Circulating cardio-enriched microRNAs are associated v following myocardial infarction

BMC Cardiovascular Disorders 13, 12 DOI: 10.1186/1471-2261-13-12

Citation Report

#	Article	IF	CITATIONS
1	Circulating MicroRNAs as Novel Biomarkers for the Early Diagnosis of Acute Coronary Syndrome. Journal of Cardiovascular Translational Research, 2013, 6, 884-898.	2.4	48
2	Roles of microRNAs in pressure overload- and ischemia-related myocardial remodeling. Life Sciences, 2013, 93, 855-862.	4.3	19
3	MicroRNAs as Biomarkers for Ischemic Heart Disease. Journal of Cardiovascular Translational Research, 2013, 6, 458-470.	2.4	24
4	Circulating microRNAs: A Potential Role in Diagnosis and Prognosis of Acute Myocardial Infarction. Disease Markers, 2013, 35, 561-566.	1.3	70
5	Circulating micro RNA s as mirrors of acute coronary syndromes: MiRacle or quagMire?. Journal of Cellular and Molecular Medicine, 2013, 17, 1363-1370.	3.6	21
6	MiRNAs as Biomarkers of Myocardial Infarction: A Meta-Analysis. PLoS ONE, 2014, 9, e88566.	2.5	96
7	Determination of 14 Circulating microRNAs in Swedes and Iraqis with and without Diabetes Mellitus Type 2. PLoS ONE, 2014, 9, e86792.	2.5	104
8	The Protective Effect of MicroRNA-320 on Left Ventricular Remodeling after Myocardial Ischemia-Reperfusion Injury in the Rat Model. International Journal of Molecular Sciences, 2014, 15, 17442-17456.	4.1	58
9	Circulating miRNA profiles provide a biomarker for severity of stroke outcomes associated with age and sex in a rat model. Clinical Science, 2014, 127, 77-89.	4.3	90
10	miRNAs as biomarkers of myocardial infarction: a step forward towards personalized medicine?. Trends in Molecular Medicine, 2014, 20, 716-725.	6.7	90
11	MicroRNAs in the failing heart – Novel therapeutic targets?. Scandinavian Cardiovascular Journal, 2014, 48, 328-334.	1.2	6
12	Early biomarkers of doxorubicin-induced heart injury in a mouse model. Toxicology and Applied Pharmacology, 2014, 281, 221-229.	2.8	82
13	MicroRNAs Expression Profiles in Cardiovascular Diseases. BioMed Research International, 2014, 2014, 1-23.	1.9	147
14	Serum miRâ€⊋06 and other muscleâ€specific micro <scp>RNA</scp> s as nonâ€invasive biomarkers for Duchenne muscular dystrophy. Journal of Neurochemistry, 2014, 129, 877-883.	3.9	74
15	Complementary, Alternative, and Putative Nontroponin Biomarkers of Acute Coronary Syndrome: New Resources for Future Risk Assessment Calculators. Revista Espanola De Cardiologia (English Ed), 2014, 67, 312-320.	0.6	1
16	Role of Exosomes in Myocardial Remodeling. Circulation Research, 2014, 114, 315-324.	4.5	130
17	Computational prediction of disease microRNAs in domestic animals. BMC Research Notes, 2014, 7, 403.	1.4	18
18	The therapeutic potential of miRNAs regulated in settings of physiological cardiac hypertrophy. Future Medicinal Chemistry, 2014, 6, 205-222.	2.3	60

#	Article	IF	CITATIONS
19	Cardiovascular microRNAs: as modulators and diagnostic biomarkers of diabetic heart disease. Cardiovascular Diabetology, 2014, 13, 44.	6.8	92
20	Admission levels of circulating miR-499-5p and risk of death in elderly patients after acute non-ST elevation myocardial infarction. International Journal of Cardiology, 2014, 172, e276-e278.	1.7	46
21	Biomarcadores no troponÃnicos, complementarios, alternativos y presuntos, para el sÃndrome coronario agudo: nuevos recursos para los futuros instrumentos de cálculo del riesgo. Revista Espanola De Cardiologia, 2014, 67, 312-320.	1.2	8
22	Design and Analysis for Studying microRNAs in Human Disease: A Primer on -Omic Technologies. American Journal of Epidemiology, 2014, 180, 140-152.	3.4	54
23	miRNome in myocardial infarction: Future directions and perspective. World Journal of Cardiology, 2014, 6, 939.	1.5	14
24	Circulating microRNAs correlated with the level of coronary artery calcification in symptomatic patients. Scientific Reports, 2015, 5, 16099.	3.3	59
25	Effect of microRNA-208a on mitochondrial apoptosis of cardiomyocytes of neonatal rats. Asian Pacific Journal of Tropical Medicine, 2015, 8, 747-751.	0.8	8
26	Laboratory Methodology Important in the Diagnosis and Prognosis of Antiphospholipid Syndrome. , 2015, , .		1
27	Assay Reproducibility in Clinical Studies of Plasma miRNA. PLoS ONE, 2015, 10, e0121948.	2.5	36
28	Circulating Extracellular microRNA in Systemic Autoimmunity. Exs, 2015, 106, 171-195.	1.4	21
29	Plasma miR-1, miR-208, miR-499 as potential predictive biomarkers for acute myocardial infarction: An independent study of Han population. Experimental Gerontology, 2015, 72, 230-238.	2.8	79
30	cAMP induces hypertrophy and alters DNA methylation in HL-1 cardiomyocytes. American Journal of Physiology - Cell Physiology, 2015, 309, C425-C436.	4.6	40
31	Clinical impact of circulating miR-26a, miR-191, and miR-208b in plasma of patients with acute myocardial infarction. European Journal of Medical Research, 2015, 20, 58.	2.2	56
32	The biology of circulating micro <scp>RNA</scp> s in cardiovascular disease. European Journal of Clinical Investigation, 2015, 45, 860-874.	3.4	69
33	Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Archives of Toxicology, 2015, 89, 1401-1438.	4.2	492
34	Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation. Immunity, 2015, 42, 1005-1019.	14.3	492
36	Gene Expression Signatures and the Spectrum of Coronary Artery Disease. Journal of Cardiovascular Translational Research, 2015, 8, 339-352.	2.4	9
37	Cardiovascular System as a Target of Chemical Warfare Agents. , 2015, , 519-533.		Ο

#	Article	IF	Citations
38	Prognostic value of microRNAs in acute myocardial infarction: A systematic review and meta-analysis. International Journal of Cardiology, 2015, 189, 79-84.	1.7	11
39	MicroRNA208 family in cardiovascular diseases: therapeutic implication and potential biomarker. Journal of Physiology and Biochemistry, 2015, 71, 479-486.	3.0	27
40	MicroRNAs in Cardiovascular Disease: From Pathogenesis to Treatment. , 2015, , 231-252.		0
41	Cardiovascular Disorders and Epigenetics. , 2016, , 243-256.		Ο
42	MicroRNAs in Coronary Heart Disease: Ready to Enter the Clinical Arena?. BioMed Research International, 2016, 2016, 1-10.	1.9	38
43	Circulating miR-126 and miR-499 Reflect Progression of Cardiovascular Disease; Correlations with Uric Acid and Ejection Fraction. Heart International, 2016, 11, heartint.500022.	1.4	22
44	Overview of MicroRNAs in Cardiac Hypertrophy, Fibrosis, and Apoptosis. International Journal of Molecular Sciences, 2016, 17, 749.	4.1	108
45	MicroRNA and Heart Failure. International Journal of Molecular Sciences, 2016, 17, 502.	4.1	98
46	Circulating miR-499 as a potential biomarker for acute myocardial infarction. Annals of Translational Medicine, 2016, 4, 135-135.	1.7	46
47	Circulating microRNAs indicate cardioprotection by sevoflurane inhalation in patients undergoing off-pump coronary artery bypass surgery. Experimental and Therapeutic Medicine, 2016, 11, 2270-2276.	1.8	11
48	Identifying circulating microRNAs as biomarkers of cardiovascular disease: a systematic review. Cardiovascular Research, 2016, 111, 322-337.	3.8	292
49	MicroRNAs in Cardiovascular Disease. Cardiology in Review, 2016, 24, 110-118.	1.4	22
50	Micro-RNA-208a, -208b, and -499 as Biomarkers for Myocardial Damage After Cardiac Surgery in Children. Pediatric Critical Care Medicine, 2016, 17, e193-e197.	0.5	15
51	Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on) Tj ETQq1 1 0.784	314 gBT	/Overlock 10
52	Heparinase treatment of heparin-contaminated plasma from coronary artery bypass grafting patients enables reliable quantification of microRNAs. Biomolecular Detection and Quantification, 2016, 8, 9-14.	7.0	31
53	Recent progress toward the use of circulating microRNAs as clinical biomarkers. Archives of Toxicology, 2016, 90, 2959-2978.	4.2	84
54	miRNA-93-5p and other miRNAs as predictors of coronary artery disease and STEMI. International Journal of Cardiology, 2016, 224, 310-316.	1.7	49
55	Circulating microRNAs and sudden cardiac arrest outcomes. Resuscitation, 2016, 106, 96-101.	3.0	13

#	Article	IF	CITATIONS
56	<scp>MicroRNAs</scp> in heart failure: from biomarker to target for therapy. European Journal of Heart Failure, 2016, 18, 457-468.	7.1	235
57	Circulating miR-122-5p/miR-133b Ratio Is a Specific Early Prognostic Biomarker in Acute Myocardial Infarction. Circulation Journal, 2016, 80, 2183-2191.	1.6	77
58	Detection of Myocardial Injury Using miRNAs Expression as Genetic Biomarkers in Acute Cardiac Care. Journal of Cardiovascular Emergencies, 2016, 2, 169-172.	0.2	4
59	Circulating Noncoding RNAs as Biomarkers of Cardiovascular Disease and Injury. Circulation Research, 2017, 120, 381-399.	4.5	319
60	Circulating microRNAs: Potential Markers of Cardiotoxicity in Children and Young Adults Treated With Anthracycline Chemotherapy. Journal of the American Heart Association, 2017, 6, .	3.7	64
61	Stroke and Circulating Extracellular RNAs. Stroke, 2017, 48, 828-834.	2.0	35
62	The role of microRNAs in heart failure. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2019-2030.	3.8	66
63	microRNAs in cardiovascular disease – clinical application. Clinical Chemistry and Laboratory Medicine, 2017, 55, 687-704.	2.3	92
64	Inhibition of miR-208b improves cardiac function in titin-based dilated cardiomyopathy. International Journal of Cardiology, 2017, 230, 634-641.	1.7	36
65	Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Scientific Reports, 2017, 7, 39918.	3.3	199
66	Modulating microRNAs in cardiac surgery patients: Novel therapeutic opportunities?. , 2017, 170, 192-204.		13
67	Modified high-throughput quantification of plasma microRNAs in heparinized patients with coronary artery disease using heparinase. Biochemical and Biophysical Research Communications, 2017, 493, 556-561.	2.1	9
68	MicroRNAs as potential prognosticators of neurological outcome in out-of-hospital cardiac arrest patients. Biomarkers in Medicine, 2017, 11, 1113-1123.	1.4	2
69	Improved risk stratification in prevention by use of a panel of selected circulating microRNAs. Scientific Reports, 2017, 7, 4511.	3.3	22
70	Comparison of miRNA signature versus conventional biomarkers before and after off-pump coronary artery bypass graft. Journal of Pharmaceutical and Biomedical Analysis, 2017, 134, 11-17.	2.8	9
71	The Role of MicroRNAs in Myocardial Infarction: From Molecular Mechanism to Clinical Application. International Journal of Molecular Sciences, 2017, 18, 745.	4.1	133
72	MiRroring the Multiple Potentials of MicroRNAs in Acute Myocardial Infarction. Frontiers in Cardiovascular Medicine, 2017, 4, 73.	2.4	32
73	Identifying differential miR and gene consensus patterns in peripheral blood of patients with cardiovascular diseases from literature data. BMC Cardiovascular Disorders, 2017, 17, 173.	1.7	4

#	Article	IF	CITATIONS
74	Inflammation-associated microRNA changes in circulating exosomes of heart failure patients. BMC Research Notes, 2017, 10, 751.	1.4	40
75	Circulating miRNA-21 is a promising biomarker for heart failure. Molecular Medicine Reports, 2017, 16, 7766-7774.	2.4	55
76	Non-coding RNAs as biomarkers for acute myocardial infarction. Acta Pharmacologica Sinica, 2018, 39, 1110-1119.	6.1	74
77	Plasma microRNAs reflecting cardiac and inflammatory injury in coronary artery bypass grafting surgery. Journal of Surgical Research, 2018, 224, 58-63.	1.6	11
78	miR-483-5p associates with obesity and insulin resistance and independently associates with new onset diabetes mellitus and cardiovascular disease. PLoS ONE, 2018, 13, e0206974.	2.5	38
79	MicroRNA-24-3p Attenuates Myocardial Ischemia/Reperfusion Injury by Suppressing RIPK1 Expression in Mice. Cellular Physiology and Biochemistry, 2018, 51, 46-62.	1.6	67
80	Significance of non-coding circular RNAs and micro RNAs in the pathogenesis of cardiovascular diseases. Journal of Medical Genetics, 2018, 55, 713-720.	3.2	22
81	MiRNA-208a as a Sensitive Early Biomarker for the Postoperative Course Following Congenital Heart Defect Surgery. Pediatric Cardiology, 2018, 39, 1565-1571.	1.3	12
82	Deciphering Non-coding RNAs in Cardiovascular Health and Disease. Frontiers in Cardiovascular Medicine, 2018, 5, 73.	2.4	44
83	A Preliminary Study of microRNA-208b after Acute Myocardial Infarction: Impact on 6-Month Survival. Disease Markers, 2018, 2018, 1-7.	1.3	23
84	Prognostic Value of MicroRNAs in Coronary Artery Diseases: A Meta-Analysis. Yonsei Medical Journal, 2018, 59, 495.	2.2	16
85	miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacologica Sinica, 2018, 39, 1073-1084.	6.1	418
86	Clinical Value of Circulating Microribonucleic Acids miR-1 and miR-21 in Evaluating the Diagnosis of Acute Heart Failure in Asymptomatic Type 2 Diabetic Patients. Biomolecules, 2019, 9, 193.	4.0	27
87	Circulating microRNA in cardiovascular disease. Advances in Clinical Chemistry, 2019, 91, 99-122.	3.7	20
88	Circulating MicroRNA-499 as a Diagnostic Biomarker for Acute Myocardial Infarction: A Meta-analysis. Disease Markers, 2019, 2019, 1-10.	1.3	27
89	Noncoding RNAs in Cardiovascular Disease. , 2019, , 43-87.		2
90	Diagnostic and prognostic value of biomarkers in acute myocardial infarction. Postgraduate Medical Journal, 2019, 95, 210-216.	1.8	60
91	Exosome in Cardiovascular Diseases: A Complex World Full of Hope. Cells, 2019, 8, 166.	4.1	103

#	Article	IF	CITATIONS
92	Target-Catalyzed Self-Growing Spherical Nucleic Acid Enzyme (SNAzyme) as a Double Amplifier for Ultrasensitive Chemiluminescence MicroRNA Detection. ACS Sensors, 2019, 4, 3219-3226.	7.8	41
93	Prognostic Value of MicroRNAs in Patients after Myocardial Infarction: A Substudy of PRAGUE-18. Disease Markers, 2019, 2019, 1-9.	1.3	12
94	MicroRNAs as Prognostic Markers in Acute Coronary Syndrome Patients—A Systematic Review. Cells, 2019, 8, 1572.	4.1	25
95	Plasma miR-126 and miR-143 as Potential Novel Biomarkers for Cerebral Atherosclerosis. Journal of Stroke and Cerebrovascular Diseases, 2019, 28, 38-43.	1.6	34
96	Pre-transplant expressions of microRNAs, comorbidities, and post-transplant mortality. Bone Marrow Transplantation, 2019, 54, 973-979.	2.4	4
97	miR-221 and -222 target CACNA1C and KCNJ5 leading to altered cardiac ion channel expression and current density. Cellular and Molecular Life Sciences, 2020, 77, 903-918.	5.4	20
98	miRNAs emerge as circulating biomarkers of post-myocardial infarction heart failure. Heart Failure Reviews, 2020, 25, 321-329.	3.9	17
99	Micro RNA sequencing for myocardial infarction screening. , 2020, , 187-198.		0
100	Diagnostic and prognostic impact of circulating microRNA-208b and microRNA-499 in patients with acute coronary syndrome. Biomarkers in Medicine, 2020, 14, 87-95.	1.4	7
101	Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovascular Research, 2020, 116, 1113-1124.	3.8	60
102	Post-Myocardial Infarction Ventricular Remodeling Biomarkers—The Key Link between Pathophysiology and Clinic. Biomolecules, 2020, 10, 1587.	4.0	22
103	Value of Blood-Based microRNAs in the Diagnosis of Acute Myocardial Infarction: A Systematic Review and Meta-Analysis. Frontiers in Physiology, 2020, 11, 691.	2.8	10
105	MicroRNA-208a: a Good Diagnostic Marker and a Predictor of no-Reflow in STEMI Patients Undergoing Primary Percutaneuos Coronary Intervention. Journal of Cardiovascular Translational Research, 2020, 13, 988-995.	2.4	8
106	The cardiovascular system as a target of chemical warfare agents. , 2020, , 545-565.		2
107	Industry compensation and self-reported financial conflicts of interest among authors of highly cited peripheral artery disease studies. Journal of Vascular Surgery, 2020, 72, 673-684.	1.1	12
108	Noncoding RNAs as Biomarkers for Acute Coronary Syndrome. BioMed Research International, 2020, 2020, 1-11.	1.9	16
109	microRNA neural networks improve diagnosis of acute coronary syndrome (ACS). Journal of Molecular and Cellular Cardiology, 2021, 151, 155-162.	1.9	6
110	MicroRNA profiling as a novel diagnostic tool for identification of patients with inflammatory and/or virally induced cardiomyopathies. ESC Heart Failure, 2021, 8, 408-422.	3.1	19

#	Article	IF	CITATIONS
111	Non-coding RNAs: The key detectors and regulators in cardiovascular disease. Genomics, 2021, 113, 1233-1246.	2.9	59
112	Serum exosome microRNA panel as a noninvasive biomarker for molecular diagnosis of fulminant myocarditis. Molecular Therapy - Methods and Clinical Development, 2021, 20, 142-151.	4.1	7
113	Liquid biopsy technologies for hematological diseases. Medicinal Research Reviews, 2021, 41, 246-274.	10.5	15
114	Serum MicroRNA-185 Levels and Myocardial Injury in Patients with Acute ST-segment Elevation Myocardial Infarction. Internal Medicine, 2021, , .	0.7	2
115	Circulating exosomal microRNA expression patterns distinguish cardiac sarcoidosis from myocardial ischemia. PLoS ONE, 2021, 16, e0246083.	2.5	14
116	Emerging roles of microRNAâ€⊋08a in cardiology and reverse cardioâ€oncology. Medicinal Research Reviews, 2021, 41, 2172-2194.	10.5	4
117	Highlighting Exosomes' Function in Cardiovascular Diseases. Current Cardiology Reviews, 2022, 18, .	1.5	4
118	Cardiac Exosomes in Ischemic Heart Disease—A Narrative Review. Diagnostics, 2021, 11, 269.	2.6	11
119	Replication study reveals miR-483-5p as an important target in prevention of cardiometabolic disease. BMC Cardiovascular Disorders, 2021, 21, 162.	1.7	9
120	Expression Profile of Circulating MicroRNAs in Dogs With Cardiac Hypertrophy: A Pilot Study. Frontiers in Veterinary Science, 2021, 8, 652224.	2.2	10
121	MicroRNAs in Acute ST Elevation Myocardial Infarction—A New Tool for Diagnosis and Prognosis: Therapeutic Implications. International Journal of Molecular Sciences, 2021, 22, 4799.	4.1	18
122	Comparison of the Clinical Value of miRNAs and Conventional Biomarkers in AMI: A Systematic Review. Frontiers in Genetics, 2021, 12, 668324.	2.3	9
123	Diagnostic accuracy of MicroRNA 208b level with respect to different types of atrial fibrillation. Indian Heart Journal, 2021, 73, 506-510.	0.5	3
124	Exploring diagnostic and prognostic predictive values of microRNAs for acute myocardial infarction. Medicine (United States), 2021, 100, e26627.	1.0	6
125	Evaluation of Oxidative Stress, Apoptosis, and Expression of MicroRNA-208a and MicroRNA-1 in Cardiovascular Patients. Reports of Biochemistry and Molecular Biology, 2021, 10, 183-196.	1.4	17
126	Prognostic value of circulating microRNAs compared to high-sensitivity troponin T in patients presenting with suspected acute coronary syndrome to the emergency department. Clinical Biochemistry, 2022, 99, 9-16.	1.9	4
127	Integrative Analysis of Expression Profiles of MicroRNAs and mRNAs in Treatment of Acute Myocardial Infarction with Compound Longmaining Decoction. Medical Science Monitor, 2019, 25, 9028-9041.	1.1	1
128	MicroRNA Profiling in Prostate Cancer - The Diagnostic Potential of Urinary miR-205 and miR-214. PLoS ONE, 2013, 8, e76994.	2.5	149

ARTICLE IF CITATIONS # MicroRNAs in acute myocardial infarction: Evident value as novel biomarkers?. Anatolian Journal of 129 0.9 20 Cardiology, 2018, 19, 140-147. Biomarkers of acute myocardial infarction: diagnostic and prognostic value. Part 2 (Literature) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Micro-RNAs as promising biomarkers in cardiac diseases. Annals of Translational Medicine, 2016, 4, 131 1.7 6 551-551. Anesthetic-induced Myocardial Conditioning: Molecular Fundamentals and Scope. Current Medicinal 2.4 Chemistry, 2020, 27, 2147-2160. Electrochemical-Based Biosensors: New Diagnosis Platforms for Cardiovascular Disease. Current 133 2.4 10 Medicinal Chemistry, 2020, 27, 2550-2575. microRNA-based diagnostics and therapy in cardiovascular disease-Summing up the facts. 1.7 99 Cardiovascular Diagnosis and Therapy, 2015, 5, 17-36. 135 MicroRNA and Cardiovascular Diseases. Balkan Medical Journal, 2020, 37, 60-71. 0.8 70 Role of Cardio-Specific Micro-RibonucleicÂAcids and Correlation with Cardiac Biomarkers in Acute Coronary Syndrome: A Comprehensive Systematic Review. Cureus, 2019, 11, e5878. Current Knowledge of MicroRNAs (miRNAs) in Acute Coronary Syndrome (ACS): ST-Elevation 137 2.4 9 Myocardial Infarction (STEMI). Life, 2021, 11, 1057. MicroRNAs as biomarkers for acute myocardial infarction: Small molecules with a huge potential. 0.2 Sanamed, 2015, 10, 127-135. MicroRNA in the diagnosis of chronic heart failure: state of the problem and the results of a pilot 139 0.6 1 study. Systemic Hypertension, 2016, 13, 39-46. Is there a role for microRNAs as novel predictors of prognosis in myocardial infarction?. Annals of Translational Medicine, 2016, 4, 473-473. Circulating miRNAs as risk biomarkers of cardiovascular complications in patients with coronary 143 artery disease: achievements and difficulties of recent years. Kardiologiya I Serdechno-Sosudistaya 0.3 1 Khirurgiya, 2019, 12, 17. Contemporary diagnostic algorithm for coronary artery disease: achievements and prospects. Kardiologiya I Serdechno-Sosudistaya Khirurgiya, 2019, 12, 418. 144 0.3 Studies MicroRNA 208 as a Novel Cardiac Marker in Acute Coronary Syndrome in Egyptian Patients. 145 0.0 0 Medical Journal of the University of Cairo Faculty of Medicine, 2019, 87, 1585-1591. MicroRNA as potential marker of acute myocardial ischemia. Medical Alphabet, 2020, , 13-16. 147 Circulating miR-499a and miR-125b as Potential Predictors of Left Ventricular Ejection Fraction 148 4.1 7 Improvement after Cardiac Resynchronization Therapy. Cells, 2022, 11, 271. Restoring Ravaged Heart: Molecular Mechanisms and Clinical Application of miRNA in Heart 149 2.4 Regeneration. Frontiers in Cardiovascular Medicine, 2022, 9, 835138.

	Сітаті	CITATION REPORT	
#	Article	IF	CITATIONS
150	Functional Role of microRNAs in Regulating Cardiomyocyte Death. Cells, 2022, 11, 983.	4.1	23
151	Circulating MicroRNAs as Novel Biomarkers in Risk Assessment and Prognosis of Coronary Artery Disease. European Cardiology Review, 2022, 17, e06.	2.2	8
152	Circulating microRNA-208 family as early diagnostic biomarkers for acute myocardial infarction. Medicine (United States), 2021, 100, e27779.	1.0	7
153	Diagnostic and Prognostic Value of miRNAs after Coronary Artery Bypass Grafting: A Review. Biology, 2021, 10, 1350.	2.8	4
154	Downregulation of lncRNA SNHG16 inhibits vascular smooth muscle cell proliferation and migration in cerebral atherosclerosis by targeting the miR-30c-5p/SDC2 axis. Heart and Vessels, 2022, 37, 1085.	1.2	2
158	Usefullness of MicroRNAs in Predicting the Clinical Outcome of Patients with Acute Myocardial Infarction During Follow-Up: A Systematic Review. Genetic Testing and Molecular Biomarkers, 2022, 26, 277-289.	0.7	0
159	Increased expression of miR-224-5p in circulating extracellular vesicles of patients with reduced coronary flow reserve. BMC Cardiovascular Disorders, 2022, 22, .	1.7	3
160	miR-212 Promotes Cardiomyocyte Hypertrophy through Regulating Transcription Factor 7 Like 2. Mediators of Inflammation, 2022, 2022, 1-10.	3.0	1
161	From Classic to Modern Prognostic Biomarkers in Patients with Acute Myocardial Infarction. International Journal of Molecular Sciences, 2022, 23, 9168.	4.1	12
162	Myoglobin and left ventricular ejection fraction as predictive markers for death in children with fulminant myocarditis. Frontiers in Pediatrics, 0, 10, .	1.9	1
163	A systematic review of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity in breast cancer patients reveals potentially clinically informative panels as well as key challenges in miRNA research. Cardio-Oncology, 2022, 8, .	1.7	9
164	MicroRNA-499-5p promotes vascular smooth muscle cell proliferation and migration via inhibiting SOX6. Physiological Genomics, 2023, 55, 67-74.	2.3	2
165	Prioritization of microRNA biomarkers for a prospective evaluation in a cohort of myocardial infarction patients based on their mechanistic role using public datasets. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	0
166	Illuminating the Molecular Intricacies of Exosomes and ncRNAs in Cardiovascular Diseases: Prospective Therapeutic and Biomarker Potential. Cells, 2022, 11, 3664.	4.1	2
167	Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets. Functional and Integrative Genomics, 2023, 23, .	3.5	39
168	Plasma extracellular vesicles microRNA-208b-3p and microRNA-143-3p as novel biomarkers for sudden cardiac death prediction in acute coronary syndrome. Molecular Omics, 2023, 19, 262-273.	2.8	4
169	Circular RNAs: Biogenesis, Biological Functions, and Roles in Myocardial Infarction. International Journal of Molecular Sciences, 2023, 24, 4233.	4.1	8
170	A nanoparticle-based molecular beacon for directly detecting attomolar small RNA from plasma without purification. Talanta, 2023, 260, 124602.	5.5	0

#	Article	IF	CITATIONS
171	Extracellular vesicles as biomarkers and modulators of atherosclerosis pathogenesis. Frontiers in Cardiovascular Medicine, 0, 10, .	2.4	4
172	Investigating miRNA subfamilies: Can they assist in the early diagnosis of acute myocardial infarction?. Drug Discovery Today, 2023, 28, 103695.	6.4	1
173	Cardiac Biomarkers and Their Role in Identifying Increased Risk of Cardiovascular Complications in COVID-19 Patients. Diagnostics, 2023, 13, 2508.	2.6	3
174	Circulating microRNAs and Cytokines as Prognostic Biomarkers for Doxorubicin-Induced Cardiac Injury and for Evaluating the Effectiveness of an Exercise Intervention. Clinical Cancer Research, 2023, 29, 4430-4440.	7.0	2
175	The Crosstalk between Coronary Artery Bypass Grafting and miRNAs. Biology Bulletin, 0, , .	0.5	0
176	MicroRNAs and Cardiovascular Disease Risk. Current Cardiology Reports, 2024, 26, 51-60.	2.9	0
177	Differential gene expression patterns in ST-elevation Myocardial Infarction and Non-ST-elevation Myocardial Infarction. Scientific Reports, 2024, 14, .	3.3	0