GolP-CHARMM: First-Principles Based Force Fields for Au(111) and Au(100)

Journal of Chemical Theory and Computation 9, 1616-1630 DOI: 10.1021/ct301018m

Citation Report

#	Article	IF	CITATIONS
9	A molecular dynamics simulation study of the electric double layer and capacitance of [BMIM][PF6] and [BMIM][BF4] room temperature ionic liquids near charged surfaces. Physical Chemistry Chemical Physics, 2013, 15, 14234.	1.3	93
10	Conformational Behavior of Genetically-Engineered Dodecapeptides as a Determinant of Binding Affinity for Gold Journal of Physical Chemistry C, 2013, 117, 16990-17003.	1.5	52
11	Reactivity of the ZnS(101Ì0) Surface to Small Organic Ligands by Density Functional Theory. Journal of Physical Chemistry C, 2013, 117, 16034-16041.	1.5	6
12	Interaction of Nucleic Acid Bases with the Au(111) Surface. Journal of Chemical Theory and Computation, 2013, 9, 4552-4561.	2.3	33
13	First-Principles-Based Force Field for the Interaction of Proteins with Au(100)(5 × 1): An Extension of GolP-CHARMM. Journal of Physical Chemistry C, 2013, 117, 24292-24306.	1.5	61
14	Benzene adsorption at the aqueous (0Â1Â1) α-quartz interface: is surface flexibility important?. Molecular Simulation, 2013, 39, 1093-1102.	0.9	11
15	Biomolecular Recognition Principles for Bionanocombinatorics: An Integrated Approach To Elucidate Enthalpic and Entropic Factors. ACS Nano, 2013, 7, 9632-9646.	7.3	142
16	Biomolecular Adsorption at Aqueous Silver Interfaces: First-Principles Calculations, Polarizable Force-Field Simulations, and Comparisons with Gold. Langmuir, 2013, 29, 13217-13229.	1.6	71
17	Molecular dynamics simulation of a DOPA/ST monolayer on the Au(111) surface. Physical Chemistry Chemical Physics, 2013, 15, 15426.	1.3	7
18	Structure and Properties of Citrate Overlayers Adsorbed at the Aqueous Au(111) Interface. Langmuir, 2014, 30, 15171-15180.	1.6	16
19	Optimizing the underlying parameters for protein-nanoparticle interaction: advancement in theoretical simulation. Nanotechnology Reviews, 2014, 3, .	2.6	9
20	A Force Field for Describing the Polyvinylpyrrolidone-Mediated Solution-Phase Synthesis of Shape-Selective Ag Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 3366-3374.	1.5	52
21	Two-Photon Absorption of Metal-Assisted Chromophores. Journal of Chemical Theory and Computation, 2014, 10, 5630-5639.	2.3	14
22	Non-linear optical properties of molecules in heterogeneous environments: a quadratic density functional/molecular mechanics response theory. Physical Chemistry Chemical Physics, 2014, 16, 8981.	1.3	18
23	Efficient simulations of the aqueous bio-interface of graphitic nanostructures with a polarisable model. Nanoscale, 2014, 6, 5438-5448.	2.8	62
24	Interaction with a Gold Surface Reshapes the Free Energy Landscape of Alanine Dipeptide. Journal of Physical Chemistry C, 2014, 118, 11357-11364.	1.5	29
25	van der Waals effects at molecule-metal interfaces. Physical Review B, 2014, 90, .	1.1	22
26	Structure of the electrical double layer at aqueous gold and silver interfaces for saline solutions. Journal of Colloid and Interface Science, 2014, 436, 99-110.	5.0	12

#	Article	IF	CITATIONS
27	Comparative Study of Materials-Binding Peptide Interactions with Gold and Silver Surfaces and Nanostructures: A Thermodynamic Basis for Biological Selectivity of Inorganic Materials. Chemistry of Materials, 2014, 26, 4960-4969.	3.2	118
28	Enthalpy–Entropy Tuning in the Adsorption of Nucleobases at the Au(111) Surface. Journal of Chemical Theory and Computation, 2014, 10, 1707-1716.	2.3	36
29	A Hybrid Density Functional Theory/Molecular Mechanics Approach for Linear Response Properties in Heterogeneous Environments. Journal of Chemical Theory and Computation, 2014, 10, 989-1003.	2.3	39
30	Perspectives on the simulation of protein–surface interactions using empirical force field methods. Colloids and Surfaces B: Biointerfaces, 2014, 124, 25-37.	2.5	42
31	An improved DNA force field for ssDNA interactions with gold nanoparticles. Journal of Chemical Physics, 2014, 140, 234102.	1.2	12
32	Electronic Circular Dichroism of Surface-Adsorbed Molecules by Means of Quantum Mechanics Capacitance Molecular Mechanics. Journal of Physical Chemistry C, 2014, 118, 5833-5840.	1.5	17
33	Structure of Arginine Overlayers at the Aqueous Gold Interface: Implications for Nanoparticle Assembly. ACS Applied Materials & Interfaces, 2014, 6, 10524-10533.	4.0	24
34	Fibronectin Module FN ^{III} 9 Adsorption at Contrasting Solid Model Surfaces Studied by Atomistic Molecular Dynamics. Journal of Physical Chemistry B, 2014, 118, 9900-9908.	1.2	26
35	Facet Selectivity of Ligands on Silver Nanoplates: Molecular Mechanics Study. Journal of Physical Chemistry C, 2014, 118, 21589-21598.	1.5	14
36	Chiral effects in amino acid adsorption on Au(111): A comparison of cysteine, homocysteine and methionine. Surface Science, 2014, 629, 20-27.	0.8	17
37	Identification of peptide adsorbates for strong nanoparticle–nanoparticle binding by lattice protein simulations. Materials Discovery, 2015, 1, 2-9.	3.3	0
38	Computational Strategies for Protein-Surface and Protein-Nanoparticle Interactions. Journal of Self-Assembly and Molecular Electronics (SAME), 0, , 1-26.	0.0	8
39	Biodirected Synthesis and Nanostructural Characterization of Anisotropic Gold Nanoparticles. Langmuir, 2015, 31, 3527-3536.	1.6	26
40	Molecular Mechanism of Specific Recognition of Cubic Pt Nanocrystals by Peptides and of the Concentrationâ€Đependent Formation from Seed Crystals. Advanced Functional Materials, 2015, 25, 1374-1384.	7.8	65
41	Molecular Dynamics Simulations Using a Capacitance–Polarizability Force Field. Journal of Physical Chemistry C, 2015, 119, 19430-19437.	1.5	8
42	Triggering nanoparticle surface ligand rearrangement via external stimuli: light-based actuation of biointerfaces. Nanoscale, 2015, 7, 13638-13645.	2.8	26
43	Facet selectivity in gold binding peptides: exploiting interfacial water structure. Chemical Science, 2015, 6, 5204-5214.	3.7	68
44	Elucidation of Peptide-Directed Palladium Surface Structure for Biologically Tunable Nanocatalysts. ACS Nano, 2015, 9, 5082-5092.	7.3	96

#	Article	IF	CITATIONS
45	Structure and Chirality in Sulfur-Containing Amino Acids Adsorbed on Au(111) Surfaces. Journal of Physical Chemistry C, 2015, 119, 9829-9838.	1.5	14
46	Efficient parametrization of complex molecule–surface force fields. Journal of Computational Chemistry, 2015, 36, 1187-1195.	1.5	9
47	Affinity and Selectivity of Peptides for Inorganic Materials: A Thermodynamic Discussion of the Role of Conformational Flexibility. Jom, 2015, 67, 781-787.	0.9	2
48	NANOGOLD decorated by pHLIP peptide: comparative force field study. Physical Chemistry Chemical Physics, 2015, 17, 12648-12660.	1.3	25
49	Parameterization of an interfacial force field for accurate representation of peptide adsorption free energy on high-density polyethylene. Biointerphases, 2015, 10, 021002.	0.6	11
50	Molecular Simulations of Cytochrome <i>c</i> Adsorption on a Bare Gold Surface: Insights for the Hindrance of Electron Transfer. Journal of Physical Chemistry C, 2015, 119, 20773-20781.	1.5	29
51	Biomediated Atomic Metal Nanoclusters: Synthesis and Theory. , 2015, , 1-24.		2
52	Control of Protein Orientation on Gold Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 21035-21043.	1.5	75
53	Connectivity-Based Biocompatible Force Field for Thiolated Gold Nanoclusters. Journal of Physical Chemistry C, 2015, 119, 27804-27812.	1.5	10
54	Surface-site reactivity in small-molecule adsorption: A theoretical study of thiol binding on multi-coordinated gold clusters. Beilstein Journal of Nanotechnology, 2016, 7, 53-61.	1.5	14
55	Understanding and Designing the Gold–Bio Interface: Insights from Simulations. Small, 2016, 12, 2395-2418.	5.2	58
56	Toward a modular multi-material nanoparticle synthesis and assembly strategy via bionanocombinatorics: bifunctional peptides for linking Au and Ag nanomaterials. Physical Chemistry Chemical Physics, 2016, 18, 30845-30856.	1.3	10
57	Modeling and simulation of protein–surface interactions: achievements and challenges. Quarterly Reviews of Biophysics, 2016, 49, e4.	2.4	163
58	Hybrid Complex Polarization Propagator/Molecular Mechanics Method for Heterogeneous Environments. Journal of Chemical Theory and Computation, 2016, 12, 2661-2667.	2.3	10
59	Adsorption of imidazole on Au(111) surface: Dispersion corrected density functional study. Applied Surface Science, 2016, 383, 233-239.	3.1	8
60	Optical Modulation of Azobenzeneâ€Modified Peptide for Gold Surface Binding. ChemPhysChem, 2016, 17, 3252-3259.	1.0	7
61	Peptide-Directed PdAu Nanoscale Surface Segregation: Toward Controlled Bimetallic Architecture for Catalytic Materials. ACS Nano, 2016, 10, 8645-8659.	7.3	58
62	Peptide Sequence Effects Control the Single Pot Reduction, Nucleation, and Growth of Au Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 18917-18924.	1.5	24

#	Article	IF	CITATIONS
63	Simple and Flexible Model for Laser-Driven Antibody–Gold Surface Interactions: Functionalization and Sensing. ACS Applied Materials & Interfaces, 2016, 8, 21762-21769.	4.0	4
64	Sustainable Nanotechnology: Opportunities and Challenges for Theoretical/Computational Studies. Journal of Physical Chemistry B, 2016, 120, 7297-7306.	1.2	52
65	Protein–Ligand Interaction Detection with a Novel Method of Transient Induced Molecular Electronic Spectroscopy (TIMES): Experimental and Theoretical Studies. ACS Central Science, 2016, 2, 834-842.	5.3	27
66	Modeling of nanoparticle coatings for medical applications. European Physical Journal D, 2016, 70, 1.	0.6	17
67	Multi-scale theory and simulation of shape-selective nanocrystal growth. CrystEngComm, 2016, 18, 5410-5417.	1.3	30
68	Adsorption of Protein on a Au Surface Studied by All-Atom Atomistic Simulations. Journal of Physical Chemistry C, 2016, 120, 13103-13112.	1.5	3
69	Non-covalent adsorption of amino acid analogues on noble-metal nanoparticles: influence of edges and vertices. Physical Chemistry Chemical Physics, 2016, 18, 17525-17533.	1.3	25
70	The interaction with gold suppresses fiber-like conformations of the amyloid β (16–22) peptide. Nanoscale, 2016, 8, 8737-8748.	2.8	55
71	Decaheme Cytochrome MtrF Adsorption and Electron Transfer on Gold Surface. Journal of Physical Chemistry Letters, 2016, 7, 929-936.	2.1	19
72	Force fields for simulating the interaction of surfaces with biological molecules. Interface Focus, 2016, 6, 20150045.	1.5	26
73	Simulations of inorganic–bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities. Chemical Society Reviews, 2016, 45, 412-448.	18.7	176
74	Optical Actuation of Inorganic/Organic Interfaces: Comparing Peptide-Azobenzene Ligand Reconfiguration on Gold and Silver Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 1050-1060.	4.0	26
75	Modeling self-assembly of surfactants at interfaces. Current Opinion in Chemical Engineering, 2017, 15, 84-94.	3.8	11
76	Interfacial Mechanical Properties of Graphene on Self-Assembled Monolayers: Experiments and Simulations. ACS Applied Materials & amp; Interfaces, 2017, 9, 10203-10213.	4.0	20
77	Elucidating the influence of materials-binding peptide sequence on Au surface interactions and colloidal stability of Au nanoparticles. Nanoscale, 2017, 9, 421-432.	2.8	30
78	Effect of collector molecular structure on the wettability of gold for froth flotation. Applied Surface Science, 2017, 420, 691-699.	3.1	25
79	NanoEHS beyond toxicity – focusing on biocorona. Environmental Science: Nano, 2017, 4, 1433-1454.	2.2	43
80	Facet-Specific Adsorption of Tripeptides at Aqueous Au Interfaces: Open Questions in Reconciling Experiment and Simulation. Langmuir, 2017, 33, 3742-3754.	1.6	25

#	Article	IF	CITATIONS
81	Understanding the interfacial behavior of lysozyme on Au (111) surfaces with multiscale simulations. Applied Physics Letters, 2017, 110, .	1.5	9
82	Increase in the βâ€Sheet Character of an Amyloidogenic Peptide upon Adsorption onto Gold and Silver Surfaces. ChemPhysChem, 2017, 18, 526-536.	1.0	11
83	Performance of a rigid rod statistical mechanical treatment to predict monolayer ordering: a study of chain interactions and comparison with molecular dynamics simulation. Journal of Mathematical Chemistry, 2017, 55, 423-435.	0.7	1
84	Fibrillation-prone conformations of the amyloid-β-42 peptide at the gold/water interface. Nanoscale, 2017, 9, 2279-2290.	2.8	25
85	Computational and Experimental Investigation of the Structure of Peptide Monolayers on Gold Nanoparticles. Langmuir, 2017, 33, 438-449.	1.6	25
86	Interaction of Alkylamines with Cu Surfaces: A Metal–Organic Many-Body Force Field. Journal of Physical Chemistry C, 2017, 121, 22531-22541.	1.5	24
87	Adsorption of DNA Fragments at Aqueous Graphite and Au(111) via Integration of Experiment and Simulation. Langmuir, 2017, 33, 10193-10204.	1.6	22
88	Evaluation and Optimization of Interface Force Fields for Water on Gold Surfaces. Journal of Chemical Theory and Computation, 2017, 13, 5610-5623.	2.3	34
89	Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials. Chemical Reviews, 2017, 117, 12641-12704.	23.0	162
90	Reply to "Molecular mechanics models for the image charge― Journal of Computational Chemistry, 2017, 38, 2130-2133.	1.5	2
91	Structure, Dynamics, and Electron Transfer of Azurin Bound to a Gold Electrode. Langmuir, 2017, 33, 9190-9200.	1.6	5
92	Halo-substituted azobenzenes adsorbed at Ag(111) and Au(111) interfaces: Structures and optical properties. Physical Review B, 2017, 95, .	1.1	2
93	Ubiquitin immobilized on mesoporous MCM41 silica surfaces – Analysis by solid-state NMR with biophysical and surface characterization. Biointerphases, 2017, 12, 02D414.	0.6	13
94	Electrode/Electrolyte Interface in the Li–O ₂ Battery: Insight from Molecular Dynamics Study. Journal of Physical Chemistry C, 2017, 121, 14463-14469.	1.5	34
95	Pathways to Structure–Property Relationships of Peptide–Materials Interfaces: Challenges in Predicting Molecular Structures. Accounts of Chemical Research, 2017, 50, 1617-1624.	7.6	54
96	Characterizing Self-Assembled Monolayers on Gold Nanoparticles. Bioconjugate Chemistry, 2017, 28, 11-22.	1.8	71
97	Organic–inorganic interface simulation for new material discoveries. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1277.	6.2	12

#	Article	IF	CITATIONS
99	3.14 Molecular Simulation Methods to Investigate Protein Adsorption Behavior at the Atomic Level \hat{a} $^{+}.$, 2017, , 268-294.		2
100	A novel technique for detection of biomolecules and its aqueous concentration using a double gate graphene field effect transistor. Sensing and Bio-Sensing Research, 2018, 19, 7-13.	2.2	1
101	Self-assembled monolayer formation of distorted cylindrical AOT micelles on gold surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 546, 20-27.	2.3	12
102	The Coral Protein CARP3 Acts from a Disordered Mineral Surface Film to Divert Aragonite Crystallization in Favor of Mgâ€Calcite. Advanced Functional Materials, 2018, 28, 1707321.	7.8	19
103	Insight into induced charges at metal surfaces and biointerfaces using a polarizable Lennard–Jones potential. Nature Communications, 2018, 9, 716.	5.8	121
104	Adsorption Mechanisms of Nucleobases on the Hydrated Au(111) Surface. Langmuir, 2018, 34, 14749-14756.	1.6	9
105	Peptide-Mediated Growth and Dispersion of Au Nanoparticles in Water via Sequence Engineering. Journal of Physical Chemistry C, 2018, 122, 11532-11542.	1.5	26
106	Computational approaches to cell–nanomaterial interactions: keeping balance between therapeutic efficiency and cytotoxicity. Nanoscale Horizons, 2018, 3, 6-27.	4.1	44
107	Analysis of the conformational properties of amine ligands at the gold/water interface with QM, MM and QM/MM simulations. Physical Chemistry Chemical Physics, 2018, 20, 3349-3362.	1.3	15
108	Poly-sarcosine and Poly(Ethylene-Glycol) Interactions with Proteins Investigated Using Molecular Dynamics Simulations. Computational and Structural Biotechnology Journal, 2018, 16, 543-550.	1.9	32
109	Optical Control of Nanoparticle Catalysis Influenced by Photoswitch Positioning in Hybrid Peptide Capping Ligands. ACS Applied Materials & Interfaces, 2018, 10, 33640-33651.	4.0	18
110	Bare surface of gold nanoparticle induces inflammation through unfolding of plasma fibrinogen. Scientific Reports, 2018, 8, 12557.	1.6	43
111	Impact of nanoparticles on amyloid peptide and protein aggregation: a review with a focus on gold nanoparticles. Nanoscale, 2018, 10, 20894-20913.	2.8	121
112	Experimental and Computational Characterization of the Interaction between Gold Nanoparticles and Polyamidoamine Dendrimers. Langmuir, 2018, 34, 10063-10072.	1.6	11
113	Controlling Redox Enzyme Orientation at Planar Electrodes. Catalysts, 2018, 8, 192.	1.6	78
114	Including diverging electrostatic potential in 3D-RISM theory: The charged wall case. Journal of Chemical Physics, 2018, 148, 114106.	1.2	2
115	Unravelling the GLY-PRO-GLU tripeptide induced reconstruction of the Au(110) surface at the molecular scale. Surface Science, 2018, 677, 271-277.	0.8	1
116	Distinct Differences in Peptide Adsorption on Palladium and Gold: Introducing a Polarizable Model for Pd(111). Journal of Physical Chemistry C, 2018, 122, 19625-19638.	1.5	7

#	Article	IF	CITATIONS
117	Controlled synthesis of highly-branched plasmonic gold nanoparticles through peptoid engineering. Nature Communications, 2018, 9, 2327.	5.8	74
118	Catanionic AOT/BDAC micelles on gold {111} surfaces. Colloid and Polymer Science, 2018, 296, 1301-1306.	1.0	6
119	Highly sensitive and selective detection of single-nucleotide polymorphisms using gold nanoparticle MutS enzymes and a micro cantilever resonator. Talanta, 2019, 205, 120154.	2.9	16
120	Gold nanorod and its impacting on latent membrane protein LMP1: A molecular dynamics approach. Chemical Physics Letters, 2019, 733, 136678.	1.2	1
121	A Bespoke Force Field To Describe Biomolecule Adsorption at the Aqueous Boron Nitride Interface. Langmuir, 2019, 35, 16234-16243.	1.6	13
122	Nanoengineering Materials for Biomedical Uses. , 2019, , .		2
123	Tuning the Structure and Chiroptical Properties of Gold Nanoparticle Single Helices via Peptide Sequence Variation. Journal of the American Chemical Society, 2019, 141, 15710-15716.	6.6	29
124	Shape- and size-dependences of gold nanostructures on the electrooxidation of methanol under visible light irradiation. Nanoscale, 2019, 11, 18320-18328.	2.8	14
125	The features of poly (vinylimidazole) adsorption on gold surface: a molecular dynamics study. Colloid and Polymer Science, 2019, 297, 1345-1352.	1.0	5
126	Interaction of gold nanosurfaces/nanoparticles with collagen-like peptides. Physical Chemistry Chemical Physics, 2019, 21, 3701-3711.	1.3	24
127	Understanding the good and poor cell targeting activity of gold nanostructures functionalized with molecular units for the epidermal growth factor receptor. Nanoscale Advances, 2019, 1, 1970-1979.	2.2	12
128	An Overview of Molecular Modeling for Drug Discovery with Specific Illustrative Examples of Applications. Molecules, 2019, 24, 1693.	1.7	96
129	Adsorption of Collagen-like Peptides onto Gold Nanosurfaces. Langmuir, 2019, 35, 4435-4444.	1.6	20
130	Computational modeling of the adsorption of capping agent biomolecules to inorganic nanoparticles. , 2019, , 21-41.		0
131	Protein interactions with negatively charged inorganic surfaces. Current Opinion in Colloid and Interface Science, 2019, 41, 104-117.	3.4	37
132	Critical role of tyrosine-20 in formation of gold nanoclusters within lysozyme: a molecular dynamics study. Physical Chemistry Chemical Physics, 2019, 21, 4907-4911.	1.3	0
133	Effects of Orientation on the Stability and Affinity of Antibody–GNP Conjugation. Protein Journal, 2019, 38, 134-141.	0.7	2
134	Minor Chemistry Changes Alter Surface Hydration to Control Fibronectin Adsorption and Assembly into Nanofibrils. Advanced Theory and Simulations, 2019, 2, 1900169.	1.3	8

#	Article	IF	Citations
135	Molecular Dynamics Simulation of Polarizable Gold Nanoparticles Interacting with Sodium Citrate. Journal of Chemical Theory and Computation, 2019, 15, 1278-1292.	2.3	33
136	Gold Binding Peptide Identified from Microfluidic Biopanning: An Experimental and Molecular Dynamics Study. Langmuir, 2019, 35, 522-528.	1.6	10
137	AOT Bilayer Adsorption on Gold Surfaces: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2019, 123, 948-953.	1.2	12
138	Adsorption of Amino Acids on Gold: Assessing the Accuracy of the GolP-CHARMM Force Field and Parametrization of Au–S Bonds. Journal of Chemical Theory and Computation, 2019, 15, 613-624.	2.3	23
139	Structural and energetic properties of P3HT and PCBM layers on the Ag(1 1 1) surface. Computational and Theoretical Chemistry, 2020, 1190, 112997.	1.1	3
140	Gamma estimator of Jarzynski equality for recovering binding energies from noisy dynamic data sets. Nature Communications, 2020, 11, 5517.	5.8	5
141	Simulating selective binding of a biological template to a nanoscale architecture: a core concept of a clamp-based binding-pocket-favored N-terminal-domain assembly. Nanoscale, 2020, 12, 24214-24227.	2.8	18
142	Coherent Electron Transport across a 3 nm Bioelectronic Junction Made of Multi-Heme Proteins. Journal of Physical Chemistry Letters, 2020, 11, 9766-9774.	2.1	42
144	The conformation of adsorbed poly (vinylimidazole) on gold surface: a molecular dynamics study. Journal of Polymer Research, 2020, 27, 1.	1.2	6
145	Peptide Capping Agent Design for Gold (111) Facet by Molecular Simulation and Experimental Approaches. Scientific Reports, 2020, 10, 2090.	1.6	2
146	Spiked gold nanotriangles: formation, characterization and applications in surface-enhanced Raman spectroscopy and plasmon-enhanced catalysis. RSC Advances, 2020, 10, 8152-8160.	1.7	19
147	The vibronic absorption spectra and exciton dynamics of plasmon-exciton hybrid systems in the regimes ranged from Fano antiresonance to Rabi-like splitting. Journal of Chemical Physics, 2020, 152, 014102.	1.2	7
148	The conformational space of a flexible amino acid at metallic surfaces. International Journal of Quantum Chemistry, 2021, 121, e26369.	1.0	9
149	A new mechanism for reduced cell adhesion: Adsorption dynamics of collagen on a nanoporous gold surface. Materials Science and Engineering C, 2021, 119, 111461.	3.8	3
150	Nonlinear features of Fano resonance: a QM/EM study. Physical Chemistry Chemical Physics, 2021, 23, 15994-16004.	1.3	6
151	Amino-acid interactions with the Au(111) surface: adsorption, band alignment, and interfacial electronic coupling. Physical Chemistry Chemical Physics, 2021, 23, 10257-10266.	1.3	8
152	Probing the structural properties of the water solvation shell around gold nanoparticles: A computational study. Journal of Chemical Physics, 2021, 154, 044706.	1.2	4
153	Impact of Cathodic Electric Double Layer Composition on the Performance of Aprotic Li-O2 Batteries. Journal of the Electrochemical Society, 2021, 168, 030520.	1.3	9

#	Article	IF	CITATIONS
154	Symmetry Breaking in Seed-Mediated Silver Nanorod Growth Induced by Dimethyl Sulfoxide. Chemistry of Materials, 2021, 33, 2948-2956.	3.2	9
155	Adsorption of Amino Acids at the Gold/Aqueous Interface: Effect of an External Electric Field. Journal of Physical Chemistry C, 2021, 125, 7856-7867.	1.5	9
157	Systematic Comparison of the Structural and Dynamic Properties of Commonly Used Water Models for Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2021, 61, 4521-4536.	2.5	94
158	A Martini Coarse Grained Model of Citrate-Capped Gold Nanoparticles Interacting with Lipid Bilayers. Journal of Chemical Theory and Computation, 2021, 17, 6597-6609.	2.3	22
159	Transferable Gaussian Attractive Potentials for Organic/Oxide Interfaces. Journal of Physical Chemistry B, 2021, 125, 10843-10853.	1.2	8
160	A protonated L-cysteine adsorption on gold surface: A molecular dynamics study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127452.	2.3	2
161	Accurate simulation of surfaces and interfaces of ten FCC metals and steel using Lennard–Jones potentials. Npj Computational Materials, 2021, 7, .	3.5	28
162	The Molecular Dynamics Simulation of Peptides on Gold Nanosurfaces. Methods in Molecular Biology, 2020, 2118, 177-197.	0.4	1
163	Coarse-Grained Simulation of the Adsorption of Water on Au(111) Surfaces Using a Modified Stillinger–Weber Potential. ACS Omega, 2020, 5, 31055-31059.	1.6	3
165	A label-free graphene-based impedimetric biosensor for real-time tracing of the cytokine storm in blood serum; suitable for screening COVID-19 patients. RSC Advances, 2021, 11, 34503-34515.	1.7	11
166	Fast Generation of Machine Learning-Based Force Fields for Adsorption Energies. Journal of Chemical Theory and Computation, 2021, 17, 7195-7202.	2.3	3
167	Biomediated Atomic Metal Nanoclusters: Synthesis and Theory. , 2016, , 1397-1426.		0
168	Computational Methodologies for Exploring Nano-engineered Materials. , 2019, , 57-79.		0
169	Analyses of Interaction between Platinum Bonded LARFH and Gold Surface by Molecular Dynamics Simulation. , 2020, , .		0
170	Tuning Materials-Binding Peptide Sequences toward Gold- and Silver-Binding Selectivity with Bayesian Optimization. ACS Nano, 2021, 15, 18260-18269.	7.3	18
171	First-Principles Modeling of Protein/Surface Interactions. Polyglycine Secondary Structure Adsorption on the TiO ₂ (101) Anatase Surface Adopting a Full Periodic Approach. Journal of Chemical Information and Modeling, 2021, 61, 5484-5498.	2.5	2
172	Structural order of water molecules around polyrotaxane including PEG, α-cyclodextrin, and α-lipoic acid linker on gold surface by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2022, 24, 2176-2184.	1.3	2
173	Between Two Walls: Modeling the Adsorption Behavior of Î ² -Glucosidase A on Bare and SAM-Functionalized Gold Surfaces. Langmuir, 2022, 38, 1313-1323.	1.6	2

#	Article	IF	CITATIONS
174	Multiscale Modeling of Bio-Nano Interactions of Zero-Valent Silver Nanoparticles. Journal of Physical Chemistry B, 2022, 126, 1301-1314.	1.2	9
175	Predicting Biomolecule Adsorption on MoS ₂ Nanosheets with High Structural Fidelity. Chemical Science, 0, , .	3.7	4
176	A Theoretical Investigation about Photoswitching of Azobenzene Adsorbed on Ag Nanoparticles. Crystals, 2022, 12, 248.	1.0	1
177	Nanoengineered Sprayable Therapy for Treating Myocardial Infarction. ACS Nano, 2022, 16, 3522-3537.	7.3	5
178	Theoretical Insights into Impact of Electrode and Electrolyte Over Li-Air Battery. Journal of the Electrochemical Society, 2022, 169, 030521.	1.3	3
179	How perfluoroalkyl substances modify fluorinated self-assembled monolayer architectures: An electrochemical and computational study. Analytica Chimica Acta, 2022, 1204, 339740.	2.6	6
180	DNA-Based Gold Nanoparticle Sensor for Bladder Cancer Detection. ACS Applied Nano Materials, 2022, 5, 985-995.	2.4	1
181	Reorganization free energy of copper proteins in solution, in vacuum, and on metal surfaces. Journal of Chemical Physics, 2022, 156, 175101.	1.2	7
182	Chemical and Biophysical Signatures of the Protein Corona in Nanomedicine. Journal of the American Chemical Society, 2022, 144, 9184-9205.	6.6	98
183	Understanding interactions between biomolecules and two-dimensional nanomaterials using in silico microscopes. Advanced Drug Delivery Reviews, 2022, 186, 114336.	6.6	22
184	The Amyloidogenic Peptide Amyloid Beta(16–22) Displays Facet Dependent Conformation on Metal Surfaces. Biophysica, 2022, 2, 135-153.	0.6	1
185	Molecular Driving Force for Facet Selectivity of Sequence-Defined Amphiphilic Peptoids at Au–Water Interfaces. Journal of Physical Chemistry B, 2022, 126, 5117-5126.	1.2	6
186	Development of Classical Force Fields for Interfaces between Single Molecules and Au. Journal of Physical Chemistry A, 2022, 126, 5031-5039.	1.1	0
187	Helmholtz Capacitance of Aqueous NaCl Solutions at the Au(100) Electrode from Polarizable and Nonpolarizable Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2022, 126, 16461-16476.	1.5	10
188	A polarizable coarse-grained model for metal, metal oxide and composite metal/metal oxide nanoparticles and its applications. Physical Chemistry Chemical Physics, 2022, 24, 27742-27750.	1.3	1
189	A polarizable coarse-grained model for metal, metal oxide and composite metal/metal oxide nanoparticles: development and implementation. Physical Chemistry Chemical Physics, 2022, 24, 27731-27741.	1.3	2
190	Enhanced Label-Free Nanoplasmonic Cytokine Detection in SARS-CoV-2 Induced Inflammation Using Rationally Designed Peptide Aptamer. ACS Applied Materials & Interfaces, 2022, 14, 48464-48475.	4.0	3
191	Computer Aided Development of Nucleic Acid Applications in Nanotechnologies. Small, 2022, 18, .	5.2	4

#	Article	IF	CITATIONS
192	The effect of electric field on the structural order of water molecules around chitosan between nano gold plates determined by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2022, 24, 30035-30043.	1.3	0
193	Tunneling-to-Hopping Transition in Multiheme Cytochrome Bioelectronic Junctions. Journal of Physical Chemistry Letters, 2023, 14, 445-452.	2.1	5
194	Peptide Selfâ€Assembly into Amyloid Fibrils at Hard and Soft Interfaces—From Corona Formation to Membrane Activity. Macromolecular Bioscience, 2023, 23, .	2.1	4
196	Solid-liquid interfacial nanostructure of ionic liquids and deep eutectic solvents. , 2024, , 627-650.		1
204	Electrochemistry in sensing of molecular interactions of proteins and their behavior in an electric field. Mikrochimica Acta, 2023, 190, .	2.5	2