Accuracy of Quantum Chemical Methods for Large Non

Journal of Chemical Theory and Computation 9, 3364-3374 DOI: 10.1021/ct400036b

Citation Report

#	Article	IF	CITATIONS
3	Off-Center Gaussian Functions, an Alternative Atomic Orbital Basis Set for Accurate Noncovalent Interaction Calculations of Large Systems. Journal of Chemical Theory and Computation, 2013, 9, 5296-5304.	5.3	7
4	Efficient and accurate treatment of weak pairs in local CCSD(T) calculations. Journal of Chemical Physics, 2013, 139, 164116.	3.0	42
6	Contribution of phenylalanine side chain intercalation to the TATA-box binding protein–DNA interaction: molecular dynamics and dispersion-corrected density functional theory studies. Journal of Molecular Modeling, 2014, 20, 2499.	1.8	15
7	Shared memory multiprocessing implementation of resolution-of-the-identity second-order MÃĮler–Plesset perturbation theory with attenuated and unattenuated results for intermolecular interactions between large molecules. Molecular Physics, 2014, 112, 836-843.	1.7	10
8	Low-Cost Quantum Chemical Methods for Noncovalent Interactions. Journal of Physical Chemistry Letters, 2014, 5, 4275-4284.	4.6	80
9	Studying Allosteric Regulation in Metal Sensor Proteins Using Computational Methods. Advances in Protein Chemistry and Structural Biology, 2014, 96, 181-218.	2.3	9
10	Approaching the complete basis set limit of CCSD(T) for large systems by the third-order incremental dual-basis set zero-buffer F12 method. Journal of Chemical Physics, 2014, 140, 044114.	3.0	12
11	Adsorption of Nitrogen-Containing Compounds on the (100) α-Quartz Surface: Ab Initio Cluster Approach. Journal of Physical Chemistry C, 2014, 118, 3023-3034.	3.1	17
12	Ab Initio Implementation of the Frenkel–Davydov Exciton Model: A Naturally Parallelizable Approach to Computing Collective Excitations in Crystals and Aggregates. Journal of Chemical Theory and Computation, 2014, 10, 5366-5376.	5.3	74
13	Theoretical study of adsorption of nitrogen-containing environmental contaminants on kaolinite surfaces. Journal of Molecular Modeling, 2014, 20, 2373.	1.8	9
14	Interaction Energy of Large Molecules from Restrained Denominator MP2-F12. Journal of Chemical Theory and Computation, 2014, 10, 4857-4861.	5.3	12
15	Intermolecular interactions and charge transfer transitions in aromatic hydrocarbon–tetracyanoethylene complexes. Physical Chemistry Chemical Physics, 2014, 16, 20586-20597.	2.8	43
16	Selective induced polarization through electron transfer in acetone and pyrazole ester derivatives via C–Hâ⊂O interaction. New Journal of Chemistry, 2014, 38, 4885-4892.	2.8	10
17	ï‰B97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. Physical Chemistry Chemical Physics, 2014, 16, 9904.	2.8	616
18	Extending the applicability of the Tkatchenko-Scheffler dispersion correction via iterative Hirshfeld partitioning. Journal of Chemical Physics, 2014, 141, 034114.	3.0	174
19	Density functional tight binding: values of semi-empirical methods in an ab initio era. Physical Chemistry Chemical Physics, 2014, 16, 14368-14377.	2.8	125
21	Optimization of the Coupled Cluster Implementation in NWChem on Petascale Parallel Architectures. Journal of Chemical Theory and Computation, 2014, 10, 4307-4316.	5.3	31
22	Convergence of attenuated second order MĄ̃ller–Plesset perturbation theory towards the complete basis set limit. Chemical Physics Letters, 2014, 608, 249-254.	2.6	5

#	Article	IF	CITATIONS
23	Wave Function and Density Functional Theory Studies of Dihydrogen Complexes. Journal of Chemical Theory and Computation, 2014, 10, 3151-3162.	5.3	23
24	Quantum Mechanical Calculation of Noncovalent Interactions: A Large-Scale Evaluation of PMx, DFT, and SAPT Approaches. Journal of Chemical Theory and Computation, 2014, 10, 1563-1575.	5.3	107
25	Separate Electronic Attenuation Allowing a Spin-Component-Scaled Second-Order MÃ,ller–Plesset Theory to Be Effective for Both Thermochemistry and Noncovalent Interactions. Journal of Physical Chemistry B, 2014, 118, 6519-6525.	2.6	14
26	Investigation of topology of intermolecular interactions in the benzene–acetylene co-crystal by different theoretical methods. Structural Chemistry, 2014, 25, 1547-1552.	2.0	28
27	Accurate Modeling of Organic Molecular Crystals by Dispersion-Corrected Density Functional Tight Binding (DFTB). Journal of Physical Chemistry Letters, 2014, 5, 1785-1789.	4.6	155
28	Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization. Journal of Chemical Physics, 2015, 143, 084123.	3.0	47
29	Benchmark calculations of the adsorption of aromatic molecules on graphene. Journal of Computational Chemistry, 2015, 36, 1763-1771.	3.3	23
30	Interplay between tetrel and triel bonds in <scp>RC₆H₄CNâ⊂MF₃CNâ⊂BX₃</scp> complexes: A combined symmetryâ€adapted perturbation theory, MÃJlerâ€Plesset, and quantum theory of atomsâ€inâ€molecules study. Journal of Computational Chemistry. 2015, 36, 2412-2428.	3.3	54
31	Quantum molecular modelling of ibuprofen bound to human serum albumin. RSC Advances, 2015, 5, 49439-49450.	3.6	42
32	Noncovalent Interactions of Heteroboranes. Challenges and Advances in Computational Chemistry and Physics, 2015, , 219-239.	0.6	4
34	The Nonlocal Correlation Density Functional VV10. Annual Reports in Computational Chemistry, 2015, 11, 37-102.	1.7	17
35	Determining the cohesive energy of coronene by dispersion-corrected DFT methods: Periodic boundary conditions vs. molecular pairs. Journal of Chemical Physics, 2015, 142, 054702.	3.0	10
36	Accurate Treatment of Large Supramolecular Complexes by Double-Hybrid Density Functionals Coupled with Nonlocal van der Waals Corrections. Journal of Chemical Theory and Computation, 2015, 11, 932-939.	5.3	48
37	Part and whole in wavefunction/DFT embedding. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	30
38	Benchmark Calculations of Three-Body Intermolecular Interactions and the Performance of Low-Cost Electronic Structure Methods. Journal of Chemical Theory and Computation, 2015, 11, 3065-3079.	5.3	87
39	Theoretical description of 2D-cluster formation of nonionic surfactants at the air/water interface. Colloid and Polymer Science, 2015, 293, 3065-3089.	2.1	7
40	Comprehensive Benchmark of Association (Free) Energies of Realistic Host–Guest Complexes. Journal of Chemical Theory and Computation, 2015, 11, 3785-3801.	5.3	188
41	Enhanced semiempirical QM methods for biomolecular interactions. Computational and Structural Biotechnology Journal, 2015, 13, 169-175.	4.1	61

#	Article	IF	CITATIONS
42	Mapping the genome of meta-generalized gradient approximation density functionals: The search for B97M-V. Journal of Chemical Physics, 2015, 142, 074111.	3.0	305
43	Nucleic acid reactivity: Challenges for next-generation semiempirical quantum models. Journal of Computational Chemistry, 2015, 36, 1370-1389.	3.3	14
44	Beyond Energies: Geometries of Nonbonded Molecular Complexes as Metrics for Assessing Electronic Structure Approaches. Journal of Chemical Theory and Computation, 2015, 11, 1481-1492.	5.3	90
45	Consistent structures and interactions by density functional theory with small atomic orbital basis sets. Journal of Chemical Physics, 2015, 143, 054107.	3.0	605
46	Predicting Energetics of Supramolecular Systems Using the XDM Dispersion Model. Journal of Chemical Theory and Computation, 2015, 11, 4033-4040.	5.3	39
47	Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description. Archives of Biochemistry and Biophysics, 2015, 583, 105-119.	3.0	101
48	In silico studies on the origin of selective uptake of carbon dioxide with cucurbit[7]uril amorphous material. RSC Advances, 2015, 5, 72469-72475.	3.6	6
49	First-Principles Molecular Structure Search with a Genetic Algorithm. Journal of Chemical Information and Modeling, 2015, 55, 2338-2348.	5.4	83
50	Accurate and Efficient Quantum Chemistry Calculations for Noncovalent Interactions in Many-Body Systems: The XSAPT Family of Methods. Journal of Physical Chemistry A, 2015, 119, 235-252.	2.5	82
51	Toward Molecular Mechanism of Xenon Anesthesia: A Link to Studies of Xenon Complexes with Small Aromatic Molecules. Journal of Physical Chemistry A, 2015, 119, 2517-2521.	2.5	11
52	Parametrization of DFTB3/3OB for Magnesium and Zinc for Chemical and Biological Applications. Journal of Physical Chemistry B, 2015, 119, 1062-1082.	2.6	138
53	Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular Physics, 2015, 113, 184-215.	1.7	2,561
54	Recent Progress in Treating Protein–Ligand Interactions with Quantum-Mechanical Methods. International Journal of Molecular Sciences, 2016, 17, 742.	4.1	29
55	Comparison of oneâ€parameter and linearly scaled oneâ€parameter doubleâ€hybrid density functionals for noncovalent interactions. International Journal of Quantum Chemistry, 2016, 116, 1166-1172.	2.0	5
56	SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. IV. Linear-scaling second-order explicitly correlated energy with pair natural orbitals. Journal of Chemical Physics, 2016, 144, 144109.	3.0	98
57	Approaching the basis set limit for DFT calculations using an environment-adapted minimal basis with perturbation theory: Formulation, proof of concept, and a pilot implementation. Journal of Chemical Physics, 2016, 145, 044109.	3.0	16
58	Screened exchange hybrid density functional for accurate and efficient structures and interaction energies. Physical Chemistry Chemical Physics, 2016, 18, 15519-15523.	2.8	49
59	Experimental and Theoretical Study for the Assessment of the Conformational Stability of Polymethylene-Bridged Heteroaromatic Dimers: A Case of Unprecedented Folding. Crystal Growth and Design, 2016, 16, 1176-1180.	3.0	9

	CITATION R	CITATION REPORT	
# 60	ARTICLE Experimental and Theoretical Determination of Dissociation Energies of Dispersion-Dominated Aromatic Molecular Complexes. Chemical Reviews, 2016, 116, 5614-5641.	IF 47.7	Citations 62
61	Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications. Chemical Reviews, 2016, 116, 5301-5337.	47.7	312
62	Dispersion-Corrected Mean-Field Electronic Structure Methods. Chemical Reviews, 2016, 116, 5105-5154.	47.7	1,032
63	Accelerating Wave Function Convergence in Interactive Quantum Chemical Reactivity Studies. Journal of Chemical Theory and Computation, 2016, 12, 1228-1235.	5.3	20
64	How Accurate is DFT for Iridium-Mediated Chemistry?. Organometallics, 2016, 35, 3795-3807.	2.3	76
65	A Nexus between Theory and Experiment: Nonâ€Empirical Quantum Mechanical Computational Methodology Applied to Cucurbit[<i>n</i>]urilâ‹Guest Binding Interactions. Chemistry - A European Journal, 2016, 22, 17226-17238.	3.3	29
66	Small Atomic Orbital Basis Set Firstâ€Principles Quantum Chemical Methods for Large Molecular and Periodic Systems: A Critical Analysis of Error Sources. ChemistryOpen, 2016, 5, 94-109.	1.9	57
67	An Integral-Direct Linear-Scaling Second-Order MÃ,ller–Plesset Approach. Journal of Chemical Theory and Computation, 2016, 12, 4897-4914.	5.3	72
68	π–π stacking between polyaromatic hydrocarbon sheets beyond dispersion interactions. Physical Chemistry Chemical Physics, 2016, 18, 22300-22310.	2.8	57
69	Benchmark tests of a strongly constrained semilocal functional with a long-range dispersion correction. Physical Review B, 2016, 94, .	3.2	152
70	Cooperativity of intermolecular hydrogen bonds in microsolvated DMSO and DMF clusters: a DFT, AIM, and NCI analysis. Journal of Molecular Modeling, 2016, 22, 151.	1.8	40
71	Exchange–Correlation Effects for Noncovalent Interactions in Density Functional Theory. Journal of Chemical Theory and Computation, 2016, 12, 3160-3175.	5.3	24
72	Vapor Liquid Equilibria of Hydrofluorocarbons Using Dispersion-Corrected and Nonlocal Density Functionals. Journal of Chemical Theory and Computation, 2016, 12, 3295-3304.	5.3	11
73	Cuby: An integrative framework for computational chemistry. Journal of Computational Chemistry, 2016, 37, 1230-1237.	3.3	131
74	Functional molecules and materials by Ï€â€Interaction based quantum theoretical design. International Journal of Quantum Chemistry, 2016, 116, 622-633.	2.0	29
75	Modeling Polymorphic Molecular Crystals with Electronic Structure Theory. Chemical Reviews, 2016, 116, 5567-5613.	47.7	294
76	Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications. Chemical Reviews, 2016, 116, 5038-5071.	47.7	346
77	Revealing the physical nature and the strength of charge-inverted hydrogen bonds by SAPT(DFT), MP2, SCS-MP2, MP2C, and CCSD(T) methods. Journal of Computational Chemistry, 2017, 38, 773-780.	3.3	17

#	Article	IF	CITATIONS
78	Description of nonâ€covalent interactions in SCCâ€DFTB methods. Journal of Computational Chemistry, 2017, 38, 688-697.	3.3	44
79	Structural Basis of the Interaction of Cyclinâ€Dependent Kinaseâ€2 with Roscovitine and Its Analogues Having Bioisosteric Central Heterocycles. ChemPhysChem, 2017, 18, 785-795.	2.1	14
80	Conformational energy range of ligands in protein crystal structures: The difficult quest for accurate understanding. Journal of Molecular Recognition, 2017, 30, e2618.	2.1	23
81	First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications. Chemical Reviews, 2017, 117, 4714-4758.	47.7	408
82	Host-guest interaction between tyrosine and β-cyclodextrin: Molecular modeling and nuclear studies. Journal of Molecular Liquids, 2017, 233, 358-363.	4.9	15
83	Quantum mechanical investigation of G-quartet systems of DNA. New Journal of Chemistry, 2017, 41, 2574-2585.	2.8	7
84	Partnering dispersion corrections with modern parameter-free double-hybrid density functionals. Physical Chemistry Chemical Physics, 2017, 19, 13481-13487.	2.8	31
85	Vanishing-Overhead Linear-Scaling Random Phase Approximation by Cholesky Decomposition and an Attenuated Coulomb-Metric. Journal of Chemical Theory and Computation, 2017, 13, 1647-1655.	5.3	45
86	A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (<i>Z</i> = 1–86). Journal of Chemical Theory and Computation, 2017, 13, 1989-2009.	5.3	1,072
87	Energy decomposition of intermolecular interactions in energetic co-crystals. CrystEngComm, 2017, 19, 2687-2694.	2.6	11
88	SparseMaps—A systematic infrastructure for reduced scaling electronic structure methods. V. Linear scaling explicitly correlated coupled-cluster method with pair natural orbitals. Journal of Chemical Physics, 2017, 146, 174108.	3.0	122
89	Accuracy of finiteâ€difference harmonic frequencies in density functional theory. Journal of Computational Chemistry, 2017, 38, 1678-1684.	3.3	14
90	Effect of dispersion corrections on covalent and non-covalent interactions in DFTB calculations. Structural Chemistry, 2017, 28, 1399-1407.	2.0	4
91	Improved Polarizable Dipole–Dipole Interaction Model for Hydrogen Bonding, Stacking, T-Shaped, and X–H··΀ Interactions. Journal of Chemical Theory and Computation, 2017, 13, 2730-2741.	5.3	14
92	Transferable Atom-Centered Potentials for the Correction of Basis Set Incompleteness Errors in Density-Functional Theory. Journal of Chemical Theory and Computation, 2017, 13, 3505-3524.	5.3	29
93	DSD-PBEP86-NL and DOD-PBEP86-NL functionals for noncovalent interactions: Basis set effects and tentative applications to large noncovalent systems. International Journal of Quantum Chemistry, 2017, 117, e25417.	2.0	6
94	Can DFT and ab initio methods adequately describe binding energies in strongly interacting C6X6⋯C2X ï€â€"ï€ complexes?. Chemical Physics, 2017, 493, 12-19.	1.9	7
95	Assessing How Correlated Molecular Orbital Calculations Can Perform versus Kohn–Sham DFT: Barrier Heights/Isomerizations. Chemistry - A European Journal, 2017, 23, 9122-9129.	3.3	14

#	Article	IF	CITATIONS
96	Identification of the smallest peptide with a zwitterion as the global minimum: a first-principles study on arginine-containing peptides. Physical Chemistry Chemical Physics, 2017, 19, 12117-12126.	2.8	8
97	A theoretical study of complexes formed between cations and curved aromatic systems: electrostatics does not always control cation–π interaction. Physical Chemistry Chemical Physics, 2017, 19, 10543-10553.	2.8	15
98	Noncovalent Interactions in Specific Recognition Motifs of Protein–DNA Complexes. Journal of Chemical Theory and Computation, 2017, 13, 877-885.	5.3	22
99	Application of spin-ratio scaled MP2 for the prediction of intermolecular interactions in chemical systems. Physical Chemistry Chemical Physics, 2017, 19, 28936-28942.	2.8	21
100	Empirical Self-Consistent Correction for the Description of Hydrogen Bonds in DFTB3. Journal of Chemical Theory and Computation, 2017, 13, 4804-4817.	5.3	50
101	Benchmark Databases of Intermolecular Interaction Energies: Design, Construction, and Significance. Annual Reports in Computational Chemistry, 2017, 13, 3-91.	1.7	8
102	Scalable Electron Correlation Methods. 4. Parallel Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals (PNO-LCCSD-F12). Journal of Chemical Theory and Computation, 2017, 13, 4871-4896.	5.3	91
103	A general intermolecular force field based on tight-binding quantum chemical calculations. Journal of Chemical Physics, 2017, 147, 161708.	3.0	53
104	Accurate DFT-D3 Calculations in a Small Basis Set. Journal of Chemical Theory and Computation, 2017, 13, 3575-3585.	5.3	70
105	Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform. Journal of Chemical Physics, 2017, 146, 214106.	3.0	70
106	Validation of density functionals for pancake-bonded π-dimers; dispersion is not enough. Physical Chemistry Chemical Physics, 2017, 19, 24761-24768.	2.8	32
107	On the opposite trends of correlations between interaction energies and electrostatic potentials of chlorinated and methylated amine complexes stabilized by halogen bond. Theoretical Chemistry Accounts, 2017, 136, 1.	1.4	14
108	Dispersion corrections applied to the TCA family of exchange-correlation functionals. Theoretical Chemistry Accounts, 2017, 136, 1.	1.4	4
109	Scalable Electron Correlation Methods. 3. Efficient and Accurate Parallel Local Coupled Cluster with Pair Natural Orbitals (PNO-LCCSD). Journal of Chemical Theory and Computation, 2017, 13, 3650-3675.	5.3	122
110	Offâ€center Gaussian functions: Applications toward larger basis sets, postâ€secondâ€order correlation treatment, and truncated virtual orbital space in investigations of noncovalent interactions. International Journal of Quantum Chemistry, 2018, 118, e25580.	2.0	3
111	Toward Accurate Conformational Energies of Smaller Peptides and Medium-Sized Macrocycles: MPCONF196 Benchmark Energy Data Set. Journal of Chemical Theory and Computation, 2018, 14, 1254-1266.	5.3	69
112	Implications of monomer deformation for tetrel and pnicogen bonds. Physical Chemistry Chemical Physics, 2018, 20, 8832-8841.	2.8	67
113	Accurate and Efficient Parallel Implementation of an Effective Linear-Scaling Direct Random Phase Approximation Method, Journal of Chemical Theory and Computation, 2018, 14, 2505-2515	5.3	35

#	Article	IF	CITATIONS
114	Atomic Orbital Implementation of Extended Symmetry-Adapted Perturbation Theory (XSAPT) and Benchmark Calculations for Large Supramolecular Complexes. Journal of Chemical Theory and Computation, 2018, 14, 2955-2978.	5.3	43
115	Benchmarking several van der Waals dispersion approaches for the description of intermolecular interactions. Journal of Chemical Physics, 2018, 148, 064112.	3.0	37
116	B97-3c: A revised low-cost variant of the B97-D density functional method. Journal of Chemical Physics, 2018, 148, 064104.	3.0	400
117	DFT Modeling of Cross-Linked Polyethylene: Role of Gold Atoms and Dispersion Interactions. Journal of Physical Chemistry A, 2018, 122, 1496-1503.	2.5	8
118	Noncovalent interactions between cisplatin and graphene prototypes. Journal of Computational Chemistry, 2018, 39, 71-80.	3.3	13
119	Sâ√N chalcogen bonded complexes of carbon disulfide with diazines. Theoretical study. Chemical Physics, 2018, 500, 37-44.	1.9	12
120	Scalable Electron Correlation Methods. 5. Parallel Perturbative Triples Correction for Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals. Journal of Chemical Theory and Computation, 2018, 14, 198-215.	5.3	81
121	Computerchemie: das Schicksal aktueller Methoden und zukünftige Herausforderungen. Angewandte Chemie, 2018, 130, 4241-4248.	2.0	16
122	Computational Chemistry: The Fate of Current Methods and Future Challenges. Angewandte Chemie - International Edition, 2018, 57, 4170-4176.	13.8	138
123	Low-scaling analytical gradients for the direct random phase approximation using an atomic orbital formalism. Journal of Chemical Physics, 2018, 149, 244111.	3.0	16
124	An improved molecular partitioning scheme for numerical quadratures in density functional theory. Journal of Chemical Physics, 2018, 149, 204111.	3.0	22
125	Efficient calculation of beyond RPA correlation energies in the dielectric matrix formalism. Journal of Chemical Physics, 2018, 148, 204104.	3.0	25
126	Catalytic Space Engineering of Porphyrin Metal–Organic Frameworks for Combined CO ₂ Capture and Conversion at a Low Concentration. ChemSusChem, 2018, 11, 2340-2347.	6.8	48
127	Assessment of Density Functional Methods for Geometry Optimization of Bimolecular van der Waals Complexes. Journal of Chemical Theory and Computation, 2018, 14, 3004-3013.	5.3	27
128	Explicitly correlated local coupled luster methods using pair natural orbitals. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1371.	14.6	151
130	Extension of the atom by atom scheme of counterpoise method and presentation of its new advantages. Journal of Chemical Physics, 2018, 149, 064116.	3.0	2
131	Tuning the affinity of catechols and salicylic acids towards Al(<scp>iii</scp>): characterization of Al–chelator interactions. Dalton Transactions, 2018, 47, 9592-9607.	3.3	14
132	Double-Hybrid Functionals and Tailored Basis Set: Fullerene (C ₆₀) Dimer and Isomers as Test Cases. Journal of Physical Chemistry A, 2019, 123, 10040-10046.	2.5	11

ARTICLE IF CITATIONS # Performance of Taoâ€"Mo Semilocal Functional with rW10 Dispersion-Correction: Influence of 133 2.5 14 Different Correlation. Journal of Physical Chemistry A, 2019, 123, 10582-10593. Interaction between water and carbon nanostructures: How good are current density functional approximations?. Journal of Chemical Physics, 2019, 151, 164702. 134 Long-range dispersion-corrected density functional for noncovalent interactions. International 135 2.0 5 Journal of Modern Physics B, 2019, 33, 1950300. Approaching the Basis Set Limit of CCSD(T) Energies for Large Molecules with Local Natural Orbital 136 Coupled-Cluster Methods. Journal of Chemical Theory and Computation, 2019, 15, 5275-5298. Platinum, gold, and silver standards of intermolecular interaction energy calculations. Journal of 137 3.0 33 Chemical Physics, 2019, 151, 070901. HFLD: A Nonempirical London Dispersion-Corrected Hartreeâ€"Fock Method for the Quantification and 138 Analysis of Noncovalent Interaction Energies of Large Molecular Systems. Journal of Chemical Theory 5.3 and Computation, 2019, 15, 5894-5907 The interaction of aluminum with catecholamine-based neurotransmitters: can the formation of 139 these species be considered a potential risk factor for neurodegenerative diseases?. Dalton 3.3 16 Transactions, 2019, 48, 6003-6018. Physical adsorption of hydrogen molecules on single-walled carbon nanotubes and 3.5 40 carbon-boron-nitrogen heteronanotubes: A comparative DFT study. Vacuum, 2019, 167, 280-286. Theory and practice of modeling van der Waals interactions in electronic-structure calculations. 141 38.1 114 Chemical Society Reviews, 2019, 48, 4118-4154. Accurate and Efficient <i>ab Initio</i> Calculations for Supramolecular Complexes: Symmetry-Adapted 142 Perturbation Theory with Many-Body Dispersion. Journal of Physical Chemistry Letters, 2019, 10, 4.6 2706-2714. A generally applicable atomic-charge dependent London dispersion correction. Journal of Chemical 143 697 3.0Physics, 2019, 150, 154122. Small Basis Set Allowing the Recovery of Dispersion Interactions with Double-Hybrid Functionals. 5.3 Journal of Chemical Theory and Computation, 2019, 15, 2944-2953. Benchmarking the performance of approximate van der Waals methods for the structural and 145 3.0 24 energetic properties of SiO2 and AlPO4 frameworks. Journal of Chemical Physics, 2019, 150, 094102. Encapsulation of anticancer drug doxorubicin inside dendritic macromolecular cavities: First-principles benchmarks. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 146 2019, 217, 278-287. A theoretical exploration of the intermolecular interactions between resveratrol and water: a DFT 147 1.8 14 and AIM analysis. Journal of Molecular Modeling, 2019, 25, 56. Deciphering the Impact of Surface Defects and Functionalization on the Binding Strength and Electronic Properties of Graphene–Polypyrrole Nanocomposites: A First-Principles Approach. Journal 148 3.1 of Physical Chemistry C, 2019, 123, 5447-5459. An examination of the nature of localized molecular orbitals and their value in understanding 149 1.8 16 various phenomena that occur in organic chemistry. Journal of Molecular Modeling, 2019, 25, 7. Hydrogen-Bond-Dependent Conformational Switching: A Computational Challenge from Experimental 3.2 Thermochemistry. Journal of Organic Chemistry, 2019, 84, 613-621.

#	Article	IF	CITATIONS
151	Understanding non-covalent interactions in larger molecular complexes from first principles. Journal of Chemical Physics, 2019, 150, 010901.	3.0	56
152	Accurate Intermolecular Interaction Energies Using Explicitly Correlated Local Coupled Cluster Methods [PNO-LCCSD(T)-F12]. Journal of Chemical Theory and Computation, 2019, 15, 1044-1052.	5.3	35
153	Fully optimized implementation of the clusterâ€inâ€molecule local correlation approach for electron correlation calculations of large systems. Journal of Computational Chemistry, 2019, 40, 1130-1140.	3.3	24
154	Halogen interactions in dinuclear copper(II) 2,4-dibromophenoxyacetate – crystal structure and quantum chemical calculations. Journal of Molecular Structure, 2020, 1202, 127227.	3.6	5
155	Assessment of adsorption behavior of 5-fluorouracil and pyrazinamide on carbon nitride and folic acid-conjugated carbon nitride nanosheets for targeting drug delivery. Journal of Molecular Liquids, 2020, 301, 112435.	4.9	42
156	Domainâ€based local pair natural orbital methods within the correlation consistent composite approach. Journal of Computational Chemistry, 2020, 41, 800-813.	3.3	14
157	Recent developments in symmetryâ€adapted perturbation theory. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1452.	14.6	102
158	Efficient Reduced-Scaling Second-Order MÃ,ller–Plesset Perturbation Theory with Cholesky-Decomposed Densities and an Attenuated Coulomb Metric. Journal of Chemical Theory and Computation, 2020, 16, 6856-6868.	5.3	14
159	A minimum quantum chemistry CCSD(T)/CBS dataset of dimeric interaction energies for small organic functional groups. Journal of Chemical Physics, 2020, 153, 154301.	3.0	6
160	Quantum Monte Carlo benchmarking of large noncovalent complexes in the L7 benchmark set. Journal of Chemical Physics, 2020, 153, 194113.	3.0	14
161	Efficient Computation of Free Energy Contributions for Association Reactions of Large Molecules. Journal of Physical Chemistry Letters, 2020, 11, 6606-6611.	4.6	49
162	Non-Covalent Interactions Atlas Benchmark Data Sets 2: Hydrogen Bonding in an Extended Chemical Space. Journal of Chemical Theory and Computation, 2020, 16, 6305-6316.	5.3	47
163	Efficient yet accurate dispersion-corrected semilocal exchange–correlation functionals for non-covalent interactions. Journal of Chemical Physics, 2020, 153, 084117.	3.0	10
164	Understanding alkali metal cation affinities of multi-layer guanine quadruplex DNA. Physical Chemistry Chemical Physics, 2020, 22, 21108-21118.	2.8	24
165	Density Functional Study on the Fundamental and Valence Excited States of Dibromine in T , P , and H Clathrate Cages. Journal of Physical Chemistry A, 2020, 124, 7692-7709.	2.5	2
166	Many-Body Dispersion. Chemical Reviews, 2020, 120, 12343-12356.	47.7	16
167	Separating Enthalpic, Configurational, and Solvation Entropic Components in Host–Guest Binding: Application to Cucurbit[7]uril Complexes through a Full <i>In Silico</i> Approach via Water Nanodroplets. Journal of Physical Chemistry B, 2020, 124, 10486-10499.	2.6	5
168	Electron Spin Densities and Density Functional Approximations: Open-Shell Polycyclic Aromatic Hydrocarbons as Case Study. Journal of Chemical Theory and Computation, 2020, 16, 3567-3577.	5.3	20

#	Article	IF	CITATIONS
169	TURBOMOLE: Modular program suite for <i>ab initio</i> quantum-chemical and condensed-matter simulations. Journal of Chemical Physics, 2020, 152, 184107.	3.0	616
170	Semiclassical Dispersion Corrections Efficiently Improve Multiconfigurational Theory with Short-Range Density-Functional Dynamic Correlation. Journal of Physical Chemistry A, 2020, 124, 2834-2841.	2.5	4
171	Assessing the Recyclability of Supramolecularly Assembled Organocatalytic Species: A Theoretical Insight. Israel Journal of Chemistry, 2020, 60, 475-484.	2.3	2
172	Graphene-BN-organic nanoflake complexes: DFT, IGM and SAPTO insights. Diamond and Related Materials, 2020, 107, 107905.	3.9	19
173	Interaction and Reactivity of Cisplatin Physisorbed on Graphene Oxide Nano-Prototypes. Nanomaterials, 2020, 10, 1074.	4.1	7
174	Screening nature of the van der Waals density functional method: a review and analysis of the many-body physics foundation. Journal of Physics Condensed Matter, 2020, 32, 393001.	1.8	28
175	On the applicability of the MP2.5 approximation for open-shell systems. Case study of atmospheric reactivity. Computational and Theoretical Chemistry, 2020, 1186, 112901.	2.5	2
176	Toward a less costly but accurate calculation of the CCSD(T)/CBS noncovalent interaction energy. Journal of Computational Chemistry, 2020, 41, 1252-1260.	3.3	11
177	The MRCC program system: Accurate quantum chemistry from water to proteins. Journal of Chemical Physics, 2020, 152, 074107.	3.0	264
178	Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules. Journal of Chemical Theory and Computation, 2020, 16, 2258-2273.	5.3	39
179	Highly Efficient, Linear-Scaling Seminumerical Exact-Exchange Method for Graphic Processing Units. Journal of Chemical Theory and Computation, 2020, 16, 1456-1468.	5.3	45
180	Synthesis of Electronâ€Deficient Corona[5]arenes and Their Selective Complexation with Dihydrogen Phosphate: Cooperative Effects of Anion–Ĩ€ Interactions. Angewandte Chemie - International Edition, 2020, 59, 8078-8083.	13.8	22
181	A Quadratic Pair Atomic Resolution of the Identity Based SOS-AO-MP2 Algorithm Using Slater Type Orbitals. Journal of Chemical Theory and Computation, 2020, 16, 875-891.	5.3	23
182	A simple method of identifying π orbitals for non-planar systems and a protocol of studying π electronic structure. Theoretical Chemistry Accounts, 2020, 139, 1.	1.4	171
183	Double hybrid <scp>DFT</scp> calculations with Slater type orbitals. Journal of Computational Chemistry, 2020, 41, 1660-1684.	3.3	16
184	A scaled explicitly correlated F12 correction to second-order MÃ,ller–Plesset perturbation theory. Journal of Chemical Physics, 2021, 154, 044101.	3.0	3
185	Accurate Reduced-Cost CCSD(T) Energies: Parallel Implementation, Benchmarks, and Large-Scale Applications. Journal of Chemical Theory and Computation, 2021, 17, 860-878.	5.3	32
186	Single-Point Hessian Calculations for Improved Vibrational Frequencies and Rigid-Rotor-Harmonic-Oscillator Thermodynamics. Journal of Chemical Theory and Computation, 2021, 17, 1701-1714.	5.3	49

#	Article	IF	CITATIONS
187	CLB18: A new structural database with unusual carbon–carbon long bonds. Chemical Physics Letters, 2021, 765, 138281.	2.6	11
188	r2SCAN-3c: A "Swiss army knife―composite electronic-structure method. Journal of Chemical Physics, 2021, 154, 064103.	3.0	290
189	r2SCAN-D4: Dispersion corrected meta-generalized gradient approximation for general chemical applications. Journal of Chemical Physics, 2021, 154, 061101.	3.0	70
190	Coupled cluster benchmarks of large noncovalent complexes: The L7 dataset as well as DNA–ellipticine and buckycatcher–fullerene. Journal of Chemical Physics, 2021, 154, 154104.	3.0	25
191	Understanding intermolecular interactions of large systems in ground state and excited state by using density functional based tight binding methods. Journal of Chemical Physics, 2021, 154, 194106.	3.0	9
192	Noncovalent Interactions from Models for the MÃ,ller–Plesset Adiabatic Connection. Journal of Physical Chemistry Letters, 2021, 12, 4867-4875.	4.6	15
193	Assessing the Role of Site Isolation and Compartmentalization in Packed-Bed Flow Reactors for Processes Involving Wolf-and-Lamb Scenarios. ACS Catalysis, 2021, 11, 6234-6242.	11.2	10
194	OO-REMP: Approaching Chemical Accuracy with Second-Order Perturbation Theory. Journal of Chemical Theory and Computation, 2021, 17, 3259-3266.	5.3	3
195	Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nature Communications, 2021, 12, 3927.	12.8	57
196	Modelling of the adsorption of pharmaceutically active compounds on carbon-based nanomaterials. Journal of Hazardous Materials, 2021, 414, 125554.	12.4	24
197	Simplified tuning of long-range corrected density functionals for use in symmetry-adapted perturbation theory. Journal of Chemical Physics, 2021, 155, 034103.	3.0	11
198	Self-assembly of rylene-decorated guanine ribbons on graphene surface for optoelectronic applications: a theoretical study. Nanotechnology, 2021, 32, 435405.	2.6	2
199	Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. Journal of Chemical Physics, 2021, 155, 084801.	3.0	518
200	Elucidating active sites and decomposition mechanisms for oxythiomolybdate clusters (Mo ₂ O ₂ S _x , xÂ=Â6;8) as catalyzers for hydrogen evolution reactions. Electrochemical Science Advances, 2022, 2, e2100088.	2.8	2
201	Extrapolating DFT Toward the Complete Basis Set Limit: Lessons from the PBE Family of Functionals. Journal of Chemical Theory and Computation, 2021, 17, 5651-5660.	5.3	14
202	Performance of small basis set Hartree–Fock methods for modeling non-covalent interactions. Electronic Structure, 2021, 3, 034007.	2.8	6
203	Predicting and Understanding Non-Covalent Interactions Using Novel Forms of Symmetry-Adapted Perturbation Theory. Accounts of Chemical Research, 2021, 54, 3679-3690.	15.6	22
204	Machine learning accelerates quantum mechanics predictions of molecular crystals. Physics Reports, 2021, 934, 1-71.	25.6	21

# 205	ARTICLE Orientation effects on C2(5)-C2Ê ¹ (5Ê ¹) linked bioxazole isomers synthesized via regioselective and sequential C H arylation. Chinese Chemical Letters, 2021, 32, 425-428.	IF 9.0	CITATIONS 3
206	Cluster-in-Molecule Local Correlation Method with an Accurate Distant Pair Correction for Large Systems. Journal of Chemical Theory and Computation, 2021, 17, 756-766.	5.3	32
207	Synthesis of Electronâ€Deficient Corona[5]arenes and Their Selective Complexation with Dihydrogen Phosphate: Cooperative Effects of Anion–΀ Interactions. Angewandte Chemie, 2020, 132, 8155-8160.	2.0	5
208	Low-Scaling Tensor Hypercontraction in the Cholesky Molecular Orbital Basis Applied to Second-Order MÃ,ller–Plesset Perturbation Theory. Journal of Chemical Theory and Computation, 2021, 17, 211-221.	5.3	11
209	Crystal structures of the hexafluoridophosphate salts of the isomeric 2-, 3- and 4-cyano-1-methylpyridinium cations and determination of solid-state interaction energies. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 1322-1329.	0.5	0
210	Assessment of sulfobutylether-beta-cyclodextrin as a promising Fluorometholone molecule container: DFT, Docking, Molecular dynamics and MM-PBSA free energy calculations. Molecular Simulation, 2022, 48, 168-175.	2.0	6
211	Synthesis, single crystal, characterization and computational study of 2-amino-N-cyclopropyl-5-ethyl-thiophene-3-carboxamide. Journal of Molecular Structure, 2022, 1250, 131890.	3.6	27
212	NENCI-2021. I. A large benchmark database of non-equilibrium non-covalent interactions emphasizing close intermolecular contacts. Journal of Chemical Physics, 2021, 155, 184303.	3.0	15
213	Computational study of interactions of the uracil molecule with the F- and O2- hard anions. Computational and Theoretical Chemistry, 2022, 1208, 113568.	2.5	0
214	Bâ€DNA Structure and Stability: The Role of Nucleotide Composition and Order. ChemistryOpen, 2022, 11, e202100231.	1.9	9
215	Behavior of counterpoise correction in manyâ€body molecular clusters of organic compounds: <scp>Hartree–Fock</scp> interaction energy perspective. Journal of Computational Chemistry, 2022, 43, 568-576.	3.3	5
216	Regularized Second-Order MÃ,ller–Plesset Theory: A More Accurate Alternative to Conventional MP2 for Noncovalent Interactions and Transition Metal Thermochemistry for the Same Computational Cost. Journal of Physical Chemistry Letters, 2021, 12, 12084-12097.	4.6	32
217	Efficient low-scaling computation of NMR shieldings at the second-order MÃ,ller–Plesset perturbation theory level with Cholesky-decomposed densities and an attenuated Coulomb metric. Journal of Chemical Physics, 2021, 155, 224107.	3.0	6
218	Theoretical study of a derivative of chlorophosphine with aliphatic and aromatic Grignard reagents: S _N 2@P or the novel S _N 2@Cl followed by S _N 2@C?. RSC Advances, 2022, 12, 9130-9138.	3.6	Ο
219	Inclusion of More Physics Leads to Less Data: Learning the Interaction Energy as a Function of Electron Deformation Density with Limited Training Data. Journal of Chemical Theory and Computation, 2022, 18, 1607-1618.	5.3	5
220	Gradient Expansions for the Large-Coupling Strength Limit of the MÃ,ller–Plesset Adiabatic Connection. Journal of Chemical Theory and Computation, 2022, 18, 1584-1594.	5.3	11
221	Comprehensive Basis-Set Testing of Extended Symmetry-Adapted Perturbation Theory and Assessment of Mixed-Basis Combinations to Reduce Cost. Journal of Chemical Theory and Computation, 2022, 18, 2308-2330.	5.3	11
222	Negligible Substituent Effect as Key to Synthetic Versatility: a Computationalâ€Experimental Study of Vinyl Ethers Addition to Nitrile Oxides. ChemistrySelect, 2022, 7, .	1.5	2

#	Article	IF	CITATIONS
223	UREMP, RO-REMP, and OO-REMP: Hybrid perturbation theories for open-shell electronic structure calculations. Journal of Chemical Physics, 2022, 156, 124103.	3.0	3
224	Fast and Accurate Quantum Mechanical Modeling of Large Molecular Systems Using Small Basis Set Hartree–Fock Methods Corrected with Atom-Centered Potentials. Journal of Chemical Theory and Computation, 2022, 18, 2208-2232.	5.3	7
225	Searching for a Reliable Density Functional for Molecule–Environment Interactions, Found B97M-V/def2-mTZVP. Journal of Physical Chemistry A, 2022, 126, 2397-2406.	2.5	10
226	Adsorption of a wide variety of antibiotics on graphene-based nanomaterials: A modelling study. Chemosphere, 2022, 296, 134010.	8.2	13
227	Open-Shell Variant of the London Dispersion-Corrected Hartree–Fock Method (HFLD) for the Quantification and Analysis of Noncovalent Interaction Energies. Journal of Chemical Theory and Computation, 2022, 18, 2292-2307.	5.3	7
228	Small-Basis Set Density-Functional Theory Methods Corrected with Atom-Centered Potentials. Journal of Chemical Theory and Computation, 2022, 18, 2913-2930.	5.3	4
229	Double Hybrids and Noncovalent Interactions: How Far Can We Go?. Journal of Physical Chemistry A, 2022, 126, 2590-2599.	2.5	9
230	A Minimum Quantum Chemistry CCSD(T)/CBS Data Set of Dimeric Interaction Energies for Small Organic Functional Groups: Heterodimers. ACS Omega, 2022, 7, 20059-20080.	3.5	4
231	Optimization of the r ² SCAN-3c Composite Electronic-Structure Method for Use with Slater-Type Orbital Basis Sets. Journal of Physical Chemistry A, 2022, 126, 3826-3838.	2.5	8
232	Efficient Integral-Direct Methods for Self-Consistent Reduced Density Matrix Functional Theory Calculations on Central and Graphics Processing Units. Journal of Chemical Theory and Computation, 2022, 18, 4229-4244.	5.3	6
233	Complete Set of Diketopyrrolopyrrole Centrosymmetrical Cofacial Stacked Pairs. ChemPhysChem, 2022, 23, .	2.1	6
234	Highly Efficient and Accurate Computation of Multiple Orbital Spaces Spanning Fock Matrix Elements on Central and Graphics Processing Units for Application in F12 Theory. Journal of Chemical Theory and Computation, 2022, 18, 4218-4228.	5.3	0
235	Coupled Cluster Benchmarking of Large Noncovalent Complexes in L7 and S12L as Well as the C ₆₀ Dimer, DNA–Ellipticine, and HIV–Indinavir. Journal of Physical Chemistry A, 2022, 126, 4326-4341.	2.5	11
236	Insight into pyrolysis mechanism of 1,2-propylene glycol: Based on density functional theory and wavefunction analysis. Journal of Molecular Graphics and Modelling, 2022, , 108277.	2.4	0
237	Accurate property prediction by second order perturbation theory: The REMP and OO-REMP hybrids. Journal of Chemical Physics, 2022, 157, .	3.0	1
238	Pursuing the basis set limit of CCSD(T) non-covalent interaction energies for medium-sized complexes: case study on the S66 compilation. Molecular Physics, 2023, 121, .	1.7	10
239	Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chemical Reviews, 2022, 122, 13235-13400.	47.7	77
240	Assessment of the Second-Order Statically Screened Exchange Correction to the Random Phase Approximation for Correlation Energies. Journal of Chemical Theory and Computation, 2022, 18, 5948-5965.	5.3	8

#	Article	IF	CITATIONS
241	An effective sub-quadratic scaling atomic-orbital reformulation of the scaled opposite-spin RI-CC2 ground-state model using Cholesky-decomposed densities and an attenuated Coulomb metric. Journal of Chemical Physics, 2022, 157, 104104.	3.0	2
242	Density Functional Theory Interaction Study of a Polyethylene Glycol-Based Nanocomposite with Cephalexin Drug for the Elimination of Wound Infection. ACS Omega, 2022, 7, 33808-33820.	3.5	6
243	S66x8 noncovalent interactions revisited: new benchmark and performance of composite localized coupled-cluster methods. Physical Chemistry Chemical Physics, 2022, 24, 25555-25570.	2.8	11
244	Quantum mechanical thermochemical predictions 100 years after the SchrĶdinger equation. Annual Reports in Computational Chemistry, 2022, , 123-166.	1.7	21
245	Photoinduced electron transfer in host–guest complexes of double nanohoops. Journal of Nanostructure in Chemistry, 0, , .	9.1	4
246	Aromaticity controls the excited-state properties of host–guest complexes of nanohoops. Nanoscale, 2023, 15, 1221-1229.	5.6	7
247	S66 noncovalent interactions benchmark re-examined: Composite localized coupled cluster approaches. AIP Conference Proceedings, 2022, , .	0.4	2
248	Efficient Computation of the Interaction Energies of Very Large Non-covalently Bound Complexes. Synlett, 2023, 34, 1135-1146.	1.8	2
249	Performance of Localized-Orbital Coupled-Cluster Approaches for the Conformational Energies of Longer <i>n</i> -Alkane Chains. Journal of Physical Chemistry A, 2022, 126, 9375-9391.	2.5	5
250	A Cost Effective Scheme for the Highly Accurate Description of Intermolecular Binding in Large Complexes. International Journal of Molecular Sciences, 2022, 23, 15773.	4.1	6
251	<i>ï»</i> B97X-3c: A composite range-separated hybrid DFT method with a molecule-optimized polarized valence double- <i>ζ</i> basis set. Journal of Chemical Physics, 2023, 158, .	3.0	18
252	Regularized by Physics: Graph Neural Network Parametrized Potentials for the Description of Intermolecular Interactions. Journal of Chemical Theory and Computation, 2023, 19, 562-579.	5.3	4
253	An Imbalance in the Force: The Need for Standardized Benchmarks for Molecular Simulation. Journal of Chemical Information and Modeling, 2023, 63, 412-431.	5.4	4
254	Electronic structure theory on modeling short-range noncovalent interactions between amino acids. Journal of Chemical Physics, 2023, 158, 094301.	3.0	0
255	Phosphatidylcholine in the tear film of the eye: Enhanced topical delivery of fluorometholone to the eye. Inorganic Chemistry Communication, 2023, 150, 110506.	3.9	3
256	Toward Pair Atomic Density Fitting for Correlation Energies with Benchmark Accuracy. Journal of Chemical Theory and Computation, 2023, 19, 1499-1516.	5.3	8
257	Repartitioned Brillouin-Wigner perturbation theory with a size-consistent second-order correlation energy. Journal of Chemical Physics, 2023, 158, .	3.0	4
258	TURBOMOLE: Today and Tomorrow. Journal of Chemical Theory and Computation, 2023, 19, 6859-6890.	5.3	29

#	Article	IF	CITATIONS
259	Accurate prediction of global-density-dependent range-separation parameters based on machine learning. Journal of Chemical Physics, 2023, 159, .	3.0	0
260	Benchmark Accuracy in Thermochemistry, Kinetics, and Noncovalent Interactions. , 2024, , 47-68.		0
261	On the Intermolecular Interactions in Thiophene-Cored Single-Stacking Junctions. International Journal of Molecular Sciences, 2023, 24, 13349.	4.1	1
262	Regularized and Opposite Spin-Scaled Functionals from MĄ̃ļler–Plesset Adiabatic Connection─Higher Accuracy at Lower Cost. Journal of Physical Chemistry Letters, 2023, 14, 8448-8459.	4.6	3
263	Assessment of DLPNO-MP2 Approximations in Double-Hybrid DFT. Journal of Chemical Theory and Computation, 0, , .	5.3	0
264	Hybrid classical/machine-learning force fields for the accurate description of molecular condensed-phase systems. Chemical Science, 2023, 14, 12661-12675.	7.4	1
265	Optimizing the regularization in size-consistent second-order Brillouin-Wigner perturbation theory. Journal of Chemical Physics, 2023, 159, .	3.0	1
266	Corrected density functional theory and the random phase approximation: Improved accuracy at little extra cost. Journal of Chemical Physics, 2023, 159, .	3.0	1
267	libMBD: A general-purpose package for scalable quantum many-body dispersion calculations. Journal of Chemical Physics, 2023, 159, .	3.0	1
268	Do Optimally Tuned Range-Separated Hybrid Functionals Require a Reparametrization of the Dispersion Correction? It Depends. Journal of Chemical Theory and Computation, 2023, 19, 8097-8107.	5.3	0
269	Benchmark Data Set of Crystalline Organic Semiconductors. Journal of Chemical Theory and Computation, 2023, 19, 8481-8490.	5.3	0
270	Highly accurate <i>Ïf </i> - and <i>Ï,,</i> -functionals for beyond-RPA methods with approximate exchange kernels. Journal of Chemical Physics, 2023, 159, .	3.0	1
271	Cluster-in-Molecule Local Correlation Method for Dispersion Interactions in Large Systems and Periodic Systems. Accounts of Chemical Research, 2023, 56, 3462-3474.	15.6	0
272	Computational Studies towards the Optimization of the Synthesis of 1,2,4â€Triazolo[1,5â€ <i>a</i>]pyridineâ€2â€carboxylate: Advantages of Continuous Flow Processing. European Journal of Organic Chemistry, 2024, 27, .	2.4	0
273	Dispersion-corrected r2SCAN based double-hybrid functionals. Journal of Chemical Physics, 2023, 159, .	3.0	1
274	Mixing temperature optimization and modification mechanism of medical masks modified asphalt: Insights from computational chemistry. International Journal of Transportation Science and Technology, 2024, , .	3.6	0
275	Axial–equatorial equilibrium in substituted cyclohexanes: a DFT perspective on a small but complex problem. Physical Chemistry Chemical Physics, 2024, 26, 8094-8105.	2.8	1