A convergent reaction-diffusion master equation

Journal of Chemical Physics 139, 054101 DOI: 10.1063/1.4816377

Citation Report

#	Article	IF	CITATIONS
1	Perspective: Stochastic algorithms for chemical kinetics. Journal of Chemical Physics, 2013, 138, 170901.	3.0	259
2	On the continuum time limit of reaction-diffusion systems. Europhysics Letters, 2013, 103, 50009.	2.0	5
3	Connecting the dots: Semi-analytical and random walk numerical solutions of the diffusion–reaction equation with stochastic initial conditions. Journal of Computational Physics, 2014, 263, 91-112.	3.8	65
4	A Comparison of Bimolecular Reaction Models for Stochastic Reaction–Diffusion Systems. Bulletin of Mathematical Biology, 2014, 76, 922-946.	1.9	28
5	A First-Passage Kinetic Monte Carlo method for reaction–drift–diffusion processes. Journal of Computational Physics, 2014, 259, 536-567.	3.8	15
6	Multiscale modeling of dorsoventral patterning in Drosophila. Seminars in Cell and Developmental Biology, 2014, 35, 82-89.	5.0	0
7	Analysis of the Two-Regime Method on Square Meshes. SIAM Journal of Scientific Computing, 2014, 36, B561-B588.	2.8	19
8	Reaction rates for mesoscopic reaction-diffusion kinetics. Physical Review E, 2015, 91, 023312.	2.1	35
9	Deriving appropriate boundary conditions, and accelerating position-jump simulations, of diffusion using non-local jumping. Physical Biology, 2015, 12, 016006.	1.8	11
10	Hybrid approaches for multiple-species stochastic reaction–diffusion models. Journal of Computational Physics, 2015, 299, 429-445.	3.8	26
11	Fluctuating hydrodynamics of multi-species reactive mixtures. Journal of Chemical Physics, 2015, 142, 224107.	3.0	32
12	Stochastic Modeling and Simulation of Reaction-Diffusion System with Hill Function Dynamics. , 2016, , \cdot		1
13	Molecular finite-size effects in stochastic models of equilibrium chemical systems. Journal of Chemical Physics, 2016, 144, 084101.	3.0	27
14	Optimisation of simulations of stochastic processes by removal of opposing reactions. Journal of Chemical Physics, 2016, 144, 084105.	3.0	4
15	The spatiotemporal master equation: Approximation of reaction-diffusion dynamics via Markov state modeling. Journal of Chemical Physics, 2016, 145, 214107.	3.0	18
16	Breakdown of the reaction-diffusion master equation with nonelementary rates. Physical Review E, 2016, 93, 052135.	2.1	16
17	A stochastic spatiotemporal model of a response-regulator network in the <i>Caulobacter crescentus</i> cell cycle. Physical Biology, 2016, 13, 035007.	1.8	6
18	Reaction rates for a generalized reaction-diffusion master equation. Physical Review E, 2016, 93, 013307.	2.1	10

TATION REDO

CITATION REPORT

#	Article	IF	CITATIONS
19	Smoluchowski Reaction Kinetics for Reactions of Any Order. SIAM Journal on Applied Mathematics, 2016, 76, 1403-1432.	1.8	12
20	Reaction rates for reaction-diffusion kinetics on unstructured meshes. Journal of Chemical Physics, 2017, 146, 064101.	3.0	7
21	Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach. Journal of Chemical Physics, 2017, 146, 124110.	3.0	35
22	A Kernel-based Lagrangian method for imperfectly-mixed chemical reactions. Journal of Computational Physics, 2017, 336, 288-307.	3.8	26
23	Approximation and inference methods for stochastic biochemical kinetics—a tutorial review. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 093001.	2.1	268
24	Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth. Journal of Computational Physics, 2017, 350, 974-991.	3.8	11
25	Multiscale Simulation of Stochastic Reaction-Diffusion Networks. , 2017, , 55-79.		1
26	Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics. BMC Systems Biology, 2017, 11, 21.	3.0	7
27	A comparison of Eulerian and Lagrangian transport and non-linear reaction algorithms. Advances in Water Resources, 2017, 99, 15-37.	3.8	61
28	Mesoscopic-microscopic spatial stochastic simulation with automatic system partitioning. Journal of Chemical Physics, 2017, 147, 234101.	3.0	13
29	Simulating biological processes: stochastic physics from whole cells to colonies. Reports on Progress in Physics, 2018, 81, 052601.	20.1	32
30	Efficient reactive Brownian dynamics. Journal of Chemical Physics, 2018, 148, 034103.	3.0	24
31	Spatiotemporal Organization of Catalysts Driven by Enhanced Diffusion. Journal of Physical Chemistry B, 2018, 122, 5286-5290.	2.6	25
32	Intracellular production of hydrogels and syntheticÂRNA granules by multivalent molecularÂinteractions. Nature Materials, 2018, 17, 79-89.	27.5	106
33	The auxiliary region method: a hybrid method for coupling PDE- and Brownian-based dynamics for reaction–diffusion systems. Royal Society Open Science, 2018, 5, 180920.	2.4	13
35	Reaction time for trimolecular reactions in compartment-based reaction-diffusion models. Journal of Chemical Physics, 2018, 148, 204108.	3.0	1
36	Grand canonical diffusion-influenced reactions: A stochastic theory with applications to multiscale reaction-diffusion simulations. Journal of Chemical Physics, 2018, 149, 044102.	3.0	12
37	An unstructured mesh convergent reaction–diffusion master equation for reversible reactions. Journal of Computational Physics, 2018, 374, 954-983.	3.8	15

CITATION REPORT

#	Article	IF	CITATIONS
38	Reactions, diffusion, and volume exclusion in a conserved system of interacting particles. Physical Review E, 2018, 97, 062137.	2.1	5
39	The Influence of Molecular Reach and Diffusivity onÂthe Efficacy of Membrane-Confined Reactions. Biophysical Journal, 2019, 117, 1189-1201.	0.5	10
40	ReaDDy 2: Fast and flexible software framework for interacting-particle reaction dynamics. PLoS Computational Biology, 2019, 15, e1006830.	3.2	59
41	Reversible Doi and Smoluchowski Kinetics for High-Order Reactions. SIAM Journal on Applied Mathematics, 2019, 79, 594-618.	1.8	1
42	New homogenization approaches for stochastic transport through heterogeneous media. Journal of Chemical Physics, 2019, 150, 044104.	3.0	10
43	Unbiased on-lattice domain growth. Physical Review E, 2019, 100, 063307.	2.1	1
44	Spatial Stochastic Intracellular Kinetics: A Review of Modelling Approaches. Bulletin of Mathematical Biology, 2019, 81, 2960-3009.	1.9	42
45	Stochastic and coarse-grained two-dimensional modeling of directional particle movement. Physica D: Nonlinear Phenomena, 2020, 402, 132209.	2.8	0
46	The blending region hybrid framework for the simulation of stochastic reaction–diffusion processes. Journal of the Royal Society Interface, 2020, 17, 20200563.	3.4	2
47	A multiscale model of complex endothelial cell dynamics in early angiogenesis. PLoS Computational Biology, 2021, 17, e1008055.	3.2	31
49	A novel stochastic simulation approach enables exploration of mechanisms for regulating polarity site movement. PLoS Computational Biology, 2021, 17, e1008525.	3.2	8
50	Effects of different discretisations of the Laplacian upon stochastic simulations of reaction–diffusion systems on both static and growing domains. Journal of Computational and Applied Mathematics, 2021, 395, 113570.	2.0	0
51	Quantifying the roles of space and stochasticity in computer simulations for cell biology and cellular biochemistry. Molecular Biology of the Cell, 2021, 32, 186-210.	2.1	18
54	Self-organised segregation of bacterial chromosomal origins. ELife, 2019, 8, .	6.0	27
55	Crowded transport within networked representations of complex geometries. Communications Physics, 2021, 4, .	5.3	1
59	StoSpa2: A C++ software package for stochastic simulations of spatially extended systems. Journal of Open Source Software, 2020, 5, 2293.	4.6	0
60	Spatial Scaling. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, 2020, , 131-182.	0.5	0
61	How Reaction-Diffusion PDEs Approximate the Large-Population Limit of Stochastic Particle Models. SIAM Journal on Applied Mathematics, 2021, 81, 2622-2657.	1.8	9

CITATION REPORT

#	Article	IF	CITATIONS
62	Simulation of Biochemical Reactions with ANN-Dependent Kinetic Parameter Extraction Method. Electronics (Switzerland), 2022, 11, 216.	3.1	0
63	Coupling Particle-Based Reaction-Diffusion Simulations with Reservoirs Mediated by Reaction-Diffusion PDEs. Multiscale Modeling and Simulation, 2021, 19, 1659-1683.	1.6	7
64	Mean Field Limits of Particle-Based Stochastic Reaction-Diffusion Models. SIAM Journal on Mathematical Analysis, 2022, 54, 453-511.	1.9	10
65	Detailed Balance for Particle Models of Reversible Reactions in Bounded Domains. Journal of Chemical Physics, 0, , .	3.0	1
66	A probabilistic framework for particle-based reaction–diffusion dynamics using classical Fock space representations. Letters in Mathematical Physics, 2022, 112, .	1.1	7
67	Protein drift-diffusion dynamics and phase separation in curved cell membranes and dendritic spines: Hybrid discrete-continuum methods. Physical Review E, 2022, 106, .	2.1	1
68	Close agreement between deterministic versus stochastic modeling of first-passage time to vesicle fusion. Biophysical Journal, 2022, 121, 4569-4584.	0.5	3
69	A Gaussian jump process formulation of the reaction–diffusion master equation enables faster exact stochastic simulations. Journal of Chemical Physics, 2022, 157, 194110.	3.0	0
70	A Feynman Path Integral-like Method for Deriving Reaction–Diffusion Equations. Polymers, 2022, 14, 5156.	4.5	0
71	Chemical diffusion master equation: Formulations of reaction–diffusion processes on the molecular level. Journal of Mathematical Physics, 2023, 64, .	1.1	3
72	A Route to the Hydrodynamic Limit of a Reaction-Diffusion Master Equation Using Gradient Structures. SIAM Journal on Applied Mathematics, 2023, 83, 837-861.	1.8	3
73	Stochastic Reaction Networks Within Interacting Compartments. Bulletin of Mathematical Biology, 2023, 85, .	1.9	1
74	Fluctuation analysis for particle-based stochastic reaction–diffusion models. Stochastic Processes and Their Applications, 2024, 167, 104234.	0.9	0