Efficient Persistent Room Temperature Phosphorescen under Ambient Conditions

Advanced Functional Materials 23, 3386-3397 DOI: 10.1002/adfm.201203706

Citation Report

#	Article	IF	CITATIONS
1	Phosphorescence from a pure organic fluorene derivative in solution at room temperature. Chemical Communications, 2013, 49, 8447.	2.2	140
2	Thermoresponsive Persistent Phosphorescent Color Change Using Efficient Thermally Activated Reverse Energy Transfer with a Large Energy Difference. Advanced Optical Materials, 2013, 1, 283-288.	3.6	23
3	Reversible Thermal Recording Media Using Timeâ€Dependent Persistent Room Temperature Phosphorescence. Advanced Optical Materials, 2013, 1, 438-442.	3.6	101
4	The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances. Accounts of Chemical Research, 2013, 46, 2686-2695.	7.6	728
5	Highly efficient, dual state emission from an organic semiconductor. Applied Physics Letters, 2013, 103,	1.5	76
6	Efficient Persistent Room Temperature Phosphorescence in Organic Materials. Kobunshi Ronbunshu, 2013, 70, 623-636.	0.2	2
7	Tuning the Photophysical Properties of Metal-Free Room Temperature Organic Phosphors via Compositional Variations in Bromobenzaldehyde/Dibromobenzene Mixed Crystals. Chemistry of Materials, 2014, 26, 6644-6649.	3.2	115
8	Spectral Conversion From Ultraviolet to Near Infrared in <scp><scp>Yb</scp></scp> 3+â€Doped Pyrovanadate <scp><scp>Zn</scp></scp>	sub>7 <td>ıb></td>	ıb>
9	Design principles for highly efficient organic light-emitting diodes. Journal of Photonics for Energy, 2014, 4, 040993.	0.8	17
10	Molecular crystalline materials with tunable luminescent properties: from polymorphs to multi-component solids. Materials Horizons, 2014, 1, 46-57.	6.4	411
11	Twoâ€Component Molecular Materials of 2,5â€Diphenyloxazole Exhibiting Tunable Ultraviolet/Blue Polarized Emission, Pumpâ€enhanced Luminescence, and Mechanochromic Response. Advanced Functional Materials, 2014, 24, 587-594.	7.8	190
13	Modulating optical power. Nature Materials, 2014, 13, 917-918.	13.3	6
14	Conversion and quantum efficiency from ultraviolet light to near infrared emission in Yb 3+ -doped pyrovanadates M ZnV 2 O 7 (M = Ca, Sr, Ba). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 190, 26-32.	1.7	15
15	Luminescent Polymer Films from Simple Processing of Coronene and Europium Precursors in Water. European Journal of Inorganic Chemistry, 2014, 2014, 3095-3100.	1.0	6
16	Tailoring Intermolecular Interactions for Efficient Roomâ€Temperature Phosphorescence from Purely Organic Materials in Amorphous Polymer Matrices. Angewandte Chemie - International Edition, 2014, 53, 11177-11181.	7.2	382
17	Luminescence Properties of 1,8-Naphthalimide Derivatives in Solution, in Their Crystals, and in Co-crystals: Toward Room-Temperature Phosphorescence from Organic Materials. Journal of Physical Chemistry C, 2014, 118, 18646-18658.	1.5	123
18	Aggregationâ€Induced Emission: The Whole Is More Brilliant than the Parts. Advanced Materials, 2014, 26, 5429-5479.	11.1	2,737
19	Large reverse saturable absorption under weak continuous incoherent light. Nature Materials, 2014, 13, 938-946.	13.3	126

# 20	ARTICLE Relationship between room temperature phosphorescence and deuteration position in a purely aromatic compound. Chemical Physics Letters, 2014, 591, 119-125.	lF 1.2	CITATIONS
21	Molecular asterisks with a persulfurated benzene core are among the strongest organic phosphorescent emitters in the solid state. Dyes and Pigments, 2014, 110, 113-122.	2.0	76
22	Organic white-light emitting materials. Dyes and Pigments, 2014, 110, 2-27.	2.0	247
23	Influence of host matrix on thermally-activated delayed fluorescence: Effects on emission lifetime, photoluminescence quantum yield, and device performance. Organic Electronics, 2014, 15, 2027-2037.	1.4	158
24	Long-lived Triplet Excitons Allowed by Intermolecular Hydrogen Bonding in Amorphous Matrix. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 573-577.	0.1	5
25	Achieving Persistent Room Temperature Phosphorescence and Remarkable Mechanochromism from Pure Organic Luminogens. Advanced Materials, 2015, 27, 6195-6201.	11.1	513
26	Photoreversible On–Off Recording of Persistent Roomâ€Temperature Phosphorescence. Advanced Optical Materials, 2015, 3, 1726-1737.	3.6	107
28	Recent advances in purely organic phosphorescent materials. Chemical Communications, 2015, 51, 10988-11003.	2.2	399
29	Tuning the singlet–triplet energy gap of AIE luminogens: crystallization-induced room temperature phosphorescence and delay fluorescence, tunable temperature response, highly efficient non-doped organic light-emitting diodes. Physical Chemistry Chemical Physics, 2015, 17, 1134-1141.	1.3	73
30	The effects of extended conjugation length of purely organic phosphors on their phosphorescence emission properties. Physical Chemistry Chemical Physics, 2015, 17, 19096-19103.	1.3	17
31	Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials. Nature Communications, 2015, 6, 8947.	5.8	344
32	Efficient long lifetime room temperature phosphorescence of carbon dots in a potash alum matrix. Journal of Materials Chemistry C, 2015, 3, 2798-2801.	2.7	145
33	Luminescent rhenium(I)–chromone bioconjugate: Synthesis, photophysical properties, and confocal luminescence microscopy investigation. Journal of Organometallic Chemistry, 2015, 782, 124-130.	0.8	22
34	Waterborne Polyurethanes with Tunable Fluorescence and Room-Temperature Phosphorescence. ACS Applied Materials & Interfaces, 2015, 7, 17209-17216.	4.0	57
35	Halogen Bonding in Supramolecular Chemistry. Chemical Reviews, 2015, 115, 7118-7195.	23.0	1,073
36	Deuteration of Perylene Enhances Photochemical Upconversion Efficiency. Journal of Physical Chemistry Letters, 2015, 6, 3061-3066.	2.1	21
37	Visible room-temperature phosphorescence of pure organic crystals via a radical-ion-pair mechanism. Physical Chemistry Chemical Physics, 2015, 17, 15989-15995.	1.3	108
38	Aggregation-induced phosphorescence enhancement (AIPE) based on transition metal complexes—An overview. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 23, 25-44.	5.6	97

#	Article	IF	CITATIONS
39	Reversible Luminescence Switching of an Organic Solid: Controllable On–Off Persistent Room Temperature Phosphorescence and Stimulated Multiple Fluorescence Conversion. Advanced Optical Materials, 2015, 3, 1184-1190.	3.6	173
40	Crystallization-induced dual emission from metal- and heavy atom-free aromatic acids and esters. Chemical Science, 2015, 6, 4438-4444.	3.7	335
41	Linearly Tunable Emission Colors Obtained from a Fluorescent–Phosphorescent Dualâ€Emission Compound by Mechanical Stimuli. Angewandte Chemie - International Edition, 2015, 54, 6270-6273.	7.2	315
42	Stabilizing triplet excited states for ultralong organic phosphorescence. Nature Materials, 2015, 14, 685-690.	13.3	1,404
43	Aggregation-Induced Emission: Together We Shine, United We Soar!. Chemical Reviews, 2015, 115, 11718-11940.	23.0	6,279
44	Photochemical upconversion of light for renewable energy and more. Proceedings of SPIE, 2015, , .	0.8	3
45	Room temperature triplet state spectroscopy of organic semiconductors. Scientific Reports, 2014, 4, 3797.	1.6	180
46	Tripleâ€Mode Emission of Carbon Dots: Applications for Advanced Antiâ€Counterfeiting. Angewandte Chemie - International Edition, 2016, 55, 7231-7235.	7.2	625
47	Room-temperature phosphorescence from purely organic materials. Chinese Chemical Letters, 2016, 27, 1231-1240.	4.8	84
48	Roomâ€Temperature Phosphorescence of Crystalline 1,4â€Bis(aroyl)â€2,5â€dibromobenzenes. European Journal of Organic Chemistry, 2016, 2016, 467-473.	1.2	36
49	Strongly Enhanced Longâ€Lived Persistent Room Temperature Phosphorescence Based on the Formation of Metal–Organic Hybrids. Advanced Optical Materials, 2016, 4, 897-905.	3.6	241
50	Longâ€Lived Roomâ€Temperature Phosphorescence of Coronene in Zeolitic Imidazolate Framework ZIFâ€8. Advanced Optical Materials, 2016, 4, 1015-1021.	3.6	209
51	Tripleâ€Mode Emission of Carbon Dots: Applications for Advanced Anti ounterfeiting. Angewandte Chemie, 2016, 128, 7347-7351.	1.6	467
52	Siloxy Group-Induced Highly Efficient Room Temperature Phosphorescence with Long Lifetime. Journal of Physical Chemistry C, 2016, 120, 11631-11639.	1.5	95
53	Red Phosphorescence from Benzo[2,1,3]thiadiazoles at Room Temperature. Journal of Organic Chemistry, 2016, 81, 4789-4796.	1.7	43
54	Circularly Polarized Persistent Room-Temperature Phosphorescence from Metal-Free Chiral Aromatics in Air. Journal of Physical Chemistry Letters, 2016, 7, 1539-1545.	2.1	98
55	Rational Molecular Design for Achieving Persistent and Efficient Pure Organic Room-Temperature Phosphorescence. CheM, 2016, 1, 592-602.	5.8	610
56	Roomâ€Temperature Phosphorescence of Crystalline Metalâ€Free Organoboron Complex. ChemPhysChem, 2016, 17, 4033-4036.	1.0	25

CITATION REPC	DRT

#	Article	IF	CITATIONS
57	(NHC)Cu-Catalyzed Mild C–H Amidation of (Hetero)arenes with Deprotectable Carbamates: Scope and Mechanistic Studies. Journal of the American Chemical Society, 2016, 138, 12605-12614.	6.6	58
58	Excited State Modulation for Organic Afterglow: Materials and Applications. Advanced Materials, 2016, 28, 9920-9940.	11.1	616
59	Conformation controlled turn on–turn off phosphorescence in a metal-free biluminophore: thriving the paradox that exists for organic compounds. Physical Chemistry Chemical Physics, 2016, 18, 27910-27920.	1.3	20
60	Electrostatic Interaction-Induced Room-Temperature Phosphorescence in Pure Organic Molecules from QM/MM Calculations. Journal of Physical Chemistry Letters, 2016, 7, 2893-2898.	2.1	126
61	Amorphous, Efficient, Roomâ€Temperature Phosphorescent Metalâ€Free Polymers and Their Applications as Encryption Ink. Advanced Optical Materials, 2016, 4, 1397-1401.	3.6	183
62	Induction of Strong Longâ€Lived Roomâ€Temperature Phosphorescence of <i>N</i> â€Phenylâ€2â€naphthylamine Molecules by Confinement in a Crystalline Dibromobiphenyl Matrix. Angewandte Chemie - International Edition, 2016, 55, 15589-15593.	2 7.2	265
63	Induction of Strong Longâ€Lived Roomâ€Temperature Phosphorescence of <i>N</i> â€Phenylâ€2â€naphthylamine Molecules by Confinement in a Crystalline Dibromobiphenyl Matrix. Angewandte Chemie, 2016, 128, 15818-15822.	2 1.6	71
64	Efficient Room-Temperature Phosphorescence from Nitrogen-Doped Carbon Dots in Composite Matrices. Chemistry of Materials, 2016, 28, 8221-8227.	3.2	270
65	Polyimides with Heavy Halogens Exhibiting Room-Temperature Phosphorescence with Very Large Stokes Shifts. ACS Macro Letters, 2016, 5, 1301-1305.	2.3	87
66	Pure Organic Luminogens with Room Temperature Phosphorescence. ACS Symposium Series, 2016, , 1-26.	0.5	5
67	Large Transmittance Change Induced by Exciton Accumulation under Weak Continuous Photoexcitation. Advanced Optical Materials, 2016, 4, 297-305.	3.6	15
68	Intermolecular Electronic Coupling of Organic Units for Efficient Persistent Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2016, 128, 2221-2225.	1.6	156
69	Intermolecular Electronic Coupling of Organic Units for Efficient Persistent Roomâ€īemperature Phosphorescence. Angewandte Chemie - International Edition, 2016, 55, 2181-2185.	7.2	548
70	Afterglow Organic Lightâ€Emitting Diode. Advanced Materials, 2016, 28, 655-660.	11.1	417
71	Protection of densely populated excited triplet state ensembles against deactivation by molecular oxygen. Chemical Society Reviews, 2016, 45, 4668-4689.	18.7	105
72	Crystallization-induced phosphorescence of pure organic luminogens. Chinese Chemical Letters, 2016, 27, 1184-1192.	4.8	86
73	Enhanced room-temperature phosphorescence of triphenylphosphine derivatives without metal and heavy atoms in their crystal phase. RSC Advances, 2016, 6, 51683-51686.	1.7	22
74	Near-Infrared Phosphorescent Iridium(III) Benzonorrole Complexes Possessing Pyridine-based Axial Ligands. Inorganic Chemistry, 2016, 55, 6223-6230.	1.9	23

#	Article	IF	CITATIONS
75	Extremely condensing triplet states of DPEPO-type hosts through constitutional isomerization for high-efficiency deep-blue thermally activated delayed fluorescence diodes. Chemical Science, 2016, 7, 2870-2882.	3.7	92
76	Enhancing Organic Phosphorescence by Manipulating Heavy-Atom Interaction. Crystal Growth and Design, 2016, 16, 808-813.	1.4	122
77	"Rate-limited effect―of reverse intersystem crossing process: the key for tuning thermally activated delayed fluorescence lifetime and efficiency roll-off of organic light emitting diodes. Chemical Science, 2016, 7, 4264-4275.	3.7	212
78	Long persistent phosphors—from fundamentals to applications. Chemical Society Reviews, 2016, 45, 2090-2136.	18.7	943
79	Multi-luminescent switching of metal-free organic phosphors for luminometric detection of organic solvents. Chemical Science, 2016, 7, 2359-2363.	3.7	56
80	Bright persistent luminescence from pure organic molecules through a moderate intermolecular heavy atom effect. Chemical Science, 2017, 8, 6060-6065.	3.7	135
81	Molecular stacking dependent phosphorescence–fluorescence dual emission in a single luminophore for self-recoverable mechanoconversion of multicolor luminescence. Chemical Communications, 2017, 53, 2661-2664.	2.2	90
82	Rigidification or interaction-induced phosphorescence of organic molecules. Chemical Communications, 2017, 53, 2081-2093.	2.2	298
83	Unveiling a New Aspect of Simple Arylboronic Esters: Long-Lived Room-Temperature Phosphorescence from Heavy-Atom-Free Molecules. Journal of the American Chemical Society, 2017, 139, 2728-2733.	6.6	269
84	Phosphorescence in Bromobenzaldehyde Can Be Enhanced through Intramolecular Heavy Atom Effect. Journal of Physical Chemistry C, 2017, 121, 3771-3777.	1.5	49
85	How the Molecular Packing Affects the Room Temperature Phosphorescence in Pure Organic Compounds: Ingenious Molecular Design, Detailed Crystal Analysis, and Rational Theoretical Calculations. Advanced Materials, 2017, 29, 1606829.	11.1	351
86	White Afterglow Roomâ€Temperature Emission from an Isolated Single Aromatic Unit under Ambient Condition. Advanced Optical Materials, 2017, 5, 1600996.	3.6	88
87	Room-temperature phosphorescence from small organic systems containing a thiocarbonyl moiety. Physical Chemistry Chemical Physics, 2017, 19, 8896-8901.	1.3	17
88	Long Life-time Room-temperature Phosphorescence of Carbon Dots in Aluminum Sulfate. ChemistrySelect, 2017, 2, 4058-4062.	0.7	31
89	Switching between Phosphorescence and Fluorescence Controlled by Chiral Selfâ€Assembly. Advanced Science, 2017, 4, 1700021.	5.6	34
90	Interplay of Fluorescence and Phosphorescence in Organic Biluminescent Emitters. Journal of Physical Chemistry C, 2017, 121, 14946-14953.	1.5	43
91	The contributions of molecular vibrations and higher triplet levels to the intersystem crossing mechanism in metal-free organic emitters. Journal of Materials Chemistry C, 2017, 5, 6269-6280.	2.7	83
92	Room temperature phosphorescence from moisture-resistant and oxygen-barred carbon dot aggregates. Journal of Materials Chemistry C, 2017, 5, 6243-6250.	2.7	91

#	Article	IF	CITATIONS
93	Protonation-Induced Room-Temperature Phosphorescence in Fluorescent Polyurethane. Journal of Physical Chemistry A, 2017, 121, 4225-4232.	1.1	31
94	Recent Advances in Materials with Roomâ€Temperature Phosphorescence: Photophysics for Triplet Exciton Stabilization. Advanced Optical Materials, 2017, 5, 1700116.	3.6	565
95	Room temperature phosphorescence lifetime and spectrum tuning of substituted thianthrenes. Dyes and Pigments, 2017, 142, 315-322.	2.0	35
96	Photophysical behavior of systematically substituted (di-2-pyridylaminomethyl) benzene ligands and its Re(l) complexes: A combined experimental and theoretical approach. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 341, 115-126.	2.0	8
97	Amorphous 2-Bromocarbazole Copolymers with Efficient Room-Temperature Phosphorescent Emission and Applications as Encryption Ink. Industrial & Engineering Chemistry Research, 2017, 56, 3123-3128.	1.8	55
98	Long Persistent Phosphorescence of Crystalline Phenylboronic Acid Derivatives: Photophysics and a Mechanistic Study. ChemPhotoChem, 2017, 1, 102-106.	1.5	62
99	Highly Efficient Room-Temperature Phosphorescence from Halogen-Bonding-Assisted Doped Organic Crystals. Journal of Physical Chemistry A, 2017, 121, 8652-8658.	1.1	67
100	Synthesis of Arylamines via Aminium Radicals. Angewandte Chemie - International Edition, 2017, 56, 14948-14952.	7.2	107
101	Optimization of coupled plasmonic effects for viable phosphorescence of metal-free purely organic phosphor. Journal of Applied Physics, 2017, 122, 153103.	1.1	8
102	Organic Afterglow Phosphors. SpringerBriefs in Materials, 2017, , 117-151.	0.1	0
102 103	Organic Afterglow Phosphors. SpringerBriefs in Materials, 2017, , 117-151. Confinement of Longâ€Lived Triplet Excitons in Organic Semiconducting Host–Guest Systems. Advanced Functional Materials, 2017, 27, 1703902.	0.1 7.8	0
	Confinement of Longâ€Lived Triplet Excitons in Organic Semiconducting Host–Guest Systems. Advanced		
103	Confinement of Long‣ived Triplet Excitons in Organic Semiconducting Host–Guest Systems. Advanced Functional Materials, 2017, 27, 1703902. Afterglow Luminescence in Wet-Chemically Synthesized Inorganic Materials: Ultra-Long Room Temperature Phosphorescence Instead of Persistent Luminescence. Journal of Physical Chemistry	7.8	107
103 104	Confinement of Longâ€Lived Triplet Excitons in Organic Semiconducting Host–Guest Systems. Advanced Functional Materials, 2017, 27, 1703902. Afterglow Luminescence in Wet-Chemically Synthesized Inorganic Materials: Ultra-Long Room Temperature Phosphorescence Instead of Persistent Luminescence. Journal of Physical Chemistry Letters, 2017, 8, 4735-4739. Meta-Alkoxy-Substituted Difluoroboron Dibenzoylmethane Complexes as Environment-Sensitive	7.8 2.1	107 16
103 104 105	Confinement of Longâ€Lived Triplet Excitons in Organic Semiconducting Host–Guest Systems. Advanced Functional Materials, 2017, 27, 1703902. Afterglow Luminescence in Wet-Chemically Synthesized Inorganic Materials: Ultra-Long Room Temperature Phosphorescence Instead of Persistent Luminescence. Journal of Physical Chemistry Letters, 2017, 8, 4735-4739. Meta-Alkoxy-Substituted Difluoroboron Dibenzoylmethane Complexes as Environment-Sensitive Materials. ACS Applied Materials & amp; Interfaces, 2017, 9, 32008-32017. Visibleâ€Lightâ€Excited Ultralong Organic Phosphorescence by Manipulating Intermolecular Interactions.	7.8 2.1 4.0	107 16 45
103 104 105 106	Confinement of Longâ€Lived Triplet Excitons in Organic Semiconducting Host–Guest Systems. Advanced Functional Materials, 2017, 27, 1703902. Afterglow Luminescence in Wet-Chemically Synthesized Inorganic Materials: Ultra-Long Room Temperature Phosphorescence Instead of Persistent Luminescence. Journal of Physical Chemistry Letters, 2017, 8, 4735-4739. Meta-Alkoxy-Substituted Difluoroboron Dibenzoylmethane Complexes as Environment-Sensitive Materials. ACS Applied Materials & amp; Interfaces, 2017, 9, 32008-32017. Visibleâ€Lightâ€Excited Ultralong Organic Phosphorescence by Manipulating Intermolecular Interactions. Advanced Materials, 2017, 29, 1701244. Large Reverse Saturable Absorption at the Sunlight Power Level Using the Ultralong Lifetime of	7.8 2.1 4.0 11.1	107 16 45 320
103 104 105 106	Confinement of Longâ€Lived Triplet Excitons in Organic Semiconducting Host–Guest Systems. Advanced Functional Materials, 2017, 27, 1703902. Afterglow Luminescence in Wet-Chemically Synthesized Inorganic Materials: Ultra-Long Room Temperature Phosphorescence Instead of Persistent Luminescence. Journal of Physical Chemistry Letters, 2017, 8, 4735-4739. Meta-Alkoxy-Substituted Difluoroboron Dibenzoylmethane Complexes as Environment-Sensitive Materials. ACS Applied Materials & amp; Interfaces, 2017, 9, 32008-32017. Visibleâ€Lightâ€Excited Ultralong Organic Phosphorescence by Manipulating Intermolecular Interactions. Advanced Materials, 2017, 29, 1701244. Large Reverse Saturable Absorption at the Sunlight Power Level Using the Ultralong Lifetime of Triplet Excitons. Journal of Physical Chemistry Letters, 2017, 8, 3683-3689. Room emperatureâ€Phosphorescenceâ€Based Dissolved Oxygen Detection by Coreâ€6hell Polymer	 7.8 2.1 4.0 11.1 2.1 	107 16 45 320 25

#	Article	IF	CITATIONS
111	Probing the nature of peripheral boryl groups within luminescent tellurophenes. Faraday Discussions, 2017, 196, 255-268.	1.6	28
112	Color-tunable phosphorescence of 1,10-phenanthrolines by 4,7-methyl/-diphenyl/-dichloro substituents in cocrystals assembled <i>via</i> bifurcated Câ€"IN halogen bonds using 1,4-diiodotetrafluorobenzene as a bonding donor. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 2017. 73. 247-254.	0.5	20
113	White light emission from a single organic molecule with dual phosphorescence at room temperature. Nature Communications, 2017, 8, 416.	5.8	621
114	Halogen-Bonded Cocrystals. , 2017, , 49-72.		1
115	Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices. Nature Communications, 2018, 9, 734.	5.8	314
116	Construction and multifunctional applications of carbon dots/PVA nanofibers with phosphorescence and thermally activated delayed fluorescence. Chemical Engineering Journal, 2018, 347, 505-513.	6.6	84
117	Thermally activated delayed fluorescence with a narrow emission spectrum and organic room temperature phosphorescence by controlling spin–orbit coupling and phosphorescence lifetime of metal-free organic molecules. Journal of Materials Chemistry C, 2018, 6, 5434-5443.	2.7	56
118	Metal free room temperature phosphorescence from molecular self-interactions in the solid state. Journal of Materials Chemistry C, 2018, 6, 4603-4626.	2.7	239
119	Facile, Quick, and Gramâ€Scale Synthesis of Ultralongâ€Lifetime Roomâ€Temperatureâ€Phosphorescent Carbon Dots by Microwave Irradiation. Angewandte Chemie - International Edition, 2018, 57, 6216-6220.	7.2	474
120	Facile, Quick, and Gramâ€Scale Synthesis of Ultralongâ€Lifetime Roomâ€Temperatureâ€Phosphorescent Carbon Dots by Microwave Irradiation. Angewandte Chemie, 2018, 130, 6324-6328.	1.6	35
121	Ultralong Roomâ€Temperature Phosphorescence from Amorphous Polymer Poly(Styrene Sulfonic Acid) in Air in the Dry Solid State. Advanced Functional Materials, 2018, 28, 1707369.	7.8	167
122	Enhancing Ultralong Organic Phosphorescence by Effective Ï€â€Type Halogen Bonding. Advanced Functional Materials, 2018, 28, 1705045.	7.8	244
123	Multicolor Photoluminescence of a Hybrid Film via the Dual-Emitting Strategy of an Inorganic Fluorescent Au Nanocluster and an Organic Room-Temperature Phosphorescent Copolymer. Industrial & Engineering Chemistry Research, 2018, 57, 2866-2872.	1.8	33
124	Hydrogenâ€Bonded Organic Aromatic Frameworks for Ultralong Phosphorescence by Intralayer π–π Interactions. Angewandte Chemie - International Edition, 2018, 57, 4005-4009.	7.2	207
125	Design of Metalâ€Free Polymer Carbon Dots: A New Class of Roomâ€Temperature Phosphorescent Materials. Angewandte Chemie, 2018, 130, 2417-2422.	1.6	55
126	Design of Metalâ€Free Polymer Carbon Dots: A New Class of Roomâ€Temperature Phosphorescent Materials. Angewandte Chemie - International Edition, 2018, 57, 2393-2398.	7.2	429
127	Ultralong Phosphorescence from Organic Ionic Crystals under Ambient Conditions. Angewandte Chemie, 2018, 130, 686-690.	1.6	33
128	Twisted Molecular Structure on Tuning Ultralong Organic Phosphorescence. Journal of Physical Chemistry Letters, 2018, 9, 335-339.	2.1	72

#	Article	IF	CITATIONS
129	Amorphous Metal-Free Room-Temperature Phosphorescent Small Molecules with Multicolor Photoluminescence via a Host–Guest and Dual-Emission Strategy. Journal of the American Chemical Society, 2018, 140, 1916-1923.	6.6	481
130	Amorphous Pure Organic Polymers for Heavyâ€Atomâ€Free Efficient Roomâ€Temperature Phosphorescence Emission. Angewandte Chemie, 2018, 130, 11020-11024.	1.6	94
131	Amorphous Pure Organic Polymers for Heavyâ€Atomâ€Free Efficient Roomâ€Temperature Phosphorescence Emission. Angewandte Chemie - International Edition, 2018, 57, 10854-10858.	7.2	373
132	Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption. Science Advances, 2018, 4, eaas9732.	4.7	515
133	An organic–inorganic hybrid zinc phosphite framework with room temperature phosphorescence. Chemical Communications, 2018, 54, 3712-3714.	2.2	123
134	Clustering-Triggered Emission and Persistent Room Temperature Phosphorescence of Sodium Alginate. Biomacromolecules, 2018, 19, 2014-2022.	2.6	248
135	Hydrogenâ€Bonded Organic Aromatic Frameworks for Ultralong Phosphorescence by Intralayer π–π Interactions. Angewandte Chemie, 2018, 130, 4069-4073.	1.6	61
136	Journey of Aggregation-Induced Emission Research. ACS Omega, 2018, 3, 3267-3277.	1.6	234
137	Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Science China Chemistry, 2018, 61, 351-359.	4.2	214
138	Use of silylmethoxy groups as inducers of efficient room temperature phosphorescence from precious-metal-free organic luminophores. Materials Chemistry Frontiers, 2018, 2, 347-354.	3.2	21
139	Ultralong Phosphorescence from Organic Ionic Crystals under Ambient Conditions. Angewandte Chemie - International Edition, 2018, 57, 678-682.	7.2	176
140	Facile Synthesis of Photoluminescent Graphitic Carbon Nitride Quantum Dots for Hg ²⁺ Detection and Room Temperature Phosphorescence. ACS Sustainable Chemistry and Engineering, 2018, 6, 1732-1743.	3.2	87
141	Prolonging the lifetime of ultralong organic phosphorescence through dihydrogen bonding. Journal of Materials Chemistry C, 2018, 6, 226-233.	2.7	92
142	Wavelength conversion of Yb3+-activated Y4CdMo3O16 from near UV-region to IR emission. Materials Chemistry and Physics, 2018, 204, 216-221.	2.0	2
143	Layered Hybrid Zincophosphites for Room Temperature Phosphorescent Emission. Inorganic Chemistry, 2018, 57, 14497-14500.	1.9	10
144	Defect‣tabilized Triplet State Excitons: Toward Ultralong Organic Roomâ€Temperature Phosphorescence. Advanced Functional Materials, 2018, 28, 1804961.	7.8	70
145	Highly efficient room-temperature phosphorescence and afterglow luminescence from common organic fluorophores in 2D hybrid perovskites. Chemical Science, 2018, 9, 8975-8981.	3.7	119
146	Observation of Dual Room Temperature Fluorescence–Phosphorescence in Air, in the Crystal Form of a Thianthrene Derivative. Journal of Physical Chemistry C, 2018, 122, 24958-24966.	1.5	31

#	Article	IF	CITATIONS
147	Matrix-Free and Highly Efficient Room-Temperature Phosphorescence of Nitrogen-Doped Carbon Dots. Langmuir, 2018, 34, 12845-12852.	1.6	69
148	Aggregation-Induced Enhancement of Molecular Phosphorescence Lifetime: A First-Principle Study. Journal of Physical Chemistry C, 2018, 122, 25796-25803.	1.5	29
149	Unexpected room-temperature phosphorescence from a non-aromatic, low molecular weight, pure organic molecule through the intermolecular hydrogen bond. Materials Chemistry Frontiers, 2018, 2, 2124-2129.	3.2	138
150	Cluster-Based Metal–Organic Frameworks: Modulated Singlet–Triplet Excited States and Temperature-Responsive Phosphorescent Switch. ACS Applied Materials & Interfaces, 2018, 10, 34377-34384.	4.0	103
151	Insight into chirality on molecular stacking for tunable ultralong organic phosphorescence. Journal of Materials Chemistry C, 2018, 6, 10179-10183.	2.7	18
152	A Simple Strategy to Construct Amorphous Metalâ€Free Room Temperature Phosphorescent and Multiâ€Color Materials. ChemPhysChem, 2018, 19, 2131-2133.	1.0	2
153	Large refractive index variations induced by accumulating triplet excitons under photoexcitation at low power. Chemical Physics Letters, 2018, 704, 5-10.	1.2	3
154	Mechano-responsive room temperature luminescence variations of boron conjugated pyrene in air. Chemical Communications, 2018, 54, 6028-6031.	2.2	42
155	Dynamic Ultralong Organic Phosphorescence by Photoactivation. Angewandte Chemie - International Edition, 2018, 57, 8425-8431.	7.2	241
156	Pure Organic Persistent Roomâ€Temperature Phosphorescence at both Crystalline and Amorphous States. ChemPhysChem, 2018, 19, 2389-2396.	1.0	41
157	Biluminescence via Fluorescence and Persistent Phosphorescence in Amorphous Organic Donor(D ₄)–Acceptor(A) Conjugates and Application in Data Security Protection. Journal of Physical Chemistry Letters, 2018, 9, 3808-3813.	2.1	44
158	Ultralong Room-Temperature Phosphorescence from Supramolecular Behavior via Intermolecular Electronic Coupling in Pure Organic Crystals. Journal of Physical Chemistry Letters, 2018, 9, 3939-3945.	2.1	47
159	High pH-induced efficient room-temperature phosphorescence from carbon dots in hydrogen-bonded matrices. Journal of Materials Chemistry C, 2018, 6, 7890-7895.	2.7	72
160	Ultralong-lived room temperature triplet excitons: molecular persistent room temperature phosphorescence and nonlinear optical characteristics with continuous irradiation. Journal of Materials Chemistry C, 2018, 6, 11785-11794.	2.7	48
161	Dynamic Ultralong Organic Phosphorescence by Photoactivation. Angewandte Chemie, 2018, 130, 8561-8567.	1.6	47
162	New red-emitting Schiff base chelates: promising dyes for sensing and imaging of temperature and oxygen <i>via</i> phosphorescence decay time. Journal of Materials Chemistry C, 2018, 6, 8999-9009.	2.7	35
163	Simultaneously Enhancing Efficiency and Lifetime of Ultralong Organic Phosphorescence Materials by Molecular Self-Assembly. Journal of the American Chemical Society, 2018, 140, 10734-10739.	6.6	399
164	Boosting the Heavy Atom Effect by Cavitand Encapsulation: Room Temperature Phosphorescence of Pyrene in the Presence of Oxygen. Journal of Physical Chemistry A, 2018, 122, 6578-6584.	1.1	16

#	Article	IF	CITATIONS
165	Selfâ€Protective Roomâ€Temperature Phosphorescence of Fluorine and Nitrogen Codoped Carbon Dots. Advanced Functional Materials, 2018, 28, 1800791.	7.8	290
166	A facile strategy for realizing room temperature phosphorescence and single molecule white light emission. Nature Communications, 2018, 9, 2963.	5.8	339
167	Chalcogen atom modulated persistent room-temperature phosphorescence through intramolecular electronic coupling. Chemical Communications, 2018, 54, 9226-9229.	2.2	76
168	Smallâ€Molecule Emitters with High Quantum Efficiency: Mechanisms, Structures, and Applications in OLED Devices. Advanced Optical Materials, 2018, 6, 1800512.	3.6	201
169	<i>N</i> -Alkylcarbazoles: homolog manipulating long-lived room-temperature phosphorescence. Journal of Materials Chemistry C, 2018, 6, 8984-8989.	2.7	23
170	Intrinsic Analysis of Radiative and Room-Temperature Nonradiative Processes Based on Triplet State Intramolecular Vibrations of Heavy Atom-Free Conjugated Molecules toward Efficient Persistent Room-Temperature Phosphorescence. Journal of Physical Chemistry Letters, 2018, 9, 4251-4259.	2.1	49
171	Designing Efficient and Ultralong Pure Organic Roomâ€Temperature Phosphorescent Materials by Structural Isomerism. Angewandte Chemie - International Edition, 2018, 57, 7997-8001.	7.2	224
172	Covalent organic frameworks: a platform for the experimental establishment of the influence of intermolecular distance on phosphorescence. Journal of Materials Chemistry C, 2018, 6, 5369-5374.	2.7	43
173	Dual Emission through Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence, and Their Thermal Enhancement via Solid-State Structural Change in a Carbazole-Quinoline Conjugate. Journal of Physical Chemistry Letters, 2018, 9, 2733-2738.	2.1	81
174	Designing Efficient and Ultralong Pure Organic Roomâ€Temperature Phosphorescent Materials by Structural Isomerism. Angewandte Chemie, 2018, 130, 8129-8133.	1.6	72
175	Molecular cocrystals: design, charge-transfer and optoelectronic functionality. Physical Chemistry Chemical Physics, 2018, 20, 6009-6023.	1.3	143
176	Efficient room-temperature phosphorescence based on a pure organic sulfur-containing heterocycle: folding-induced spin–orbit coupling enhancement. Materials Chemistry Frontiers, 2018, 2, 1853-1858.	3.2	63
177	Fluorescence of Nonaromatic Organic Systems and Room Temperature Phosphorescence of Organic Luminogens: The Intrinsic Principle and Recent Progress. Small, 2018, 14, e1801560.	5.2	204
178	Organometallic Fluorophores of d 8 Metals (Pd, Pt, Au). Advances in Organometallic Chemistry, 2018, 69, 73-134.	0.5	14
179	One-step synthesis of cyclic compounds towards easy room-temperature phosphorescence and deep blue thermally activated delayed fluorescence. Chemical Communications, 2018, 54, 7850-7853.	2.2	32
180	Aggregationâ€Induced Emission with Longâ€Lived Roomâ€Temperature Phosphorescence from Methyleneâ€Linked Organic Donor–Acceptor Structures. Chemistry - an Asian Journal, 2019, 14, 751-754.	1.7	37
181	Use of Dimeric Excited States of the Donors in D ₄ -A Systems for Accessing White Light Emission, Afterglow, and Invisible Security Ink. Journal of Physical Chemistry C, 2019, 123, 22104-22113.	1.5	33
182	Excitedâ€State Modulation for Controlling Fluorescence and Phosphorescence Pathways toward Whiteâ€Light Emission. Advanced Optical Materials, 2019, 7, 1900767.	3.6	34

#	Article	IF	CITATIONS
183	Metal-free and purely organic phosphorescent light-emitting diodes using phosphorescence harvesting hosts and organic phosphorescent emitters. Journal of Materials Chemistry C, 2019, 7, 11500-11506.	2.7	23
184	Purely Organic Crystals Exhibit Bright Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2019, 131, 13656-13665.	1.6	24
185	Recent progress on pure organic room temperature phosphorescence materials based on host-guest interactions. Chinese Chemical Letters, 2019, 30, 1809-1814.	4.8	105
186	Manipulating the Stacking of Triplet Chromophores in the Crystal Form for Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 14140-14145.	7.2	98
187	Manipulating the Stacking of Triplet Chromophores in the Crystal Form for Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, 14278-14283.	1.6	27
188	Purely Organic Crystals Exhibit Bright Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2019, 58, 13522-13531.	7.2	72
189	Hydrogen bonding boosted the persistent room temperature phosphorescence of pure organic compounds for multiple applications. Journal of Materials Chemistry C, 2019, 7, 9095-9101.	2.7	46
190	Achieving Dual Persistent Roomâ€īemperature Phosphorescence from Polycyclic Luminophores via Interâ€iIntramolecular Charge Transfer. Advanced Optical Materials, 2019, 7, 1900511.	3.6	60
191	Controllable Multiemission with Ultralong Organic Phosphorescence in Crystal by Isomerization. Advanced Optical Materials, 2019, 7, 1901076.	3.6	24
192	Amorphous Ionic Polymers with Colorâ€īunable Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 18776-18782.	7.2	129
193	Controllably realizing elastic/plastic bending based on a room-temperature phosphorescent waveguiding organic crystal. Chemical Science, 2019, 10, 227-232.	3.7	112
194	Amorphous Ionic Polymers with Colorâ€īunable Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, 18952-18958.	1.6	36
195	Regioisomerism effect (RIE) on optimizing ultralong organic phosphorescence lifetimes. Chinese Chemical Letters, 2019, 30, 1974-1978.	4.8	11
196	Aqueous phase and amorphous state room temperature phosphorescence from a small aromatic carbonyl derivative. Materials Research Express, 2019, 6, 124003.	0.8	8
197	Synergistic Intra―and Intermolecular Noncovalent Interactions for Ultralong Organic Phosphorescence. Small, 2019, 15, e1903270.	5.2	30
198	Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking. Nature Communications, 2019, 10, 4247.	5.8	199
199	Highly efficient room-temperature phosphorescence achieved by gadolinium complexes. Dalton Transactions, 2019, 48, 14958-14961.	1.6	11
200	In Situ Green Synthesis of Nitrogen-Doped Carbon-Dot-Based Room-Temperature Phosphorescent Materials for Visual Iron Ion Detection. ACS Sustainable Chemistry and Engineering, 2019, 7, 18801-18809.	3.2	52

#	Article	IF	CITATIONS
201	Revealing Insight into Long-Lived Room-Temperature Phosphorescence of Host–Guest Systems. Journal of Physical Chemistry Letters, 2019, 10, 6019-6025.	2.1	90
202	Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers. Materials Chemistry Frontiers, 2019, 3, 257-264.	3.2	150
203	Evaluating the Impact of Fluorination on the Electro-optical Properties of Cross-Conjugated Benzobisoxazoles. Journal of Physical Chemistry A, 2019, 123, 1343-1352.	1.1	6
204	Achieving Dualâ€Emissive and Timeâ€Dependent Evolutive Organic Afterglow by Bridging Molecules with Weak Intermolecular Hydrogen Bonding. Advanced Optical Materials, 2019, 7, 1801593.	3.6	101
205	Highly Efficient Ultralong Organic Phosphorescence through Intramolecular-Space Heavy-Atom Effect. Journal of Physical Chemistry Letters, 2019, 10, 595-600.	2.1	130
206	A novel metal-free amorphous room-temperature phosphorescent polymer without conjugation. Science China Chemistry, 2019, 62, 430-433.	4.2	49
207	Programmable transparent organic luminescent tags. Science Advances, 2019, 5, eaau7310.	4.7	138
208	Blueâ€Lightâ€Absorbing Thin Films Showing Ultralong Roomâ€Temperature Phosphorescence. Advanced Materials, 2019, 31, e1807887.	11.1	167
209	Thermally activated delayed fluorescence and room-temperature phosphorescence in naphthyl appended carbazole–quinoline conjugates, and their mechanical regulation. Chemical Communications, 2019, 55, 1899-1902.	2.2	34
210	A colorless semi-aromatic polyimide derived from a sterically hindered bromine-substituted dianhydride exhibiting dual fluorescence and phosphorescence emission. Materials Chemistry Frontiers, 2019, 3, 39-49.	3.2	38
211	Crucial Breakthrough of Functional Persistent Luminescence Materials for Biomedical and Information Technological Applications. Frontiers in Chemistry, 2019, 7, 387.	1.8	43
212	Room temperature phosphorescence of Mn(<scp>ii</scp>) and Zn(<scp>ii</scp>) coordination polymers for photoelectron response applications. Dalton Transactions, 2019, 48, 10785-10789.	1.6	83
213	Achievement of persistent and efficient organic room-temperature phosphorescence with temperature-response by adjusting the proportion of excited-state configurations in coupled molecules. Journal of Materials Chemistry C, 2019, 7, 8250-8254.	2.7	20
214	Bipolar thianthrene derivatives exhibiting room temperature phosphorescence for oxygen sensing. Dyes and Pigments, 2019, 170, 107605.	2.0	19
215	Roles of Localized Electronic Structures Caused by π Degeneracy Due to Highly Symmetric Heavy Atomâ€Free Conjugated Molecular Crystals Leading to Efficient Persistent Roomâ€Temperature Phosphorescence. Advanced Science, 2019, 6, 1900410.	5.6	24
216	Enhancing the performance of pure organic room-temperature phosphorescent luminophores. Nature Communications, 2019, 10, 2111.	5.8	525
217	Advancement in science and technology of carbon dot-polymer hybrid composites: a review. Functional Composites and Structures, 2019, 1, 022001.	1.6	99
218	Metal-Free Room-Temperature Phosphorescent Systems for Pure White-Light Emission and Latent Fingerprint Visualization. Industrial & Engineering Chemistry Research, 2019, 58, 7778-7785.	1.8	34

#	Article	IF	CITATIONS
219	A Highly Efficient Red Metal-free Organic Phosphor for Time-Resolved Luminescence Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 18103-18110.	4.0	74
220	Pure Organic Room Temperature Phosphorescence from Excited Dimers in Self-Assembled Nanoparticles under Visible and Near-Infrared Irradiation in Water. Journal of the American Chemical Society, 2019, 141, 5045-5050.	6.6	285
221	Invoking ultralong room temperature phosphorescence of purely organic compounds through H-aggregation engineering. Materials Horizons, 2019, 6, 1259-1264.	6.4	131
222	Intramolecular electronic coupling for persistent room-temperature luminescence for smartphone based time-gated fingerprint detection. Materials Horizons, 2019, 6, 1215-1221.	6.4	45
223	Isophthalate-Based Room Temperature Phosphorescence: From Small Molecule to Side-Chain Jacketed Liquid Crystalline Polymer. Macromolecules, 2019, 52, 2495-2503.	2.2	33
224	17 Photocatalytic Carbonâ \in "Heteroatom Bond Formation. , 2019, , .		0
225	Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal. Nature Photonics, 2019, 13, 406-411.	15.6	579
226	Roomâ€Temperature Phosphorescence in Metalâ€Free Organic Materials. Annalen Der Physik, 2019, 531, 1800482.	0.9	79
227	Multi-emissive room temperature phosphorescence of a two-dimensional metal-organic framework. Inorganic Chemistry Communication, 2019, 104, 119-123.	1.8	6
228	Prolonging Ultralong Organic Phosphorescence Lifetime to 2.5 s through Confining Rotation in Molecular Rotor. Advanced Optical Materials, 2019, 7, 1800820.	3.6	53
229	Assembling-Induced Emission: An Efficient Approach for Amorphous Metal-Free Organic Emitting Materials with Room-Temperature Phosphorescence. Accounts of Chemical Research, 2019, 52, 738-748.	7.6	512
230	Room-Temperature Phosphorescence from Metal-Free Organic Materials in Solution: Origin and Molecular Design. Journal of Physical Chemistry Letters, 2019, 10, 1037-1042.	2.1	34
231	Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons. Nature Communications, 2019, 10, 5161.	5.8	216
232	Tunable afterglow luminescence and triple-mode emissions of thermally activated carbon dots confined within nanoclays. Journal of Materials Chemistry C, 2019, 7, 13640-13646.	2.7	44
233	One-dimensional π–΀ stacking induces highly efficient pure organic room-temperature phosphorescence and ternary-emission single-molecule white light. Journal of Materials Chemistry C, 2019, 7, 12502-12508.	2.7	81
234	Effect of Carbazolyl Groups on Photophysical Properties of Cyanuric Chloride. ACS Applied Materials & Interfaces, 2019, 11, 47162-47169.	4.0	24
235	Aqueous Photon Upconversion by Anionic Acceptors Self-Assembled on Cationic Bilayer Membranes with a Long Triplet Lifetime. Organic Materials, 2019, 01, 043-049.	1.0	3
236	Room-temperature phosphorescent polymers with excitation-wavelength and delay-time emission dependencies. RSC Advances, 2019, 9, 36287-36292.	1.7	5

#	Article	IF	CITATIONS
237	Anion-regulated transient and persistent phosphorescence and size-dependent ultralong afterglow of organic ionic crystals. Journal of Materials Chemistry C, 2019, 7, 14535-14542.	2.7	33
238	Subtle structure tailoring of metal-free triazine luminogens for highly efficient ultralong organic phosphorescence. Chinese Chemical Letters, 2019, 30, 1935-1938.	4.8	9
239	Polymorphic Pure Organic Luminogens with Throughâ€Space Conjugation and Persistent Roomâ€Temperature Phosphorescence. Chemistry - an Asian Journal, 2019, 14, 884-889.	1.7	28
240	Ultralong Organic Phosphorescence in the Solid State: The Case of Triphenylene Cocrystals with Halo- and Dihalo-penta/tetrafluorobenzene. Crystal Growth and Design, 2019, 19, 336-346.	1.4	33
241	Intermolecular Singlet Fission in Unsymmetrical Derivatives of Pentacene in Solution. Advanced Energy Materials, 2019, 9, 1802221.	10.2	20
242	Activating room temperature phosphorescence by organic materials using synergistic effects. Journal of Materials Chemistry C, 2019, 7, 230-236.	2.7	43
243	Suppressed Triplet Exciton Diffusion Due to Small Orbital Overlap as a Key Design Factor for Ultralongâ€Lived Roomâ€Temperature Phosphorescence in Molecular Crystals. Advanced Materials, 2019, 31, e1807268.	11.1	99
244	Controlling the fluorescence and room-temperature phosphorescence behaviour of carbon nanodots with inorganic crystalline nanocomposites. Nature Communications, 2019, 10, 206.	5.8	128
245	Achieving Amorphous Ultralong Room Temperature Phosphorescence by Coassembling Planar Small Organic Molecules with Polyvinyl Alcohol. Advanced Functional Materials, 2019, 29, 1807243.	7.8	147
246	Persistent luminescence instead of phosphorescence: History, mechanism, and perspective. Journal of Luminescence, 2019, 205, 581-620.	1.5	425
247	Aphen-derived N-doped white-emitting carbon dots with room temperature phosphorescence for versatile applications. Sensors and Actuators B: Chemical, 2020, 304, 127344.	4.0	26
248	New Wine in Old Bottles: Prolonging Roomâ€Temperature Phosphorescence of Crown Ethers by Supramolecular Interactions. Angewandte Chemie, 2020, 132, 9379-9384.	1.6	14
249	Excitationâ€Dependent Longâ€Life Luminescent Polymeric Systems under Ambient Conditions. Angewandte Chemie - International Edition, 2020, 59, 9967-9971.	7.2	242
250	New Wine in Old Bottles: Prolonging Roomâ€Temperature Phosphorescence of Crown Ethers by Supramolecular Interactions. Angewandte Chemie - International Edition, 2020, 59, 9293-9298.	7.2	105
251	Excitationâ€Dependent Longâ€Life Luminescent Polymeric Systems under Ambient Conditions. Angewandte Chemie, 2020, 132, 10053-10057.	1.6	49
252	Tunable Fluorescence and Room-Temperature Phosphorescence from Multiresponsive Pure Organic Copolymers. Industrial & Engineering Chemistry Research, 2020, 59, 1578-1583.	1.8	27
253	Dissecting Tetra- <i>N</i> -phenylbenzidine: Biphenyl as the Origin of Room Temperature Phosphorescence. Journal of Physical Chemistry A, 2020, 124, 479-485.	1.1	9
254	Observation of Nonradiative Deactivation Behavior from Singlet and Triplet States of Thermally Activated Delayed Fluorescence Emitters in Solution. Journal of Physical Chemistry Letters, 2020, 11, 562-566.	2.1	36

#	Article	IF	CITATIONS
255	Eight Cd(<scp>ii</scp>) coordination polymers with persistent room-temperature phosphorescence: intriguing dual emission and time-resolved afterglow modulation. Inorganic Chemistry Frontiers, 2020, 7, 777-785.	3.0	34
256	Molecular Engineering for Metalâ€Free Amorphous Materials with Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2020, 59, 11206-11216.	7.2	322
257	Molecular Engineering for Metalâ€Free Amorphous Materials with Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2020, 132, 11302-11312.	1.6	65
258	Biocompatible metal-free organic phosphorescent nanoparticles for efficiently multidrug-resistant bacteria eradication. Science China Materials, 2020, 63, 316-324.	3.5	20
259	Clusteringâ€Triggered Efficient Roomâ€Temperature Phosphorescence from Nonconventional Luminophores. ChemPhysChem, 2020, 21, 36-42.	1.0	39
260	Highly Efficient Organic Afterglow from a 2D Layered Lead-Free Metal Halide in Both Crystals and Thin Films under an Air Atmosphere. ACS Applied Materials & Interfaces, 2020, 12, 1419-1426.	4.0	48
261	Metallacycle Transfer and its Link to Lightâ€Emitting Materials and Conjugated Polymers. Chemical Record, 2020, 20, 640-648.	2.9	13
262	Manipulating the Ultralong Organic Phosphorescence of Small Molecular Crystals. Chemistry - A European Journal, 2020, 26, 4437-4448.	1.7	92
263	Orange Organic Long-persistent Luminescence from an Electron Donor/Acceptor Binary System. Chemistry Letters, 2020, 49, 203-206.	0.7	9
264	Design of highly efficient deep-blue organic afterglow through guest sensitization and matrices rigidification. Nature Communications, 2020, 11, 4802.	5.8	148
265	Colorâ€Tunable, Excitationâ€Dependent, and Timeâ€Dependent Afterglows from Pure Organic Amorphous Polymers. Advanced Materials, 2020, 32, e2004768.	11.1	181
266	Organic Longâ€Persistent Luminescence from a Thermally Activated Delayed Fluorescence Compound. Advanced Materials, 2020, 32, e2003911.	11.1	86
267	Phosphorus-containing amorphous pure organic room-temperature phosphorescent materials. European Polymer Journal, 2020, 141, 110072.	2.6	4
268	Room-temperature phosphorescence from a purely organic tetraphenylmethane derivative with formyl groups in both solution and crystalline states. Journal of Materials Chemistry C, 2020, 8, 14360-14364.	2.7	15
269	Ultralong and Highâ€Efficiency Room Temperature Phosphorescence of Organicâ€Phosphorsâ€Doped Polymer Films Enhanced by 3D Network. Advanced Optical Materials, 2020, 8, 2001192.	3.6	47
270	Non-noble-metal-based organic emitters for OLED applications. Materials Science and Engineering Reports, 2020, 142, 100581.	14.8	55
271	The Substituent-Induced Symmetry-Forbidden Electronic Transition Allows Significant Optical Limiting under Weak Sky-Blue Irradiance. Journal of Physical Chemistry Letters, 2020, 11, 8675-8681.	2.1	10
272	Persistent Organic Room-Temperature Phosphorescence in Cyclohexane- <i>trans</i> -1,2-Bisphthalimide Derivatives: The Dramatic Impact of Heterochiral vs Homochiral interactions. Journal of Physical Chemistry Letters, 2020, 11, 6426-6434.	2.1	20

#	Article	IF	CITATIONS
273	A Synergistic Enhancement Strategy for Realizing Ultralong and Efficient Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2020, 132, 18907-18913.	1.6	22
274	Pure-organic phosphine oxide luminescent materials. Journal of Information Display, 2020, 21, 149-172.	2.1	8
275	A Synergistic Enhancement Strategy for Realizing Ultralong and Efficient Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2020, 59, 18748-18754.	7.2	148
276	Anchoring Carbon Nanodots onto Nanosilica for Phosphorescence Enhancement and Delayed Fluorescence Nascence in Solid and Liquid States. Small, 2020, 16, e2005228.	5.2	61
277	Conformation-Dependent Phosphorescence of Galactose-Decorated Phosphors and Assembling-Induced Phosphorescence Enhancement. ACS Applied Materials & Interfaces, 2020, 12, 52059-52069.	4.0	18
278	Monochromophoreâ€Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. Angewandte Chemie - International Edition, 2020, 59, 23456-23460.	7.2	62
279	Monochromophoreâ€Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. Angewandte Chemie, 2020, 132, 23662-23666.	1.6	7
280	Allâ€Organic, Temporally Pure White Afterglow in Amorphous Films Using Complementary Blue and Greenishâ€Yellow Ultralong Room Temperature Phosphors. Advanced Functional Materials, 2020, 30, 2003693.	7.8	108
281	Structure-lock induced phosphorescence lifetime enhancing of (9H-carbazol-9-yl)(phenyl)methanone: An organic phosphorescent materials. Journal of Luminescence, 2020, 227, 117587.	1.5	13
282	Organic Luminophores Exhibiting Bimodal Emissions of Fluorescence and Roomâ€Temperature Phosphorescence for Versatile Applications. ChemistrySelect, 2020, 5, 12770-12776.	0.7	7
283	Phosphorescence Quenching of Heavy-Atom-Free Dopant Chromophores Triggered by Thermally Activated Triplet Exciton Diffusion of a Conjugated Crystalline Host. Journal of Physical Chemistry C, 2020, 124, 25121-25132.	1.5	10
284	Chiral lanthanide lumino-glass for a circularly polarized light security device. Communications Chemistry, 2020, 3, .	2.0	45
285	Achieving Purelyâ€Organic Roomâ€Temperature Aqueous Phosphorescence via a Twoâ€Component Macromolecular Selfâ€Assembly Strategy. Chemistry - an Asian Journal, 2020, 15, 3469-3474.	1.7	3
286	Elucidation of distinct fluorescence and room-temperature phosphorescence of organic polymorphs from benzophenone–borate derivatives. Physical Chemistry Chemical Physics, 2020, 22, 21445-21452.	1.3	11
287	Breaking Kasha's Rule as a Mechanism for Solution-Phase Room-Temperature Phosphorescence from High-Lying Triplet Excited State. Journal of Physical Chemistry Letters, 2020, 11, 8246-8251.	2.1	23
288	Room-temperature phosphorescence from organic aggregates. Nature Reviews Materials, 2020, 5, 869-885.	23.3	786
289	Room temperature phosphorescence from heavy atom free benzophenone boronic ester derivatives. Bulletin of Materials Science, 2020, 43, 1.	0.8	5
290	Nonconventional luminophores with unprecedented efficiencies and color-tunable afterglows. Materials Horizons, 2020, 7, 2105-2112.	6.4	80

#	Article	IF	CITATIONS
291	Large-scale preparation for efficient polymer-based room-temperature phosphorescence via click chemistry. Science Advances, 2020, 6, eaaz6107.	4.7	101
292	Room Temperature Phosphorescent Crystals Consisting of Cyclized Guests and Their Uncyclized Mother Host Molecules. Chemistry Letters, 2020, 49, 921-924.	0.7	7
293	Tuning molecular emission of organic emitters from fluorescence to phosphorescence through push-pull electronic effects. Nature Communications, 2020, 11, 2617.	5.8	117
294	Persistent Room Temperature Phosphorescence from Triarylboranes: A Combined Experimental and Theoretical Study. Angewandte Chemie, 2020, 132, 17285-17292.	1.6	22
295	Persistent Room Temperature Phosphorescence from Triarylboranes: A Combined Experimental and Theoretical Study. Angewandte Chemie - International Edition, 2020, 59, 17137-17144.	7.2	82
296	Wideâ€Range Colorâ€Tunable Organic Phosphorescence Materials for Printable and Writable Security Inks. Angewandte Chemie - International Edition, 2020, 59, 16054-16060.	7.2	340
297	Wideâ€Range Colorâ€Tunable Organic Phosphorescence Materials for Printable and Writable Security Inks. Angewandte Chemie, 2020, 132, 16188-16194.	1.6	40
298	The Effect of Electron Donation and Intermolecular Interactions on Ultralong Phosphorescence Lifetime of 4-Carnoyl Phenylboronic Acids. Journal of Physical Chemistry A, 2020, 124, 2746-2754.	1.1	18
299	Stimuliâ€Responsive Purely Organic Roomâ€Temperature Phosphorescence Materials. Chemistry - A European Journal, 2020, 26, 11914-11930.	1.7	76
300	Aromatic Phosphonates: A Novel Group of Emitters Showing Blue Ultralong Room Temperature Phosphorescence. Advanced Materials, 2020, 32, e2000880.	11.1	118
301	Heavy Atom Effect of Selenium for Metal-Free Phosphorescent Light-Emitting Diodes. Chemistry of Materials, 2020, 32, 2583-2592.	3.2	86
302	Highly Efficient Persistent Roomâ€Temperature Phosphorescence from Heavy Atomâ€Free Molecules Triggered by Hidden Long Phosphorescent Antenna. Advanced Materials, 2020, 32, e2001348.	11.1	113
303	Organic Room-Temperature Phosphorescent Materials: From Static to Dynamic. Journal of Physical Chemistry Letters, 2020, 11, 6191-6200.	2.1	71
304	Accessing Tunable Afterglows from Highly Twisted Nonaromatic Organic AlEgens via Effective Throughâ€ 5 pace Conjugation. Angewandte Chemie - International Edition, 2020, 59, 10018-10022.	7.2	120
305	Structural change of trans-azobenzene crystal and powder under high pressure. Journal of Molecular Structure, 2020, 1206, 127745.	1.8	3
306	Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer. Nature Communications, 2020, 11, 944.	5.8	278
307	Room temperature phosphorescence from organic luminogens in"non-crystalline―state. Supramolecular Chemistry, 2020, 32, 287-311.	1.5	4
308	Accessing Tunable Afterglows from Highly Twisted Nonaromatic Organic AlEgens via Effective Throughâ€Space Conjugation. Angewandte Chemie, 2020, 132, 10104-10108.	1.6	12

# 309	ARTICLE New route to strong, long-lived room-temperature phosphorescence using organic phosphor guest-friendly matrices [Al(DMSO)6]X3 (X=Clâ^', Brâ^'). Dyes and Pigments, 2020, 177, 108323.	IF 2.0	CITATIONS
310	A clustering-triggered emission strategy for tunable multicolor persistent phosphorescence. Chemical Science, 2020, 11, 2926-2933.	3.7	127
311	Quinoline-containing diarylethenes: bridging between turn-on fluorescence, RGB switching and room temperature phosphorescence. Chemical Science, 2020, 11, 2729-2734.	3.7	26
312	Pure Organic Room Temperature Phosphorescence from Unique Micelleâ€Assisted Assembly of Nanocrystals in Water. Advanced Functional Materials, 2020, 30, 1907282.	7.8	75
313	Twoâ€Coordinate Copper(I)/NHC Complexes: Dual Emission Properties and Ultralong Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2020, 132, 8287-8294.	1.6	15
314	Twoâ€Coordinate Copper(I)/NHC Complexes: Dual Emission Properties and Ultralong Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2020, 59, 8210-8217.	7.2	72
315	Insights on aggregation induced room temperature phosphorescence properties: A QM/MM study. Journal of Luminescence, 2020, 221, 117046.	1.5	11
316	Effect of the Tris(trimethylsilyl)silyl Group on the Fluorescence and Triplet Yields of Oligothiophenes. Journal of Physical Chemistry C, 2020, 124, 3277-3286.	1.5	20
317	Protonâ€Activated Amorphous Roomâ€Temperature Phosphorescence for Humidity Sensing and High‣evel Data Encryption. Chemistry - an Asian Journal, 2020, 15, 1088-1093.	1.7	10
318	Organic Room Temperature Phosphorescence Materials for Biomedical Applications. Chemistry - an Asian Journal, 2020, 15, 947-957.	1.7	101
319	Tunable dual emission of fluorescence-phosphorescence at room temperature based on pure organic supramolecular gels. Dyes and Pigments, 2020, 181, 108506.	2.0	5
320	Tuning Multimode Luminescence in Lanthanide(III) and Manganese(II) Coâ€Doped CaZnOS Crystals. Advanced Optical Materials, 2020, 8, 2000274.	3.6	42
321	Ultrastable and colorful afterglow from organic luminophores in amorphous nanocomposites: advanced anti-counterfeiting and in vivo imaging application. Nano Research, 2020, 13, 1035-1043.	5.8	42
322	Activating Intersystem Crossing and Aggregation Coupling by CN-Substitution for Efficient Organic Ultralong Room Temperature Phosphorescence. Journal of Physical Chemistry C, 2020, 124, 10129-10134.	1.5	24
323	Many Exciplex Systems Exhibit Organic Longâ€Persistent Luminescence. Advanced Functional Materials, 2020, 30, 2000795.	7.8	64
324	High contrast temperature-responsive luminescence materials from purely organic molecule with persistent room-temperature phosphorescence. Journal of Luminescence, 2021, 230, 117731.	1.5	5
325	Producing long afterglow by cellulose confinement effect: A wood-inspired design for sustainable phosphorescent materials. Carbon, 2021, 171, 946-952.	5.4	41
326	Multiâ€Mode Colorâ€Tunable Long Persistent Luminescence in Singleâ€Component Coordination Polymers. Angewandte Chemie - International Edition, 2021, 60, 2526-2533.	7.2	64

#	Article	IF	CITATIONS
327	Ïfâ€Conjugation and Hâ€Bondâ€Directed Supramolecular Selfâ€Assembly: Key Features for Efficient Longâ€Lived Room Temperature Phosphorescent Organic Molecular Crystals. Angewandte Chemie - International Edition, 2021, 60, 2446-2454.	7.2	29
328	Multicolor ultralong room-temperature phosphorescence from pure organic emitters by structural isomerism. Chemical Engineering Journal, 2021, 408, 127309.	6.6	16
329	Benzo[1,2-b:4,5-b']dithiophene as a weak donor component for push-pull materials displaying thermally activated delayed fluorescence or room temperature phosphorescence. Dyes and Pigments, 2021, 186, 109022.	2.0	11
330	Persistent room temperature blue phosphorescence from racemic crystals of 1,1-diphenylmethanol derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 407, 113043.	2.0	2
331	A color-tunable single molecule white light emitter with high luminescence efficiency and ultra-long room temperature phosphorescence. Journal of Materials Chemistry C, 2021, 9, 727-735.	2.7	33
332	Five lead(II) coordinated polymers assembled from asymmetric azoles carboxylate ligands: Synthesis, structures and fluorescence properties. Inorganica Chimica Acta, 2021, 514, 120035.	1.2	6
333	Ïfâ€Conjugation and Hâ€Bondâ€Directed Supramolecular Selfâ€Assembly: Key Features for Efficient Longâ€Lived Room Temperature Phosphorescent Organic Molecular Crystals. Angewandte Chemie, 2021, 133, 2476-2484.	1.6	9
334	Multiâ€Mode Colorâ€Tunable Long Persistent Luminescence in Singleâ€Component Coordination Polymers. Angewandte Chemie, 2021, 133, 2556-2563.	1.6	19
335	Highly efficient room-temperature organic afterglow achieved by collaboration of luminescent dimeric TADF dopants and rigid matrices. Journal of Materials Chemistry C, 2021, 9, 3939-3947.	2.7	31
336	Recent advances in persistent luminescence based on molecular hybrid materials. Chemical Society Reviews, 2021, 50, 5564-5589.	18.7	331
337	Purely organic phosphorescent organic light emitting diodes using alkyl modified phenoselenazine. Journal of Materials Chemistry C, 2021, 9, 8233-8238.	2.7	19
338	Unexpected long room-temperature phosphorescence lifetimes of up to 1.0 s observed in iodinated molecular systems. Chemical Communications, 2021, 57, 8794-8797.	2.2	36
339	Vibrational Radiationless Transition from Triplet States of Chromophores at Room Temperature. Journal of Physical Chemistry A, 2021, 125, 885-894.	1.1	11
340	Recent Advances of Pure Organic Room Temperature Phosphorescence Materials for Bioimaging Applications. Chemical Research in Chinese Universities, 2021, 37, 73-82.	1.3	23
341	Efficient metal-free organic room temperature phosphors. Chemical Science, 2021, 12, 4216-4236.	3.7	117
342	Boosting purely organic room-temperature phosphorescence performance through a host–guest strategy. Chemical Science, 2021, 12, 13580-13587.	3.7	27
343	Boosting the humidity resistance of nonconventional luminogens with room temperature phosphorescence <i>via</i> enhancing the strength of hydrogen bonds. Journal of Materials Chemistry C, 2021, 9, 8515-8523.	2.7	35
344	The initial attempt to reveal the emission processes of both mechanoluminescence and room temperature phosphorescence with the aid of circular dichroism in solid state. Science China Chemistry, 2021, 64, 445-451.	4.2	46

#	Article	IF	CITATIONS
346	The Progress of Circularly Polarized Luminescence in Chiral Purely Organic Materials. Advanced Photonics Research, 2021, 2, 2000136.	1.7	51
347	Luminous Butterflies: Rational Molecular Design to Optimize Crystal Packing for Dramatically Enhanced Roomâ€Temperature Phosphorescence. Advanced Optical Materials, 2021, 9, 2001549.	3.6	23
348	Recent progress on pure organic room temperature phosphorescent polymers. Aggregate, 2021, 2, e38.	5.2	119
349	Ultralong and Color-Tunable Room-Temperature Phosphorescence Based on Commercial Melamine for Anticounterfeiting and Information Recognition. Analytical Chemistry, 2021, 93, 4075-4083.	3.2	31
350	Simple Vanilla Derivatives for Long-Lived Room-Temperature Polymer Phosphorescence as Invisible Security Inks. Research, 2021, 2021, 8096263.	2.8	22
351	Luminescence lifetime imaging of ultra-long room temperature phosphorescence on a smartphone. Analytical and Bioanalytical Chemistry, 2021, 413, 3291-3297.	1.9	11
352	Phenothiazine–Quinoline Conjugates Realizing Intrinsic Thermally Activated Delayed Fluorescence and Roomâ€Temperature Phosphorescence: Understanding the Mechanism and Electroluminescence Devices. Advanced Photonics Research, 2021, 2, 2000201.	1.7	11
353	Boosting Wideâ€Range Tunable Longâ€Afterglow in 1D Metal–Organic Halide Micro/Nanocrystals for Space/Timeâ€Resolved Information Photonics. Advanced Materials, 2021, 33, e2007571.	11.1	138
354	Recent Progress in Pure Organic Room Temperature Phosphorescence of Small Molecular Host–Guest Systems. , 2021, 3, 379-397.		155
355	Room Temperature Phosphorescence from Organic Materials: Unravelling the Emissive Behaviour of Chloroâ€Substituted Derivatives of Cyclic Triimidazole. European Journal of Organic Chemistry, 2021, 2021, 2041-2049.	1.2	13
356	Triphenylamine-based trinuclear Pt(II) complexes for solution-processed OLEDs displaying efficient pure yellow and red emissions. Organic Electronics, 2021, 91, 106101.	1.4	9
357	Ultraviolet irradiation-responsive dynamic ultralong organic phosphorescence in polymeric systems. Nature Communications, 2021, 12, 2297.	5.8	196
358	Design Guidelines to Elongate Spin–Lattice Relaxation Times of Porphyrins with Large Triplet Electron Polarization. Journal of Physical Chemistry A, 2021, 125, 4334-4340.	1.1	8
359	Achieving High Afterglow Brightness in Organic Dopantâ€Matrix Systems. Advanced Optical Materials, 2021, 9, 2100353.	3.6	54
360	Achieving Purely Organic Room-Temperature Phosphorescence Mediated by a Host–Guest Charge Transfer State. Journal of Physical Chemistry Letters, 2021, 12, 4600-4608.	2.1	47
361	Key of Suppressed Triplet Nonradiative Transition-Dependent Chemical Backbone for Spatial Self-Tunable Afterglow. Jacs Au, 2021, 1, 945-954.	3.6	20
362	Purely Organic Microparticles Showing Ultralong Room Temperature Phosphorescence. ACS Omega, 2021, 6, 13087-13093.	1.6	5
363	Significantly Enhanced Afterglow Brightness via Intramolecular Energy Transfer. , 2021, 3, 713-720.		20

	CITATION	REPORT	
#	Article	IF	CITATIONS
364	TADFâ€Type Organic Afterglow. Angewandte Chemie - International Edition, 2021, 60, 17138-17147.	7.2	115
365	Emission color management of dual emitting organic light-emitting diodes by selective switching of phosphorescence through host engineering. Journal of Industrial and Engineering Chemistry, 2021, 98, 270-274.	2.9	6
366	Wide-range lifetime-tunable and responsive ultralong organic phosphorescent multi-host/guest system. Nature Communications, 2021, 12, 3522.	5.8	161
367	TADFâ€₹ype Organic Afterglow. Angewandte Chemie, 2021, 133, 17275-17284.	1.6	17
368	Tailoring Noncovalent Interactions to Activate Persistent Roomâ€Temperature Phosphorescence from Doped Polyacrylonitrile Films. Advanced Functional Materials, 2021, 31, 2101656.	7.8	83
369	Influence of Guest/Host Morphology on Room Temperature Phosphorescence Properties of Pure Organic Doped Systems. Journal of Physical Chemistry Letters, 2021, 12, 7357-7364.	2.1	26
370	Organic composite materials: Understanding and manipulating excited states toward higher lightâ€emitting performance. Aggregate, 2021, 2, e103.	5.2	7
371	Lifetime-tunable green room temperature phosphorescence of carbon dots by the multi-step modification. Optics Express, 2021, 29, 41014.	1.7	5
372	Modulating Room Temperature Phosphorescence by Oxidation of Thianthrene to Achieve Pure Organic Single-Molecule White-Light Emission. CCS Chemistry, 2021, 3, 1940-1948.	4.6	28
373	Tuning Organic Roomâ€Temperature Phosphorescence through the Confinement Effect of Inorganic Micro/Nanostructures. Small Structures, 2021, 2, 2100044.	6.9	43
374	Persistent Roomâ€Temperature Phosphorescence from Purely Organic Molecules and Multi omponent Systems. Advanced Optical Materials, 2021, 9, 2100411.	3.6	81
375	Developing Efficient Dinuclear Pt(II) Complexes Based on the Triphenylamine Core for High-Efficiency Solution-Processed OLEDs. ACS Applied Materials & Interfaces, 2021, 13, 36020-36032.	4.0	7
376	Large-Area, Flexible, Transparent, and Long-Lived Polymer-Based Phosphorescence Films. Journal of the American Chemical Society, 2021, 143, 13675-13685.	6.6	237
377	Synaptic Plasticity Powering Longâ€Afterglow Organic Lightâ€Emitting Transistors. Advanced Materials, 2021, 33, e2103369.	11.1	23
378	Time-Dependent Afterglow from a Single Component Organic Luminogen. Research, 2021, 2021, 9757460.	2.8	9
379	Supramolecular Purely Organic Room-Temperature Phosphorescence. Accounts of Chemical Research, 2021, 54, 3403-3414.	7.6	179
380	Organic Persistent Luminescent Materials: Ultralong Room-Temperature Phosphorescence and Multicolor-Tunable Afterglow. ACS Applied Materials & Interfaces, 2021, 13, 41131-41139.	4.0	35
381	Multistage Stimulusâ€Responsive Room Temperature Phosphorescence Based on Host–Guest Doping Systems. Angewandte Chemie - International Edition, 2021, 60, 20259-20263.	7.2	125

#	Article	IF	CITATIONS
382	Reduced Intrinsic Nonâ€Radiative Losses Allow Roomâ€Temperature Triplet Emission from Purely Organic Emitters. Advanced Materials, 2021, 33, e2101844.	11.1	28
383	Multistage Stimulusâ€Responsive Room Temperature Phosphorescence Based on Host–Guest Doping Systems. Angewandte Chemie, 2021, 133, 20421-20425.	1.6	17
384	Tunable Photoluminescence Properties of Microcrystalline Cellulose with Gradually Changing Crystallinity and Crystal Form. Macromolecular Rapid Communications, 2021, 42, e2100321.	2.0	25
385	Longâ€Range Charge Transportation Induced Organic Host–Guest Dual Color Long Persistent Luminescence. Advanced Optical Materials, 2021, 9, 2101337.	3.6	17
386	Modulation of red organic room-temperature phosphorescence in heavy atom-free phosphors. Dyes and Pigments, 2021, 193, 109505.	2.0	24
387	Ultralong Organic Phosphorescent Foams with High Mechanical Strength. Journal of the American Chemical Society, 2021, 143, 16256-16263.	6.6	84
388	A facile strategy to realize metal-free room-temperature phosphorescence by construct nitrogen doped carbon dots-based nanocomposite. Microchemical Journal, 2022, 172, 106878.	2.3	12
389	Color-Tunable Long-Lived Room-Temperature Phosphorescence in a Coordination Polymer Based on a Nonaromatic Ligand and Its Phosphor/Coordination Polymer-Doped Systems. Chemistry of Materials, 2021, 33, 7272-7282.	3.2	19
390	Oxygen sensing properties of thianthrene and phenothiazine derivatives exhibiting room temperature phosphorescence: Effect of substitution of phenothiazine moieties. Sensors and Actuators B: Chemical, 2021, 345, 130369.	4.0	22
391	Switchable circularly polarized Room-Temperature phosphorescence based on pure organic amorphous binaphthyl polymer. Chemical Engineering Journal, 2021, 421, 129732.	6.6	56
392	Multiemission tunability with ultralong and time–dependent room-temperature phosphorescence from isophthalic acid-decorated carbazole by coordination–induced crystallization. Dyes and Pigments, 2021, 195, 109715.	2.0	8
393	Recent progress in organic color-tunable phosphorescent materials. Journal of Materials Science and Technology, 2022, 101, 264-284.	5.6	38
394	Excitation-dependent organic phosphors exhibiting different luminescence colors for information anti-counterfeiting. Chemical Engineering Journal, 2022, 429, 132288.	6.6	37
395	Dynamic adjustment of emission from both singlets and triplets: the role of excited state conformation relaxation and charge transfer in phenothiazine derivates. Journal of Materials Chemistry C, 2021, 9, 1378-1386.	2.7	22
396	White light employing luminescent engineered large (mega) Stokes shift molecules: a review. RSC Advances, 2021, 11, 13409-13445.	1.7	37
397	Heavy-Atom-Free Room-Temperature Phosphorescent Organic Light-Emitting Diodes Enabled by Excited States Engineering. ACS Applied Materials & amp; Interfaces, 2021, 13, 2899-2907.	4.0	48
398	Room-temperature phosphorescent organic materials for optical waveguides. Journal of Materials Chemistry C, 2021, 9, 14115-14132.	2.7	18
399	Biluminescence Under Ambient Conditions: Waterâ€Soluble Organic Emitter in Highâ€Oxygenâ€Barrier Polymer. Advanced Optical Materials, 2020, 8, 2000427.	3.6	39

	CITATION		
#	Article	IF	Citations
400	Synthesis of Arylamines via Aminium Radicals. Angewandte Chemie, 2017, 129, 15144-15148.	1.6	29
401	Chargeâ€Transfer and Arrangement Effects on Delayed Photoluminescence from Phthalimide Cocrystals. ChemPhotoChem, 2018, 2, 42-52.	1.5	14
402	Precious Metal-Free Organic Small Molecule Luminophores That Exhibit Room Temperature Phosphorescence. , 2019, , 43-76.		4
403	Synthesis of Insulated Heteroaromatic Platinum–Acetylide Complexes with Color-Tunable Phosphorescence in Solution and Solid States. Journal of Organic Chemistry, 2020, 85, 3082-3091.	1.7	8
404	Near-Infrared-Excitable Organic Ultralong Phosphorescence through Multiphoton Absorption. Research, 2020, 2020, 2904928.	2.8	10
405	Polymorphism-Dependent Dynamic Ultralong Organic Phosphorescence. Research, 2020, 2020, 8183450.	2.8	33
406	Converting molecular luminescence to ultralong room-temperature phosphorescence <i>via</i> the excited state modulation of sulfone-containing heteroaromatics. Chemical Science, 2021, 12, 14808-14814.	3.7	27
407	Synergetic enhancement of room-temperature phosphorescence <i>via</i> water molecules as a hydrogen bonding bridge. Journal of Materials Chemistry C, 2021, 9, 16581-16586.	2.7	16
408	Organic clusters with time-dependent color-tunable dual persistent room-temperature phosphorescence. Journal of Materials Chemistry C, 2021, 9, 15998-16005.	2.7	9
409	Circularly Polarized Organic Room Temperature Phosphorescence from Amorphous Copolymers. Journal of the American Chemical Society, 2021, 143, 18527-18535.	6.6	132
410	Manipulation of Organic Afterglow by Thermodynamic and Kinetic Control. Chemistry - A European Journal, 2021, 27, 16735-16743.	1.7	6
411	The Synthesis and Properties of TIPA-Dominated Porous Metal-Organic Frameworks. Nanomaterials, 2021, 11, 2791.	1.9	3
412	Colorâ€Tunable Supramolecular Luminescent Materials. Advanced Materials, 2022, 34, e2105405.	11.1	74
414	Near Infrared Fluorescent Nanostructure Design for Organic/Inorganic Hybrid System. Biomedicines, 2021, 9, 1583.	1.4	6
415	High‧peed and Continuousâ€Wave Programmable Luminescent Tags Based on Exclusive Room Temperature Phosphorescence (RTP). Advanced Science, 2021, 8, e2102104.	5.6	28
416	Recent Advances on Host–Guest Material Systems toward Organic Room Temperature Phosphorescence. Small, 2022, 18, e2104073.	5.2	170
417	Unveiling the mechanisms of organic room-temperature phosphorescence in various surrounding environments: a computational study. Physical Chemistry Chemical Physics, 2021, 23, 26813-26821.	1.3	6
418	Lanthanide-containing persistent luminescence materials with superbright red afterglow and excellent solution processability. Science China Chemistry, 2021, 64, 2125-2133.	4.2	18

#	Article	IF	CITATIONS
419	Tailored Fabrication of Carbon Dot Composites with Full olor Ultralong Roomâ€Temperature Phosphorescence for Multidimensional Encryption. Advanced Science, 2022, 9, e2103833.	5.6	100
420	Thermo-Reversible Persistent Phosphorescence Modulation Reveals the Large Contribution Made by Rigidity to the Suppression of Endothermic Intermolecular Triplet Quenching. Frontiers in Chemistry, 2021, 9, 788577.	1.8	3
421	Two-Component Design Strategy: Achieving Intense Organic Afterglow and Diverse Functions in Coronene-Matrix Systems. Journal of Physical Chemistry C, 2021, 125, 26986-26998.	1.5	30
422	Protic acids as third components improve the phosphorescence properties of the guest-host system through hydrogen bonds. Chemical Engineering Journal, 2022, 433, 133530.	6.6	25
423	Red-light emissive phosphorescent polymers based on X-shaped single benzene. Dyes and Pigments, 2022, 198, 110005.	2.0	9
424	Phase- and Halogen-Dependent Room-Temperature Phosphorescence Properties of Biphenylnitrile Derivatives. Journal of Physical Chemistry C, 2021, 125, 27489-27496.	1.5	4
425	Design Guidelines for Rigid Epoxy Resins with High Photon Upconversion Efficiency: Critical Role of Emitter Concentration. ACS Applied Materials & amp; Interfaces, 2022, 14, 22771-22780.	4.0	6
426	Highly sensitive and quantitative biodetection with lipid-polymer hybrid nanoparticles having organic room-temperature phosphorescence. Biosensors and Bioelectronics, 2022, 199, 113889.	5.3	8
427	Two-component design strategy: TADF-Type organic afterglow for time-gated chemodosimeters. Chemical Engineering Journal, 2022, 431, 134197.	6.6	25
428	Matrix-free nitrogen-doped carbon dots with room temperature phosphorescence for information encryption and temperature detection. Microchemical Journal, 2022, 175, 107126.	2.3	14
429	Triplet exciton dynamics of pure organics with halogen substitution boosted two photon absorption and room temperature phosphorescence: A theoretical perspective. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 270, 120786.	2.0	9
430	Triplet harvesting aryl carbonyl-based luminescent materials: progress and prospective. Journal of Materials Chemistry C, 2021, 9, 17233-17264.	2.7	17
431	Unveiling the crucial contributions of electrostatic and dispersion interactions to the ultralong room-temperature phosphorescence of H-bond crosslinked poly(vinyl alcohol) films. Materials Horizons, 2022, 9, 1081-1088.	6.4	42
432	Vitrimer enhanced carbazole-based organic room-temperature phosphorescent materials. New Journal of Chemistry, 2021, 46, 276-281.	1.4	5
433	Rational Design of a Triplet Afterglow Sensitizer Allowing for Bright Long-Wavelength Afterglow Room-Temperature Emission. Chemistry of Materials, 2022, 34, 1627-1637.	3.2	16
434	Boosting organic afterglow efficiency <i>via</i> triplet–triplet annihilation and thermally-activated delayed fluorescence. Journal of Materials Chemistry C, 2022, 10, 4795-4804.	2.7	7
435	Progress on Exploring the Luminescent Properties of Organic Molecular Aggregates by Multiscale Modeling. Frontiers in Chemistry, 2021, 9, 808957.	1.8	3
436	Persistent room temperature phosphorescence films based on star-shaped organic emitters. Journal of Materials Chemistry C, 2022, 10, 1833-1838.	2.7	9

#	Article	IF	CITATIONS
437	Molecular physics of persistent room temperature phosphorescence and long-lived triplet excitons. Applied Physics Reviews, 2022, 9, .	5.5	66
438	Stepwise Energy Transfer: Nearâ€Infrared Persistent Luminescence from Doped Polymeric Systems. Advanced Materials, 2022, 34, e2108333.	11.1	97
439	Folding-Induced Spin–Orbit Coupling Enhancement for Efficient Pure Organic Room-Temperature Phosphorescence. Journal of Physical Chemistry Letters, 2022, 13, 1563-1570.	2.1	14
440	Onâ€Demand Circularly Polarized Roomâ€Temperature Phosphorescence in Chiral Nematic Nanoporous Silica Films. Advanced Optical Materials, 2022, 10, .	3.6	14
441	Single organic molecular systems for white light emission and their classification with associated emission mechanism. Applied Materials Today, 2022, 27, 101407.	2.3	9
442	Manipulation of Triplet Excited States for Longâ€Lived and Efficient Organic Afterglow. Advanced Optical Materials, 2022, 10, .	3.6	34
443	Room temperature tunable multicolor phosphorescent polymers for humidity detection and information encryption. RSC Advances, 2022, 12, 8145-8153.	1.7	5
444	From aggregation-induced emission to organic room temperature phosphorescence through suppression of molecular vibration. Cell Reports Physical Science, 2022, 3, 100771.	2.8	18
445	Stimulus-responsive room temperature phosphorescence materials with full-color tunability from pure organic amorphous polymers. Science Advances, 2022, 8, eabl8392.	4.7	143
446	ä,‰äºšè<¯åŠå¶åø̈́"®åø̈晶体的螺旋结构和è¶é•¿å⁻¿å'½å®æ¸©ç£·å‰. Scientia Sinica Chimica, 20	20,2, .	0
447	Long-Lived Room Temperature Phosphorescence Crystals with Green Light Excitation. ACS Applied Materials & Interfaces, 2022, 14, 15706-15715.	4.0	36
448	Synergistic Generation and Accumulation of Triplet Excitons for Efficient Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2022, 61, .	7.2	33
449	Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence in Asymmetric Phenoxazine-Quinoline (D2–A) Conjugates and Dual Electroluminescence. Journal of Physical Chemistry C, 2022, 126, 5649-5657.	1.5	15
449 450	Phenoxazine-Quinoline (Ď2–A) Conjugates and Dual Electroluminescence. Journal of Physical	1.5 6.6	15 105
	Phenoxaźine-Quinoline (Ď2–A) Conjugates and Dual Electroluminescence. Journal of Physical Chemistry C, 2022, 126, 5649-5657. Cross-Linked Polyphosphazene Nanospheres Boosting Long-Lived Organic Room-Temperature		
450	 Phenoxaźine-Quinoline (Ď2–A) Conjugates and Dual Electroluminescence. Journal of Physical Chemistry C, 2022, 126, 5649-5657. Cross-Linked Polyphosphazene Nanospheres Boosting Long-Lived Organic Room-Temperature Phosphorescence. Journal of the American Chemical Society, 2022, 144, 6107-6117. Synergistic Generation and Accumulation of Triplet Excitons for Efficient Ultralong Organic 	6.6	105
450 451	 Phenoxaźine-Quinoline (Ď2–A) Conjugates and Dual Electroluminescence. Journal of Physical Chemistry C, 2022, 126, 5649-5657. Cross-Linked Polyphosphazene Nanospheres Boosting Long-Lived Organic Room-Temperature Phosphorescence. Journal of the American Chemical Society, 2022, 144, 6107-6117. Synergistic Generation and Accumulation of Triplet Excitons for Efficient Ultralong Organic Phosphorescence. Angewandte Chemie, 2022, 134, . Long Persistent Luminescence of Meltâ€Grown Bulkâ€6ized Doped Organic Crystals. Advanced Optical 	6.6 1.6	105 5

#	Article	IF	CITATIONS
455	A host-guest organic afterglow system with significant guest induced enhancement of phosphorescence. Dyes and Pigments, 2022, 201, 110196.	2.0	8
456	Tunable Secondâ€Level Roomâ€Temperature Phosphorescence of Solid Supramolecules between Acrylamide–Phenylpyridium Copolymers and Cucurbit[7]uril. Angewandte Chemie - International Edition, 2022, 61, .	7.2	57
457	White Emissions Containing Room Temperature Phosphorescence from Different Excited States of a D– <i>π</i> –A Molecule Depending on the Aggregate States. Advanced Science, 2022, 9, e2104539.	5.6	21
458	Tunable Secondâ€Level Roomâ€∓emperature Phosphorescence of Solid Supramolecules between Acrylamide–Phenylpyridium Copolymers and Cucurbit[7]uril. Angewandte Chemie, 2022, 134, .	1.6	9
459	Highly Efficient TADFâ€Type Organic Afterglow of Long Emission Wavelengths. Advanced Functional Materials, 2022, 32, .	7.8	50
460	Intense Organic Afterglow Enabled by Molecular Engineering in Dopant-Matrix Systems. ACS Applied Materials & Interfaces, 2022, 14, 1587-1600.	4.0	26
461	Modulation of the intramolecular hydrogen bonding and push–pull electron effects toward realizing highly efficient organic room temperature phosphorescence. Journal of Materials Chemistry C, 2022, 10, 13797-13804.	2.7	19
463	Chorioretinal Hypoxia Detection Using Lipid-Polymer Hybrid Organic Room-Temperature Phosphorescent Nanoparticles. ACS Applied Materials & Interfaces, 2022, 14, 18182-18193.	4.0	6
464	Manipulation of Triplet Excited States in Two omponent Systems for Highâ€Performance Organic Afterglow Materials. Chemistry - A European Journal, 2022, 28, .	1.7	26
465	Crystallization induced room-temperature phosphorescence and chiral photoluminescence properties of phosphoramides. Chemical Science, 2022, 13, 5893-5901.	3.7	21
466	Modulation of triplet-mediated emission from selenoxanthen-9-one-based D–A–D type emitters through tuning the twist angle to realize electroluminescence efficiency over 25%. Journal of Materials Chemistry C, 2022, 10, 7437-7442.	2.7	9
467	Manipulating room-temperature phosphorescence <i>via</i> lone-pair electrons and empty-orbital arrangements and hydrogen bond adjustment. Journal of Materials Chemistry C, 2022, 10, 8854-8859.	2.7	5
468	Modulating the triplet chromophore environment to prolong the emission lifetime of ultralong organic phosphorescence. Journal of Materials Chemistry C, 2022, 10, 13747-13752.	2.7	5
469	Impact of Fabrication Processes of Small-Molecule-Doped Polymer Thin-Films on Room-Temperature Phosphorescence. Frontiers in Physics, 2022, 10, .	1.0	2
470	A facile and green strategy to obtain organic room-temperature phosphorescence from natural lignin. Science China Chemistry, 2022, 65, 1100-1104.	4.2	26
471	Recent advances of room temperature phosphorescence and long persistent luminescence by doping system of purely organic molecules. Dyes and Pigments, 2022, 204, 110400.	2.0	12
472	Phenoxazine–Quinoline Conjugates: Impact of Halogenation on Charge Transfer Triplet Energy Harvesting via Aggregate Induced Phosphorescence. ACS Omega, 2022, 7, 16827-16836.	1.6	6
473	Clustering and halogen effects enabled red/near-infrared room temperature phosphorescence from aliphatic cyclic imides. Nature Communications, 2022, 13, 2658.	5.8	92

#	ARTICLE	IF	CITATIONS
474	Metal and halogen-free purely organic room temperature phosphorescence material using heavy atom effect of phenoselenazine. Organic Electronics, 2022, 106, 106534.	1.4	7
475	Control of photoluminescence quantum yield and long-lived triplet emission lifetime in organic alloys. Chemical Science, 2022, 13, 6882-6887.	3.7	2
476	Boosting Organic Afterglow Performance via a Two-Component Design Strategy Extracted from Macromolecular Self-Assembly. Journal of Physical Chemistry Letters, 2022, 13, 5030-5039.	2.1	8
477	Efficient monomolecular white emission of phenothiazine boronic ester derivatives with room temperature phosphorescence. Journal of Materials Chemistry C, 2022, 10, 10347-10355.	2.7	8
478	Enhancing room-temperature phosphorescence <i>via</i> intermolecular charge transfer in dopant-matrix systems. Chemical Communications, 2022, 58, 8137-8140.	2.2	9
479	A "Flexible―Purely Organic Molecule Exhibiting Strong Spin–Orbital Coupling: Toward Nondoped Room-Temperature Phosphorescence OLEDs. Journal of Physical Chemistry Letters, 2022, 13, 4971-4980.	2.1	14
480	Thermally Activated and Aggregationâ€Regulated Excitonic Coupling Enable Emissive High‣ying Triplet Excitons**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
481	Thermally Activated and Aggregationâ€Regulated Excitonic Coupling Enable Emissive High‣ying Triplet Excitons**. Angewandte Chemie, 2022, 134, .	1.6	5
482	Poly(arylene piperidine) Quaternary Ammonium Salts Promoting Stable Longâ€Lived Roomâ€Temperature Phosphorescence in Aqueous Environment. Advanced Materials, 2022, 34, .	11.1	50
483	Ratiometric hypoxia detection by bright organic room temperature phosphorescence of uniformed silica nanoparticles in water. Aggregate, 2023, 4, .	5.2	14
484	Dynamic room-temperature phosphorescence by reversible transformation of photo-induced free radicals. Science China Chemistry, 2022, 65, 1538-1543.	4.2	17
485	A Benzene Ringâ€Linked Dimethylamino and Borate Esterâ€Based Molecule and Organic Crystal: Efficient Dual Roomâ€Temperature Phosphorescence with Responsive Property. Advanced Optical Materials, 2022, 10, .	3.6	3
486	Evoking ultra-long molecular room temperature phosphorescence of pure carbazole derivatives. Chemical Engineering Journal, 2022, 447, 137458.	6.6	13
487	Binding model-tuned room-temperature phosphorescence of the bromo-naphthol derivatives based on cyclodextrins. RSC Advances, 2022, 12, 19313-19316.	1.7	1
488	In-Situ Grafting N-Arylcarbazoles Enables More Ultra-Long Room Temperature Phosphorescence Polymers. SSRN Electronic Journal, 0, , .	0.4	0
489	Achieving redox-responsive organic afterglow materials <i>via</i> a dopant–matrix design strategy. Journal of Materials Chemistry C, 2022, 10, 11634-11641.	2.7	8
490	NearlyÂUnity Quantum Yield Persistent Room Temperature Phosphorescence from Heavy Atomâ€Free Rigid Inorganic/Organic Hybrid Frameworks. Angewandte Chemie, 0, , .	1.6	0
491	Nearly Unity Quantum Yield Persistent Roomâ€Temperature Phosphorescence from Heavy Atomâ€Free Rigid Inorganic/Organic Hybrid Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	7.2	41

#	Article	IF	CITATIONS
492	Organic phosphorescent scintillation from copolymers by X-ray irradiation. Nature Communications, 2022, 13, .	5.8	55
493	Achieving purely organic room temperature phosphorescence in aqueous solution. Aggregate, 2023, 4,	5.2	36
494	Theoretical insights into room temperature phosphorescence emission with anti-Kasha behavior in aggregate. Dyes and Pigments, 2022, 205, 110560.	2.0	8
495	AIE-active Pt(II) complexes based on a three-ligand molecular framework for high performance solution-processed OLEDs. Chemical Engineering Journal, 2022, 449, 137457.	6.6	5
496	Cascade Synthesis of Luminescent Difluoroboron Diketonate Compounds for <scp>Roomâ€Temperature</scp> Organic Afterglow Materials. Chinese Journal of Chemistry, 2022, 40, 2507-2515.	2.6	18
497	Photo-thermo-induced room-temperature phosphorescence through solid-state molecular motion. Nature Communications, 2022, 13, .	5.8	25
498	Identification of Lithocholic Acid as a Molecular Glass Host for Roomâ€Temperature Phosphorescent Materials. ChemPhotoChem, 0, , .	1.5	0
499	Accurate Wavelength Tracking by Exciton Spin Mixing. Advanced Materials, 2022, 34, .	11.1	3
500	Purely Organic Blue Roomâ€Temperature Phosphorescence Activated by Acrylamide In Situ Photopolymerization. Advanced Optical Materials, 0, , 2201330.	3.6	6
501	Enhanced Red Persistent Room-Temperature Phosphorescence Induced by Orthogonal Structure Disruption during Electronic Relaxation. Journal of Physical Chemistry Letters, 2022, 13, 7788-7796.	2.1	10
502	Ultralong organic phosphorescence from isolated molecules with repulsive interactions for multifunctional applications. Nature Communications, 2022, 13, .	5.8	61
503	Boosting organic phosphorescence in pure organics by mixed heavy atoms management. Dyes and Pigments, 2022, 207, 110741.	2.0	3
504	In-situ grafting N-arylcarbazoles enables more ultra-long room temperature phosphorescence polymers. Chemical Engineering Journal, 2023, 452, 139385.	6.6	14
505	Reexamining the heavy-atom-effect: The universal heavy-atom-induced fluorescence enhancement principle for through-space conjugated AlEgens. Chemical Engineering Journal, 2023, 451, 139030.	6.6	13
506	Merging photoinitiated bulk polymerization and the dopant-matrix design strategy for polymer-based organic afterglow materials. Polymer Chemistry, 2022, 13, 4641-4649.	1.9	5
507	Boosting Blue Emission of Organic Cations in a Sn(IV)-Based Perovskite by Constructing Intermolecular Interactions. Journal of Physical Chemistry Letters, 2022, 13, 8717-8724.	2.1	11
508	Organic Afterglow Emulsions Exhibiting 2.4 s Phosphorescence Lifetimes and Specific Protein Binding Property. Advanced Optical Materials, 2022, 10, .	3.6	18
509	A UV and X-ray dual photochromic Zn (II) metal-organic framework based on viologen: Photo-controlled luminescence and temperature-dependent phosphorescence. Dyes and Pigments, 2023, 208, 110812.	2.0	3

#	Article	IF	CITATIONS
510	Ultralong room-temperature phosphorescence from polycyclic aromatic hydrocarbons by accelerating intersystem crossing within a rigid polymer network. Journal of Materials Chemistry C, 2022, 10, 17620-17627.	2.7	17
511	A processable, scalable, and stable full-color ultralong afterglow system based on heteroatom-free hydrocarbon doped polymers. Materials Horizons, 2023, 10, 197-208.	6.4	21
512	H-Bonding Room Temperature Phosphorescence Materials via Facile Preparation for Water-Stimulated Photoluminescent Ink. Molecules, 2022, 27, 6482.	1.7	2
513	Activating Organic Phosphorescence via Heavy Metal–π Interaction Induced Intersystem Crossing. Advanced Materials, 2022, 34, .	11.1	14
514	Dynamic B/N Lewis Pairs: Insights into the Structural Variations and Photochromism via Lightâ€Induced Fluorescence to Phosphorescence Switching. Angewandte Chemie, 2022, 134, .	1.6	0
515	Dynamic B/N Lewis Pairs: Insights into the Structural Variations and Photochromism via Lightâ€Induced Fluorescence to Phosphorescence Switching. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
516	Distinguishing the Quantum Yield and Lifetime of Carbazoleâ€Based Roomâ€Temperature Phosphorescence Materials: QM/MM Study. Annalen Der Physik, 2022, 534, .	0.9	1
517	Efficient room-temperature phosphorescence of covalent organic frameworks through covalent halogen doping. Nature Chemistry, 2023, 15, 83-90.	6.6	52
518	External Heavy-Atom Activated Phosphorescence of Organic Luminophores in a Rigid Fluid Matrix. , 2022, 4, 2555-2561.		20
519	Conformational isomeric thermally activated delayed fluorescence (TADF) emitters: mechanism, applications, and perspectives. Physical Chemistry Chemical Physics, 2023, 25, 2729-2741.	1.3	8
520	Achieving long-lived room-temperature phosphorescence via charge transfer technology and dopant-matrix design strategy. Dyes and Pigments, 2023, 210, 110984.	2.0	4
521	Polymer-Based TADF-Type Organic Afterglow. Journal of Physical Chemistry C, 2022, 126, 20728-20738.	1.5	5
522	New Phthalic Anhydrideâ€Based Roomâ€īemperature Phosphorescence Emitter with Lifetime Longer Than One Second. Advanced Optical Materials, 2023, 11, .	3.6	3
523	Efficient Persistent Luminescence from Cellulose–Halide Mixtures for Optical Encryption. ACS Sustainable Chemistry and Engineering, 2022, 10, 16752-16759.	3.2	8
524	A Twisted Phosphor: Breaking T ₁ Energy Conservation in Dopantâ€Matrix Organic Phosphorescence Systems. Advanced Optical Materials, 2023, 11, .	3.6	4
525	Ultralong room temperature phosphorescence via the charge transfer-separation-recombination mechanism based on organic small molecule doping strategy. Chinese Chemical Letters, 2023, 34, 108062.	4.8	3
526	Recent advances in room-temperature phosphorescent materials by manipulating intermolecular interactions. Science China Chemistry, 2023, 66, 304-314.	4.2	42
527	Aqueous <scp>Roomâ€Temperature</scp> Phosphorescence from Assembled Phosphors for Analytical Detection ^{â€} . Chinese Journal of Chemistry, 2023, 41, 979-990.	2.6	6

ARTICLE IF CITATIONS # Advanced charge transfer technology for highly efficient and long-lived TADF-type organic afterglow 528 4.2 18 with near-infrared light-excitable property. Science China Chemistry, 2023, 66, 1120-1131. Wideâ€range colorâ€tunable afterglow emission by the modulation of triplet exciton transition 529 5.2 processes based on buckybowl structure. Aggregate, 2023, 4, . Benzophenone-containing phosphors with an unprecedented long lifetime of 1.8 s under ambient 530 2.2 10 conditions. Chemical Communications, 2023, 59, 1525-1528. The Halogen Bond in Weakly Bonded Complexes and the Consequences for Aromaticity and Spin-Orbit Coupling. Molecules, 2023, 28, 772. Manipulation of Organic Afterglow in Fluoranthene ontaining Dopantâ€Matrix Systems: From Conventional Roomâ€Temperature Phosphorescence to Efficient Red TADFâ€Type Órganic Afterglow. 532 1.7 7 Chemistry - A European Journal, 2023, 29, . The unexpected mechanism of transformation from conventional room-temperature phosphorescence to TADF-type organic afterglow triggered by simple chemical modification. Journal of Materials Chemistry C, 2023, 11, 2291-2301. 2.7 Molecular Persistent Room-Temperature Phosphorescence from Tetraarylaminoboranes. Inorganic 534 1.9 4 Chemistry, 2023, 62, 1122-1134. Selective Triplet–Singlet Försterâ€Resonance Energy Transfer for Bright Red Afterglow Emission. Advanced Functional Materials, 2023, 33, . Enabling longâ€lived polymeric room temperature phosphorescence material inÂabominableÂsolvent. 536 1.7 1 Chemistry - A European Journal, 0, , . Recent advances in metal-free phosphorescent materials for organic light-emitting diodes. Journal of 2.7 Materials Chemistry C, 2023, 11, 3143-3161. Adsorption of indole[3, 2-b] carbazole derivatives in the filter paper matrix to realize long-lived room 538 0 1.5 temperature phosphorescence emission. Journal of Luminescence, 2023, 257, 119720. Intermolecular arrangement facilitated broadband blue emission in group-12 metal (Zn, Cd) hybrid halides and their applications. Materials Today Chemistry, 2023, 30, 101502. D-O-A based organic phosphors for both aggregation-induced electrophosphorescence and host-free 540 5.8 6 sensitization. Nature Communications, 2023, 14, . Stimuli-responsive room-temperature phosphorescence regulation based on molecular packing mode 541 conversion. Dyes and Pigments, 2023, 215, 111272. 542 Sonicationâ€Responsive Organic Afterglow Emulsions. Advanced Functional Materials, 2023, 33, . 7.8 6 Manipulating intermolecular interactions for ultralong organic phosphorescence. Aggregate, 2023, 4, 543 Role of Carbonyl Distortions Facilitating Persistent Room-Temperature Phosphorescence. Journal of 544 1.53 Physical Chemistry C, 2023, 127, 3861-3871. Stimulus-Responsive Organic Phosphorescence Materials Based on Small Molecular Host–Guest 545 2.1 Doped Systems. Journal of Physical Chemistry Letters, 2023, 14, 1794-1807.

#	Article	IF	CITATIONS
546	Long‣ived Luminescence Emitted from Imide Compounds Dispersed in Polymer Matrices after Continuous Ultraviolet Irradiation and its Relation to Oxygen Quenching. ChemPhotoChem, 2023, 7, .	1.5	1
547	Merging thermally activated delayed fluorescence and two-photon ionization mechanisms for highly efficient and ultralong-lived organic afterglow. Chemical Engineering Journal, 2023, 460, 141916.	6.6	7
548	Circularly polarized organic room temperature phosphorescence activated by liquid crystalline polymer networks. Journal of Materials Chemistry C, 2023, 11, 4104-4111.	2.7	9
549	Structural and mechanistic studies of excitation- and temperature-tunable multicolor luminescence of triarylborane. CrystEngComm, 2023, 25, 2204-2212.	1.3	1
550	Recent advances in room temperature phosphorescence of chiral organic materials. Chirality, 2023, 35, 390-410.	1.3	7
551	Achieving Stimuli-Responsive Amorphous Organic Afterglow in Single-Component Copolymer through Self-Doping. Journal of the American Chemical Society, 2023, 145, 7343-7351.	6.6	30
552	A double heterohelicene composed of two benzo[<i>b</i>]phenothiazine exhibiting intense room-temperature circularly polarized phosphorescence. Journal of Materials Chemistry C, 2023, 11, 4846-4854.	2.7	1
553	Phosphineâ€Manipulated <i>p</i> â€i€ and ï€ <i>â€</i> ï€ Synergy Enables Efficient Ultralong Organic Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2023, 135, .	1.6	1
554	Phosphineâ€Manipulated <i>p</i> â€i€ and ï€ <i>â€</i> ï€ Synergy Enables Efficient Ultralong Organic Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2023, 62, .	7.2	20
555	Cageâ€Like Sodaliteâ€Type Porous Organic Salts Enabling Luminescent Molecule's Incorporation and Roomâ€temperature Phosphorescence Induction in Air. Small, 2023, 19, .	5.2	4
556	Necessary and Sufficient Condition for Organic Roomâ€Temperature Phosphorescence from Host–Guest Doped Crystalline Systems. Advanced Optical Materials, 2023, 11, .	3.6	5
557	Recent advances in long-persistent luminescence materials based on host–guest architecture. Chinese Chemical Letters, 2024, 35, 108385.	4.8	2
558	Dependence of Amplified Spontaneous Emission Threshold on Atmosphere in Whispering Gallery Mode Resonators Including 1,3-Diphenylisobenzofuran as a Singlet Fission Material. Chemistry Letters, 2023, 52, 280-283.	0.7	0
559	Unveiling Oneâ€toâ€One Correspondence Between Excited Triplet States and Determinate Interactions by Temperatureâ€Controllable Blueâ€Greenâ€Yellow Afterglow. Angewandte Chemie, 2023, 135, .	1.6	0
560	Unveiling Oneâ€toâ€One Correspondence Between Excited Triplet States and Determinate Interactions by Temperatureâ€Controllable Blueâ€Greenâ€Yellow Afterglow. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
561	Highly Efficient Roomâ€Temperature Phosphorescence Promoted via Intramolecularâ€Space Heavyâ€Atom Effect. Advanced Optical Materials, 2023, 11, .	3.6	8
564	Photoinduced Triplet Depletion Allowing Higher-Resolution Afterglow. , 2023, 5, 1649-1655.		4
575	A red ambient afterglow material with lifetime of 0.5 s and efficiency over 12%. Chemical Communications, 2023, 59, 7036-7039.	2.2	4

#	Article	IF	CITATIONS
585	Visible-light-excitable aqueous afterglow exhibiting long emission wavelength and ultralong afterglow lifetime of 7.64 s. Chemical Communications, 2023, 59, 10500-10503.	2.2	6
588	A narrow-band deep-blue MRTADF-type organic afterglow emitter. Chemical Communications, 2023, 59, 12302-12305.	2.2	1
589	Room-temperature phosphorescent materials derived from natural resources. Nature Reviews Chemistry, 2023, 7, 800-812.	13.8	10
612	Translating efficient fluorescence into persistent room-temperature phosphorescence by doping bipolar fluorophore into polar polymer matrix. Journal of Materials Chemistry C, 0, , .	2.7	0
618	Stimuli-fluorochromic smart organic materials. Chemical Society Reviews, 2024, 53, 1090-1166.	18.7	0