Valuing green infrastructure in an urban environment ucase

Ecological Economics 86, 246-257

DOI: 10.1016/j.ecolecon.2012.05.008

Citation Report

#	Article	IF	CITATIONS
2	Green Infrastructure Gauge: A Tool for Evaluating Green Infrastructure Inclusion in Existing and Future Urban Areas. Procedia, Social and Behavioral Sciences, 2012, 68, 815-825.	0.5	14
3	Rivers as municipal infrastructure: Demand for environmental services in informal settlements along an Indonesian river. Global Environmental Change, 2013, 23, 1542-1555.	7.8	51
5	Mapping Urban Tree Species Using Very High Resolution Satellite Imagery: Comparing Pixel-Based and Object-Based Approaches. ISPRS International Journal of Geo-Information, 2013, 2, 220-236.	2.9	40
7	Municipal Waste Management in Context of Sustainable Urban Development. Procedia, Social and Behavioral Sciences, 2014, 151, 244-256.	0.5	35
8	Multi-level integrated planning and greening of public infrastructure in South Africa. Planning Theory and Practice, 2014, 15, 480-504.	1.7	4
9	Opportunities and challenges for mainstreaming ecosystem services in development planning: perspectives from a landscape level. Landscape Ecology, 2014, 29, 1315-1331.	4.2	53
10	Aligning fragmented planning structures through a green infrastructure approach to urban development in the UK and USA. Urban Forestry and Urban Greening, 2014, 13, 612-620.	5.3	56
11	The potential of school green areas to improve urban green connectivity and multifunctionality. Urban Forestry and Urban Greening, 2014, 13, 704-713.	5.3	82
12	Impact evaluation of green–grey infrastructure interaction on built-space integrity: An emerging perspective to urban ecosystem service. Science of the Total Environment, 2014, 487, 350-360.	8.0	51
13	Delivering ecosystems services via spatial planning: reviewing the possibilities and implications of a green infrastructure approach. Town Planning Review, 2014, 85, 563-587.	1.2	104
14	Conundrums in implementing a green economy in the Gauteng City-Region. Current Opinion in Environmental Sustainability, 2015, 13, 79-87.	6.3	11
15	Do Biotope Area Factor values reflect ecological effectiveness of urban landscapes? A case study on university campuses in central Taiwan. Landscape and Urban Planning, 2015, 143, 143-149.	7.5	7
16	<scp>iSAW</scp> : Integrating Structure, Actors, and Water to study socioâ€hydroâ€ecological systems. Earth's Future, 2015, 3, 110-132.	6.3	31
17	Housing and population sprawl near tailings storage facilities in the Witwatersrand: 1952 to current. South African Journal of Science, 2015, 111, 9.	0.7	16
18	Understanding the value of urban riparian corridors: Considerations in planning for cultural services along an Indonesian river. Landscape and Urban Planning, 2015, 138, 144-154.	7.5	86
19	Understanding climate adaptation and transformation challenges in African cities. Current Opinion in Environmental Sustainability, 2015, 13, 109-116.	6.3	63
20	Towards the Establishment of a Green Infrastructure in the Region of Montreal (Quebec, Canada). Planning Practice and Research, 2015, 30, 355-375.	1.7	20
21	VALUING â€~GREEN INFRASTRUCTURE' IN JEDDAH: A CITY LOST IN â€~GREY' INFRASTRUCTURE. Journal of Architecture and Urbanism, 2015, 39, 248-259.	0.7	11

#	Article	IF	Citations
22	Perceptions and contributions of households towards sustainable urban green infrastructure in Malaysia. Habitat International, 2015, 47, 285-297.	5.8	27
23	Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban Forestry and Urban Greening, 2015, 14, 760-771.	5.3	840
24	Understanding urban neighborhood differences in willingness to implement green infrastructure measures: a case study of Syracuse, NY. Landscape and Urban Planning, 2015, 136, 1-12.	7.5	138
25	Conservation of fragmented grasslands as part of the urban green infrastructure: how important are species diversity, functional diversity and landscape functionality?. Urban Ecosystems, 2015, 18, 87-113.	2.4	26
26	Role of Landscape Designers in Promoting a Balanced Approach to Green Infrastructure. Journal of the Urban Planning and Development Division, ASCE, 2015, 141, .	1.7	14
27	Measuring Intra-City Eco-Efficiency Variations of Urban Infrastructures in Jeddah. American Journal of Environmental Sciences, 2016, 12, 152-168.	0.5	1
28	The Socio-Ecological Factors that Influence the Adoption of Green Infrastructure. Sustainability, 2016, 8, 1277.	3.2	30
29	How Green Economy Contributes in Decreasing the Environment Pollution and Misuse of the Limited Resources?. Environment and Pollution, 2016, 6, 10.	0.2	4
30	Neighborhood socioeconomic disadvantage and urban public green spaces availability: A localized modeling approach to inform land use policy. Land Use Policy, 2016, 57, 470-478.	5.6	83
31	Holistic valuation of urban ecosystem services in New York City's Central Park. Ecosystem Services, 2016, 19, 87-91.	5.4	48
32	Sustainable urban drainage systems: examining the potential for green infrastructure-based stormwater management for Sub-Saharan cities. Natural Hazards, 2016, 82, 241-257.	3.4	52
33	A review of studies on ecosystem services in Africa. International Journal of Sustainable Built Environment, 2016, 5, 225-245.	3.2	106
34	Sustainable infrastructure: A review and a research agenda. Journal of Environmental Management, 2016, 184, 143-156.	7.8	58
35	To green or not to green: Establishing the economic value of green infrastructure investments in The Wicker, Sheffield. Urban Forestry and Urban Greening, 2016, 18, 257-267.	5.3	65
36	Characterizing the inequalities in urban public green space provision in Shenzhen, China. Habitat International, 2016, 56, 176-180.	5.8	158
37	The role of urban green infrastructure in mitigating land surface temperature in Bobo-Dioulasso, Burkina Faso. Environment, Development and Sustainability, 2016, 18, 373-392.	5.0	55
38	Developing green infrastructure †thinking': devising and applying an interactive group-based methodology for practitioners. Journal of Environmental Planning and Management, 2016, 59, 843-865.	4.5	24
39	Soil microbial nitrogen cycling and nitrous oxide emissions from urban afforestation in the New York City Afforestation Project. Urban Forestry and Urban Greening, 2016, 15, 149-154.	5.3	17

#	Article	IF	Citations
40	Integrative assessment and management implications on ecosystem services loss of coastal wetlands due to reclamation. Journal of Cleaner Production, 2017, 163, S101-S112.	9.3	38
41	No time to lose – Green the cities now. Environment International, 2017, 99, 343-350.	10.0	53
42	Green infrastructure: reflections on past, present and future praxis. Landscape Research, 2017, 42, 135-145.	1.6	80
43	Methodological and empirical considerations when assessing freshwater ecosystem service provision in a developing city context: Making the best of what we have. Ecological Indicators, 2017, 76, 256-274.	6.3	13
44	Water in the city: Green open spaces, land use planning and flood management – An Australian case study. Land Use Policy, 2017, 63, 539-550.	5.6	69
45	Using unmanned aerial vehicle data to assess the three-dimension green quantity of urban green space: A case study in Shanghai, China. Landscape and Urban Planning, 2017, 164, 81-90.	7. 5	40
46	Ecosystem services of collectively managed urban gardens: Exploring factors affecting synergies and trade-offs at the site level. Ecosystem Services, 2017, 26, 17-26.	5.4	34
47	Infrastructure and institutions: Stakeholder perspectives of stormwater governance in Chicago. Cities, 2017, 66, 44-52.	5. 6	53
48	GREEN INFRASTRUCTURE IN RELATION TO INFORMAL URBAN SETTLEMENTS. Journal of Architecture and Urbanism, 2017, 41, 22-33.	0.7	38
49	Urban sacred natural sites – a call for research. Urban Ecosystems, 2017, 20, 675-681.	2.4	18
50	Quantifying green cover change for sustainable urban planning: A case of Kuala Lumpur, Malaysia. Urban Forestry and Urban Greening, 2017, 27, 287-304.	5. 3	51
51	The public health benefits of green infrastructure: the potential of economic framing for enhanced decision-making. Current Opinion in Environmental Sustainability, 2017, 25, 90-95.	6.3	35
52	Double exposure, infrastructure planning, and urban climate resilience in coastal megacities: A case study of Manila. Environment and Planning A, 2017, 49, 2649-2672.	3.6	42
53	The role of urban green spaces in care facilities for elderly people across European cities. Urban Forestry and Urban Greening, 2017, 27, 203-213.	5.3	95
54	Developing Green Infrastructure in a Johannesburg Informal Settlement: Investigating Residents' Willingness to Pay. Procedia Engineering, 2017, 198, 176-186.	1.2	13
55	Seeing the (urban) forest through the trees: governance and household trees in Niamey, Niger. African Geographical Review, 2017, 36, 286-304.	1.0	5
56	Urbanization in Africa: challenges and opportunities for conservation. Environmental Research Letters, 2017, 13, 015002.	5.2	207
57	High Biodiversity of Green Infrastructure Does Not Contribute to Recreational Ecosystem Services. Sustainability, 2017, 9, 334.	3.2	32

#	ARTICLE	IF	CITATIONS
58	Assessment of municipal infrastructure development and its critical influencing factors in urban China: A FA and STIRPAT approach. PLoS ONE, 2017, 12, e0181917.	2.5	7
59	Planning for green qualities in the densification of suburban Stockholm–Âopportunities and challenges. Journal of Environmental Planning and Management, 2018, 61, 2613-2635.	4.5	26
60	Smart Futures, Challenges of Urbanisation, and Social Sustainability., 2018,,.		1
61	Lost in Transactions: Analysing the Institutional Arrangements Underpinning Urban Green Infrastructure. Ecological Economics, 2018, 147, 399-409.	5.7	21
62	Amenity proximity analysis for sustainable brownfield redevelopment planning. Landscape and Urban Planning, 2018, 171, 68-79.	7.5	26
63	Intermediary Capabilities in the Context of Challenging State Dynamics. Journal of Business Ethics, 2018, 152, 667-682.	6.0	6
64	Ecosystem services in cities: Towards the international legal protection of ecosystem services in urban environments. Ecosystem Services, 2018, 29, 205-212.	5.4	54
65	How important is green infrastructure in small and medium-sized towns? Lessons from South Africa. Landscape and Urban Planning, 2018, 180, 273-281.	7.5	83
66	Are Romanian urban strategies planning for green?. European Planning Studies, 2018, 26, 158-173.	2.9	27
67	Conditions and opportunities for green infrastructure – Aiming for green, water-resilient cities in Addis Ababa and Dar es Salaam. Landscape and Urban Planning, 2018, 180, 319-327.	7.5	48
68	The use of urban spatial scenario design model as a strategic planning tool for Addis Ababa. Landscape and Urban Planning, 2018, 180, 308-318.	7.5	25
69	Financing the future of green infrastructure planning: alternatives and opportunities in the UK. Landscape Research, 2018, 43, 751-768.	1.6	30
70	Show me your garden and I will tell you how sustainable you are: Dutch citizens' perspectives on conserving biodiversity and promoting a sustainable urban living environment through domestic gardening. Urban Forestry and Urban Greening, 2018, 30, 260-279.	5.3	24
71	Planning for watershed-wide flood-mitigation and stormwater management using an environmental justice framework. Environmental Practice, 2018, 20, 55-67.	0.3	17
72	Effects of urban Pinus sylvestris (L.) plantation sites on thermal comfort. Acta Horticulturae, 2018, , 39-44.	0.2	6
73	Analyzing the Coupling Coordination among Economic, Social, and Environmental Benefits of Urban Infrastructure: Case Study of Four Chinese Autonomous Municipalities. Mathematical Problems in Engineering, 2018, 2018, 1-13.	1.1	14
74	Integrating urban blue and green areas based on historical evidence. Urban Forestry and Urban Greening, 2018, 34, 217-225.	5.3	56
75	Remaking stormwater as a resource: Technology, law, and citizenship. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1300.	6.5	23

#	Article	IF	CITATIONS
76	Urban green infrastructure and ecosystem services in sub-Saharan Africa. Landscape and Urban Planning, 2018, 180, 249-261.	7. 5	183
77	Transforming the Physical Geography of a City: An Example ofÂJohannesburg, South Africa. , 2018, , 129-147.		6
78	Planning for a green city: The Green Factor tool. Urban Forestry and Urban Greening, 2018, 34, 254-258.	5.3	40
79	Nutrient Reduction in Agricultural Green Infrastructure: An Analysis of the Raccoon River Watershed. Water (Switzerland), 2018, 10, 749.	2.7	8
80	The Undervaluation, but Extreme Importance, of Social Sustainability in South Africa., 2018, , 131-147.		0
81	Urban Social-ecological Innovation: Implications for Adaptive Natural Resource Management. Ecological Economics, 2018, 150, 153-164.	5.7	15
82	Linking hydrological and bioecological benefits of green infrastructures across spatial scales – A literature review. Science of the Total Environment, 2019, 646, 1219-1231.	8.0	73
83	Green infrastructure in strategic spatial plans: Evidence from European urban regions. Urban Forestry and Urban Greening, 2019, 40, 17-28.	5.3	70
84	Facing the heat: initial probing of the City of Johannesburg's heat-health planning. Southern African Geographical Journal, 2019, 101, 253-268.	1.8	9
85	Towards resilient African cities: Shared challenges and opportunities towards the retention and maintenance of ecological infrastructure. Global Sustainability, 2019, 2, .	3.3	17
86	Contributions of sociometabolic research to sustainability science. Nature Sustainability, 2019, 2, 173-184.	23.7	192
87	Research on the Degree of Coupling between the Urban Public Infrastructure System and the Urban Economic, Social, and Environmental System: A Case Study in Beijing, China. Mathematical Problems in Engineering, 2019, 2019, 1-19.	1.1	11
88	You Can't See the Woods for the Trees: Invasive Acer negundo L. in Urban Riparian Forests Harms Biodiversity and Limits Recreation Activity. Sustainability, 2019, 11, 5838.	3.2	22
89	Drivers for urban green infrastructure development and planning in two Ethiopian cities: Bahir Dar and Hawassa. Arboricultural Journal, 2019, 41, 48-63.	0.8	12
90	Invasion of Psittacula krameri in Gauteng, South Africa: are other birds impacted?. Biodiversity and Conservation, 2019, 28, 3633-3656.	2.6	8
91	Economic value of regulating ecosystem services: a comprehensive at the global level review. Environmental Monitoring and Assessment, 2019, 191, 616.	2.7	22
92	SAUS: A tool for preserving urban green areas from air pollution. Urban Forestry and Urban Greening, 2019, 46, 126440.	5.3	7
93	Pathways for Sustainable and Inclusive Cities in Southern and Eastern Africa through Urban Green Infrastructure?. Sustainability, 2019, 11, 2729.	3.2	29

#	Article	IF	CITATIONS
94	(Re)emphasizing Urban Infrastructure Resilience via Scoping Review and Content Analysis. Urban Science, 2019, 3, 44.	2.3	11
95	Implementation Analysis of Green City Concept in Malang - Indonesia. International Review for Spatial Planning and Sustainable Development, 2019, 7, 36-52.	1.1	12
96	Failed Fantasies in a South African Context: the Case of Modderfontein, Johannesburg. Urban Forum, 2019, 30, 171-189.	1.6	12
97	Untangling the motivations of different stakeholders for urban greenspace conservation in sub-Saharan Africa. Ecosystem Services, 2019, 36, 100904.	5.4	22
98	Transit versus Nature. Depreciation of Environmental Values of the Road Alleys. Case Study: Gamerki-Jonkowo, Poland. Sustainability, 2019, 11, 1816.	3.2	13
99	People-Policy-Options-Scale (PPOS) Framework: Reconceptualising Green Infrastructure Planning. Cities and Nature, 2019, , 235-249.	1.0	1
100	Park green spaces, public health and social inequalities: Understanding the interrelationships for policy implications. Land Use Policy, 2019, 83, 66-74.	5.6	36
101	Simulation of an Urban-Rural Spatial Structure on the Basis of Green Infrastructure Assessment: The Case of Harbin, China. Land, 2019, 8, 196.	2.9	12
102	What Does Good Green Infrastructure Planning Policy Look Like? Developing and Testing a Policy Assessment Tool Within Central Scotland UK. Planning Theory and Practice, 2019, 20, 633-655.	1.7	28
103	Valuing urban ecosystem services in sustainable brownfield redevelopment. Ecosystem Services, 2019, 35, 139-149.	5.4	50
104	Institutional Barriers to Urban Greenspace Planning in the Kumasi Metropolis of Ghana. Urban Forum, 2019, 30, 357-376.	1.6	11
105	How Do Visual Representations Influence Survey Responses? Evidence from a Choice Experiment on Landscape Attributes of Green Infrastructure. Ecological Economics, 2019, 156, 375-386.	5.7	52
106	Quantifying and mapping land use changes and regulating ecosystem service potentials in a data-scarce peri-urban region in Kenya. Ecosystems and People, 2019, 15, 11-32.	3.2	22
107	Green infrastructure, green space, and sustainable urbanism: geography's important role. Urban Geography, 2019, 40, 330-351.	3.0	32
108	Reflecting on Global South planning and planning literature. Development Southern Africa, 2020, 37, 105-129.	2.0	3
109	Hybrid infrastructures, hybrid governance: New evidence from Nairobi (Kenya) on green-blue-grey infrastructure in informal settlements. Anthropocene, 2020, 29, 100227.	3.3	49
110	Urban Geography in South Africa. Geospatial Technology and the Role of Location in Science, 2020, , .	0.5	5
111	An operationalized classification of Nature Based Solutions for water-related hazards: From theory to practice. Ecological Economics, 2020, 167, 106460.	5.7	43

#	Article	IF	CITATIONS
113	Mapping eucalypts trees using high resolution multispectral images: A study comparing WorldView 2 vs. SPOT 7. Egyptian Journal of Remote Sensing and Space Science, 2021, 24, 333-342.	2.0	9
114	Evaluating the capability of Worldview-2 imagery for mapping alien tree species in a heterogeneous urban environment. Cogent Social Sciences, 2020, 6, .	1.1	13
115	Lack of Cross-Sector and Cross-Level Policy Coherence and Consistency Limits Urban Green Infrastructure Implementation in Malawi. Frontiers in Environmental Science, 2020, 8, .	3.3	8
116	Methodology for Establishing Well-Being Urban Indicators at the District Level to be Used on the CityScope Platform. Sustainability, 2020, 12, 9458.	3.2	6
117	Estimating urban greenness index using remote sensing data: A case study of an affluent vs poor suburbs in the city of Johannesburg. Egyptian Journal of Remote Sensing and Space Science, 2021, 24, 343-351.	2.0	23
118	Economic valuation of ecosystem services in Africa. E3S Web of Conferences, 2020, 183, 01002.	0.5	4
119	Sustainability can start with a garden!. International Journal of Tourism Cities, 2021, 7, 887-894.	2.4	3
120	What space for public parks in sustainable consumption corridors? Conceptual reflections on need satisfaction through social practices. Sustainability: Science, Practice, and Policy, 2020, 16, 128-142.	1.9	10
121	Revisiting the Proximity Principle with Stakeholder Input: Investigating Property Values and Distance to Urban Green Space in Potchefstroom. Land, 2020, 9, 235.	2.9	10
122	Application of the Natural Capital Model to assess changes in ecosystem services from changes in green infrastructure in Amsterdam. Ecosystem Services, 2020, 43, 101114.	5.4	18
123	Using Different Levels of Information in Planning Green Infrastructure in Luanda, Angola. Sustainability, 2020, 12, 3162.	3.2	5
124	Using a system thinking approach to assess the contribution of nature based solutions to sustainable development goals. Science of the Total Environment, 2020, 738, 139693.	8.0	89
125	Green infrastructure planning: Unveiling meaningful spaces through Foursquare users' preferences. Land Use Policy, 2020, 97, 104641.	5.6	11
126	What Future for Green Infrastructure Planning? Evaluating the Changing Environment for Green Infrastructure Planning Following the Revocation of Regional Planning Policy in England. Planning Practice and Research, 2020, 35, 18-50.	1.7	7
127	Maintenance of public and private urban green infrastructure provides significant employment in Eastern Cape towns, South Africa. Urban Forestry and Urban Greening, 2020, 54, 126740.	5. 3	30
128	Nature-based Solutions for Resilient Ecosystems and Societies. Disaster Resilience and Green Growth, 2020, , .	0.2	16
129	Sustainable Urban form and challenges of open space utilization, Akure, Nigeria as a case study. International Journal of Urban Sustainable Development, 2020, 12, 328-339.	2.0	5
130	Pathways for resilience to climate change in African cities. Environmental Research Letters, 2020, 15, 073002.	5.2	22

#	Article	IF	CITATIONS
131	Extreme weather events and wastewater infrastructure: A system dynamics model of a multi-level, socio-technical transition. Science of the Total Environment, 2020, 714, 136685.	8.0	18
132	Nature-based approaches to managing climate change impacts in cities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190124.	4.0	132
133	Research on Ecological Infrastructure from 1990 to 2018: A Bibliometric Analysis. Sustainability, 2020, 12, 2304.	3.2	16
134	The impact of real estate investment on air quality: evidence from China. Environmental Science and Pollution Research, 2020, 27, 22989-23001.	5.3	16
135	A framework to integrate multifunctionality analyses into green infrastructure planning. Landscape Ecology, 2021, 36, 1951-1969.	4.2	31
136	The Legacy Effects of Colonial and Apartheid Imprints on Urban Greening in South Africa: Spaces, Species, and Suitability. Frontiers in Ecology and Evolution, 2021, 8, .	2.2	25
137	Bird alpha, beta and functional diversities across three peri-urban woodland stands along an anthropogenic disturbance gradient: is formal protection a guarantee for ecological integrity?. Global Ecology and Conservation, 2021, 25, e01410.	2.1	2
138	Perceptions of visual and in situ representations of sea level rise and tidal flooding: the blue line project, Norfolk, Virginia. Geo Journal, 2022, 87, 2081-2099.	3.1	5
139	Urban Ecological Planning and Design in the Global South. Cities and Nature, 2021, , 365-401.	1.0	9
140	Urban Animal Diversity in the Global South. Cities and Nature, 2021, , 169-202.	1.0	8
141	Perspectives of illicit marijuana growers and traders on commercial legalisation of marijuana in South Africa: considerations for policy formulation. Substance Abuse Treatment, Prevention, and Policy, 2021, 16, 54.	2.2	8
142	Working in poverty: Informal employment of household gardeners in Eastern Cape towns, South Africa. Development Southern Africa, 0, , 1-14.	2.0	5
143	The construction of green infrastructure network in the perspectives of ecosystem services and ecological sensitivity: The case of Harbin, China. Global Ecology and Conservation, 2021, 27, e01534.	2.1	17
144	Role of Urban Greening Strategies for Environmental Sustainabilityâ€"A Review and Assessment in the Context of Saudi Arabian Megacities. Sustainability, 2021, 13, 6457.	3.2	5
145	Developing a blue-green infrastructure (BGI) community engagement framework template. Urban Design International, 2023, 28, 172-188.	2.8	6
146	Exploring Options for Public Green Space Development: Research by Design and GIS-Based Scenario Modelling. Sustainability, 2021, 13, 8213.	3.2	6
147	Phenological advance of blossoming over the past century in one of the world's largest urban forests, Gauteng City-Region, South Africa. Urban Forestry and Urban Greening, 2021, 63, 127238.	5.3	9
148	The Potential of Public-Private Partnerships (PPPs) in the Pursuit of Sustainable Development Goal 11 in Zimbabwe. Potchefstroom Electronic Law Journal, 0, 24, 1-43.	0.1	3

#	ARTICLE	IF	CITATIONS
149	An Exploratory Case-Study Approach to Understand Multifunctionality in Urban Green Infrastructure Planning in a South African Context. Frontiers in Sustainable Cities, 2021, 3, .	2.4	6
150	Absence of a Luxury Effect on bird alpha diversity in a rapidly developing African city, but surrounding landscape is key. Landscape and Urban Planning, 2021, 213, 104095.	7.5	7
152	A â€~green' chameleon: Exploring the many disciplinary definitions, goals, and forms of â€ægreen infrastructure― Landscape and Urban Planning, 2021, 214, 104145.	7.5	83
153	Evaluation of the accessible urban public green space at the community-scale with the consideration of temporal accessibility and quality. Ecological Indicators, 2021, 131, 108231.	6.3	33
154	Core themes for an urban green systems thinker: A review of complexity management in provisioning cultural ecosystem services. Urban Forestry and Urban Greening, 2021, 65, 127355.	5.3	10
155	Classification of tree species in a heterogeneous urban environment using object-based ensemble analysis and World View-2 satellite imagery. Applied Geomatics, 2021, 13, 373-387.	2.5	11
156	Urban Green Infrastructure in the Global South. Cities and Nature, 2021, , 107-143.	1.0	25
157	National Park «Elk Island» in the Moscow Region's Green Infrastructure. Springer Geography, 2021 238-251.	^l v.4	0
158	Urban Green Space Composition and Configuration in Functional Land Use Areas in Addis Ababa, Ethiopia, and Their Relationship with Urban Form. Land, 2021, 10, 85.	2.9	10
159	South Africa's Urban Future: Challenges and Opportunities. Geospatial Technology and the Role of Location in Science, 2020, , 283-292.	0.5	3
160	Regional Assessment of Africa., 2013, , 453-459.		15
161	Valuing natural capital amidst rapid urbanization: assessing the gross ecosystem product (GEP) of China's  Chang-Zhu-Tan' megacity. Environmental Research Letters, 2020, 15, 124019.	5.2	31
162	Closing the Gap Between Urban Planning and Urban Ecology: A South African Perspective. Urban Planning, 2021, 6, 122-134.	1.3	7
163	Public Investment Policy as a Driver of Changes in the Ecosystem Services Delivery by an Urban Green Infrastructure. Quaestiones Geographicae, 2020, 39, 5-18.	1.1	6
164	The prospects for ecosystem services provision in fragile states' urban areas. TehniÄki Glasnik, 2018, 12, 44-49.	0.7	1
165	Improving urban metabolism through agricultureÂ: an approach to ecosystem services qualitative assessment in Rome. VertigO: La Revue Electronique En Sciences De L'environnement, 2018, , .	0.1	1
166	Integrated Economic and Spatial Planning for the Food-Energy-Water Nexus. Advances in Finance, Accounting, and Economics, 2016, , 54-73.	0.3	2
167	Planning Green Infrastructure as a Source of Urban and Regional Resilience – Towards Institutional Challenges. Urbani Izziv, 2015, 26, .	0.5	25

#	Article	IF	CITATIONS
169	Understanding community perceptions of a natural open space system for urban conservation and stewardship in a metropolitan city in Africa. Environmental Conservation, 2021, 48, 244-254.	1.3	9
170	Evaluating the disparity between supply and demand of park green space using a multi-dimensional spatial equity evaluation framework. Cities, 2022, 121, 103484.	5.6	39
171	Complex Systems Thinking Approach to Urban Greenery to Provide Community-Tailored Solutions and Enhance the Provision of Cultural Ecosystem Services. Sustainability, 2021, 13, 11787.	3.2	8
172	The Greening Soweto tree-planting project in South Africa – Eliminating the "green divide―legacy of apartheid. Urban Forestry and Urban Greening, 2021, 65, 127371.	5. 3	8
173	Evaluating the Spatial and Environmental Benefits of Green Space: An International and Local Comparison on Rural Areas. Agriculture Forestry and Fisheries, 2015, 4, 45.	0.2	0
174	Recommendations for Natural Resources Conservation in the Influence Areas of Cities. Impact of Meat Consumption on Health and Environmental Sustainability, 2015, , 72-94.	0.4	O
176	Review of Findings and Recommendations. Springer Briefs in Geography, 2016, , 41-65.	0.2	0
177	Recommendations for Natural Resources Conservation in the Influence Areas of Cities., 2018, , 130-153.		0
178	Civic Science in Urban Forestry: An Introduction. Arboriculture and Urban Forestry, 2018, 44, .	0.6	5
179	Recommendations for Natural Resources Conservation in the Influence Areas of Cities., 2019,, 671-694.		0
180	Green Space Factor Assessment of High-Rise Residential Areas in Harbin, China. Smart Innovation, Systems and Technologies, 2020, , 493-505.	0.6	0
181	Applicability of Nature-Based Solution Through Green Infrastructure Approach to Enhance Green Cover in Urban Transition Scenario. Disaster Resilience and Green Growth, 2020, , 247-265.	0.2	1
182	Yeşil Altyapı ve Yeşil Bina Bileşeni Olarak Kurakçıl Peyzaj Uygulamaları. Ege Üniversitesi Ziraat Fakþ Dergisi, 2020, 57, 303-311.	4ltesi 0.4	7
183	Aligning green infrastructure to sustainable development: A geographical contribution to an ongoing debate. Area, 2022, 54, 242-251.	1.6	3
184	Integrated Economic and Spatial Planning for the Food-Energy-Water Nexus., 2020,, 458-476.		0
185	Stated Benefits from Urban Afforestation in an Arid City: A Contingent Valuation in Mexicali, Baja California, Mexico. SSRN Electronic Journal, 0, , .	0.4	O
187	Spatial disparity patterns of green spaces and buildings in arid urban areas. Building and Environment, 2022, 208, 108588.	6.9	12
188	Exploring strategies to control the cost of food security: Evidence from Bangladesh. Agricultural Systems, 2022, 196, 103351.	6.1	6

#	Article	IF	CITATIONS
189	Environmental policy narratives and urban green infrastructure: Reflections from five major cities in South Africa and the UK. Environmental Science and Policy, 2022, 129, 96-106.	4.9	8
190	Assessment of NBS Impact on Pluvial Flood Regulation Within Urban Areas: A Case Study in Coimbra, Portugal. Handbook of Environmental Chemistry, 2021, , .	0.4	2
191	Classification of urban tree species using LiDAR data and WorldView-2 satellite imagery in a heterogeneous environment. Geocarto International, 2022, 37, 9943-9966.	3.5	7
192	"Green Enough Ain't Good Enough:―Public Perceptions and Emotions Related to Green Infrastructure in Environmental Justice Communities. International Journal of Environmental Research and Public Health, 2022, 19, 1448.	2.6	14
193	Land governance in Ghana and its implications for inclusive city development. SN Social Sciences, 2022, 2, 1.	0.7	3
194	Assessing the intraurban differences in vegetation coverage and surface climate in a heterogeneous area. Transactions of the Royal Society of South Africa, 0, , 1-10.	1.1	3
195	Urban Planning Insights from Tree Inventories and Their Regulating Ecosystem Services Assessment. Sustainability, 2022, 14, 1684.	3.2	9
196	Economic Valuation of Urban Green Spaces across a Socioeconomic Gradient: A South African Case Study. Land, 2022, 11, 413.	2.9	1
197	Fostering the Resiliency of Urban Landscape through the Sustainable Spatial Planning of Green Spaces. Land, 2022, 11, 367.	2.9	10
198	Mapping the distribution and tree canopy cover of Jacaranda mimosifolia and Platanus × acerifolia in Johannesburg's urban forest. Scientific Reports, 2022, 12, 5998.	3.3	1
199	Perception of Ecosystem Services and Adaptation to Climate Change: Mirador Sur Park in Santo Domingo. Forests, 2022, 13, 587.	2.1	0
200	Using "Live―Public Sector Projects in Design Teaching to Transform Urban Green Infrastructure in South Africa. Land, 2022, 11, 45.	2.9	5
202	Valuing the public benefits of green roofs. Landscape and Urban Planning, 2022, 224, 104426.	7.5	11
203	Comparative Research on Typical Measure Methods of the Carbon Sequestration Benefits of Urban Trees Based on the UAV and the 3D Laser: Evidence from Shanghai, China. Forests, 2022, 13, 640.	2.1	2
204	Impacts of Zagreb's Urban Development on Dynamic Changes in Stream Landscapes from Mid-Twentieth Century. Land, 2022, 11, 692.	2.9	3
205	Assessing green infrastructure spatial plans in Addis Ababa, Ethiopia. Socio-Ecological Practice Research, 2022, 4, 85-101.	1.9	3
206	Value negotiation and professional self-regulation – Environmental concern in the design of the built environment. Urban Forestry and Urban Greening, 2022, 74, 127626.	5.3	4
207	How Leadership Influences Urban Greenspace Provision: The Case of Surrey, Canada. Urban Affairs Review, 2023, 59, 1352-1384.	1.9	0

#	Article	IF	CITATIONS
208	How Do Different Modes of Governance Support Ecosystem Services/Disservices in Small-Scale Urban Green Infrastructure? A Systematic Review. Land, 2022, 11, 1247.	2.9	8
209	The Sustainable Development Goals in South Africa: Transitions Are the Hardest Part. Sustainable Development Goals Series, 2022, , 15-30.	0.4	0
210	How does public infrastructure construction influence CO2 emissions? A global case. Frontiers in Environmental Science, 0, 10 , .	3.3	1
211	Olympic effects on reshaping urban greenspace of host cities. Landscape and Urban Planning, 2023, 230, 104615.	7.5	5
212	Impacts of urban living lab (ULL) on learning to design inclusive, sustainable, and climate-resilient urban environments. Land Use Policy, 2023, 124, 106443.	5.6	4
213	Urban encroachment in ecologically sensitive areas: drivers, impediments and consequences. Buildings and Cities, 2022, 3, 920.	2.3	0
214	The coordinated relationship among industrialization, environmental carrying capacity and green infrastructure: A comparative research of Beijing-Tianjin-Hebei region, China. Environmental Development, 2022, 44, 100775.	4.1	8
215	Green stormwater infrastructure: A critical review of the barriers and solutions to widespread implementation. Wiley Interdisciplinary Reviews: Water, 2023, 10, .	6.5	3
216	Making Thessaloniki Resilient? The Enclosing Process of the Urban Green Commons. Urban Planning, 2022, 8, .	1.3	1
217	Urban Green System Planning Insights for a Spatialized Balance between PM10 Dust Retention Capacity of Trees and Urban Vehicular PM10 Emissions. Sustainability, 2023, 15, 5888.	3.2	1
218	Exploring the of Establishment of an Urban Forest in Phuthaditjhaba to Create a More Sustainable Future Urban Environment. Sustainable Development Goals Series, 2023, , 153-169.	0.4	2
219	Review article: Potential of nature-based solutions to mitigate hydro-meteorological risks in sub-Saharan Africa. Natural Hazards and Earth System Sciences, 2023, 23, 481-505.	3.6	3
220	Conceptualizing the potential of entrepreneurship to shape urban sustainability transformations. Urban Transformations, 2023, 5, .	2.4	1
221	Environmental Design for Urban Cooling, Access, and Safety: A Novel Approach to Auditing Outdoor Areas in Residential Aged Care Facilities. Land, 2023, 12, 514.	2.9	0
222	Does presentation matter? An analysis of images and text in a choice experiment of green roofs. Q Open, 2023, 3, .	1.7	0
223	Green spaces in housing development – buyers' preferences. IOP Conference Series: Earth and Environmental Science, 2023, 1176, 012035.	0.3	1
224	A systematic review on the ecosystem services provided by green infrastructure. Urban Forestry and Urban Greening, 2023, 86, 127998.	5.3	1
225	Priority areas and benefits of ecosystem restoration in Beijing. Environmental Science and Pollution Research, 2023, 30, 83600-83614.	5.3	1

#	Article	IF	CITATIONS
227	SHAPING URBAN SPACE IN ROMANIA. CASE STUDY: THE BISTRIÈŠA-BECLEAN URBAN AXIS. , 2023, 67, 79-93.		O
228	Allergenic tree pollen in Johannesburg and Cape Town as a public health risk: towards a sustainable implementation framework for South African cities. Discover Sustainability, 2023, 4, .	2.8	1
229	Challenges and Future Perspectives in Adopting Green Infrastructures. , 2023, , 371-400.		0
230	Assessment, Quantification, and Valuation of Green Infrastructure. , 2023, , 199-243.		0
231	Pluralizing the urban waste economy: insights from community-based enterprises in Ahmedabad (India) and Kampala (Uganda). Environment and Urbanization, 2023, 35, 411-432.	2.6	0
232	With the process comes the progress: A systematic review to support governance assessment of urban nature-based solutions. Urban Forestry and Urban Greening, 2023, 87, 128067.	5.3	0
233	Resilience of urban social-ecological-technological systems (SETS): A review. Sustainable Cities and Society, 2023, 99, 104910.	10.4	15
234	Evaluating Landsat-8, Landsat-9 and Sentinel-2 imageries in land use and land cover (LULC) classification in a heterogeneous urban area. Geo Journal, 0, , .	3.1	0
235	The South African Pollen Monitoring Network: Insights from 2Âyears of national aerospora sampling (2019–2021). Clinical and Translational Allergy, 2023, 13, .	3.2	0
236	Disentangling Environmental Justice Dimensions of Urban Green Spaces in Cities of the Global South. World Sustainability Series, 2023, , 149-178.	0.4	0
237	Prediction of Daily Ambient Temperature and Its Hourly Estimation Using Artificial Neural Networks in Urban Allotment Gardens and an Urban Park in Valladolid, Castilla y León, Spain. Agronomy, 2024, 14, 60.	3.0	0
238	Nature-Based Adaptation in a Nairobi Informal Settlement: Addressing Chronic Flooding While Increasing Community Resilience Through Multi-Benefit Green Infrastructure. Sustainable Development Goals Series, 2023, , 475-490.	0.4	0
240	Towards a pattern language for green space design in high density urban developments. Journal of Urban Design, 0, , 1-22.	1.4	0
241	The World Cup reshaped the urban green space pattern of Qatar. Ecological Informatics, 2024, 81, 102551.	5.2	0
242	Latent potential? Searching for environmental justice in South African landscape architecture praxis. Landscape Research, 0, , 1-14.	1.6	0
243	The intersection of justice and urban greening: Future directions and opportunities for research and practice. Urban Forestry and Urban Greening, 2024, 95, 128279.	5.3	0