Notch2-dependent classical dendritic cells orchestrate i attaching-and-effacing bacterial pathogens

Nature Immunology 14, 937-948

DOI: 10.1038/ni.2679

Citation Report

#	Article	IF	Citations
1	DCs: a dual bridge to protective immunity. Nature Immunology, 2013, 14, 890-891.	7.0	8
2	Transcriptional Control of Dendritic Cell Development. Advances in Immunology, 2013, 120, 239-267.	1.1	110
3	Microbiota: Host Interactions in Mucosal Homeostasis and Systemic Autoimmunity. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 193-201.	2.0	43
4	Lymphotoxin-LIGHT Pathway Regulates the Interferon Signature in Rheumatoid Arthritis. PLoS ONE, 2014, 9, e112545.	1.1	40
5	Innate lymphoid cells and the skin. BMC Dermatology, 2014, 14, 18.	2.1	23
6	Differentiation of CD11c ⁺ CX ₃ CR1 ⁺ cells in the small intestine requires Notch signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5986-5991.	3.3	25
7	The Role of Dendritic Cells in Graft-Versus-Tumor Effect. Frontiers in Immunology, 2014, 5, 66.	2.2	14
8	CD11b ⁺ DCs rediscovered: implications for vaccination. Expert Review of Vaccines, 2014, 13, 445-447.	2.0	6
9	The activation of the adaptive immune system: Cross-talk between antigen-presenting cells, T cells and B cells. Immunology Letters, 2014, 162, 103-112.	1.1	110
10	The IL-20 subfamily of cytokines — from host defence to tissue homeostasis. Nature Reviews Immunology, 2014, 14, 783-795.	10.6	287
11	Macrophages in intestinal homeostasis and inflammation. Immunological Reviews, 2014, 260, 102-117.	2.8	466
12	Role of Class 1 Serine Protease Autotransporter in the Pathogenesis of Citrobacter rodentium Colitis. Infection and Immunity, 2014, 82, 2626-2636.	1.0	14
13	Interleukin 23 in Crohn's Disease. Inflammatory Bowel Diseases, 2014, 20, 587-595.	0.9	35
14	Signal regulatory protein alpha (SIRPα) regulates the homeostasis of CD103 ⁺ CD11b ⁺ <scp>DC</scp> s in the intestinal lamina propria. European Journal of Immunology, 2014, 44, 3658-3668.	1.6	25
16	Role of the Lymphotoxin/LIGHT System in the Development and Maintenance of Reticular Networks and Vasculature in Lymphoid Tissues. Frontiers in Immunology, 2014, 5, 47.	2.2	73
17	Development and regulation of RORγt ⁺ innate lymphoid cells. FEBS Letters, 2014, 588, 4176-4181.	1.3	52
18	Organization of the mouse and human DC network. Current Opinion in Immunology, 2014, 26, 90-99.	2.4	153
19	Activation of Type 3 Innate Lymphoid Cells and Interleukin 22 Secretion in the Lungs During Streptococcus pneumoniae Infection. Journal of Infectious Diseases, 2014, 210, 493-503.	1.9	137

#	ARTICLE	IF	Citations
20	Intestinal macrophages and dendritic cells: what's the difference?. Trends in Immunology, 2014, 35, 270-277.	2.9	201
21	The cellular and molecular origin of tumor-associated macrophages. Science, 2014, 344, 921-925.	6.0	1,071
22	The origins and functions of dendritic cells and macrophages in the skin. Nature Reviews Immunology, 2014, 14, 417-428.	10.6	396
23	L-Myc expression by dendritic cells is required for optimal T-cell priming. Nature, 2014, 507, 243-247.	13.7	87
24	Development and Function of Dendritic Cell Subsets. Immunity, 2014, 40, 642-656.	6.6	637
25	Intestinal tumor suppression in Apc Min/+ mice by prostaglandin D 2 receptor PTGDR. Cancer Medicine, 2014, 3, 1041-1051.	1.3	26
26	Vitamin A and dendritic cell differentiation. Immunology, 2014, 142, 39-45.	2.0	29
27	The Chemokine Receptor CXCR6 Controls the Functional Topography of Interleukin-22 Producing Intestinal Innate Lymphoid Cells. Immunity, 2014, 41, 776-788.	6.6	136
28	Aligning bona fide dendritic cell populations across species. Cellular Immunology, 2014, 291, 3-10.	1.4	72
29	Transcription Factors Controlling Innate Lymphoid Cell Fate Decisions. Current Topics in Microbiology and Immunology, 2014, 381, 215-255.	0.7	26
30	DOCK8 regulates protective immunity by controlling the function and survival of $ROR\hat{I}^3t+ILCs$. Nature Communications, 2014, 5, 4603.	5.8	40
31	T cells and intestinal commensal bacteriaâ€ignorance, rejection, and acceptance. FEBS Letters, 2014, 588, 4167-4175.	1.3	15
32	Specific fibroblastic niches in secondary lymphoid organs orchestrate distinct Notch-regulated immune responses. Journal of Experimental Medicine, 2014, 211, 2265-2279.	4.2	133
33	Regional specialization within the intestinal immune system. Nature Reviews Immunology, 2014, 14, 667-685.	10.6	1,155
34	Gastroduodenal mucosal defense. Current Opinion in Gastroenterology, 2014, 30, 583-588.	1.0	17
35	Genetic dissection of dendritic cell homeostasis and function: lessons from cell type-specific gene ablation. Cellular and Molecular Life Sciences, 2014, 71, 1893-1906.	2.4	8
36	CX3CR1+ mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. Journal of Experimental Medicine, 2014, 211, 1571-1583.	4.2	320
37	Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nature Reviews Immunology, 2014, 14, 571-578.	10.6	1,494

#	Article	IF	Citations
38	Contextual functions of antigenâ€presenting cells in the gastrointestinal tract. Immunological Reviews, 2014, 259, 75-87.	2.8	30
39	The Lymphotoxin Network: Orchestrating a Type I interferon response to optimize adaptive immunity. Cytokine and Growth Factor Reviews, 2014, 25, 139-145.	3.2	29
40	The monocyte-macrophage axis in the intestine. Cellular Immunology, 2014, 291, 41-48.	1.4	129
41	Tâ€cell selection and intestinal homeostasis. Immunological Reviews, 2014, 259, 60-74.	2.8	46
42	Complementary diversification of dendritic cells and innate lymphoid cells. Current Opinion in Immunology, 2014, 29, 69-78.	2.4	46
43	Intestinal dendritic cells in the regulation of mucosal immunity. Immunological Reviews, 2014, 260, 86-101.	2.8	131
44	Monocyte-mediated defense against bacteria, fungi, and parasites. Seminars in Immunology, 2015, 27, 397-409.	2.7	56
45	Dendritic cell SIRPα regulates homeostasis of dendritic cells in lymphoid organs. Genes To Cells, 2015, 20, 451-463.	0.5	26
46	Fate Mapping of Dendritic Cells. Frontiers in Immunology, 2015, 6, 199.	2.2	44
47	Guardians of the Gut ââ,¬â€œ Murine Intestinal Macrophages and Dendritic Cells. Frontiers in Immunology, 2015, 6, 254.	2.2	102
48	Human and Mouse Mononuclear Phagocyte Networks: A Tale of Two Species?. Frontiers in Immunology, 2015, 6, 330.	2.2	115
49	A Hitchhiker's Guide to Myeloid Cell Subsets: Practical Implementation of a Novel Mononuclear Phagocyte Classification System. Frontiers in Immunology, 2015, 6, 406.	2.2	99
50	Immunity to Pathogens Taught by Specialized Human Dendritic Cell Subsets. Frontiers in Immunology, 2015, 6, 527.	2.2	47
51	Transcriptional Regulation of Mononuclear Phagocyte Development. Frontiers in Immunology, 2015, 6, 533.	2.2	47
52	Tolerogenic Dendritic Cells for Regulatory T Cell Induction in Man. Frontiers in Immunology, 2015, 6, 569.	2.2	222
53	Toll-Like Receptor Mediated Modulation of T Cell Response by Commensal Intestinal Microbiota as a Trigger for Autoimmune Arthritis. Journal of Immunology Research, 2015, 2015, 1-8.	0.9	68
54	Klf4 Expression in Conventional Dendritic Cells Is Required for T Helper 2 Cell Responses. Immunity, 2015, 42, 916-928.	6.6	326
55	IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology. Nature Communications, 2015, 6, 6525.	5.8	81

#	Article	IF	Citations
56	Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nature Immunology, 2015, 16, 718-728.	7.0	475
57	Mucosal Dendritic Cells., 2015,, 489-541.		4
58	Intestinal Antigen-Presenting Cells. American Journal of Pathology, 2015, 185, 1809-1819.	1.9	42
59	Mouse Conventional Dendritic Cells Can be Universally Classified Based on the Mutually Exclusive Expression of XCR1 and SIRPα. Frontiers in Immunology, 2015, 6, 35.	2.2	84
60	Interleukin-7 Produced by Intestinal Epithelial Cells in Response to Citrobacter rodentium Infection Plays a Major Role in Innate Immunity against This Pathogen. Infection and Immunity, 2015, 83, 3213-3223.	1.0	30
61	IL-22, cell regeneration and autoimmunity. Cytokine, 2015, 74, 35-42.	1.4	74
62	Tumor Necrosis Factor Superfamily in Innate Immunity and Inflammation. Cold Spring Harbor Perspectives in Biology, 2015, 7, a016279.	2.3	73
63	The Varieties of Immunological Experience: Of Pathogens, Stress, and Dendritic Cells. Annual Review of Immunology, 2015, 33, 563-606.	9.5	103
64	Lymph-borne CD8 $\hat{1}$ ±+ dendritic cells are uniquely able to cross-prime CD8+ T cells with antigen acquired from intestinal epithelial cells. Mucosal Immunology, 2015, 8, 38-48.	2.7	93
65	Microbiota-Mediated Inflammation and Antimicrobial Defense in the Intestine. Annual Review of Immunology, 2015, 33, 227-256.	9.5	227
66	Ly6Chigh Monocytes Control Cerebral Toxoplasmosis. Journal of Immunology, 2015, 194, 3223-3235.	0.4	99
67	Interleukin-22: Immunobiology and Pathology. Annual Review of Immunology, 2015, 33, 747-785.	9.5	679
68	Krüppel-ling of IRF4-Dependent DCs into Two Functionally Distinct DC Subsets. Immunity, 2015, 42, 785-787.	6.6	8
69	Regulatory immune cells in regulation of intestinal inflammatory response to microbiota. Mucosal Immunology, 2015, 8, 969-978.	2.7	206
70	Phenotypic and functional profiling of mouse intestinal antigen presenting cells. Journal of Immunological Methods, 2015, 421, 20-26.	0.6	9
71	SAMP1/YitFc Mice Develop Ileitis via Loss of CCL21 and Defects in Dendritic Cell Migration. Gastroenterology, 2015, 148, 783-793.e5.	0.6	17
72	IL-10-producing intestinal macrophages prevent excessive antibacterial innate immunity by limiting IL-23 synthesis. Nature Communications, 2015, 6, 7055.	5.8	103
73	Dendritic cells and monocyte-derived cells: Two complementary and integrated functional systems. Seminars in Cell and Developmental Biology, 2015, 41, 9-22.	2.3	186

#	ARTICLE	IF	CITATIONS
74	Citrobacter rodentium -induced colitis: A robust model to study mucosal immune responses in the gut. Journal of Immunological Methods, 2015, 421, 61-72.	0.6	53
75	Induction of Immune Tolerance to Dietary Antigens. Advances in Experimental Medicine and Biology, 2015, 850, 93-118.	0.8	14
76	Heterogeneity and diversity of group 3 innate lymphoid cells: new cells on the block. International Immunology, 2015, 28, dxv054.	1.8	11
77	Unique and redundant functions of NKp46+ ILC3s in models of intestinal inflammation. Journal of Experimental Medicine, 2015, 212, 1869-1882.	4.2	181
78	Microbiota-Dependent Sequelae of Acute Infection Compromise Tissue-Specific Immunity. Cell, 2015, 163, 354-366.	13.5	230
79	The Special Relationship in the Development and Function of T Helper 17 and Regulatory T Cells. Progress in Molecular Biology and Translational Science, 2015, 136, 99-129.	0.9	37
80	Nociceptive Sensory Fibers Drive Interleukin-23 Production from CD301b+ Dermal Dendritic Cells and Drive Protective Cutaneous Immunity. Immunity, 2015, 43, 515-526.	6.6	306
81	The pancreas anatomy conditions the origin and properties of resident macrophages. Journal of Experimental Medicine, 2015, 212, 1497-1512.	4.2	235
83	Functional genomics identifies negative regulatory nodes controlling phagocyte oxidative burst. Nature Communications, 2015, 6, 7838.	5.8	26
84	Defining dendritic cells. Current Opinion in Immunology, 2015, 32, 13-20.	2.4	163
85	Diet and host–microbial crosstalk in postnatal intestinal immune homeostasis. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 14-25.	8.2	85
86	Activation-Induced TIM-4 Expression Identifies Differential Responsiveness of Intestinal CD103+ CD11b+ Dendritic Cells to a Mucosal Adjuvant. PLoS ONE, 2016, 11, e0158775.	1.1	8
87	Interleukin 23 in IBD Pathogenesis., 0,,.		3
88	Development of Tâ€cell tolerance utilizes both cellâ€autonomous and cooperative presentation of selfâ€antigen. Immunological Reviews, 2016, 271, 141-155.	2.8	39
89	RAB43 facilitates cross-presentation of cell-associated antigens by CD8 \hat{i} ±+ dendritic cells. Journal of Experimental Medicine, 2016, 213, 2871-2883.	4.2	63
90	Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14775-14780.	3.3	67
91	The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. Journal of Experimental Medicine, 2016, 213, 897-911.	4.2	125
92	Isolation and Identification of Conventional Dendritic Cell Subsets from the Intestine of Mice and Men. Methods in Molecular Biology, 2016, 1423, 101-118.	0.4	10

#	Article	IF	Citations
93	Regulation of Cytokine Gene Expression in Immunity and Diseases. Advances in Experimental Medicine and Biology, $2016, , .$	0.8	7
94	Regulation of Interleukin-23 Expression in Health and Disease. Advances in Experimental Medicine and Biology, 2016, 941, 167-189.	0.8	10
95	Antigen-Specific Development of Mucosal Foxp3+RORγt+ T Cells from Regulatory T Cell Precursors. Journal of Immunology, 2016, 197, 3512-3519.	0.4	36
96	Rapid and Efficient Generation of Regulatory T Cells to Commensal Antigens in the Periphery. Cell Reports, 2016, 17, 206-220.	2.9	115
97	MHC II+ resident peritoneal and pleural macrophages rely on IRF4 for development from circulating monocytes. Journal of Experimental Medicine, 2016, 213, 1951-1959.	4.2	117
98	Conventional Dendritic Cells: Identification, Subsets, Development, andÂFunctions., 2016,, 374-383.		0
99	Regulation of monocyte cell fate by blood vessels mediated by Notch signalling. Nature Communications, 2016, 7, 12597.	5.8	115
100	TLR5 mediates CD172α+ intestinal lamina propria dendritic cell induction of Th17 cells. Scientific Reports, 2016, 6, 22040.	1.6	49
101	Functions of Murine Dendritic Cells. Immunity, 2016, 45, 719-736.	6.6	313
102	Notch Signaling and Immune Regulation in Alloimmunity. Current Transplantation Reports, 2016, 3, 294-302.	0.9	2
103	A reduced population of CD103+CD11b+ dendritic cells has a limited impact on oral Salmonella infection. Immunology Letters, 2016, 176, 72-80.	1.1	4
104	Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nature Immunology, 2016, 17, 765-774.	7.0	760
105	Single-Cell Gene Expression Analyses Reveal Heterogeneous Responsiveness of Fetal Innate Lymphoid Progenitors to Notch Signaling. Cell Reports, 2016, 14, 1500-1516.	2.9	75
106	Absence of MHC class II on cDCs results in microbial-dependent intestinal inflammation. Journal of Experimental Medicine, 2016, 213, 517-534.	4.2	110
107	Classical dendritic cells are required for dietary antigen–mediated induction of peripheral Treg cells and tolerance. Nature Immunology, 2016, 17, 545-555.	7.0	222
108	Hematopoietic $LT\hat{I}^2R$ deficiency results in skewed T cell cytokine profiles during a mucosal viral infection. Journal of Leukocyte Biology, 2016, 100, 103-110.	1.5	11
109	Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. Journal of Experimental Medicine, 2016, 213, 35-51.	4.2	90
110	Transcriptional Control of Dendritic Cell Development. Annual Review of Immunology, 2016, 34, 93-119.	9.5	354

#	Article	IF	CITATIONS
111	Colonic tolerance develops in the iliac lymph nodes and can be established independent of CD103+ dendritic cells. Mucosal Immunology, 2016, 9, 894-906.	2.7	50
112	CD11c+ monocyte/macrophages promote chronic Helicobacter hepaticus-induced intestinal inflammation through the production of IL-23. Mucosal Immunology, 2016, 9, 352-363.	2.7	110
113	Isolation and Identification of Intestinal Myeloid Cells. Methods in Molecular Biology, 2017, 1559, 223-239.	0.4	15
114	COX-2 inhibitor prevents tumor induced down regulation of classical DC lineage specific transcription factor Zbtb46 resulting in immunocompetent DC and decreased tumor burden. Immunology Letters, 2017, 184, 23-33.	1.1	27
115	Human Blood CD1c+ Dendritic Cells Encompass CD5high and CD5low Subsets That Differ Significantly in Phenotype, Gene Expression, and Functions. Journal of Immunology, 2017, 198, 1553-1564.	0.4	93
116	Intestinal Mononuclear Phagocytes in Health and Disease. Microbiology Spectrum, 2017, 5, .	1.2	10
117	CD40-signalling abrogates induction of ROR \hat{I}^3 t+ Treg cells by intestinal CD103+ DCs and causes fatal colitis. Nature Communications, 2017, 8, 14715.	5.8	36
118	Development of conventional dendritic cells: from common bone marrow progenitors to multiple subsets in peripheral tissues. Mucosal Immunology, 2017, 10, 831-844.	2.7	155
119	Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science, 2017, 356, .	6.0	1,846
120	Tissue-Specific Diversity and Functions of Conventional Dendritic Cells. Advances in Immunology, 2017, 134, 89-135.	1.1	28
121	Epithelial Histone Deacetylase 3 Instructs Intestinal Immunity by Coordinating Local Lymphocyte Activation. Cell Reports, 2017, 19, 1165-1175.	2.9	38
122	Modes of Action for Mucosal Vaccine Adjuvants. Viral Immunology, 2017, 30, 463-470.	0.6	61
123	Card9â€dependent ILâ€1β regulates ILâ€22 production from group 3 innate lymphoid cells and promotes colitisâ€associated cancer. European Journal of Immunology, 2017, 47, 1342-1353.	1.6	54
124	Citrobacter rodentium: a model enteropathogen for understanding the interplay of innate and adaptive components of type 3 immunity. Mucosal Immunology, 2017, 10, 1108-1117.	2.7	71
125	Diversity and functions of intestinal mononuclear phagocytes. Mucosal Immunology, 2017, 10, 845-864.	2.7	138
126	Deficiency of transcription factor RelB perturbs myeloid and DC development by hematopoietic-extrinsic mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3957-3962.	3.3	31
127	A Discrete Subset of Monocyte-Derived Cells among Typical Conventional Type 2 Dendritic Cells Can Efficiently Cross-Present. Cell Reports, 2017, 21, 1203-1214.	2.9	63
128	TGFβR signalling controls CD103+CD11b+ dendritic cell development in the intestine. Nature Communications, 2017, 8, 620.	5.8	74

#	Article	IF	CITATIONS
129	CCR6 promotes steadyâ€state mononuclear phagocyte associationÂwith the intestinal epithelium, imprinting and immune surveillance. Immunology, 2017, 152, 613-627.	2.0	13
130	Dendritic cell recruitment and activation in autoimmunity. Journal of Autoimmunity, 2017, 85, 126-140.	3.0	108
131	Notch Balances Th17 and Induced Regulatory T Cell Functions in Dendritic Cells by Regulating <i>Aldh1a2</i> Expression. Journal of Immunology, 2017, 199, 1989-1997.	0.4	13
132	Distinct <scp>DC</scp> subsets regulate adaptive Th1 and 2 responses during <i>Trichuris muris</i> infection. Parasite Immunology, 2017, 39, e12458.	0.7	17
133	A CD103+ Conventional Dendritic Cell Surveillance System Prevents Development of Overt Heart Failure during Subclinical Viral Myocarditis. Immunity, 2017, 47, 974-989.e8.	6.6	50
134	Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunological Reviews, 2017, 278, 145-161.	2.8	105
135	Ultraviolet B Irradiation Causes Stimulator of Interferon Genes–Dependent Production of Protective Type I Interferon in Mouse Skin by Recruited Inflammatory Monocytes. Arthritis and Rheumatology, 2017, 69, 826-836.	2.9	47
136	Intestinal Batf3-dependent dendritic cells are required for optimal antiviral T-cell responses in adult and neonatal mice. Mucosal Immunology, 2017, 10, 775-788.	2.7	29
137	Oxygen as a driver of gut dysbiosis. Free Radical Biology and Medicine, 2017, 105, 93-101.	1.3	208
138	The battlefield in the war against attaching-and-effacing bacterial pathogens: Monocytes, macrophages and dendritic cells in action. Veterinary Microbiology, 2017, 202, 47-51.	0.8	2
139	Dendritic cells in central nervous system autoimmunity. Seminars in Immunopathology, 2017, 39, 99-111.	2.8	35
140	Murine Cytomegalovirus Disrupts Splenic Dendritic Cell Subsets via Type I Interferon-Dependent and -Independent Mechanisms. Frontiers in Immunology, 2017, 8, 251.	2.2	3
141	Dendritic Cell Subsets in Asthma: Impaired Tolerance or Exaggerated Inflammation?. Frontiers in Immunology, 2017, 8, 941.	2.2	33
142	Human Blood CD1c+ Dendritic Cells Promote Th1 and Th17 Effector Function in Memory CD4+ T Cells. Frontiers in Immunology, 2017, 8, 971.	2.2	69
143	Biology and function of adipose tissue macrophages, dendritic cells and B cells. Atherosclerosis, 2018, 271, 102-110.	0.4	47
144	CD11b+ Dendritic Cell–Mediated Anti– <i>Mycobacterium tuberculosis</i> Th1 Activation Is Counterregulated by CD103+ Dendritic Cells via IL-10. Journal of Immunology, 2018, 200, 1746-1760.	0.4	29
145	CD103+CD11b+ mucosal classical dendritic cells initiate long-term switched antibody responses to flagellin. Mucosal Immunology, 2018, 11, 681-692.	2.7	21
146	Proinflammatory Role of Monocyte-Derived CX3CR1 ^{int} Macrophages in Helicobacter hepaticus-Induced Colitis. Infection and Immunity, 2018, 86, .	1.0	22

#	Article	IF	CITATIONS
147	Oral Antibiotic Treatment of Mice Exacerbates the Disease Severity of Multiple Flavivirus Infections. Cell Reports, 2018, 22, 3440-3453.e6.	2.9	97
148	ADAM10 and Notch1 on murine dendritic cells control the development of type 2 immunity and IgE production. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 125-136.	2.7	18
149	TH2 cell development and function. Nature Reviews Immunology, 2018, 18, 121-133.	10.6	365
150	Development, Diversity, and Function of Dendritic Cells in Mouse and Human. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028613.	2.3	71
151	Bone marrow transplant-induced alterations in Notch signaling promote pathologic Th17 responses to \hat{l}^3 -herpesvirus infection. Mucosal Immunology, 2018, 11, 881-893.	2.7	15
152	IL-23 (Interleukin-23)–Producing Conventional Dendritic Cells Control the Detrimental IL-17 (Interleukin-17) Response in Stroke. Stroke, 2018, 49, 155-164.	1.0	81
153	Immunomodulatory Bonds of the Partnership between Dendritic Cells and T Cells. Critical Reviews in Immunology, 2018, 38, 379-401.	1.0	58
154	Proteasomal degradation of NOD2 by NLRP12 in monocytes promotes bacterial tolerance and colonization by enteropathogens. Nature Communications, 2018, 9, 5338.	5.8	44
155	Intestinal Dendritic Cells in Health and Gut Inflammation. Frontiers in Immunology, 2018, 9, 2883.	2,2	139
156	Notch2-dependent DC2s mediate splenic germinal center responses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10726-10731.	3.3	53
157	Tissue-Resident Lymphocytes Across Innate and Adaptive Lineages. Frontiers in Immunology, 2018, 9, 2104.	2.2	38
158	Dextran Sulfate Sodium Colitis Facilitates Colonization with Shiga Toxin-Producing Escherichia coli: a Novel Murine Model for the Study of Shiga Toxicosis. Infection and Immunity, 2018, 86, .	1.0	5
159	Control of pathogens and microbiota by innate lymphoid cells. Microbes and Infection, 2018, 20, 317-322.	1.0	6
160	A cytokine network involving IL-36 \hat{I}^3 , IL-23, and IL-22 promotes antimicrobial defense and recovery from intestinal barrier damage. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5076-E5085.	3.3	87
161	Increased susceptibility to oral <i>Trichuris muris</i> infection in the specific absence of <scp>CXCR</scp> 5 ⁺ <scp>CD</scp> 11c ⁺ cells. Parasite Immunology, 2018, 40, e12566.	0.7	4
162	Transcription factor Etv6 regulates functional differentiation of cross-presenting classical dendritic cells. Journal of Experimental Medicine, 2018, 215, 2265-2278.	4.2	33
163	Batf3-Dependent Dendritic Cells Promote Optimal CD8 T Cell Responses against Respiratory Poxvirus Infection. Journal of Virology, 2018, 92, .	1.5	24
164	Clec9a-Mediated Ablation of Conventional Dendritic Cells Suggests a Lymphoid Path to Generating Dendritic Cells In Vivo. Frontiers in Immunology, 2018, 9, 699.	2.2	18

#	Article	IF	CITATIONS
165	Gut Immunity: Passing on the Baton from Innate to Adaptive Immunity. Current Biology, 2018, 28, R562-R565.	1.8	2
166	Expression of the transcription factor ZBTB46 distinguishes human histiocytic disorders of classical dendritic cell origin. Modern Pathology, 2018, 31, 1479-1486.	2.9	14
167	â€~NOTCHing up' the In Vitro Production of Dendritic Cells. Trends in Immunology, 2018, 39, 765-767.	2.9	5
168	A novel role for C–C motif chemokine receptor 2 during infection with hypervirulent Mycobacterium tuberculosis. Mucosal Immunology, 2018, 11, 1727-1742.	2.7	43
169	Innate Immunity and Inflammation. , 2018, , 74-128.		0
170	Limited Macrophage Positional Dynamics in Progressing or Regressing Murine Atherosclerotic Plaquesâ€"Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1702-1710.	1.1	39
171	Dendritic Cell Accumulation in the Gut and Central Nervous System Is Differentially Dependent on $\hat{l}\pm 4$ Integrins. Journal of Immunology, 2019, 203, 1417-1427.	0.4	7
172	The orphan nuclear receptor NR4A3 controls the differentiation of monocyte-derived dendritic cells following microbial stimulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15150-15159.	3.3	44
173	Shared Transcriptional Control of Innate Lymphoid Cell and Dendritic Cell Development. Annual Review of Cell and Developmental Biology, 2019, 35, 381-406.	4.0	13
174	Induction of memory-like dendritic cell responses in vivo. Nature Communications, 2019, 10, 2955.	5.8	113
175	Models of dendritic cell development correlate ontogeny with function. Advances in Immunology, 2019, 143, 99-119.	1.1	17
176	Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity. Cell, 2019, 179, 846-863.e24.	13.5	359
177	Citrobacter rodentium–host–microbiota interactions: immunity, bioenergetics and metabolism. Nature Reviews Microbiology, 2019, 17, 701-715.	13.6	97
178	Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. Journal of Neuroinflammation, 2019, 16, 178.	3.1	200
179	Dietary tea tree oil supplementation improves the intestinal mucosal immunity of weanling piglets. Animal Feed Science and Technology, 2019, 255, 114209.	1.1	19
180	Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity, 2019, 51, 638-654.e9.	6.6	384
181	Microbiota Sensing by Mincle-Syk Axis in Dendritic Cells Regulates Interleukin-17 and -22 Production and Promotes Intestinal Barrier Integrity. Immunity, 2019, 50, 446-461.e9.	6.6	143
182	Understanding the Functional Properties of Neonatal Dendritic Cells: A Doorway to Enhance Vaccine Effectiveness?. Frontiers in Immunology, 2019, 9, 3123.	2.2	14

#	Article	IF	CITATIONS
183	CD8+XCR1neg Dendritic Cells Express High Levels of Toll-Like Receptor 5 and a Unique Complement of Endocytic Receptors. Frontiers in Immunology, 2018, 9, 2990.	2.2	8
184	A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature, 2019, 565, 600-605.	13.7	741
185	Beyond cDC1: Emerging Roles of DC Crosstalk in Cancer Immunity. Frontiers in Immunology, 2019, 10, 1014.	2.2	74
186	lgG and FcÎ ³ Receptors in Intestinal Immunity and Inflammation. Frontiers in Immunology, 2019, 10, 805.	2.2	85
187	IL-10 Family Cytokines IL-10 and IL-22: from Basic Science to Clinical Translation. Immunity, 2019, 50, 871-891.	6.6	603
188	<i>Helicobacter pylori</i> VacA Targets Myeloid Cells in the Gastric Lamina Propria To Promote Peripherally Induced Regulatory T-Cell Differentiation and Persistent Infection. MBio, 2019, 10, .	1.8	60
189	Negligible Role for Deletion Mediated by cDC1 in CD8+ T Cell Tolerance. Journal of Immunology, 2019, 202, 2628-2635.	0.4	6
190	Structure and function of the immune system in the spleen. Science Immunology, 2019, 4, .	5.6	592
191	The Role of Plasmacytoid Dendritic Cells in Gut Health. Immune Network, 2019, 19, e6.	1.6	10
192	Epitheliumâ€specific MyD88 signaling, but not DCs or macrophages, control acute intestinal infection with <i>Clostridium difficile</i> Luropean Journal of Immunology, 2019, 49, 747-757.	1.6	5
193	Emerging Principles in Myelopoiesis at Homeostasis and during Infection and Inflammation. Immunity, 2019, 50, 288-301.	6.6	106
194	Origin and development of classical dendritic cells. International Review of Cell and Molecular Biology, 2019, 349, 1-54.	1.6	31
195	Transcriptional control of dendritic cell development and functions. International Review of Cell and Molecular Biology, 2019, 349, 55-151.	1.6	63
196	Mechanistic Insights into Factor VIII Immune Tolerance Induction via Prenatal Cell Therapy in Hemophilia A. Current Stem Cell Reports, 2019, 5, 145-161.	0.7	3
197	Transcription Factor PU.1 Promotes Conventional Dendritic Cell Identity and Function via Induction of Transcriptional Regulator DC-SCRIPT. Immunity, 2019, 50, 77-90.e5.	6.6	59
198	ILC3 cells promote the proliferation and invasion of pancreatic cancer cells through IL-22/AKT signaling. Clinical and Translational Oncology, 2020, 22, 563-575.	1.2	23
199	Innate lymphoid cells link gut microbes with mucosal T cell immunity. Gut Microbes, 2020, 11, 231-236.	4.3	21
200	Innate Lymphoid Cells for the Control of Mucosal Immunity. , 2020, , 229-245.		0

#	Article	IF	CITATIONS
201	Vitamin D and microbiota: Two sides of the same coin in the immunomodulatory aspects. International Immunopharmacology, 2020, 79, 106112.	1.7	60
202	Osteopontin Expression Identifies a Subset of Recruited Macrophages Distinct from Kupffer Cells in the Fatty Liver. Immunity, 2020, 53, 641-657.e14.	6.6	287
203	Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics, 2020, 12, 663.	2.0	24
204	TAO-kinase 3 governs the terminal differentiation of NOTCH2-dependent splenic conventional dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31331-31342.	3 . 3	17
205	Group 3 Innate Lymphoid Cells Program a Distinct Subset of IL-22BP-Producing Dendritic Cells Demarcating Solitary Intestinal Lymphoid Tissues. Immunity, 2020, 53, 1015-1032.e8.	6.6	41
206	Dendritic cells in Th2 immune responses and allergic sensitization. Immunology and Cell Biology, 2020, 98, 807-818.	1.0	27
207	High Amount of Transcription Factor IRF8 Engages AP1-IRF Composite Elements in Enhancers to Direct Type 1 Conventional Dendritic Cell Identity. Immunity, 2020, 53, 759-774.e9.	6.6	46
208	Epigenetic aspects of DC development and differentiation. Molecular Immunology, 2020, 128, 116-124.	1.0	8
209	The colonic macrophage transcription factor RBP-J orchestrates intestinal immunity against bacterial pathogens. Journal of Experimental Medicine, 2020, 217, .	4.2	17
210	Requirements for cDC2 positioning in blood-exposed regions of the neonatal and adult spleen. Journal of Experimental Medicine, 2020, 217, .	4.2	8
211	IRF4 Expression Is Required for the Immunoregulatory Activity of Conventional Type 2 Dendritic Cells in Settings of Chronic Bacterial Infection and Cancer. Journal of Immunology, 2020, 205, 1933-1943.	0.4	8
212	Innate lymphoid cells control signaling circuits to regulate tissue-specific immunity. Cell Research, 2020, 30, 475-491.	5.7	113
213	Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection. Immunity, 2020, 52, 1039-1056.e9.	6.6	237
214	Irgm1-deficiency leads to myeloid dysfunction in colon lamina propria and susceptibility to the intestinal pathogen Citrobacter rodentium. PLoS Pathogens, 2020, 16, e1008553.	2.1	14
215	Transcriptional Networks Driving Dendritic Cell Differentiation and Function. Immunity, 2020, 52, 942-956.	6.6	90
216	Transcriptional regulation of DC fate specification. Molecular Immunology, 2020, 121, 38-46.	1.0	21
217	Phosphatase PTPN22 Regulates Dendritic Cell Homeostasis and cDC2 Dependent T Cell Responses. Frontiers in Immunology, 2020, 11, 376.	2.2	3
218	CD137 Signaling Regulates Acute Colitis via RALDH2-Expressing CD11bâ^'CD103+ DCs. Cell Reports, 2020, 30, 4124-4136.e5.	2.9	9

#	Article	IF	CITATIONS
219	The ontogenetic path of human dendritic cells. Molecular Immunology, 2020, 120, 122-129.	1.0	31
220	Dendritic Cell Subsets in Intestinal Immunity and Inflammation. Journal of Immunology, 2020, 204, 1075-1083.	0.4	64
221	Gut-resident CX3CR1 $<$ sup $>$ hi $<$ /sup $>$ macrophages induce tertiary lymphoid structures and IgA response in situ. Science Immunology, 2020, 5, .	5.6	63
222	Targeting cellular fatty acid synthesis limits T helper and innate lymphoid cell function during intestinal inflammation and infection. Mucosal Immunology, 2021, 14, 164-176.	2.7	19
223	Notch signaling at the crossroads of innate and adaptive immunity. Journal of Leukocyte Biology, 2021, 109, 535-548.	1.5	41
224	Tolerogenic Dendritic Cells in Autoimmunity and Inflammatory Diseases. Trends in Immunology, 2021, 42, 59-75.	2.9	112
225	Genetic models of human and mouse dendritic cell development and function. Nature Reviews Immunology, 2021, 21, 101-115.	10.6	158
226	Interleukinâ€17 and ischaemic stroke. Immunology, 2021, 162, 179-193.	2.0	47
228	Major Role of the IL17/23 Axis in Psoriasis Supports the Development of New Targeted Therapies. Frontiers in Immunology, 2021, 12, 621956.	2.2	48
229	Gut Helicobacter presentation by multiple dendritic cell subsets enables context-specific regulatory T cell generation. ELife, 2021, 10, .	2.8	18
230	Interleukin-22 Influences the Th1/Th17 Axis. Frontiers in Immunology, 2021, 12, 618110.	2.2	20
231	TREM-1+ Macrophages Define a Pathogenic Cell Subset in the Intestine of Crohn's Disease Patients. Journal of Crohn's and Colitis, 2021, 15, 1346-1361.	0.6	10
232	The Role of Group 3 Innate Lymphoid Cells in Lung Infection and Immunity. Frontiers in Cellular and Infection Microbiology, 2021, 11, 586471.	1.8	9
233	ILC3s control splenic cDC homeostasis via lymphotoxin signaling. Journal of Experimental Medicine, 2021, 218, .	4.2	6
234	Th17 Immunity in the Colon Is Controlled by Two Novel Subsets of Colon-Specific Mononuclear Phagocytes. Frontiers in Immunology, 2021, 12, 661290.	2.2	3
235	The Notch signaling pathway involvement in innate lymphoid cell biology. Biomedical Journal, 2021, 44, 133-143.	1.4	17
237	Dendritic Cells Revisited. Annual Review of Immunology, 2021, 39, 131-166.	9 . 5	339
238	Dendritic Cell Regulation of T Helper Cells. Annual Review of Immunology, 2021, 39, 759-790.	9.5	139

#	Article	IF	Citations
239	Select hyperactivating NLRP3 ligands enhance the T $<$ sub $>$ H $<$ /sub $>$ 1- and T $<$ sub $>$ H $<$ /sub $>$ 17-inducing potential of human type 2 conventional dendritic cells. Science Signaling, 2021, 14, .	1.6	36
241	Loss of <i>Mafb</i> and <i>Maf</i> distorts myeloid cell ratios and disrupts fetal mouse testis vascularization and organogenesisâ€. Biology of Reproduction, 2021, 105, 958-975.	1.2	4
242	Therapeutic Targeting of Notch Signaling: From Cancer to Inflammatory Disorders. Frontiers in Cell and Developmental Biology, 2021, 9, 649205.	1.8	38
243	A simplified method for separating renal MPCs using SLAMF9. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 1209-1217.	1.1	2
244	$\langle i \rangle$ Bcl6 $\langle i \rangle$ -Independent In Vivo Development of Functional Type 1 Classical Dendritic Cells Supporting Tumor Rejection. Journal of Immunology, 2021, 207, 125-132.	0.4	4
245	Inflammasomes in dendritic cells: Friend or foe?. Immunology Letters, 2021, 234, 16-32.	1.1	19
246	Thymic Egress Is Regulated by T Cell-Derived $LT\hat{l}^2R$ Signal and via Distinct Thymic Portal Endothelial Cells. Frontiers in Immunology, 2021, 12, 707404.	2.2	2
247	Antigen presentation by mouse monocyte-derived cells: Re-evaluating the concept of monocyte-derived dendritic cells. Molecular Immunology, 2021, 135, 165-169.	1.0	13
248	Unboxing dendritic cells: Tales of multiâ€faceted biology and function. Immunology, 2021, 164, 433-449.	2.0	16
249	Dendritic cell functions in the inductive and effector sites of intestinal immunity. Mucosal Immunology, 2022, 15, 40-50.	2.7	31
250	Posttranslational modifications by ADAM10 shape myeloid antigen-presenting cell homeostasis in the splenic marginal zone. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
251	Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity, 2021, 54, 2072-2088.e7.	6.6	76
252	Brown adipose tissue monocytes support tissue expansion. Nature Communications, 2021, 12, 5255.	5.8	23
254	Environmental signals rather than layered ontogeny imprint the function of type 2 conventional dendritic cells in young and adult mice. Nature Communications, 2021, 12, 464.	5.8	25
255	Notch-Regulated Dendritic Cells Restrain Inflammation-Associated Colorectal Carcinogenesis. Cancer Immunology Research, 2021, 9, 348-361.	1.6	13
256	SIRPÎ \pm on CD11c ⁺ cells induces Th17 cell differentiation and subsequent inflammation in the CNS in experimental autoimmune encephalomyelitis. European Journal of Immunology, 2020, 50, 1560-1570.	1.6	8
257	Notch Signaling Facilitates InÂVitro Generation of Cross-Presenting Classical Dendritic Cells. Cell Reports, 2018, 23, 3658-3672.e6.	2.9	151
258	Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cellular and Molecular Immunology, 2020, 17, 587-599.	4.8	183

#	Article	IF	CITATIONS
260	Stem cell transplantation impairs dendritic cell trafficking and herpesvirus immunity. JCI Insight, 2019, 4, .	2.3	5
261	The transcription factor NR4A3 controls CD103+ dendritic cell migration. Journal of Clinical Investigation, 2016, 126, 4603-4615.	3.9	30
262	The role of cDC1s in vivo: CD8 T cell priming through cross-presentation. F1000Research, 2017, 6, 98.	0.8	56
263	The MacBlue Binary Transgene (csf1r-gal4VP16/UAS-ECFP) Provides a Novel Marker for Visualisation of Subsets of Monocytes, Macrophages and Dendritic Cells and Responsiveness to CSF1 Administration. PLoS ONE, 2014, 9, e105429.	1.1	48
264	MyD88 signaling in dendritic cells and the intestinal epithelium controls immunity against intestinal infection with C. rodentium. PLoS Pathogens, 2017, 13, e1006357.	2.1	31
265	Essential functions of Runx/Cbf \hat{l}^2 in gut conventional dendritic cells for priming Ror \hat{l}^3 t ⁺ T cells. Life Science Alliance, 2020, 3, e201900441.	1.3	8
266	Skin and Gut Microbiome in Psoriasis: Gaining Insight Into the Pathophysiology of It and Finding Novel Therapeutic Strategies. Frontiers in Microbiology, 2020, 11, 589726.	1.5	81
267	Innate lymphoid cells in tissue homeostasis and diseases. World Journal of Hepatology, 2017, 9, 979.	0.8	40
268	Identification of Two Subsets of Murine DC1 Dendritic Cells That Differ by Surface Phenotype, Gene Expression, and Function. Frontiers in Immunology, 2021, 12, 746469.	2.2	7
269	Intestinal Mononuclear Phagocytes in Health and Disease., 0,, 687-700.		O
272	Epithelial Cells Orchestrate the Functions of Dendritic Cells in Intestinal Homeostasis. Journal of Biomedical Research & Environmental Sciences, 2020, 1, 343-352.	0.1	0
274	Chemo―and mechanosensing by dendritic cells facilitate antigen surveillance in the spleen*. Immunological Reviews, 2022, 306, 25-42.	2.8	12
275	A nonredundant role for TÂcell-derived interleukin 22 in antibacterial defense of colonic crypts. Immunity, 2022, 55, 494-511.e11.	6.6	15
276	Senescence Connects Autophagy Deficiency to Inflammation and Tumor Progression in the Liver. Cellular and Molecular Gastroenterology and Hepatology, 2022, 14, 333-355.	2.3	8
277	Effective CD4 T cell priming requires repertoire scanning by CD301b ⁺ migratory cDC2 cells upon lymph node entry. Science Immunology, 2021, 6, eabg0336.	5.6	11
278	The Role of Type-2 Conventional Dendritic Cells in the Regulation of Tumor Immunity. Cancers, 2022, 14, 1976.	1.7	27
279	ADP-ribosylating adjuvant reveals plasticity in cDC1 cells that drive mucosal Th17 cell development and protection against influenza virus infection. Mucosal Immunology, 2022, 15, 745-761.	2.7	6
298	Antigen Presentation in the Lung. Frontiers in Immunology, 2022, 13, .	2.2	19

#	Article	IF	CITATIONS
299	DCs at the center of help: Origins and evolution of the three-cell-type hypothesis. Journal of Experimental Medicine, 2022, 219, .	4.2	18
300	Conventional Type 1 Dendritic Cells in Intestinal Immune Homeostasis. Frontiers in Immunology, 2022, 13, .	2.2	5
303	Macrophage Fate Mapping. Current Protocols, 2022, 2, .	1.3	4
304	Unravelling the sex-specific diversity and functions of adrenal gland macrophages. Cell Reports, 2022, 39, 110949.	2.9	13
305	Ablation of cDC2 development by triple mutations within the Zeb2 enhancer. Nature, 2022, 607, 142-148.	13.7	34
306	BATF3 Protects Against Metabolic Syndrome and Maintains Intestinal Epithelial Homeostasis. Frontiers in Immunology, 0, 13 , .	2.2	3
307	Single-cell profiling of microenvironment components by spatial localization in pancreatic ductal adenocarcinoma. Theranostics, 2022, 12, 4980-4992.	4.6	7
308	Redox Proteomics Combined with Proximity Labeling Enables Monitoring of Localized Cysteine Oxidation in Cells. SSRN Electronic Journal, 0, , .	0.4	0
309	Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors. International Journal of Molecular Sciences, 2022, 23, 7325.	1.8	7
310	The primary macrophage chemokine, CCL2, is not necessary after a peripheral nerve injury for macrophage recruitment and activation or for conditioning lesion enhanced peripheral regeneration. Journal of Neuroinflammation, 2022, 19, .	3.1	9
313	Role and mechanisms of the NF-Ä,B signaling pathway in various developmental processes. Biomedicine and Pharmacotherapy, 2022, 153, 113513.	2.5	17
314	Monocytes maintain central nervous system homeostasis following helminth-induced inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	1
315	Antigen transfer and its effect on vaccine-induced immune amplification and tolerance. Theranostics, 2022, 12, 5888-5913.	4.6	8
316	Functional Specialization of Dendritic Cell Subsets. , 2022, , .		0
318	Identification and characterization of murine glycoprotein 2â€expressing intestinal dendritic cells. Scandinavian Journal of Immunology, 0, , .	1.3	0
319	Identification of environmental factors that promote intestinal inflammation. Nature, 2022, 611, 801-809.	13.7	47
320	<scp>CCR2</scp> is expressed by tendon resident macrophage and T cells, while <scp>CCR2</scp> deficiency impairs tendon healing via blunted involvement of tendonâ€resident and circulating monocytes/macrophages. FASEB Journal, 2022, 36, .	0.2	7
321	The thin line between conventional dendritic cells (cDCs) and group 3 innate lymphoid cells (ILC3s) in the gut. International Immunology, 2023, 35, 107-121.	1.8	2

#	Article	IF	Citations
322	Guidelines for DC preparation and flow cytometry analysis of mouse nonlymphoid tissues. European Journal of Immunology, 2023, 53, .	1.6	5
323	Guidelines for mouse and human DC functional assays. European Journal of Immunology, 2023, 53, .	1.6	1
325	Classical DC2 subsets and monocyteâ€derived DC: Delineating the developmental and functional relationship. European Journal of Immunology, 2023, 53, .	1.6	5
326	The evolving biology of cross-presentation. Seminars in Immunology, 2023, 66, 101711.	2.7	10
327	In Vitro Generation of Murine CD8α+ DEC205+ XCR1+ Cross-Presenting Dendritic Cells from Bone Marrow–Derived Hematopoietic Progenitors. Methods in Molecular Biology, 2023, , 109-119.	0.4	1
328	pDC-like cells are pre-DC2 and require KLF4 to control homeostatic CD4 T cells. Science Immunology, 2023, 8, .	5.6	12
329	Insights into dendritic cell maturation during infection with application of advanced imaging techniques. Frontiers in Cellular and Infection Microbiology, 0, 13 , .	1.8	1
330	Identification of Specific Biomarkers and Pathways in the Treatment Response of Infliximab for Inflammatory Bowel Disease: In-Silico Analysis. Life, 2023, 13, 680.	1.1	4
331	Inflammatory monocytes promote granuloma control of Yersinia infection. Nature Microbiology, 2023, 8, 666-678.	5.9	5
332	Type 2 Dendritic Cells Orchestrate a Local Immune Circuit to Confer Antimetastatic Immunity. Journal of Immunology, 2023, 210, 1146-1155.	0.4	2
333	Redox proteomics combined with proximity labeling enables monitoring of localized cysteine oxidation in cells. Cell Chemical Biology, 2023, 30, 321-336.e6.	2.5	11
334	Origin, Phenotype, and Function of Mouse Dendritic Cell Subsets. Methods in Molecular Biology, 2023, , 3-16.	0.4	0
335	Testicular macrophages are recruited during a narrow fetal time window and promote organ-specific developmental functions. Nature Communications, 2023, 14, .	5 . 8	5
365	Immunological mechanisms of lesions in celiac disease. , 2024, , 59-75.		О