511-10517.	1.9	8
190	Turn-on fluorometric immunosensor for diethylstilbestrol based on the use of air-stable polydopamine-functionalized black phosphorus and upconversion nanoparticles. Mikrochimica Acta, 2018, 185, 429.	2.5	22
191	Radiation-to-heat conversion efficiency in SrF2:Yb3+/Er3+ upconverting nanoparticles. Optical Materials, 2018, 83, 1-6.	1.7	13
192	Functionalized graphene. , 2018, , 545-584.		4
193	PA/US dual-modality imaging to guide VEGFR-2 targeted photothermal therapy using ZnPc-/PFH-loaded polymeric nanoparticles. Biomaterials Science, 2018, 6, 2130-2143.	2.6	28
194	Graphene-based materials for application in pharmaceutical nanotechnology. , 2018, , 297-329.		4
195	Lanthanide-doped materials as dual imaging and therapeutic agents. , 2018, , 381-410.		5
196	Grapheneâ€Based Smart Platforms for Combined Cancer Therapy. Advanced Materials, 2019, 31, e1800662.	11.1	233
197	Recent progress of functionalised graphene oxide in cancer therapy. Journal of Drug Targeting, 2019, 27, 125-144.	2.1	28
198	Laser-Triggered Injectable Gelatin Hydrogels System for Combinatorial Upconversion Fluorescence Imaging and Antitumor Chemophotothermal Therapy. ACS Applied Bio Materials, 2019, 2, 3722-3729.	2.3	15
199	Metal Ion (Fe2+and Co2+) Induced Morphological Transformation of Self-Aggregates of Cholesterol-Tethered Bipyridine Amphiphiles: Selective Cancer Cell Killing by Pro-Drug Activation. ACS Applied Bio Materials, 2019, 2, 3737-3747.	2.3	6
200	Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence, 2019, 6, 23.	6.3	445
201	Multifunctional two-dimensional nanocomposites for photothermal-based combined cancer therapy. Nanoscale, 2019, 11, 15685-15708.	2.8	74
202	Plasmonic Pt Superstructures with Boosted Nearâ€Infrared Absorption and Photothermal Conversion Efficiency in the Second Biowindow for Cancer Therapy. Advanced Materials, 2019, 31, e1904836.	11.1	105
203	Nanoparticlesâ€Mediated Combination Therapies for Cancer Treatment. Advanced Therapeutics, 2019, 2, 1900076.	1.6	47
204	Photodynamic Therapy Based on Graphene and MXene in Cancer Theranostics. Frontiers in Bioengineering and Biotechnology, 2019, 7, 295.	2.0	100
205	Photosensitizer Tailored Surface Functionalized Carbon Dots for Visible Light Induced Targeted Cancer Therapy. ACS Applied Bio Materials, 2019, 2, 4953-4965.	2.3	7
206	Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment. Materials Science and Engineering C, 2019, 105, 110097.	3.8	50

#	Article	IF	CITATIONS
207	Graphene Oxide Nanoparticles Having Long Wavelength Absorbing Chlorins for Highly-Enhanced Photodynamic Therapy with Reduced Dark Toxicity. International Journal of Molecular Sciences, 2019, 20, 4344.	1.8	12
208	Developing Body-Components-Based Theranostic Nanoparticles for Targeting Ovarian Cancer. Pharmaceutics, 2019, 11, 216.	2.0	17
209	Polydopamine coated multifunctional lanthanide theranostic agent for vascular malformation and tumor vessel imaging beyond 1500 nm and imaging-guided photothermal therapy. Theranostics, 2019, 9, 3866-3878.	4.6	60
210	Graphene family nanomaterials for application in cancer combination photothermal therapy. Biomaterials Science, 2019, 7, 3534-3551.	2.6	98
211	Upconversion nano-particles from synthesis to cancer treatment: A review. Advanced Powder Technology, 2019, 30, 1731-1753.	2.0	27
212	Recent advances in graphene-based nanomaterials: properties, toxicity and applications in chemistry, biology and medicine. Mikrochimica Acta, 2019, 186, 395.	2.5	65
213	Expanding the toolbox for lanthanide-doped upconversion nanocrystals. Journal Physics D: Applied Physics, 2019, 52, 383002.	1.3	27
214	Self-assembly of photosensitive and chemotherapeutic drugs for combined photodynamic-chemo cancer therapy with real-time tracing property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 574, 44-51.	2.3	27
215	PEGylated (NH ₄) _x WO ₃ nanorod mediated rapid photonecrosis of breast cancer cells. Nanoscale, 2019, 11, 10209-10219.	2.8	7
216	A General In Situ Growth Strategy of Designing Theranostic NaLnF ₄ @Cu _{2â`'} <i>_x</i> S Nanoplatform for In Vivo NIRâ€I Optical Imaging Beyond 1500 nm and Photothermal Therapy. Advanced Therapeutics, 2019, 2, 1800153.	1.6	24
217	Hierarchical tumor acidity-responsive self-assembled magnetic nanotheranostics for bimodal bioimaging and photodynamic therapy. Journal of Controlled Release, 2019, 301, 157-165.	4.8	46
218	Stimuli-responsive nanotheranostics based on lanthanide-doped upconversion nanoparticles for cancer imaging and therapy: current advances and future challenges. Nano Today, 2019, 25, 38-67.	6.2	100
219	Inherent multifunctional inorganic nanomaterials for imaging-guided cancer therapy. Nano Today, 2019, 26, 108-122.	6.2	67
220	Heterogeneous growth of palladium nanocrystals on upconversion nanoparticles for multimodal imaging and photothermal therapy. Journal of Materials Chemistry B, 2019, 7, 3652-3660.	2.9	14
221	Synergistic effects of hydrogen bonds and the hybridized excited state observed for high-efficiency, deep-blue fluorescent emitters with narrow emission in OLED applications. Journal of Materials Chemistry C, 2019, 7, 5461-5467.	2.7	51
222	Facile Chanâ€Lam coupling using ferrocene tethered <i>N</i> â€heterocyclic carbeneâ€copper complex anchored on graphene. Applied Organometallic Chemistry, 2019, 33, e4915.	1.7	16
223	Multivalent Glycosheets for Double Light–Driven Therapy of Multidrugâ€Resistant Bacteria on Wounds. Advanced Functional Materials, 2019, 29, 1806986.	7.8	55
224	Self-Assembled Porphyrin-Based Nanoparticles with Enhanced Near-Infrared Absorbance for Fluorescence Imaging and Cancer Photodynamic Therapy. ACS Applied Bio Materials, 2019, 2, 999-1005.	2.3	23

#	Article	IF	CITATIONS
225	Concurrent photothermal therapy and photodynamic therapy for cutaneous squamous cell carcinoma by gold nanoclusters under a single NIR laser irradiation. Journal of Materials Chemistry B, 2019, 7, 6924-6933.	2.9	93
226	Photosensitizer coated upconversion nanoparticles for triggering reactive oxygen species under 980 nm near-infrared excitation. Journal of Materials Chemistry B, 2019, 7, 7306-7313.	2.9	20
227	<p>808 nm Near-Infrared Light-Excited UCNPs@mSiO₂-Ce6-GPC3 Nanocomposites For Photodynamic Therapy In Liver Cancer</p> . International Journal of Nanomedicine, 2019, Volume 14, 10009-10021.	3.3	21
228	Surfactant-Stripped Pheophytin Micelles for Multimodal Tumor Imaging and Photodynamic Therapy. ACS Applied Bio Materials, 2019, 2, 544-554.	2.3	16
229	Biodegradable Polymer-Coated Multifunctional Graphene Quantum Dots for Light-Triggered Synergetic Therapy of Pancreatic Cancer. ACS Applied Materials & Interfaces, 2019, 11, 2768-2781.	4.0	58
230	NaYF4@Yb,Ho,Au/GO-nanohybrid materials for SERS applications—Pb(II) detection and prediction. Colloids and Surfaces B: Biointerfaces, 2019, 174, 598-606.	2.5	11
231	External stimulus responsive inorganic nanomaterials for cancer theranostics. Advanced Drug Delivery Reviews, 2019, 138, 18-40.	6.6	79
232	Recent Advances in Carbon Nanomaterials for Cancer Phototherapy. Chemistry - A European Journal, 2019, 25, 3993-4004.	1.7	112
233	Self-assembled zinc phthalocyanine nanoparticles as excellent photothermal/photodynamic synergistic agent for antitumor treatment. Chemical Engineering Journal, 2019, 361, 117-128.	6.6	83
234	Carbon-based materials for photodynamic therapy: A mini-review. Frontiers of Chemical Science and Engineering, 2019, 13, 310-323.	2.3	60
235	Upconversion-based photodynamic cancer therapy. Coordination Chemistry Reviews, 2019, 379, 82-98.	9.5	249
236	Recent Progress and Emerging Applications of Rare Earth Doped Phosphor Materials for Dyeâ€Sensitized and Perovskite Solar Cells: A Review. Chemical Record, 2020, 20, 65-88.	2.9	52
237	Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110596.	2.5	141
238	Construction of carrier-free porphyrin-based drug self-framed delivery system to reverse multidrug resistance through photodynamic-chemotherapy. Dyes and Pigments, 2020, 177, 107922.	2.0	12
239	Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles. Inorganic Chemistry Frontiers, 2020, 7, 1067-1081.	3.0	68
240	Probing the adsorption and release mechanisms of cytarabine anticancer drug on/from dopamine functionalized graphene oxide as a highly efficient drug delivery system. Journal of Molecular Liquids, 2020, 301, 112458.	2.3	26
241	A Supramolecularâ€Based Dualâ€Wavelength Phototherapeutic Agent with Broadâ€Spectrum Antimicrobial Activity Against Drugâ€Resistant Bacteria. Angewandte Chemie, 2020, 132, 3687-3693.	1.6	18
242	A Supramolecularâ€Based Dualâ€Wavelength Phototherapeutic Agent with Broadâ€5pectrum Antimicrobial Activity Against Drugâ€Resistant Bacteria. Angewandte Chemie - International Edition, 2020, 59, 3658-3664.	7.2	94

#	Article	IF	Citations
243	Preparation of Multifunctional Dopamine-Coated Zerovalent Iron/Reduced Graphene Oxide for Targeted Phototheragnosis in Breast Cancer. Nanomaterials, 2020, 10, 1957.	1.9	18
244	Photocatalytic Materials: An Apollo's Arrow to Tumor Cells. Trends in Chemistry, 2020, 2, 1126-1140.	4.4	14
245	<p>Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat?</p> . International Journal of Nanomedicine, 2020, Volume 15, 9469-9496.	3.3	121
246	Treatment of breast cancer in vivo by dual photodynamic and photothermal approaches with the aid of curcumin photosensitizer and magnetic nanoparticles. Scientific Reports, 2020, 10, 21206.	1.6	48
247	Sulfobetaine methacrylate-functionalized graphene oxide-IR780 nanohybrids aimed at improving breast cancer phototherapy. RSC Advances, 2020, 10, 38621-38630.	1.7	18
248	Labeled-protein corona-coated Bi2S3 nanorods targeted to lysosomes for bioimaging and efficient photothermal cancer therapy. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111291.	2.5	11
249	Carbonaceous nanomaterials for phototherapy: a review. Emergent Materials, 2020, 3, 479-502.	3.2	12
250	High-Quantum-Yield Upconverting Er ³⁺ /Yb ³⁺ -Organic–Inorganic Hybrid Dual Coatings for Real-Time Temperature Sensing and Photothermal Conversion. Journal of Physical Chemistry C, 2020, 124, 19892-19903.	1.5	32
251	Toxicity of graphene based nanomaterials—A general overview of origin, exposure and mechanisms. Comprehensive Analytical Chemistry, 2020, , 281-325.	0.7	7
252	Graphene Oxide Composite for Selective Recognition, Capturing, Photothermal Killing of Bacteria over Mammalian Cells. Polymers, 2020, 12, 1116.	2.0	24
253	Transition metal complexes as photosensitizers for integrated cancer theranostic applications. Coordination Chemistry Reviews, 2020, 418, 213355.	9.5	91
254	Synergistic Photodynamic and Photothermal Antibacterial Therapy Based on a Conjugated Polymer Nanoparticle-Doped Hydrogel. ACS Applied Bio Materials, 2020, 3, 4436-4443.	2.3	61
255	Recent advances in photonanomedicines for enhanced cancer photodynamic therapy. Progress in Materials Science, 2020, 114, 100685.	16.0	128
256	Synthesis and optical properties of a Y ₃ (Al/Ga) ₅ O ₁₂ :Ce ³⁺ ,Cr ³⁺ ,Nd ³⁺ persistent luminescence nanophosphor: a promising near-infrared-II nanoprobe for biological applications. Nanoscale, 2020, 12, 14180-14187.	2.8	25
257	<p>Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment</p> . International Journal of Nanomedicine, 2020, Volume 15, 1903-1914.	3.3	115
258	Near-IR emissive rare-earth nanoparticles for guided surgery. Theranostics, 2020, 10, 2631-2644.	4.6	42
259	Lanthanide-Based Photothermal Materials: Fabrication and Biomedical Applications. ACS Applied Bio Materials, 2020, 3, 3975-3986.	2.3	33
260	Luminescence imaging-guided triple-collaboratively enhanced photodynamic therapy by bioresponsive lanthanide-based nanomedicine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102265.	1.7	6

		CITATION REPORT		
#	Article		IF	Citations
261	Twoâ€Dimensional Nanomaterials for Photothermal Therapy. Angewandte Chemie, 2020,	132, 5943-5953.	1.6	90
262	Twoâ€Dimensional Nanomaterials for Photothermal Therapy. Angewandte Chemie - Intern Edition, 2020, 59, 5890-5900.	ational	7.2	364
263	Graphene and other 2D materials: a multidisciplinary analysis to uncover the hidden poten cancer theranostics. Theranostics, 2020, 10, 5435-5488.	tial as	4.6	80
264	Two-dimensional biomaterials: material science, biological effect and biomedical engineeri applications. Chemical Society Reviews, 2021, 50, 11381-11485.	ng	18.7	129
265	Graphene-based nanomaterials for cancer therapy. Materials Today: Proceedings, 2021, 43	3, 2954-2957.	0.9	7
266	Does black phosphorus hold potential to overcome graphene oxide? A comparative review promising application for cancer therapy. Nanoscale Advances, 2021, 3, 4029-4036.	of their	2.2	6
267	Recent Trends in Photoacoustic Imaging Techniques for 2D Nanomaterial-Based Photothe Biomedicines, 2021, 9, 80.	rapy.	1.4	23
268	Hollow carbon-based nanosystem for photoacoustic imaging-guided hydrogenothermal th second near-infrared window. RSC Advances, 2021, 11, 12022-12029.	erapy in the	1.7	8
269	The pH responsive upconversion fluorescence and photothermal conversion properties of NaYF ₄ :Yb ³⁺ /Er ³⁺ @NaYF ₄ @MnO <su Dalton Transactions, 2021, 50, 10838-10844.</su 	b>2@Au.	1.6	6
270	Graphene-based nanomaterial system: a boon in the era of smart nanocarriers. Journal of Pharmaceutical Investigation, 2021, 51, 245-280.		2.7	7
271	Advances in Nanomaterial-Mediated Photothermal Cancer Therapies: Toward Clinical Appl Biomedicines, 2021, 9, 305.	cations.	1.4	181
272	Sulfobetaine methacrylate-albumin-coated graphene oxide incorporating IR780 for enhance cancer phototherapy. Nanomedicine, 2021, 16, 453-464.	ed breast	1.7	5
273	Graphene Quantum Dots Decorated with Boron Dipyrromethene Dye Derivatives for Phot Therapy. ACS Applied Nano Materials, 2021, 4, 4162-4171.	odynamic	2.4	29
274	Insights into graphene oxide interaction with human serum albumin in isolated state and i plasma. International Journal of Biological Macromolecules, 2021, 175, 19-29.	n blood	3.6	13
275	Cardiac Differentiation of Mesenchymal Stem Cells: Impact of Biological and Chemical Ind Cell Reviews and Reports, 2021, 17, 1343-1361.	ucers. Stem	1.7	9
276	Graphene-Based Nanosystems: Versatile Nanotools for Theranostics and Bioremediation. ,	0,,.		2
277	Graphene Family Nanomaterials in Ocular Applications: Physicochemical Properties and To Chemical Research in Toxicology, 2021, 34, 1386-1402.	xicity.	1.7	21
278	Paclitaxel-Loaded Biotinylated Fe ²⁺ -Doped Carbon Dot: Combination Therap Treatment. ACS Applied Bio Materials, 2021, 4, 5132-5144.	y in Cancer	2.3	9

#	Article	IF	CITATIONS
279	Near-Infrared-Light-Responsive Copper Oxide Nanoparticles as Efficient Theranostic Nanoagents for Photothermal Tumor Ablation. ACS Applied Bio Materials, 2021, 4, 5266-5275.	2.3	12
280	Recent Progress on NIR-II Photothermal Therapy. Frontiers in Chemistry, 2021, 9, 728066.	1.8	56
281	Nanoengineered photoactive theranostic agents for cancer. Nanophotonics, 2021, 10, 2973-2997.	2.9	11
282	Preclinical Cancer Theranostics—From Nanomaterials to Clinic: The Missing Link. Advanced Functional Materials, 2021, 31, 2104199.	7.8	33
283	Recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. Cancer Nanotechnology, 2021, 12, .	1.9	43
284	Singlet Oxygen Photosensitization Using Graphene-Based Structures and Immobilized Dyes: A Review. ACS Applied Nano Materials, 2021, 4, 7563-7586.	2.4	25
285	Emerging twoâ€dimensional monoelemental materials (Xenes): Fabrication, modification, and applications thereof in the field of bioimaging as nanocarriers. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1750.	3.3	5
286	Folate receptor-targeting semiconducting polymer dots hybrid mesoporous silica nanoparticles against rheumatoid arthritis through synergistic photothermal therapy, photodynamic therapy, and chemotherapy. International Journal of Pharmaceutics, 2021, 607, 120947.	2.6	17
287	Allâ€inâ€One Nanomedicine: Multifunctional Singleâ€Component Nanoparticles for Cancer Theranostics. Small, 2021, 17, e2103072.	5.2	57
288	Degradable photothermal bioactive glass composite hydrogel for the sequential treatment of tumor-related bone defects: From anti-tumor to repairing bone defects. Chemical Engineering Journal, 2021, 419, 129520.	6.6	38
289	Bio-inspired graphene-based nano-systems for biomedical applications. Nanotechnology, 2021, 32, 502001.	1.3	38
290	A shining proposal for the detection of dissolved O2 in aqueous medium: Self-calibrated optical sensing via a covalent hybrid structure of carbon-dots&Ru. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 261, 120003.	2.0	3
291	Biomedical applications of graphene. , 2021, , 551-571.		0
293	Nanoparticle-Based Tumor Theranostics with Molecular Imaging. Current Pharmaceutical Biotechnology, 2014, 14, 683-692.	0.9	18
294	Polymer-Graphene Nanoassemblies and their Applications in Cancer Theranostics. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 1340-1351.	0.9	4
295	A comparison between organic and inorganic nanoparticles: Prime nanoparticles for tumor curation. Nano, 0, , .	0.5	6
296	The effects of bimodal action of photodynamic and photothermal therapy on antimicrobial and shear bond strength properties of orthodontic composite containing nano-graphene oxide. Photodiagnosis and Photodynamic Therapy, 2021, 36, 102589.	1.3	5
297	Immunotherapy and Vaccines. , 2016, , 441-464.		0

#	Article	IF	CITATIONS
298	TOXICITY OF GRAPHENE NANOPARTICLES WITH SODIUM COPPER CHLOROPHYLLIN OR MAGNESIUM CHLOROPHYLLIN AND EFFECT ON LEVELS OF ACID AND ALKALINE PHOSPHATASE ENZYME OF PEACH FLY, Bactrocera zonata (DIPTERA: TEPHRITIDAE). Zagazig Journal of Agricultural Research, 2019, 46, 27-36.	0.1	0
299	NIR Light Induced Photodynamic Therapy. , 2021, , 191-201.		0
301	Nanocarbon for bioelectronics and biosensing. , 2022, , 689-714.		7
303	Chapter 8. Near-infrared Upconversion Nanomaterial-mediated Photothermal Conversion for Various Applications. RSC Nanoscience and Nanotechnology, 2022, , 252-285.	0.2	0
304	Rare-Earth Doping in Nanostructured Inorganic Materials. Chemical Reviews, 2022, 122, 5519-5603.	23.0	338
305	Upconversion-luminescent nanomaterials for biomedical applications. , 2022, , 337-374.		0
306	Carbon nanomaterials for phototherapy of cancer and microbial infections. Carbon, 2022, 190, 194-244.	5.4	24
307	Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coordination Chemistry Reviews, 2022, 457, 214423.	9.5	53
308	Hybrid protein-inorganic nanoparticles for drug delivery in cancer therapy. , 2022, , 187-225.		0
309	Semiconductor polymer nanoparticles for biological application. , 2022, , .		0
310	Ultra-efficient highly-selective MFC-7 cancer cell therapy enabled by combined electric-pulse carbon 1D-nanomaterials platforms. Materials Advances, 2022, 3, 3915-3924.	2.6	3
311	Graphene as Photothermal Therapeutic Agents. Advances in Experimental Medicine and Biology, 2022, 1351, 177-200.	0.8	0
312	Multifunctional Lanthanide-Doped Binary Fluorides and Graphene Oxide Nanocomposites Via a Task-Specific Ionic Liquid. ACS Omega, 2022, 7, 16906-16916.	1.6	5
313	An optimal portfolio of photothermal combined immunotherapy. Cell Reports Physical Science, 2022, 3, 100898.	2.8	22
314	Graphene-based polymer nanocomposites in biomedical applications. , 2022, , 199-245.		2
315	Charge Reversal Hairpin Peptides Modified Synergy Therapeutic Nanoplatforms for Tumor Specific Drug Shuttling. Biomaterials Science, 0, , .	2.6	3
316	Organic single molecule based nano-platform for NIR-II imaging and chemo-photothermal synergistic treatment of tumor. Biomaterials, 2022, 287, 121670.	5.7	18
317	CuS NP-based nanocomposite with photothermal and augmented-photodynamic activity for magnetic resonance imaging-guided tumor synergistic therapy. Journal of Inorganic Biochemistry, 2022, 235, 111940.	1.5	4

#	Article	IF	CITATIONS
318	Multifunctional graphene oxide nanoparticles for drug delivery in cancer. Journal of Controlled Release, 2022, 350, 26-59.	4.8	65
319	Photodynamic Therapy and Antibacterial Activities of a Novel Synthesized Quaternary Zn-Cu-In-S/ZnS QDs- mTHPP Porphyrin Conjugate. International Journal of Nanomedicine, 0, Volume 17, 5315-5325.	3.3	2
320	Preparation and applications of polymer-modified lanthanide-doped upconversion nanoparticles. Giant, 2022, 12, 100130.	2.5	8
321	Engineering graphene-based electrodes for optical neural stimulation. Nanoscale, 2023, 15, 687-706.	2.8	2
322	Heterojunction structured BiOCl-Bi2S3 nanosheets as mitochondria-targeted near-infrared photothermal and photodynamic therapy agent. Colloids and Surfaces B: Biointerfaces, 2023, 222, 113106.	2.5	1
323	Graphene oxides and derivatives for biomedical applications: drug delivery/gene delivery, bioimaging, and therapeutics. , 2023, , 131-166.		1
325	A Brief Overview on Theranostic Applications of Graphene and Graphene-Based Nanomaterials. , 2023, , 295-325.		1
328	Functionalized Carbon Nanotubes, Graphene Oxide, Fullerenes, and Nanodiamonds: Emerging Theranostic Nanomedicines. , 2023, , 187-213.		1
329	Lanthanides in bioimaging. , 2023, , 541-647.		0
334	Advancements and applications of upconversion nanoparticles in wound dressings. Materials Horizons, 0, , .	6.4	1
337	Cancer nanomedicine: emergence, expansion, and expectations. SN Applied Sciences, 2023, 5, .	1.5	0
341	Lipid-based nanomaterials as phototheranostic agents. , 2024, , 195-232.		0