Methane Storage in Metal–Organic Frameworks: Cur Challenges

Journal of the American Chemical Society 135, 11887-11894 DOI: 10.1021/ja4045289

Citation Report

#	Article	IF	CITATIONS
8	Adsorption of Acetone Vapor by Cu-BTC: An Experimental and Computational Study. Journal of Physical Chemistry C, 2013, 117, 26156-26165.	1.5	30
9	Insights into Multi-Objective Design of Metal–Organic Frameworks. Crystal Growth and Design, 2013, 13, 4208-4212.	1.4	21
10	Methane storage capabilities of diamond analogues. Physical Chemistry Chemical Physics, 2013, 15, 20937.	1.3	10
12	Environmentally-Friendly Designs and Syntheses of Metal-Organic Frameworks (MOFs). ACS Symposium Series, 2014, , 161-183.	0.5	12
13	Porous Lanthanide Metal–Organic Frameworks for Gas Storage and Separation. Structure and Bonding, 2014, , 75-107.	1.0	15
14	Study of HKUST (Copper benzene-1,3,5-tricarboxylate, Cu-BTC MOF)-1 metal organic frameworks for CH4 adsorption: An experimental Investigation with GCMC (grand canonical Monte-carlo) simulation. Energy, 2014, 76, 419-427.	4.5	93
15	Thermally robust and porous noncovalent organic framework with high affinity for fluorocarbons and CFCs. Nature Communications, 2014, 5, 5131.	5.8	236
16	Lithium inclusion in indium metal-organic frameworks showing increased surface area and hydrogen adsorption. APL Materials, 2014, 2, .	2.2	11
17	Electronic Chemical Potentials of Porous Metal–Organic Frameworks. Journal of the American Chemical Society, 2014, 136, 2703-2706.	6.6	262
18	A new metal–organic framework with ultra-high surface area. Chemical Communications, 2014, 50, 3450.	2.2	178
19	Methane Storage in Metal-Substituted Metal–Organic Frameworks: Thermodynamics, Usable Capacity, and the Impact of Enhanced Binding Sites. Journal of Physical Chemistry C, 2014, 118, 2929-2942.	1,5	43
20	[M ₃ (μ ₃ -O)(O ₂ CR) ₆] and related trigonal prisms: versatile molecular building blocks for crystal engineering of metal–organic material platforms. Chemical Science, 2014, 5, 1269-1282.	3.7	124
21	Adsorption Characteristics of Metal–Organic Frameworks Containing Coordinatively Unsaturated Metal Sites: Effect of Metal Cations and Adsorbate Properties. Journal of Physical Chemistry C, 2014, 118, 6847-6855.	1.5	34
22	Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chemical Society Reviews, 2014, 43, 5867-5895.	18.7	739
23	High Methane Storage Capacity in Aluminum Metal–Organic Frameworks. Journal of the American Chemical Society, 2014, 136, 5271-5274.	6.6	410
24	A highly porous NbO type metal–organic framework constructed from an expanded tetracarboxylate. Chemical Communications, 2014, 50, 1552.	2.2	44
25	Three Zinc(II) Coordination Polymers Based on Tetrakis(4-pyridyl)cyclobutane and Naphthalenedicarboxylate Linkers: Solvothermal Syntheses, Structures, and Photocatalytic Properties. Crystal Growth and Design, 2014, 14, 240-248.	1.4	135
26	Metal-Cation-Directed <i>de Novo</i> Assembly of a Functionalized Guest Molecule in the Nanospace of a Metal–Organic Framework. Journal of the American Chemical Society, 2014, 136, 1202-1205.	6.6	168

#	Article	IF	CITATIONS
27	Tetrahedral tetrazolate frameworks for high CO ₂ and H ₂ uptake. Dalton Transactions, 2014, 43, 3210-3214.	1.6	33
28	Evaluating metal–organic frameworks for natural gas storage. Chemical Science, 2014, 5, 32-51.	3.7	1,038
29	A two dimensional microporous metal-organic framework for selective gas separation. Inorganic Chemistry Communication, 2014, 50, 106-109.	1.8	10
30	Gas adsorption properties of highly porous metal–organic frameworks containing functionalized naphthalene dicarboxylate linkers. Dalton Transactions, 2014, 43, 18017-18024.	1.6	80
31	A highly stable multifunctional three-dimensional microporous framework: excellent selective sorption and visible photoluminescence. Dalton Transactions, 2014, 43, 6811.	1.6	13
32	Bimetallic alloy nanocrystals encapsulated in ZIF-8 for synergistic catalysis of ethylene oxidative degradation. Chemical Communications, 2014, 50, 10115.	2.2	106
33	A unique microporous copper trimesate selenite with high selectivity for CO2. CrystEngComm, 2014, 16, 3483-3486.	1.3	7
34	Effect of pendant isophthalic acid moieties on the adsorption properties of light hydrocarbons in HKUST-1-like tbo-MOFs: application to methane purification and storage. RSC Advances, 2014, 4, 63855-63859.	1.7	37
35	New Zn ²⁺ coordination polymers constructed from acylhydrazidate molecules: synthesis and structural characterization. Dalton Transactions, 2014, 43, 15617-15627.	1.6	17
36	A family of microporous carbons prepared via a simple metal salt carbonization route with high selectivity for exceptional gravimetric and volumetric post-combustion CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 14696.	5.2	75
37	Optimizing nanoporous materials for gas storage. Physical Chemistry Chemical Physics, 2014, 16, 5499.	1.3	76
38	Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chemical Society Reviews, 2014, 43, 5618-5656.	18.7	476
39	Computational Design of Metal–Organic Frameworks Based on Stable Zirconium Building Units for Storage and Delivery of Methane. Chemistry of Materials, 2014, 26, 5632-5639.	3.2	191
40	Waterâ€Stable Zirconiumâ€Based Metal–Organic Framework Material with Highâ€Surface Area and Gasâ€Storage Capacities. Chemistry - A European Journal, 2014, 20, 12389-12393.	1.7	150
41	Ultrahigh porosity in mesoporous MOFs: promises and limitations. Chemical Communications, 2014, 50, 7089.	2.2	138
42	Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chemical Society Reviews, 2014, 43, 5896-5912.	18.7	721
43	Isoreticular Series of (3,24)-Connected Metal–Organic Frameworks: Facile Synthesis and High Methane Uptake Properties. Chemistry of Materials, 2014, 26, 1912-1917.	3.2	76
44	Evaluating methane storage targets: from powder samples to onboard storage systems. Adsorption, 2014, 20, 769-776.	1.4	30

#	Article	IF	CITATIONS
45	Methane storage in metal–organic frameworks. Chemical Society Reviews, 2014, 43, 5657-5678.	18.7	1,449
46	Poly(vinylidene chloride)-Based Carbon with Ultrahigh Microporosity and Outstanding Performance for CH ₄ and H ₂ Storage and CO ₂ Capture. ACS Applied Materials & Interfaces, 2014, 6, 3703-3711.	4.0	110
47	Exploring the Limits of Methane Storage and Delivery in Nanoporous Materials. Journal of Physical Chemistry C, 2014, 118, 6941-6951.	1.5	108
48	Can Metal–Organic Frameworks Attain New DOE Targets for On-Board Methane Storage by Increasing Methane Heat of Adsorption?. Journal of Physical Chemistry C, 2014, 118, 19833-19841.	1.5	36
49	Separation of CO 2 /CH 4 and CH 4 /N 2 mixtures by M/DOBDC: A detailed dynamic comparison with MIL-100(Cr) and activated carbon. Microporous and Mesoporous Materials, 2014, 198, 236-246.	2.2	105
50	Theoretical Investigations of CO ₂ and CH ₄ Sorption in an Interpenetrated Diamondoid Metal–Organic Material. Langmuir, 2014, 30, 6454-6462.	1.6	35
51	A porous metal–organic framework with an elongated anthracene derivative exhibiting a high working capacity for the storage of methane. Journal of Materials Chemistry A, 2014, 2, 11516.	5.2	40
52	Rational Design and Synthesis of Porous Polymer Networks: Toward High Surface Area. Chemistry of Materials, 2014, 26, 4589-4597.	3.2	66
53	<i>In Silico</i> Design of Three-Dimensional Porous Covalent Organic Frameworks via Known Synthesis Routes and Commercially Available Species. Journal of Physical Chemistry C, 2014, 118, 23790-23802.	1.5	40
54	Porous Metal–Organic Frameworks for Gas Storage and Separation: What, How, and Why?. Journal of Physical Chemistry Letters, 2014, 5, 3468-3479.	2.1	505
55	Enhancement in Methane Storage Capacity in Gas Hydrates Formed in Hollow Silica. Journal of Physical Chemistry C, 2014, 118, 7759-7764.	1.5	62
56	Band gap modulation of functionalized metal–organic frameworks. Physical Chemistry Chemical Physics, 2014, 16, 23646-23653.	1.3	83
57	Methane Adsorption in Metal–Organic Frameworks Containing Nanographene Linkers: A Computational Study. Journal of Physical Chemistry C, 2014, 118, 15573-15580.	1.5	17
58	Defect Creation by Linker Fragmentation in Metal–Organic Frameworks and Its Effects on Gas Uptake Properties. Inorganic Chemistry, 2014, 53, 6914-6919.	1.9	118
59	A Porous Metal–Organic Framework with Dynamic Pyrimidine Groups Exhibiting Record High Methane Storage Working Capacity. Journal of the American Chemical Society, 2014, 136, 6207-6210.	6.6	311
60	Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks. Nature Chemistry, 2014, 6, 673-680.	6.6	396
61	M ₂ (<i>m</i> -dobdc) (M = Mg, Mn, Fe, Co, Ni) Metal–Organic Frameworks Exhibiting Increased Charge Density and Enhanced H ₂ Binding at the Open Metal Sites. Journal of the American Chemical Society, 2014, 136, 12119-12129.	6.6	207
62	Preparation and Adsorption Performance of GrO@Cu-BTC for Separation of CO ₂ /CH ₄ . Industrial & Engineering Chemistry Research, 2014, 53, 11176-11184.	1.8	124

#	Article	IF	CITATIONS
63	Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews, 2014, 43, 5561-5593.	18.7	1,792
64	Putting the Squeeze on CH ₄ and CO ₂ through Control over Interpenetration in Diamondoid Nets. Journal of the American Chemical Society, 2014, 136, 5072-5077.	6.6	106
65	Enhanced Methane Sorption in Densified Forms of a Porous Polymer Network. Materials Sciences and Applications, 2014, 05, 387-394.	0.3	7
67	Exact matrix treatment of statistical mechanical lattice model of adsorption induced gate opening in metal-organic frameworks. Journal of Statistical Mechanics: Theory and Experiment, 2015, 2015, P05008.	0.9	4
68	Chemical Property Change in a Metalâ€Organic Framework by Fluoro Functionality. Bulletin of the Korean Chemical Society, 2015, 36, 327-332.	1.0	11
69	Photoswitchable Adsorption in Metal–Organic Frameworks Based on Polar Guest–Host Interactions. ChemPhysChem, 2015, 16, 3779-3783.	1.0	74
70	Exploiting Largeâ€₽ore Metal–Organic Frameworks for Separations through Entropic Molecular Mechanisms. ChemPhysChem, 2015, 16, 2046-2067.	1.0	27
71	A New Structural Family of Gasâ€Sorbing Coordination Polymers Derived from Phenolic Carboxylic Acids. Chemistry - A European Journal, 2015, 21, 18057-18061.	1.7	21
72	Generalized Mechanochemical Synthesis of Biomassâ€Derived Sustainable Carbons for High Performance CO ₂ Storage. Advanced Energy Materials, 2015, 5, 1500867.	10.2	130
73	Predicting Methane Storage in Open-Metal-Site Metal–Organic Frameworks. Journal of Physical Chemistry C, 2015, 119, 13451-13458.	1.5	62
74	A (3,6)-connected metal–organic framework with high CH ₄ binding affinity and uptake capacity. CrystEngComm, 2015, 17, 4793-4798.	1.3	18
75	Continuous flow production of metal-organic frameworks. Current Opinion in Chemical Engineering, 2015, 8, 55-59.	3.8	65
76	Metalâ^'Organic Frameworks for Methane Storage. ACS Symposium Series, 2015, , 173-191.	0.5	3
77	Extreme Carbon Dioxide Sorption Hysteresis in Openâ€Channel Rigid Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 2079-2083.	7.2	48
78	MOF Functionalization via Solvent-Assisted Ligand Incorporation: Phosphonates vs Carboxylates. Inorganic Chemistry, 2015, 54, 2185-2192.	1.9	177
79	Direct Measurement of Adsorbed Gas Redistribution in Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 2919-2930.	6.6	40
80	Protecting Metal–Organic Framework Crystals from Hydrolytic Degradation by Sprayâ€Ðry Encapsulating Them into Polystyrene Microspheres. Advanced Materials, 2015, 27, 869-873.	11.1	90
81	The materials genome in action: identifying the performance limits for methane storage. Energy and Environmental Science, 2015, 8, 1190-1199.	15.6	314

#	Article	IF	CITATIONS
82	Multivariable linear models of structural parameters to predict methane uptake in metal–organic frameworks. Chemical Engineering Science, 2015, 124, 125-134.	1.9	47
83	High-Pressure Methane Storage in Porous Materials: Are Carbon Materials in the Pole Position?. Chemistry of Materials, 2015, 27, 959-964.	3.2	178
84	Filling Pore Space in a Microporous Coordination Polymer to Improve Methane Storage Performance. Langmuir, 2015, 31, 2211-2217.	1.6	39
85	A series of MOFs based on a triangular tri(4-pyridylphenyl)amine ligand combined with carboxylate or nitrate auxiliary ligands. Dalton Transactions, 2015, 44, 1412-1419.	1.6	25
87	A microporous metal–organic framework with rare lvt topology for highly selective C ₂ H ₂ /C ₂ H ₄ separation at room temperature. Chemical Communications, 2015, 51, 5610-5613.	2.2	61
88	Methane hydrate formation in confined nanospace can surpass nature. Nature Communications, 2015, 6, 6432.	5.8	187
89	A supermolecular building layer approach for gas separation and storage applications: the eea and rtl MOF platforms for CO ₂ capture and hydrocarbon separation. Journal of Materials Chemistry A, 2015, 3, 6276-6281.	5.2	105
90	Water Structure and Dynamics in Homochiral [Zn(<i>l</i> L)(X)] Metal–Organic Frameworks. Journal of Physical Chemistry C, 2015, 119, 18239-18247.	1.5	11
91	Porous metal–organic frameworks with Lewis basic nitrogen sites for high-capacity methane storage. Energy and Environmental Science, 2015, 8, 2504-2511.	15.6	126
92	A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions. Nature Communications, 2015, 6, 7575.	5.8	288
93	A MOF platform for incorporation of complementary organic motifs for CO ₂ binding. Chemical Communications, 2015, 51, 12478-12481.	2.2	45
94	Multifunctional metal–organic frameworks: from academia to industrial applications. Chemical Society Reviews, 2015, 44, 6774-6803.	18.7	766
95	Thermodynamics of Methane Adsorption on Copper HKUST-1 at Low Pressure. Journal of Physical Chemistry Letters, 2015, 6, 2439-2443.	2.1	23
96	Syntheses, characterization and properties of nine novel Zn(<scp>ii</scp>) coordination polymers based on 4,4′-(phenylazanediyl)dibenzoic acid and various N-donor ligands. CrystEngComm, 2015, 17, 5451-5467.	1.3	18
97	A Chemical Route to Activation of Open Metal Sites in the Copper-Based Metal–Organic Framework Materials HKUST-1 and Cu-MOF-2. Journal of the American Chemical Society, 2015, 137, 10009-10015.	6.6	199
98	Vapor-enhanced CO2 adsorption mechanism of composite PEI@ZIF-8 modified by polyethyleneimine for CO2/N2 separation. Chemical Engineering Journal, 2015, 280, 363-369.	6.6	94
99	Water stabilization of Zr ₆ -based metal–organic frameworks via solvent-assisted ligand incorporation. Chemical Science, 2015, 6, 5172-5176.	3.7	102
100	Heterometallic zinc uranium oxyfluorides incorporating imidazole ligands. Chinese Chemical Letters, 2015, 26, 641-645.	4.8	3

	CITATION	CITATION REPORT	
#	Article	IF	Citations
101	Elucidating Lewis acidity of metal sites in MFU-4l metal-organic frameworks: N2O and CO2 adsorption in MFU-4l, Cul-MFU-4l and Li-MFU-4l. Microporous and Mesoporous Materials, 2015, 216, 146-150.	2.2	21
102	Adsorbed methane storage for vehicular applications. Applied Energy, 2015, 149, 69-74.	5.1	60
103	Postsynthetic Metal and Ligand Exchange in MFUâ€4 <i>l</i> : A Screening Approach toward Functional Metal–Organic Frameworks Comprising Single‧ite Active Centers. Chemistry - A European Journal, 2015, 21, 8188-8199.	1.7	70
104	Cu–BTC MOF–graphene-based hybrid materials as low concentration ammonia sensors. Journal of Materials Chemistry A, 2015, 3, 11417-11429.	5.2	155
105	Multifunctional lanthanide coordination polymers. Progress in Polymer Science, 2015, 48, 40-84.	11.8	176
106	Versatile rare earth hexanuclear clusters for the design and synthesis of highly-connected < b>ftw < /b>-MOFs. Chemical Science, 2015, 6, 4095-4102.	3.7	127
107	Chemical principles underpinning the performance of the metal–organic framework HKUST-1. Chemical Science, 2015, 6, 3674-3683.	3.7	144
108	A thermodynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal–organic frameworks. Energy and Environmental Science, 2015, 8, 1501-1510.	15.6	84
109	Quest for Highly Connected Metal–Organic Framework Platforms: Rare-Earth Polynuclear Clusters Versatility Meets Net Topology Needs. Journal of the American Chemical Society, 2015, 137, 5421-5430.	6.6	163
110	A NbO-type metal–organic framework exhibiting high deliverable capacity for methane storage. Chemical Communications, 2015, 51, 8508-8511.	2.2	81
111	Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks). Energy, 2015, 91, 772-781.	4.5	131
112	Enhanced Dynamic CO ₂ Adsorption Capacity and CO ₂ /CH ₄ Selectivity on Polyethylenimine-Impregnated UiO-66. Industrial & Engineering Chemistry Research, 2015, 54, 11151-11158.	1.8	93
113	Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature, 2015, 527, 357-361.	13.7	817
114	Improved mechanical stability of HKUST-1 in confined nanospace. Chemical Communications, 2015, 51, 14191-14194.	2.2	19
115	Seeking metal–organic frameworks for methane storage in natural gas vehicles. Adsorption, 2015, 21, 499-507.	1.4	20
116	Synthesis and O ₂ Reactivity of a Titanium(III) Metal–Organic Framework. Inorganic Chemistry, 2015, 54, 10096-10104.	1.9	82
117	An lcy-topology amino acid MOF as eco-friendly catalyst for cyclic carbonate synthesis from CO ₂ : Structure-DFT corroborated study. Journal of Materials Chemistry A, 2015, 3, 22636-22647.	5.2	106
118	A new NbO type metal–organic framework for high acetylene and methane storage. RSC Advances, 2015, 5, 84446-84450.	1.7	13

#	Article	IF	CITATIONS
119	Simple and Efficient Regeneration of MOF-5 and HKUST-1 via Acid–Base Treatment. Crystal Growth and Design, 2015, 15, 5568-5572.	1.4	39
120	A porous metal–organic framework as active catalyst for multiple C–N/C–C bond formation reactions. Inorganic Chemistry Communication, 2015, 61, 13-15.	1.8	13
121	Critical Factors Driving the High Volumetric Uptake of Methane in Cu ₃ (btc) ₂ . Journal of the American Chemical Society, 2015, 137, 10816-10825.	6.6	73
122	A microporous metal–organic framework with polarized trifluoromethyl groups for high methane storage. Chemical Communications, 2015, 51, 14789-14792.	2.2	40
123	MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc -MOF for CH ₄ , O ₂ , and CO ₂ Storage. Journal of the American Chemical Society, 2015, 137, 13308-13318.	6.6	632
124	Optimised room temperature, water-based synthesis of CPO-27-M metal–organic frameworks with high space-time yields. Journal of Materials Chemistry A, 2015, 3, 20819-20826.	5.2	74
125	Ultraporous, Water Stable, and Breathing Zirconium-Based Metal–Organic Frameworks with ftw Topology. Journal of the American Chemical Society, 2015, 137, 13183-13190.	6.6	149
126	Diffusion of methane and other alkanes in metal-organic frameworks for natural gas storage. Chemical Engineering Science, 2015, 124, 135-143.	1.9	34
127	Great Prospects for PAF-1 and its derivatives. Materials Horizons, 2015, 2, 11-21.	6.4	75
128	Enhanced gas-sorption properties of a high surface area, ultramicroporous magnesium formate. CrystEngComm, 2015, 17, 532-539.	1.3	32
129	Three-dimensional Printed Acrylonitrile Butadiene Styrene Framework Coated with Cu-BTC Metal-organic Frameworks for the Removal of Methylene Blue. Scientific Reports, 2014, 4, 5939.	1.6	118
130	The Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: The Role of Defects. Frontiers in Energy Research, 2016, 4, .	1.2	16
131	An unusual H2 sorption mechanism in PCN-14: insights from molecular simulation. Physical Chemistry Chemical Physics, 2016, 18, 21421-21430.	1.3	11
132	Single-step scalable synthesis of three-dimensional highly porous graphene with favorable methane adsorption. Chemical Engineering Journal, 2016, 304, 784-792.	6.6	50
133	In-situ modification of trinuclear Mg 3 unit for modulating topology, porosity, and adsorption properties. Inorganic Chemistry Communication, 2016, 70, 181-184.	1.8	3
134	A Metal–Organic Framework with a Pore Size/Shape Suitable for Strong Binding and Close Packing of Methane. Angewandte Chemie - International Edition, 2016, 55, 4674-4678.	7.2	137
135	Bimetallic Metalâ€Organic Frameworks: Probing the Lewis Acid Site for CO ₂ Conversion. Small, 2016, 12, 2334-2343.	5.2	122
136	Adenineâ€Based Coordination Polymers: Synthesis, Structure, and Properties. European Journal of Inorganic Chemistry, 2016, 2016, 2962-2974.	1.0	20

#	Article	IF	CITATIONS
137	Thermodynamics of the oxygen evolution electrocatalysis in a functionalized UiOâ€66 metalâ€organic frameworks. International Journal of Quantum Chemistry, 2016, 116, 1153-1159.	1.0	9
138	Ligand Functionalization in Metal-Organic Frameworks for Enhanced Carbon Dioxide Adsorption. Chemical Record, 2016, 16, 1298-1310.	2.9	26
139	A metal-organic framework–based splitter for separating propylene from propane. Science, 2016, 353, 137-140.	6.0	892
140	Optimization of Kinetic Pore Size for Methane Storage Behavior of Pitchâ€based Activated Carbon Fibers. Bulletin of the Korean Chemical Society, 2016, 37, 830-834.	1.0	4
141	Adsorption technology for the storage of natural gas and biomethane from biogas. International Journal of Energy Research, 2016, 40, 1890-1900.	2.2	11
142	Calcium Vapor Adsorption on the Metal–Organic Framework NU-1000: Structure and Energetics. Journal of Physical Chemistry C, 2016, 120, 16850-16862.	1.5	16
143	Porosity Changes in a Metal–Organic Framework <scp>HKUST</scp> â€1 by Controlled Hydrolysis. Bulletin of the Korean Chemical Society, 2016, 37, 767-770.	1.0	0
144	Microâ€Macroporous Composite Materials: SiC Ceramic Foams Functionalized With the Metal Organic Framework HKUSTâ€1. Chemie-Ingenieur-Technik, 2016, 88, 264-273.	0.4	19
145	Reticular Chemistry of Metal-Organic Frameworks Composed of Copper and Zinc Metal Oxide Secondary Building Units as Nodes. , 0, , 41-72.		4
146	A Metal–Organic Framework with a Pore Size/Shape Suitable for Strong Binding and Close Packing of Methane. Angewandte Chemie, 2016, 128, 4752-4756.	1.6	27
147	Computational Evaluation of the Impact of Incorporated Nitrogen and Oxygen Heteroatoms on the Affinity of Polyaromatic Ligands for Carbon Dioxide and Methane in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2016, 120, 27342-27348.	1.5	9
148	¹²⁹ Xe NMR studies of morphology and accessibility in porous biochar from almond shells. RSC Advances, 2016, 6, 103803-103810.	1.7	6
149	Carboxylic Acid Functionalized Clathrochelate Complexes: Large, Robust, and Easy-to-Access Metalloligands. Inorganic Chemistry, 2016, 55, 4006-4015.	1.9	43
150	High methane storage and working capacities in a NbO-type metal–organic framework. Dalton Transactions, 2016, 45, 7559-7562.	1.6	32
151	Adsorption Properties of MFM-400 and MFM-401 with CO ₂ and Hydrocarbons: Selectivity Derived from Directed Supramolecular Interactions. Inorganic Chemistry, 2016, 55, 7219-7228.	1.9	41
152	Interplay of Confinement and Surface Energetics in the Interaction of Water with a Metal–Organic Framework. Journal of Physical Chemistry C, 2016, 120, 7562-7567.	1.5	14
153	A computational study of CH ₄ storage in porous framework materials with metalated linkers: connecting the atomistic character of CH ₄ binding sites to usable capacity. Chemical Science, 2016, 7, 4503-4518.	3.7	21
154	Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science, 2016, 353, 141-144.	6.0	1,088

#	Article	IF	CITATIONS
155	Hydrogen and methane storage in adsorbent materials for automotive applications. International Journal of Energy Research, 2016, 40, 91-99.	2.2	20
156	Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks. Chemical Engineering Journal, 2016, 298, 183-190.	6.6	194
157	Study of the inorganic substitution in a functionalized UiO-66 metal–organic framework. Physical Chemistry Chemical Physics, 2016, 18, 12748-12754.	1.3	61
158	A Fluorinated Metal–Organic Framework for High Methane Storage at Room Temperature. Crystal Growth and Design, 2016, 16, 3395-3399.	1.4	36
159	Reversible CO Scavenging via Adsorbate-Dependent Spin State Transitions in an Iron(II)–Triazolate Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 5594-5602.	6.6	141
160	Metal-organic framework engineering: directed assembly from molecules to spherical agglomerates. Journal of the Taiwan Institute of Chemical Engineers, 2016, 62, 10-20.	2.7	10
161	Nanovalved Adsorbents for CH ₄ Storage. Nano Letters, 2016, 16, 3309-3313.	4.5	17
162	The role of metal–organic frameworks in a carbon-neutral energy cycle. Nature Energy, 2016, 1, .	19.8	374
163	Finely tuning MOFs towards high performance in C ₂ H ₂ storage: synthesis and properties of a new MOF-505 analogue with an inserted amide functional group. Chemical Communications, 2016, 52, 7241-7244.	2.2	131
164	Effective Binding of Methane Using a Weak Hydrogen Bond. Journal of Physical Chemistry A, 2016, 120, 3701-3709.	1.1	7
165	Rational construction of functional molybdenum (tungsten)–copper–sulfur coordination oligomers and polymers from preformed cluster precursors. Chemical Society Reviews, 2016, 45, 4995-5019.	18.7	113
166	Governing metal–organic frameworks towards high stability. Chemical Communications, 2016, 52, 8501-8513.	2.2	196
167	CO ₂ Adsorption in M-IRMOF-10 (M = Mg, Ca, Fe, Cu, Zn, Ge, Sr, Cd, Sn, Ba). Journal of Physical Chemistry C, 2016, 120, 12819-12830.	1.5	21
168	A Microporous Metal–Organic Framework with Lewis Basic Nitrogen Sites for High C ₂ H ₂ Storage and Significantly Enhanced C ₂ H ₂ /CO ₂ Separation at Ambient Conditions. Inorganic Chemistry, 2016, 55, 7214-7218.	1.9	124
169	Templating of carbon in zeolites under pressure: synthesis of pelletized zeolite templated carbons with improved porosity and packing density for superior gas (CO ₂ and H ₂) uptake properties. Journal of Materials Chemistry A, 2016, 4, 14254-14266.	5.2	35
170	Reticular Chemistry at Its Best: Directed Assembly of Hexagonal Building Units into the Awaited Metal-Organic Framework with the Intricate Polybenzene Topology, pbz-MOF. Journal of the American Chemical Society, 2016, 138, 12767-12770.	6.6	101
171	Tailoring biomass-based activated carbon for CH4 storage by combining chemical activation with H3PO4 or ZnCl2 and physical activation with CO2. Carbon, 2016, 110, 138-147.	5.4	125
172	Three-Dimensional Co- and Mn-MOFs Containing aC2h-Symmetric Terphenyl-3,3′-dicarboxylate Linker and Their Magnetic Properties. European Journal of Inorganic Chemistry, 2016, 2016, 4891-4897.	1.0	5

#	Article	IF	CITATIONS
173	Recent developments in porous materials for H2 and CH4 storage. Tetrahedron Letters, 2016, 57, 4873-4881.	0.7	37
174	Advantage of nanoporous styrene-based monolithic structure over beads when applied for methane storage. Applied Energy, 2016, 183, 1520-1527.	5.1	18
175	Two New (3,6)-Connected MOFs with <i>eea</i> Topology and High CH ₄ Uptake. Crystal Growth and Design, 2016, 16, 6156-6159.	1.4	8
176	Templateâ€Directed Synthesis of Porous and Protective Core–Shell Bionanoparticles. Angewandte Chemie, 2016, 128, 10849-10854.	1.6	33
177	Templateâ€Directed Synthesis of Porous and Protective Core–Shell Bionanoparticles. Angewandte Chemie - International Edition, 2016, 55, 10691-10696.	7.2	118
178	Structural Studies on a New Family of Chiral BioMOFs. Crystal Growth and Design, 2016, 16, 5571-5578.	1.4	21
179	High yield and high packing density porous carbon for unprecedented CO ₂ capture from the first attempt at activation of air-carbonized biomass. Journal of Materials Chemistry A, 2016, 4, 13324-13335.	5.2	47
180	Effect of the synthesis temperature on the dimensionality of hybrid fluorozincates. Journal of Fluorine Chemistry, 2016, 188, 164-170.	0.9	8
181	Characteristics of Methane Adsorption in Micro–Mesoporous Carbons at Low and Ultraâ€High Pressure. Energy Technology, 2016, 4, 1392-1400.	1.8	9
182	A novel pillared-layer-type porous coordination polymer featuring three-dimensional pore system and high methane storage capacity. Science China Chemistry, 2016, 59, 970-974.	4.2	14
183	Porous tetrahedral Zn(II)-tetrazolate framework with highly adsorption selectivity of CO 2 over N 2. Journal of Molecular Structure, 2016, 1125, 777-780.	1.8	6
184	Purification of Chloromethane by Selective Adsorption of Dimethyl Ether on Microporous Coordination Polymers. Langmuir, 2016, 32, 9743-9747.	1.6	4
185	Proton Conducting Self-Assembled Metal–Organic Framework/Polyelectrolyte Hollow Hybrid Nanostructures. ACS Applied Materials & Interfaces, 2016, 8, 23015-23021.	4.0	46
186	High Performance Hollow Metal–Organic Framework Nanoshellâ€Based Etalons for Volatile Organic Compounds Detection. Advanced Materials Technologies, 2016, 1, 1600127.	3.0	30
187	Postextraction Separation, On-Board Storage, and Catalytic Conversion of Methane in Natural Gas: A Review. Chemical Reviews, 2016, 116, 11436-11499.	23.0	176
188	Selective Adsorption of Sulfur Dioxide in a Robust Metal–Organic Framework Material. Advanced Materials, 2016, 28, 8705-8711.	11.1	214
189	A microporous Cu ²⁺ MOF based on a pyridyl isophthalic acid Schiff base ligand with high CO ₂ uptake. Inorganic Chemistry Frontiers, 2016, 3, 1527-1535.	3.0	22
190	High Methane Storage Working Capacity in Metal–Organic Frameworks with Acrylate Links. Journal of the American Chemical Society, 2016, 138, 10244-10251.	6.6	253

#	Article	IF	CITATIONS
191	Toward Design Rules for Enzyme Immobilization in Hierarchical Mesoporous Metal-Organic Frameworks. CheM, 2016, 1, 154-169.	5.8	286
192	Emerging Multifunctional Metal–Organic Framework Materials. Advanced Materials, 2016, 28, 8819-8860.	11.1	1,227
193	Observation of Binding and Rotation of Methane and Hydrogen within a Functional Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 9119-9127.	6.6	54
194	A novel MOF showing a ring-like planar Zn ₆ cluster and the coexistence of a single, double, and triple wall. CrystEngComm, 2016, 18, 6336-6340.	1.3	5
195	Hypercrosslinked polymers: controlled preparation and effective adsorption of aniline. Journal of Materials Science, 2016, 51, 8579-8592.	1.7	33
196	A Cu(<scp>ii</scp>) MOF with a flexible bifunctionalised terpyridine as an efficient catalyst for the single-pot hydrocarboxylation of cyclohexane to carboxylic acid in water/ionic liquid medium. Dalton Transactions, 2016, 45, 12779-12789.	1.6	28
197	Boron Trifluoride Gas Adsorption in Metal–Organic Frameworks. Inorganic Chemistry, 2016, 55, 12110-12113.	1.9	14
198	Influence of Pore Dimension on the Host–Guest Interaction in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2016, 120, 27319-27327.	1.5	15
199	Direct in Situ Conversion of Metals into Metal–Organic Frameworks: A Strategy for the Rapid Growth of MOF Films on Metal Substrates. ACS Applied Materials & Interfaces, 2016, 8, 32414-32420.	4.0	71
200	Methane storage in nanoporous material at supercritical temperature over a wide range of pressures. Scientific Reports, 2016, 6, 33461.	1.6	72
201	A highly stable amino-coordinated MOF for unprecedented block off N ₂ adsorption and extraordinary CO ₂ /N ₂ separation. Chemical Communications, 2016, 52, 13568-13571.	2.2	33
202	Doubly Interpenetrated Metal–Organic Framework for Highly Selective C ₂ H ₂ /CH ₄ and C ₂ H ₂ /CO ₂ Separation at Room Temperature. Crystal Growth and Design, 2016, 16, 7194-7197.	1.4	80
203	Porous Metal-Organic Frameworks: Promising Materials for Methane Storage. CheM, 2016, 1, 557-580.	5.8	297
204	Tuning the Adsorption-Induced Phase Change in the Flexible Metal–Organic Framework Co(bdp). Journal of the American Chemical Society, 2016, 138, 15019-15026.	6.6	123
205	The synthesis of mesostructured NH2-MIL-101(Cr) and kinetic and thermodynamic study in tetracycline aqueous solutions. Journal of Porous Materials, 2016, 23, 1269-1278.	1.3	71
206	Adsorption of two gas molecules at a single metal site in a metal–organic framework. Chemical Communications, 2016, 52, 8251-8254.	2.2	45
207	Different two-dimensional metal-organic frameworks through ligand modification. Journal of Coordination Chemistry, 2016, 69, 2193-2199.	0.8	4
208	Equation of state for methane in nanoporous material at supercritical temperature over a wide range of pressure. , 2016, , .		3

#	Article	IF	CITATIONS
209	A comparative study of several microporous materials to store methane by adsorption. Microporous and Mesoporous Materials, 2016, 224, 323-331.	2.2	49
210	A visually detectable pH responsive zirconium metal–organic framework. Chemical Communications, 2016, 52, 3438-3441.	2.2	57
211	Control of interpenetration in a microporous metal–organic framework for significantly enhanced C ₂ H ₂ /CO ₂ separation at room temperature. Chemical Communications, 2016, 52, 3494-3496.	2.2	94
212	Tuning the Gas Separation Performance of CuBTC by Ionic Liquid Incorporation. Langmuir, 2016, 32, 1139-1147.	1.6	110
213	A pilot study of activated carbon and metal–organic frameworks for methane storage. Applied Energy, 2016, 162, 506-514.	5.1	57
214	Application of Consistency Criteria To Calculate BET Areas of Micro- And Mesoporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 215-224.	6.6	201
215	Ru–B nanoparticles on metal–organic frameworks as excellent catalysts for hydrogenation of benzene to cyclohexane under mild reaction conditions. Green Chemistry, 2016, 18, 2216-2221.	4.6	19
216	Rational synthesis of an exceptionally stable Zn(<scp>ii</scp>) metal–organic framework for the highly selective and sensitive detection of picric acid. Chemical Communications, 2016, 52, 5734-5737.	2.2	253
217	Model Study of Thermoresponsive Behavior of Metal–Organic Frameworks Modulated by Linker Functionalization. Journal of Physical Chemistry C, 2016, 120, 6835-6841.	1.5	14
218	The effects of framework dynamics on the behavior of water adsorbed in the [Zn(l-L)(Cl)] and Co-MOF-74 metal–organic frameworks. Physical Chemistry Chemical Physics, 2016, 18, 8196-8204.	1.3	12
219	Paving the way for methane hydrate formation on metal–organic frameworks (MOFs). Chemical Science, 2016, 7, 3658-3666.	3.7	103
220	Design and development of a volumetric apparatus for the measurement of methane uptakes under cryogenic conditions. Applied Thermal Engineering, 2016, 93, 1175-1182.	3.0	9
221	Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 2016, 1, .	23.3	1,490
222	Non-Interpenetrated Metal–Organic Frameworks Based on Copper(II) Paddlewheel and Oligoparaxylene-Isophthalate Linkers: Synthesis, Structure, and Gas Adsorption. Journal of the American Chemical Society, 2016, 138, 3371-3381.	6.6	104
223	Adsorption of methane on an MOF-199 organometallic framework structure at high pressures in the range of supercritical temperatures. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52, 24-29.	0.3	14
224	Paddle Wheel Based Triazolyl Isophthalate MOFs: Impact of Linker Modification on Crystal Structure and Gas Sorption Properties. Inorganic Chemistry, 2016, 55, 3030-3039.	1.9	29
225	Reticular Synthesis of HKUST-like tbo-MOFs with Enhanced CH ₄ Storage. Journal of the American Chemical Society, 2016, 138, 1568-1574.	6.6	193
226	The lighter side of MOFs: structurally photoresponsive metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 6714-6723.	5.2	128

#	Article	IF	CITATIONS
227	An indirect generation of 1D M ^{II} -2,5-dihydroxybenzoquinone coordination polymers, their structural rearrangements and generation of materials with a high affinity for H ₂ , CO ₂ and CH ₄ . Dalton Transactions, 2016, 45, 1339-1344.	1.6	26
228	Scalable simultaneous activation and separation of metal–organic frameworks. RSC Advances, 2016, 6, 5523-5527.	1.7	14
229	Tuning the structure, dimensionality and luminescent properties of lanthanide metal–organic frameworks under ancillary ligand influence. Dalton Transactions, 2016, 45, 646-656.	1.6	27
230	High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27. Dalton Transactions, 2016, 45, 4150-4153.	1.6	102
231	Improving CO 2 adsorption capacities and CO 2 /N 2 separation efficiencies of MOF-74(Ni, Co) by doping palladium-containing activated carbon. Chemical Engineering Journal, 2016, 284, 1348-1360.	6.6	110
232	A sustainable protocol for the facile synthesis of zinc-glutamate MOF: an efficient catalyst for room temperature CO ₂ fixation reactions under wet conditions. Chemical Communications, 2016, 52, 280-283.	2.2	140
233	Activated graphene-derived porous carbon with exceptional gas adsorption properties. Microporous and Mesoporous Materials, 2016, 220, 21-27.	2.2	75
234	DFT-based evaluation of porous metal formates for the storage and separation of small molecules. Microporous and Mesoporous Materials, 2016, 219, 249-257.	2.2	11
235	Impact of the strength and spatial distribution of adsorption sites on methane deliverable capacity in nanoporous materials. Chemical Engineering Science, 2017, 159, 18-30.	1.9	26
236	From 2-methylimidazole to 1,2,3-triazole: a topological transformation of ZIF-8 and ZIF-67 by post-synthetic modification. Chemical Communications, 2017, 53, 2028-2031.	2.2	61
237	Application of metal â^' organic frameworks. Polymer International, 2017, 66, 731-744.	1.6	163
238	Polarizable Force Fields for CO ₂ and CH ₄ Adsorption in M-MOF-74. Journal of Physical Chemistry C, 2017, 121, 4659-4673.	1.5	87
239	Nanoporous Materials for the Onboard Storage of Natural Gas. Chemical Reviews, 2017, 117, 1796-1825.	23.0	241
240	Synthesis, Structure, and Selective Gas Adsorption of a Single-Crystalline Zirconium Based Microporous Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 2034-2040.	1.4	24
241	Highly efficient adsorbent design using a Cu-BTC/CuO/carbon fiber paper composite for high CH ₄ /N ₂ selectivity. RSC Advances, 2017, 7, 14206-14218.	1.7	13
242	Metal-organic frameworks for energy-related applications. Current Opinion in Green and Sustainable Chemistry, 2017, 4, 44-49.	3.2	39
243	Applying the Power of Reticular Chemistry to Finding the Missing alb-MOF Platform Based on the (6,12)-Coordinated Edge-Transitive Net. Journal of the American Chemical Society, 2017, 139, 3265-3274.	6.6	104
244	Directed assembly of a high surface area 2D metal–organic framework displaying the augmented "kagomé dual―(kgd-a) layered topology with high H ₂ and CO ₂ uptake. Inorganic Chemistry Frontiers, 2017, 4, 825-832.	3.0	8

#	Article	IF	CITATIONS
245	CO ₂ Capture and Separations Using MOFs: Computational and Experimental Studies. Chemical Reviews, 2017, 117, 9674-9754.	23.0	837
246	A new mfj-type metal–organic framework constructed from a methoxyl derived V-shaped ligand and its H2, CO2 and CH4 adsorption properties. RSC Advances, 2017, 7, 21268-21272.	1.7	20
247	Diffusion and photoswitching in nanoporous thin films of metal-organic frameworks. Journal Physics D: Applied Physics, 2017, 50, 193004.	1.3	33
248	Tuning the Adsorption of Polysulfides in Lithium–Sulfur Batteries with Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 4932-4939.	3.2	98
249	Solvothermal synthesis, nanostructural characterization and gas cryo-adsorption studies in a metal–organic framework (IRMOF-1) material. International Journal of Hydrogen Energy, 2017, 42, 23899-23907.	3.8	28
250	A new methyl-embedded (3,36)-connected txt-type metal–organic framework exhibiting high H2 adsorption property. CrystEngComm, 2017, 19, 3094-3097.	1.3	0
251	Tuning the selectivity of light hydrocarbons in natural gas in a family of isoreticular MOFs. Journal of Materials Chemistry A, 2017, 5, 11032-11039.	5.2	36
252	Porous 3D polymers for high pressure methane storage and carbon dioxide capture. Journal of Materials Chemistry A, 2017, 5, 10328-10337.	5.2	60
253	Highly effective ammonia removal in a series of BrÃ,nsted acidic porous polymers: investigation of chemical and structural variations. Chemical Science, 2017, 8, 4399-4409.	3.7	89
254	Construction of a Series of Porous (3,9)-c Coordination Networks Using Dicarboxylate and Tris-pyridyl Ligands and Their Gas Storage Properties. Crystal Growth and Design, 2017, 17, 3475-3481.	1.4	12
255	Molecular tectonics: gas adsorption and chiral uptake of (<scp>l</scp>)- and (<scp>d</scp>)-tryptophan by homochiral porous coordination polymers. Chemical Communications, 2017, 53, 5740-5743.	2.2	27
256	A nanoscale Cu-metal organic framework with Schiff base ligand: Synthesis, characterization and investigation catalytic activity in the oxidation of alcohols. Inorganic Chemistry Communication, 2017, 81, 37-42.	1.8	21
258	Structural and dynamic studies of substrate binding in porous metal–organic frameworks. Chemical Society Reviews, 2017, 46, 239-274.	18.7	206
259	Metalâ€Organic Frameworks for Carbon Dioxide Capture and Methane Storage. Advanced Energy Materials, 2017, 7, 1601296.	10.2	334
260	Solid-state NMR Studies of Host–Guest Interaction between UiO-67 and Light Alkane at Room Temperature. Journal of Physical Chemistry C, 2017, 121, 14261-14268.	1.5	25
261	A highly stable metalâ€organic framework with optimum aperture size for CO ₂ capture. AICHE Journal, 2017, 63, 4103-4114.	1.8	85
262	Predictive models of gas sorption in a metal–organic framework with open-metal sites and small pore sizes. Physical Chemistry Chemical Physics, 2017, 19, 18587-18602.	1.3	24
263	Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption. Review of Scientific Instruments, 2017, 88, 053902.	0.6	8

#	Article	IF	CITATIONS
264	Three dimensional porous Hofmann clathrate [M ^{II} Pt ^{II} (CN) ₄] _{â^ž} (M = Co, Ni) synthesized by using postsynthetic reductive elimination. Chemical Communications, 2017, 53, 6512-6515.	2.2	8
265	Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chemical Society Reviews, 2017, 46, 3402-3430.	18.7	1,033
266	Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chemical Society Reviews, 2017, 46, 3357-3385.	18.7	707
267	Dynamic Spacer Installation for Multirole Metal–Organic Frameworks: A New Direction toward Multifunctional MOFs Achieving Ultrahigh Methane Storage Working Capacity. Journal of the American Chemical Society, 2017, 139, 6034-6037.	6.6	168
268	Ground-State versus Excited-State Interchromophoric Interaction: Topology Dependent Excimer Contribution in Metal–Organic Framework Photophysics. Journal of the American Chemical Society, 2017, 139, 5973-5983.	6.6	122
269	Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 33419-33428.	4.0	104
270	New challenge of microporous metal-organic frameworks for adsorption of hydrogen fluoride gas. Materials Letters, 2017, 197, 175-179.	1.3	14
271	A Distorted [Mn ₂ (COO) ₄ N ₂] Cluster Based Metal–Organic Framework with (3,3,6) Topology and Selective Adsorption of CO ₂ . Crystal Growth and Design, 2017, 17, 2223-2227.	1.4	17
272	A series of chiral metal–organic frameworks based on fluorene di- and tetra-carboxylates: syntheses, crystal structures and luminescence properties. CrystEngComm, 2017, 19, 2042-2056.	1.3	11
273	Gas adsorption properties of graphene-based materials. Advances in Colloid and Interface Science, 2017, 243, 46-59.	7.0	106
274	Rendering High Surface Area, Mesoporous Metal–Organic Frameworks Electronically Conductive. ACS Applied Materials & Interfaces, 2017, 9, 12584-12591.	4.0	98
275	Porous Organic Materials: Strategic Design and Structure–Function Correlation. Chemical Reviews, 2017, 117, 1515-1563.	23.0	961
276	High-Pressure Methane Adsorption in Two Isoreticular Zr-Based Metal–Organic Frameworks Constructed from C3-Symmetrical Tricarboxylates. Crystal Growth and Design, 2017, 17, 248-254.	1.4	6
277	Experimental aspects of buoyancy correction in measuring reliable high-pressure excess adsorption isotherms using the gravimetric method. Measurement Science and Technology, 2017, 28, 125802.	1.4	15
278	Effect of Molecular Guest Binding on the d–d Transitions of Ni ²⁺ of CPO-27-Ni: A Combined UV–Vis, Resonant-Valence-to-Core X-ray Emission Spectroscopy, and Theoretical Study. Inorganic Chemistry, 2017, 56, 14408-14425.	1.9	22
279	Oxygen plasma treatment of HKUST-1 for porosity retention upon exposure to moisture. Chemical Communications, 2017, 53, 12100-12103.	2.2	28
280	Metal–Organic Frameworks and Their Composites: Synthesis and Electrochemical Applications. Small Methods, 2017, 1, 1700187.	4.6	163
281	A Fine-Tuned MOF for Gas and Vapor Separation: A Multipurpose Adsorbent for Acid Gas Removal, Dehydration, and BTX Sieving. CheM, 2017, 3, 822-833.	5.8	83

#	Article	IF	CITATIONS
282	Investigating gas sorption in an rht -metal–organic framework with 1,2,3-triazole groups. Physical Chemistry Chemical Physics, 2017, 19, 29204-29221.	1.3	8
283	Spiers Memorial Lecture: : Progress and prospects of reticular chemistry. Faraday Discussions, 2017, 201, 9-45.	1.6	85
284	Valuing Metal–Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents. Advanced Materials, 2017, 29, 1702953.	11.1	88
285	Construction of ntt-Type Metal–Organic Framework from <i>C</i> ₂ -Symmetry Hexacarboxylate Linker for Enhanced Methane Storage. Crystal Growth and Design, 2017, 17, 4795-4800.	1.4	13
286	Syntheses, crystal structures, electrochemical and photocatalytic properties of two mixed-ligand cobalt(II) coordination polymers based on flexible bis(2-methylbenzimidazole) dicarboxylic acid ligands. Transition Metal Chemistry, 2017, 42, 661-671.	0.7	11
287	Design and fabrication of energetic metal–organic framework [Cu(ntz)]n films with high energy-density and stability. Dalton Transactions, 2017, 46, 13360-13363.	1.6	10
288	Engineering of Pore Geometry for Ultrahigh Capacity Methane Storage in Mesoporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 13300-13303.	6.6	140
289	Experimental and theoretical investigations of the gas adsorption sites in rht-metal–organic frameworks. CrystEngComm, 2017, 19, 4646-4665.	1.3	20
290	A Copper(II)-Paddlewheel Metal–Organic Framework with Exceptional Hydrolytic Stability and Selective Adsorption and Detection Ability of Aniline in Water. ACS Applied Materials & Interfaces, 2017, 9, 27027-27035.	4.0	109
291	Advances of Metalâ€Organic Frameworks in Energy and Environmental Applications. Chinese Journal of Chemistry, 2017, 35, 1501-1511.	2.6	37
292	Fine Tuning of MOFâ€505 Analogues To Reduce Lowâ€Pressure Methane Uptake and Enhance Methane Working Capacity. Angewandte Chemie, 2017, 129, 11584-11588.	1.6	33
293	Fine Tuning of MOFâ€505 Analogues To Reduce Lowâ€Pressure Methane Uptake and Enhance Methane Working Capacity. Angewandte Chemie - International Edition, 2017, 56, 11426-11430.	7.2	119
294	ZIF-67 derived cobalt-based nanomaterials for electrocatalysis and nonenzymatic detection of glucose: Difference between the calcination atmosphere of nitrogen and air. Journal of Electroanalytical Chemistry, 2017, 799, 512-518.	1.9	33
295	Computational prediction of high methane storage capacity in V-MOF-74. Physical Chemistry Chemical Physics, 2017, 19, 21132-21139.	1.3	14
296	Porous Metal–Organic Polyhedral Frameworks with Optimal Molecular Dynamics and Pore Geometry for Methane Storage. Journal of the American Chemical Society, 2017, 139, 13349-13360.	6.6	99
297	Coarse graining of the fully atomic methane models to monatomic isotropic models using relative entropy minimization. Journal of Molecular Liquids, 2017, 242, 1138-1147.	2.3	6
298	Metal–organic frameworks meet scalable and sustainable synthesis. Green Chemistry, 2017, 19, 2729-2747.	4.6	327
299	Cycling and Regeneration of Adsorbed Natural Gas in Microporous Materials. Energy & Fuels, 2017, 31, 14332-14337.	2.5	14

#	Article	IF	CITATIONS
300	Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7923-7928.	3.3	22
301	Structural-failure resistance of metal–organic frameworks toward multiple-cycle CO2 sorption. Chemical Communications, 2017, 53, 8653-8656.	2.2	24
302	Ultra-high surface area mesoporous carbons for colossal pre combustion CO ₂ capture and storage as materials for hydrogen purification. Sustainable Energy and Fuels, 2017, 1, 1414-1424.	2.5	39
303	Multiple Coordination Exchanges for Room-Temperature Activation of Open-Metal Sites in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 24743-24752.	4.0	69
304	A Study of Methane Storage Characteristics of Compacted Adsorbent AU-1. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I Neftyanoe Mashinostroenie), 2017, 52, 838-845.	0.1	17
305	Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. Coordination Chemistry Reviews, 2017, 346, 101-111.	9.5	275
306	Simulation and Experimental Study of Metal Organic Frameworks Used in Adsorption Cooling. Heat Transfer Engineering, 2017, 38, 1305-1315.	1.2	27
307	Rapid determination of small molecule pollutants using metal-organic frameworks as adsorbent and matrix of MALDI-TOF-MS. Microporous and Mesoporous Materials, 2017, 239, 390-395.	2.2	41
308	Zeolite adsorbent-MOF layered nanovalves for CH4 storage. Adsorption, 2017, 23, 19-24.	1.4	22
309	A new MOF-505@GO composite with high selectivity for CO 2 /CH 4 and CO 2 /N 2 separation. Chemical Engineering Journal, 2017, 308, 1065-1072.	6.6	230
310	A metal–organic framework functionalized with piperazine exhibiting enhanced CH ₄ storage. Journal of Materials Chemistry A, 2017, 5, 349-354.	5.2	41
312	Activated carbon and metal organic framework as adsorbent for low-pressure methane storage applications: an overview. Journal of Porous Materials, 2017, 24, 905-922.	1.3	33
313	Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 26-39.	3.2	518
314	HKUST-1@ACM hybrids for adsorption applications: A systematic study of the synthesis conditions. Microporous and Mesoporous Materials, 2017, 237, 74-81.	2.2	15
315	High pressure effects on hydrate Cu-BTC investigated by vibrational spectroscopy and synchrotron X-ray diffraction. RSC Advances, 2017, 7, 55504-55512.	1.7	30
316	The energy of adsorption of methane on microporous carbon adsorbents. Protection of Metals and Physical Chemistry of Surfaces, 2017, 53, 780-785.	0.3	12
317	A Series of Robust Copper-Based Triazolyl Isophthalate MOFs: Impact of Linker Functionalization on Gas Sorption and Catalytic Activity â€. Materials, 2017, 10, 338.	1.3	11
319	A Metal–Organic Framework with Optimized Porosity and Functional Sites for High Gravimetric and Volumetric Methane Storage Working Capacities. Advanced Materials, 2018, 30, e1704792.	11.1	109

#	Article	IF	CITATIONS
320	A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Applied Energy, 2018, 216, 262-285.	5.1	420
321	Benchmark Study of Hydrogen Storage in Metal–Organic Frameworks under Temperature and Pressure Swing Conditions. ACS Energy Letters, 2018, 3, 748-754.	8.8	147
322	Bottom-up Formation of Carbon-Based Structures with Multilevel Hierarchy from MOF–Guest Polyhedra. Journal of the American Chemical Society, 2018, 140, 6130-6136.	6.6	87
323	Homoâ€Helical Rod Packing as a Path Toward the Highest Density of Guestâ€Binding Metal Sites in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 6208-6211.	7.2	35
324	Magnetic Framework Composites for Low Concentration Methane Capture. Industrial & Engineering Chemistry Research, 2018, 57, 6040-6047.	1.8	17
325	Computational evaluation of the impact of metal substitution on the 14CH4 storage in PCN-14 metal-organic frameworks. Catalysis Today, 2018, 312, 168-173.	2.2	4
326	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie - International Edition, 2018, 57, 5684-5689.	7.2	161
327	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie, 2018, 130, 5786-5791.	1.6	27
328	Zeolite-templated carbons – three-dimensional microporous graphene frameworks. Chemical Communications, 2018, 54, 5648-5673.	2.2	172
329	A Multifaceted Study of Methane Adsorption in Metal–Organic Frameworks by Using Three Complementary Techniques. Chemistry - A European Journal, 2018, 24, 7866-7881.	1.7	29
330	Engineering a Zirconium MOF through Tandem "Click―Reactions: A General Strategy for Quantitative Loading of Bifunctional Groups on the Pore Surface. Inorganic Chemistry, 2018, 57, 2288-2295.	1.9	28
331	A Dual-Functional Luminescent MOF Sensor for Phenylmethanol Molecule and Tb ³⁺ Cation. Inorganic Chemistry, 2018, 57, 2654-2662.	1.9	52
332	New OLEDs Based on Zirconium Metalâ€Organic Framework. Advanced Optical Materials, 2018, 6, 1701060.	3.6	42
333	Highly selective luminescent sensor for CCl ₄ vapor and pollutional anions/cations based on a multi-responsive MOF. Journal of Materials Chemistry C, 2018, 6, 2010-2018.	2.7	31
334	Liquid-Assisted Mechanochemical Synthesis of Copper Based MOF-505 for the Separation of CO ₂ over CH ₄ or N ₂ . Industrial & Engineering Chemistry Research, 2018, 57, 703-709.	1.8	78
335	Pressure resistance of copper benzene-1,3,5-tricarboxylate – carbon aerogel composites. Applied Surface Science, 2018, 434, 1300-1310.	3.1	15
336	Homoâ€Helical Rod Packing as a Path Toward the Highest Density of Guestâ€Binding Metal Sites in Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 6316-6319.	1.6	6
337	Graphene inclusion controlling conductivity and gas sorption of metal–organic framework. RSC Advances, 2018, 8, 13921-13932.	1.7	13

#	Article	IF	CITATIONS
338	Metal coordination and metal activation abilities of commonly unreactive chloromethanes toward metal–organic frameworks. Chemical Communications, 2018, 54, 6458-6471.	2.2	42
339	Methane storage capacity of carbon fullerenes and their mechanical and electronic properties: Experimental and theoretical study. Materials Chemistry and Physics, 2018, 211, 192-199.	2.0	8
340	Supercritical Carbon Dioxide Enables Rapid, Clean, and Scalable Conversion of a Metal Oxide into Zeolitic Metal–Organic Frameworks. Crystal Growth and Design, 2018, 18, 3222-3228.	1.4	36
341	Methane Storage in Metal-Organic Frameworks: Insights into the Storage Performance and the Intrinsic Property Relationships for Enhanced Adsorbed Natural Gas Storage. Series on Chemistry, Energy and the Environment, 2018, , 207-246.	0.3	1
343	Rapid, Selective, Ambient Growth and Optimization of Copper Benzene-1,3,5-Tricarboxylate (Cu–BTC) Metal–Organic Framework Thin Films on a Conductive Metal Oxide. Crystal Growth and Design, 2018, 18, 2924-2931.	1.4	22
344	Molecular Modelling of the H ₂ â€Adsorptive Properties of Tetrazolateâ€Based Metalâ~'Organic Frameworks: From the Cluster Approach to Periodic Simulations. ChemPhysChem, 2018, 19, 1349-1357.	1.0	6
345	Co-mixing hydrogen and methane may double the energy storage capacity. Journal of Materials Chemistry A, 2018, 6, 8916-8922.	5.2	22
346	Effects of -NO2 and -NH2 functional groups in mixed-linker Zr-based MOFs on gas adsorption of CO2 and CH4. Progress in Natural Science: Materials International, 2018, 28, 160-167.	1.8	72
347	Multicomponent transport in nanoporous networks: Theory and simulation. Chemical Engineering Journal, 2018, 346, 748-761.	6.6	5
348	Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal. Green Energy and Environment, 2018, 3, 191-228.	4.7	158
349	New strategies based on microfluidics for the synthesis of metal–organic frameworks and their membranes. Journal of Materials Chemistry A, 2018, 6, 5485-5506.	5.2	56
350	Extension of the Pd-catalyzed C N bond forming reaction to the synthesis of large polydentate ligands containing N H functions. Inorganica Chimica Acta, 2018, 470, 416-422.	1.2	9
351	Creation of mesoporous defects in a microporous metal-organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake. Chemical Engineering Journal, 2018, 335, 94-100.	6.6	65
352	High-throughput computational screening and design of nanoporous materials for methane storage and carbon dioxide capture. Green Energy and Environment, 2018, 3, 107-119.	4.7	40
353	Porous metal–organic frameworks for fuel storage. Coordination Chemistry Reviews, 2018, 373, 167-198.	9.5	211
354	Functionalized MIL-101 with imidazolium-based ionic liquids for the cycloaddition of CO2 and epoxides under mild condition. Applied Surface Science, 2018, 428, 218-225.	3.1	69
355	Gas adsorption properties of hybrid graphene-MOF materials. Journal of Colloid and Interface Science, 2018, 514, 801-813.	5.0	143
356	Recent advances in gas storage and separation using metal–organic frameworks. Materials Today, 2018, 21, 108-121.	8.3	1,167

#	Article	IF	CITATIONS
357	A sol–gel monolithic metal–organic framework with enhanced methane uptake. Nature Materials, 2018, 17, 174-179.	13.3	386
358	Oriented UiO-66 thin films through solution shearing. CrystEngComm, 2018, 20, 294-300.	1.3	21
359	Mechanical Properties in Metal–Organic Frameworks: Emerging Opportunities and Challenges for Device Functionality and Technological Applications. Advanced Materials, 2018, 30, e1704124.	11.1	165
360	Fabrication of hybrid coating material of polypropylene itaconate containing MOF-5 for CO2 capture. Progress in Organic Coatings, 2018, 115, 49-55.	1.9	23
361	Materials genomicsâ€guided ab initio screening of MOFs with open copper sites for acetylene storage. AICHE Journal, 2018, 64, 1389-1398.	1.8	16
363	Renaissance of the Methane Adsorbents. Israel Journal of Chemistry, 2018, 58, 985-994.	1.0	7
364	Potential models for the simulation of methane adsorption on graphene: development and CCSD(T) benchmarks. Physical Chemistry Chemical Physics, 2018, 20, 25518-25530.	1.3	23
365	An ambient-temperature aqueous synthesis of zirconium-based metal–organic frameworks. Green Chemistry, 2018, 20, 5292-5298.	4.6	54
366	Computational design of tetrazolate-based metal–organic frameworks for CH ₄ storage. Physical Chemistry Chemical Physics, 2018, 20, 30150-30158.	1.3	18
368	Reticular Chemistry of Multifunctional Metalâ€Organic Framework Materials. Israel Journal of Chemistry, 2018, 58, 949-961.	1.0	24
369	Structure–Function Relations for Gravimetric and Volumetric Methane Storage Capacities in Activated Carbon. ACS Omega, 2018, 3, 15119-15124.	1.6	15
371	Techno-economic feasibility of flare gas utilization using adsorbed natural gas. IOP Conference Series: Earth and Environmental Science, 2018, 105, 012022.	0.2	0
372	Properties of adsorbed supercritical methane film in nanopores. AIP Advances, 2018, 8, .	0.6	11
373	Nanospace within metal–organic frameworks for gas storage and separation. Materials Today Nano, 2018, 2, 21-49.	2.3	77
374	Modifying the Hydrophobic Properties of Metal–Organic Framework HKUST-1. Russian Journal of Physical Chemistry A, 2018, 92, 2391-2395.	0.1	4
375	MOF-GO Hybrid Nanocomposite Adsorbents for Methane Storage. Industrial & Engineering Chemistry Research, 2018, 57, 17470-17479.	1.8	50
376	Optimization of structural and energy characteristics of adsorbents for methane storage. Russian Chemical Bulletin, 2018, 67, 1814-1822.	0.4	21
377	Cooperative adsorption of carbon disulfide in diamine-appended metal–organic frameworks. Nature Communications, 2018, 9, 5133.	5.8	28

#	Article	IF	CITATIONS
378	Bimetallic metal organic frameworks with precisely positioned metal centers for efficient H ₂ storage. Chemical Communications, 2018, 54, 12218-12221.	2.2	20
379	An Emerging Family of Hybrid Nanomaterials: Metal–Organic Framework/Aerogel Composites. ACS Applied Nano Materials, 2018, 1, 5959-5980.	2.4	84
380	Metal–Organic Frameworks-Based Catalysts for Biomass Processing. Catalysts, 2018, 8, 368.	1.6	40
381	Combining Linker Design and Linker-Exchange Strategies for the Synthesis of a Stable Large-Pore Zr-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2018, 10, 35462-35468.	4.0	20
383	Incorporating Heavy Alkanes in Metal–Organic Frameworks for Optimizing Adsorbed Natural Gas Capacity. Chemistry - A European Journal, 2018, 24, 16977-16982.	1.7	16
384	Layer-by-Layer Synthesis of Conformal Metal–Organic Framework Shells on Gold Nanorods. Chemistry of Materials, 2018, 30, 7255-7261.	3.2	34
385	Present and future of MOF research in the field of adsorption and molecular separation. Current Opinion in Chemical Engineering, 2018, 20, 132-142.	3.8	152
386	Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs). Renewable and Sustainable Energy Reviews, 2018, 91, 793-801.	8.2	178
387	1.13 Hydrogen Energy. , 2018, , 568-605.		16
388	From synthesis to applications: Metal–organic frameworks for an environmentally sustainable future. Current Opinion in Green and Sustainable Chemistry, 2018, 12, 47-56.	3.2	33
389	Porous 10- and 12-vertex (bi)-p-dicarba-closo-boranedicarboxylates of cobalt and their gas adsorptive properties. Microporous and Mesoporous Materials, 2018, 271, 284-294.	2.2	8
390	Local Geometry and Electronic Properties of Nickel Nanoparticles Prepared via Thermal Decomposition of Ni-MOF-74. Inorganic Chemistry, 2018, 57, 10072-10080.	1.9	18
391	An unprecedented water stable acylamide-functionalized metal–organic framework for highly efficient CH ₄ /CO ₂ gas storage/separation and acid–base cooperative catalytic activity. Inorganic Chemistry Frontiers, 2018, 5, 2355-2363.	3.0	62
392	Ab Initio Study of Gas Adsorption in Metal–Organic Frameworks Modified by Lithium: The Significant Role of Li-Containing Functional Groups. Journal of Physical Chemistry C, 2018, 122, 18395-18404.	1.5	11
393	Expandable porous organic frameworks with built-in amino and hydroxyl functions for CO ₂ and CH ₄ capture. Chemical Communications, 2018, 54, 9321-9324.	2.2	26
394	Continuous synthesis of high quality metal–organic framework HKUST-1 crystals and composites via aerosol-assisted synthesis. Polyhedron, 2018, 153, 226-233.	1.0	13
395	Coordination driven architectures based on metalloligands offering appended carboxylic acid groups. Journal of Chemical Sciences, 2018, 130, 1.	0.7	6
396	High-Pressure Methane Adsorption in Porous Lennard-Jones Crystals. Journal of Physical Chemistry Letters, 2018, 9, 4275-4281.	2.1	9

#	Article	IF	CITATIONS
397	The utilization of a stable 2D bilayer MOF for simultaneous study of luminescent and photocatalytic properties: experimental studies and theoretical analysis. RSC Advances, 2018, 8, 23529-23538.	1.7	24
398	Quo Vadis, MOF?. Chemie-Ingenieur-Technik, 2018, 90, 1759-1768.	0.4	26
399	Metal–Organic Framework-Based Sensors for Environmental Contaminant Sensing. Nano-Micro Letters, 2018, 10, 64.	14.4	389
400	Prolonged HKUST-1 functionality under extreme hydrothermal conditions by electrospinning polystyrene fibers as a new coating method. Microporous and Mesoporous Materials, 2018, 270, 34-39.	2.2	25
401	Benchmarking of GGA density functionals for modeling structures of nanoporous, rigid and flexible MOFs. Journal of Chemical Physics, 2018, 149, 064110.	1.2	23
402	Beyond the Active Site: Tuning the Activity and Selectivity of a Metal–Organic Framework-Supported Ni Catalyst for Ethylene Dimerization. Journal of the American Chemical Society, 2018, 140, 11174-11178.	6.6	94
403	2-Methylimidazole-Assisted Synthesis of Nanosized Cu ₃ (BTC) ₂ for Controlling the Selectivity of the Catalytic Oxidation of Styrene. ACS Applied Nano Materials, 2018, 1, 5289-5296.	2.4	27
404	2.7 Porous Materials. , 2018, , 182-203.		7
405	Microâ€Macroporous Composite Materials – Preparation Techniques and Selected Applications: A Re Advanced Engineering Materials, 2018, 20, 1800252.	view. 1.6	34
406	Synthesis of Metal–Organic Frameworks on Tobacco Mosaic Virus Templates. Methods in Molecular Biology, 2018, 1798, 95-108.	0.4	7
407	Enabling alternative ethylene production through its selective adsorption in the metal–organic framework Mn ₂ (<i>m</i> -dobdc). Energy and Environmental Science, 2018, 11, 2423-2431.	15.6	46
408	Tailoring the pore size and shape of the one-dimensional channels in iron-based MOFs for enhancing the methane storage capacity. Inorganic Chemistry Frontiers, 2019, 6, 2441-2447.	3.0	18
409	Theoretical Study of Methane Storage in Cu ₂₄ (<i>m</i> -BDC) ₂₄ . Journal of Physical Chemistry A, 2019, 123, 6251-6258.	1.1	2
410	Azobenzene Decorated NbO-Type Metal–Organic Framework for High-Capacity Storage of Energy Gases. Inorganic Chemistry, 2019, 58, 11983-11987.	1.9	24
411	Pre-mixed precursors for modulating the porosity of carbons for enhanced hydrogen storage: towards predicting the activation behaviour of carbonaceous matter. Journal of Materials Chemistry A, 2019, 7, 17466-17479.	5.2	35
412	High-capacity methane storage in flexible alkane-linked porous aromatic network polymers. Nature Energy, 2019, 4, 604-611.	19.8	110
413	Fabrication of PdAg nanoparticle infused metal-organic framework for electrochemical and solution-chemical reduction and detection of toxic 4-nitrophenol. Sensors and Actuators B: Chemical, 2019, 298, 126861.	4.0	85
414	Outstanding methane gravimetric working capacity of computationally designed rhr-MOFs. Microporous and Mesoporous Materials, 2019, 290, 109621.	2.2	1

#	Article	IF	CITATIONS
415	Aqueous-Phase Differentiation and Speciation of Fe ³⁺ and Fe ²⁺ Using Water-Stable Photoluminescent Lanthanide-Based Metal–Organic Framework. ACS Applied Nano Materials, 2019, 2, 5169-5178.	2.4	41
416	Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019, 1, 100006.	10.1	434
417	Flexibility in the Graphene Sheet: The Influence on Gas Adsorption from Molecular Dynamics Studies. Journal of Physical Chemistry C, 2019, 123, 28035-28047.	1.5	14
418	Syntheses, structure, photocatalytic degradation for methylene blue of Co(II)-Based coordination polymers. Journal of Solid State Chemistry, 2019, 279, 120932.	1.4	10
419	Substituted 1,3,5-Triazine Hexacarboxylates as Potential Linkers for MOFs. Molecules, 2019, 24, 3480.	1.7	5
420	Inserting Amide into NOTT-101 to Sharply Enhance Volumetric and Gravimetric Methane Storage Working Capacity. Inorganic Chemistry, 2019, 58, 13782-13787.	1.9	10
421	Shaping of Flexible Metalâ€Organic Frameworks: Combining Macroscopic Stability and Framework Flexibility. European Journal of Inorganic Chemistry, 2019, 2019, 4700-4709.	1.0	41
422	Atomic―and Molecular‣evel Design of Functional Metal–Organic Frameworks (MOFs) and Derivatives for Energy and Environmental Applications. Advanced Science, 2019, 6, 1901129.	5.6	121
423	Morphology-control of metal-organic framework crystal for effective removal of dyes from water. Journal of Solid State Chemistry, 2019, 279, 120950.	1.4	23
424	Ultrafast catalytic reduction of environmental pollutants in water via MOF-derived magnetic Ni and Cu nanoparticles encapsulated in porous carbon. Applied Surface Science, 2019, 497, 143608.	3.1	79
425	Tailoring the pore geometry and chemistry in microporous metal–organic frameworks for high methane storage working capacity. Chemical Communications, 2019, 55, 11402-11405.	2.2	13
426	Exploiting Microwave Chemistry for Activation of Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 35155-35161.	4.0	43
427	Implementing Metal-Organic Frameworks for Natural Gas Storage. Crystals, 2019, 9, 406.	1.0	37
428	Host–Guest Interaction between Methanol and Metal–Organic Framework Cu _{3–<i>x</i>} Zn _{<i>x</i>} (btc) ₂ as Revealed by Solid-State NMR. Journal of Physical Chemistry C, 2019, 123, 24062-24070.	1.5	12
429	Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks. Molecular Systems Design and Engineering, 2019, 4, 162-174.	1.7	179
430	Predicting performance limits of methane gas storage in zeolites with an artificial neural network. Journal of Materials Chemistry A, 2019, 7, 2709-2716.	5.2	33
431	Selective Adsorption of Water, Methanol, and Ethanol by Naphthalene Diimide-Based Coordination Polymers with Constructed Open Cu ²⁺ Metal Sites and Separation of Ethanol/Acetonitrile. ACS Omega, 2019, 4, 1995-2000.	1.6	7
432	Capturing chemical intuition in synthesis of metal-organic frameworks. Nature Communications, 2019, 10, 539.	5.8	153

#	Article	IF	CITATIONS
433	Waterâ€Stable Chemicalâ€Protective Textiles via Euhedral Surfaceâ€Oriented 2D Cu–TCPP Metalâ€Organic Frameworks. Small, 2019, 15, e1805133.	5.2	72
434	Increasing topological diversity during computational "synthesis―of porous crystals: how and why. CrystEngComm, 2019, 21, 1653-1665.	1.3	69
435	Extraordinarily large and stable methane delivery of MIL-53(Al) under LNG-ANG conditions. Chemical Engineering Journal, 2019, 365, 242-248.	6.6	21
436	A Metal–Organic Framework Based Methane Nanoâ€trap for the Capture of Coalâ€Mine Methane. Angewandte Chemie, 2019, 131, 10244-10247.	1.6	28
437	A fluorinated Zr-based MOF of high porosity for high CH4 storage. Journal of Solid State Chemistry, 2019, 277, 139-142.	1.4	27
438	An efficient approach to modulate the coordination number of yttrium ions for diverse network formation. CrystEngComm, 2019, 21, 4136-4140.	1.3	5
439	Three-dimensional Cu/C porous composite: Facile fabrication and efficient catalytic reduction of 4-nitrophenol. Journal of Colloid and Interface Science, 2019, 553, 768-777.	5.0	41
440	A Robust Machine Learning Algorithm for the Prediction of Methane Adsorption in Nanoporous Materials. Journal of Physical Chemistry A, 2019, 123, 6080-6087.	1.1	61
441	Strategies for Overcoming Defects of HKUSTâ€1 and Its Relevant Applications. Advanced Materials Interfaces, 2019, 6, 1900423.	1.9	22
442	Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage. Nature Communications, 2019, 10, 2345.	5.8	180
443	3D-Printing of Pure Metal–Organic Framework Monoliths. , 2019, 1, 147-153.		80
444	Computational design of multilayer frameworks to achieve DOE target for on-board methane delivery. Carbon, 2019, 152, 206-217.	5.4	5
445	Boosting loading capacities of shapeable metal–organic framework coatings by closing the interparticle spaces of stacked nanocrystals. Chemical Communications, 2019, 55, 7223-7226.	2.2	11
446	A Metal–Organic Framework Based Methane Nanoâ€ŧrap for the Capture of Coalâ€Mine Methane. Angewandte Chemie - International Edition, 2019, 58, 10138-10141.	7.2	181
447	Preparation of a magnetically recyclable visible-light-driven photocatalyst based on phthalocyanine and its visible light catalytic degradation of methyl orange and <i>p</i> -nitrophenol. New Journal of Chemistry, 2019, 43, 9589-9595.	1.4	12
448	Isotherms of individual pores by gas adsorption crystallography. Nature Chemistry, 2019, 11, 562-570.	6.6	88
449	Combined Nuclear Magnetic Resonance and Molecular Dynamics Study of Methane Adsorption in M ₂ (dobdc) Metal–Organic Frameworks. Journal of Physical Chemistry C, 2019, 123, 12286-12295.	1.5	18
450	Torsion Angle Effect on the Activation of UiO Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 15788-15794.	4.0	31

ARTICLE IF CITATIONS Pore environment engineering in metalâ€"organic frameworks for efficient ethane/ethylene separation. 5.2 91 451 Journal of Materials Chemistry A, 2019, 7, 13585-13590. Metal-Organic Frameworks. Green Energy and Technology, 2019, , 137-172. 0.4 453 Zeolites and Other Adsorbents. Green Energy and Technology, 2019, , 173-208. 0.4 13 Cobalt imine–pyridine–carbonyl complex functionalized metal–organic frameworks as catalysts for 454 alkene epoxidation. Transition Metal Chemistry, 2019, 44, 595-602. Clathrate-Mediated Gas Storage in Nanoporous Materials. Green Energy and Technology, 2019, , 455 0.4 0 383-403. Novel monoliths prepared from sucrose avoiding binder and thermal treatment. Microporous and 2.2 Mesoporous Materials, 2019, 284, 78-81. 458 Nanoporous Materials for Gas Storage. Green Energy and Technology, 2019, , . 0.4 14 Bottom-Up Formation of Carbon-Based Magnetic Honeycomb Material from Metal–Organic 459 1.6 Framework–Guest Polyhedra for the Capture of Rhodamine B. ACS Omega, 2019, 4, 5578-5585. Harnessing Bottomâ€Up Selfâ€Assembly To Position Five Distinct Components in an Ordered Porous 460 1.6 10 Framework. Angewandte Chemie, 2019, 131, 5402-5407. Functionalization-Induced Breathing Control in Metalâ€"Organic Frameworks for Methane Storage 3.2 with High Deliverable Capacity. Chemistry of Materials, 2019, 31, 2842-2847. Molecular tectonics: homochiral 1D and 2D cadmium based coordination networks. CrystEngComm, 462 4 1.3 2019, 21, 2534-2540. Mesoporous adsorbent for CO2 capture application under mild condition: A review. Journal of 3.3 78 Environmental Chemical Engineering, 2019, 7, 103022. On the Gas Storage Properties of 3D Porous Carbons Derived from Hyper-Crosslinked Polymers. 464 2.0 19 Polymers, 2019, 11, 588. Sustainable synthesis and remarkable adsorption capacity of MOF/graphene oxide and MOF/CNT based hybrid nanocomposites for the removal of Bisphenol A from water. Science of the Total Environment, 143 2019, 673, 306-317. Antibacterial activities of Cu-MOFs containing glutarates and bipyridyl ligands. Dalton Transactions, 466 99 1.6 2019, 48, 8084-8093. Interrogating Kinetic versus Thermodynamic Topologies of Metal–Organic Frameworks via Combined Transmission Electron Microscopy and X-ray Diffraction Analysis. Journal of the American Chemical 94 Society, 2019, 141, 6146-6151. Crystal structure of poly-[(μ₂(carboxylatomethyl)((3-nitrophenyl)sulfonyl)amido-Î²³ <i>N</i>) Tj ETQq0 0 0 rgBT /Overlock 10 T 469 0.1 1 C₁₈H₁₄CuN₄O₆S. Zeitschrift Fur Kristallographie -New Crystal Structures, 2019, 234, 547-548. Coordinative Reduction of Metal Nodes Enhances the Hydrolytic Stability of a Paddlewheel 470 6.6 Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 7853-7864.

#	Article	IF	CITATIONS
472	Square Grid Metal–Chloranilate Networks as Robust Host Systems for Guest Sorption. Chemistry - A European Journal, 2019, 25, 5222-5234.	1.7	31
473	Harnessing Bottomâ€Up Selfâ€Assembly To Position Five Distinct Components in an Ordered Porous Framework. Angewandte Chemie - International Edition, 2019, 58, 5348-5353.	7.2	48
475	A Cu-Doped ZIF-8 metal organic framework as a heterogeneous solid catalyst for aerobic oxidation of benzylic hydrocarbons. New Journal of Chemistry, 2019, 43, 18702-18712.	1.4	42
476	Rational construction and remarkable gas adsorption properties of a HKUST-1-like <i>tbo</i> -type MOF based on a tetraisophthalate linker. Dalton Transactions, 2019, 48, 16793-16799.	1.6	25
477	Imineâ€Linked Covalent Organic Cage Porous Crystals for CO ₂ Adsorption. ChemistrySelect, 2019, 4, 12547-12555.	0.7	10
478	Unique thermal contraction of zeolite-templated carbons enabling micropore size tailoring and its effects on methane storage. Carbon, 2019, 141, 143-153.	5.4	34
479	Computational Tuning of the Paddlewheel tcb-MOF Family for Advanced Methane Sorption. ACS Applied Energy Materials, 2019, 2, 222-231.	2.5	4
480	Idealized Carbon-Based Materials Exhibiting Record Deliverable Capacities for Vehicular Methane Storage. Journal of Physical Chemistry C, 2019, 123, 1050-1058.	1.5	11
481	Extremely Hydrophobic POPs to Access Highly Porous Storage Media and Capturing Agent for Organic Vapors. CheM, 2019, 5, 180-191.	5.8	42
482	Quantitative structural determination of active sites from in situ and operando XANES spectra: From standard ab initio simulations to chemometric and machine learning approaches. Catalysis Today, 2019, 336, 3-21.	2.2	70
483	Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research. ACS Catalysis, 2019, 9, 1779-1798.	5.5	622
484	Crystal Engineering of Metal–Organic Framework Thin Films for Gas Separations. ACS Sustainable Chemistry and Engineering, 2019, 7, 49-69.	3.2	52
485	Nanoporous Polymer Microspheres with Nitrile and Amidoxime Functionalities for Gas Capture and Precious Metal Recovery from E-Waste. ACS Sustainable Chemistry and Engineering, 2019, 7, 123-128.	3.2	29
486	Orientated growth of copper-based MOF for acetylene storage. Chemical Engineering Journal, 2019, 357, 320-327.	6.6	36
487	Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian Journal of Chemistry, 2019, 12, 295-315.	2.3	234
488	Amide-functionalized metal–organic frameworks: Syntheses, structures and improved gas storage and separation properties. Coordination Chemistry Reviews, 2019, 378, 2-16.	9.5	213
489	A microporous metal–organic framework with naphthalene diimide groups for high methane storage. Dalton Transactions, 2020, 49, 3658-3661.	1.6	31
490	Biomimetic metal-organic frameworks mediated hybrid multi-enzyme mimic for tandem catalysis. Chemical Engineering Journal, 2020, 381, 122758.	6.6	92

#	Article	IF	CITATIONS
491	A facile strategy for fabrication of HKUST-1 on a flexible polyethylene nonwoven fabric with a high MOF loading. Microporous and Mesoporous Materials, 2020, 292, 109723.	2.2	12
492	Graphene-containing microporous composites for selective CO2 adsorption. Microporous and Mesoporous Materials, 2020, 292, 109761.	2.2	37
493	Green Synthesis and Engineering Applications of Metal–Organic Frameworks. , 2020, , 139-162.		3
494	Exploiting hydrophobicity and hydrophilicity in nanopores as a design principle for "smart―MOF microtanks for methane storage. Molecular Systems Design and Engineering, 2020, 5, 166-176.	1.7	4
495	Effective CH4 enrichment from N2 by SIM-1 via a strong adsorption potential SOD cage. Separation and Purification Technology, 2020, 230, 115850.	3.9	36
496	Membranes for CO ₂ /CH ₄ and CO ₂ /N ₂ Gas Separation. Chemical Engineering and Technology, 2020, 43, 184-199.	0.9	71
497	Methane sorption in a family of qzd-MOFs: A multiscale computational study. Chemical Engineering Journal, 2020, 384, 123296.	6.6	5
498	An original recycling method for Li-ion batteries through large scale production of Metal Organic Frameworks. Journal of Hazardous Materials, 2020, 385, 121603.	6.5	40
499	Recent Advances of Supercritical CO2 in Green Synthesis and Activation of Metal–Organic Frameworks. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 581-595.	1.9	11
500	Adsorption Isotherm Predictions for Multiple Molecules in MOFs Using the Same Deep Learning Model. Journal of Chemical Theory and Computation, 2020, 16, 1271-1283.	2.3	76
501	Upscale synthesis of a binary pillared layered MOF for hydrocarbon gas storage and separation. Green Chemistry, 2020, 22, 718-724.	4.6	94
502	Metal–organic framework gels and monoliths. Chemical Science, 2020, 11, 310-323.	3.7	173
503	Understanding the role of linker flexibility in soft porous coordination polymers. Molecular Systems Design and Engineering, 2020, 5, 284-293.	1.7	9
504	Machine Learning Enabled Tailor-Made Design of Application-Specific Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 734-743.	4.0	42
505	Rigid Ladder-Type Porous Polymer Networks for Entropically Favorable Gas Adsorption. , 2020, 2, 49-54.		30
506	BGO/AlFu MOF core shell nano-composite based bromide ion-selective electrode. Journal of Environmental Chemical Engineering, 2020, 8, 104375.	3.3	14
507	Digital Reticular Chemistry. CheM, 2020, 6, 2219-2241.	5.8	96
508	Adsorptive Performance of MOFs and MOF Containing Composites for Clean Energy and Safe Environment. Journal of Environmental Chemical Engineering, 2020, 8, 104386.	3.3	85

#	Article	IF	CITATIONS
509	A novel expanded metal–organic framework for balancing volumetric and gravimetric methane storage working capacities. Chemical Communications, 2020, 56, 13117-13120.	2.2	9
510	Methane separation from diluted mixtures by fixed bed adsorption using MOFs: Model validation and parametric studies. Separation and Purification Technology, 2020, 251, 117374.	3.9	10
511	Predictable and targeted activation of biomass to carbons with high surface area density and enhanced methane storage capacity. Energy and Environmental Science, 2020, 13, 2967-2978.	15.6	55
512	Quest for an Optimal Methane Hydrate Formation in the Pores of Hydrolytically Stable Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 13391-13397.	6.6	65
513	Metal–Organic Framework HKUST-1 Promotes Methane Hydrate Formation for Improved Gas Storage Capacity. ACS Applied Materials & Interfaces, 2020, 12, 53510-53518.	4.0	97
514	Modulated Hydrothermal Synthesis of Highly Stable MOF-808(Hf) for Methane Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 17042-17053.	3.2	65
515	Accelerating Discovery of Metal–Organic Frameworks for Methane Adsorption with Hierarchical Screening and Deep Learning. ACS Applied Materials & Interfaces, 2020, 12, 52797-52807.	4.0	31
516	The Role of Machine Learning in the Understanding and Design of Materials. Journal of the American Chemical Society, 2020, 142, 20273-20287.	6.6	179
517	Bimetallic Rodâ€Packing Metal–Organic Framework Combining Two Charged Forms of 2â€Hydroxyterephthalic Acid. Chemistry - A European Journal, 2020, 26, 11146-11149.	1.7	6
518	Applications of machine learning in metal-organic frameworks. Coordination Chemistry Reviews, 2020, 423, 213487.	9.5	100
519	Dense Carbon Nanoflower Pellets for Methane Storage. ACS Applied Nano Materials, 2020, 3, 8278-8285.	2.4	14
520	Nanoporous Covalent Organic Framework Embedded with Fe/Fe ₃ O ₄ Nanoparticles as Air-Stable Low-Density Nanomagnets. ACS Applied Nano Materials, 2020, 3, 9088-9096.	2.4	13
521	Exceptionally High Gravimetric Methane Storage in Aerogel-Derived Carbons. Industrial & Engineering Chemistry Research, 2020, 59, 19383-19391.	1.8	2
522	Structural Deterioration of Wellâ€Faceted MOFs upon H ₂ S Exposure and Its Effect in the Adsorption Performance. Chemistry - A European Journal, 2020, 26, 17110-17119.	1.7	5
523	Global Climate Change: Resilient and Smart Agriculture. , 2020, , .		17
524	Quantitative Structure–Property Relationships from Experiments for CH4 Storage and Delivery by Metal–Organic Frameworks. Crystals, 2020, 10, 700.	1.0	3
525	Evolution of the Design of CH4 Adsorbents. Surfaces, 2020, 3, 433-466.	1.0	10
526	Mitigating Global Methane Emissions Using Metal-Organic Framework Adsorbents. Applied Sciences (Switzerland), 2020, 10, 7733.	1.3	4

#	Article	IF	CITATIONS
527	Heat of Adsorption: A Comparative Study between the Experimental Determination and Theoretical Models Using the System CH ₄ -MOFs. Journal of Chemical & Engineering Data, 2020, 65, 3130-3145.	1.0	7
528	Effect of Larger Pore Size on the Sorption Properties of Isoreticular Metal–Organic Frameworks with High Number of Open Metal Sites. Chemistry - A European Journal, 2020, 26, 13523-13531.	1.7	8
529	Embedding Functional Biomacromolecules within Peptideâ€Directed Metal–Organic Framework (MOF) Nanoarchitectures Enables Activity Enhancement. Angewandte Chemie - International Edition, 2020, 59, 13947-13954.	7.2	86
530	Embedding Functional Biomacromolecules within Peptideâ€Directed Metal–Organic Framework (MOF) Nanoarchitectures Enables Activity Enhancement. Angewandte Chemie, 2020, 132, 14051-14058.	1.6	19
531	Recent progress of two-dimensional materials and metal–organic framework-based taste sensors. Journal of the Korean Ceramic Society, 2020, 57, 353-367.	1.1	25
532	Densification-Induced Structure Changes in Basolite MOFs: Effect on Low-Pressure CH4 Adsorption. Nanomaterials, 2020, 10, 1089.	1.9	14
533	Synthesis and characterization of low-nuclearity lantern-type porous coordination cages. Chemical Communications, 2020, 56, 8924-8927.	2.2	7
534	Permanently Microporous Metal–Organic Polyhedra. Chemical Reviews, 2020, 120, 8987-9014.	23.0	209
535	Metalâ€Organic Framework Based on an Anthracene Tetracarboxylate Ligand and Cadmium or Cobalt: Synthesis, Structure Analysis, Stability and Magnetic Properties. ChemistrySelect, 2020, 5, 6537-6540.	0.7	3
536	Direct Functionalization of the Open Metal Sites in Rare Earth-Based Metal–Organic Frameworks Used for the Efficient Separation of Ethylene. Industrial & Engineering Chemistry Research, 2020, 59, 6123-6129.	1.8	17
537	First-Principles Study on Methane (CH ₄) Storage Properties of Graphdiyne. Journal of Physical Chemistry C, 2020, 124, 8110-8118.	1.5	16
538	Mechanistic and Experimental Study of the Formation of MoS ₂ /HKUST-1 Core–Shell Composites on MoS ₂ Quantum Dots with an Enhanced CO ₂ Adsorption Capacity. Industrial & Engineering Chemistry Research, 2020, 59, 5808-5817.	1.8	12
539	Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and applications. Chemical Society Reviews, 2020, 49, 2751-2798.	18.7	449
540	Hierarchically porous monolithic MOFs: An ongoing challenge for industrial-scale effluent treatment. Chemical Engineering Journal, 2020, 393, 124765.	6.6	75
541	Valsartan metal complexes as capture and reversible storage media for methane. Applied Petrochemical Research, 2020, 10, 77-82.	1.3	5
542	Primary Adsorption Sites of Light Alkanes in Multivariate UiO-66 at Room Temperature as Revealed by Solid-State NMR. Journal of Physical Chemistry C, 2020, 124, 3738-3746.	1.5	12
543	Conductive Metal–Organic Frameworks: Mechanisms, Design Strategies and Recent Advances. Topics in Current Chemistry, 2020, 378, 27.	3.0	57
544	A Spiderwebâ€Like Metal–Organic Framework Multifunctional Foam. Angewandte Chemie - International Edition, 2020, 59, 9506-9513.	7.2	41

#	Article	IF	CITATIONS
545	Separation of methane from ethane and propane by selective adsorption and diffusion in MOF Cu-BTC: A molecular simulation study. Journal of Molecular Graphics and Modelling, 2020, 97, 107574.	1.3	31
546	A Spiderwebâ€Like Metal–Organic Framework Multifunctional Foam. Angewandte Chemie, 2020, 132, 9593-9600.	1.6	3
547	Preparation of novel hybrid catalyst with an hierarchical micro-/mesoporous structure by direct growth of the HKUST-1 nanoparticles inside mesoporous silica matrix (MMS). Microporous and Mesoporous Materials, 2020, 300, 110136.	2.2	22
548	Solvent-assisted linker exchange enabled preparation of cerium-based metal–organic frameworks constructed from redox active linkers. Inorganic Chemistry Frontiers, 2020, 7, 984-990.	3.0	39
549	Insights into the Gas Adsorption Mechanisms in Metal–Organic Frameworks from Classical Molecular Simulations. Topics in Current Chemistry, 2020, 378, 14.	3.0	16
550	Adequacy versus complexity of mathematical models for engineering an adsorbed natural gas device. Journal of Energy Storage, 2020, 28, 101200.	3.9	9
551	Zirconium-Based Metal–Organic Frameworks for the Catalytic Hydrolysis of Organophosphorus Nerve Agents. ACS Applied Materials & Interfaces, 2020, 12, 14702-14720.	4.0	175
552	Comparative Study between Regression and Soft Computing Models to Maximize the Methane Storage Capacity of Anthracite-Based Adsorbents. Industrial & Engineering Chemistry Research, 2020, 59, 1875-1887.	1.8	8
553	Unraveling Structure and Dynamics in Porous Frameworks via Advanced In Situ Characterization Techniques. Advanced Functional Materials, 2020, 30, 1907847.	7.8	73
554	Effect of additives in the nucleation and growth of methane hydrates confined in a high-surface area activated carbon material. Chemical Engineering Journal, 2020, 388, 124224.	6.6	22
555	HiGee Strategy toward Rapid Mass Production of Porous Covalent Organic Polymers with Superior Methane Deliverable Capacity. Advanced Functional Materials, 2020, 30, 1908079.	7.8	14
556	Adsorption of methane and nitrogen on Basolite MOFs: Equilibrium and kinetic studies. Microporous and Mesoporous Materials, 2020, 298, 110048.	2.2	21
557	Impact of Chemical Features on Methane Adsorption by Porous Materials at Varying Pressures. Journal of Physical Chemistry C, 2020, 124, 4534-4544.	1.5	29
558	Two novel sets of UiO-66@ metal oxide/graphene oxide Z-scheme heterojunction: Insight into tetracycline and malathion photodegradation. Journal of Environmental Sciences, 2020, 91, 222-236.	3.2	27
559	Molecular Expansion for Constructing Porous Organic Polymers with High Surface Areas and Wellâ€Defined Nanopores. Angewandte Chemie, 2020, 132, 19655-19661.	1.6	1
560	Molecular Expansion for Constructing Porous Organic Polymers with High Surface Areas and Wellâ€Đefined Nanopores. Angewandte Chemie - International Edition, 2020, 59, 19487-19493.	7.2	38
561	Advances in Metalâ€Organic Frameworks for Acetylene Storage. European Journal of Inorganic Chemistry, 2020, 2020, 2303-2311.	1.0	16
562	Production of MOF Adsorbent Spheres and Comparison of Their Performance with Zeolite 13X in a Moving-Bed TSA Process for Postcombustion CO ₂ Capture. Industrial & Engineering Chemistry Research, 2020, 59, 7198-7211.	1.8	25

#	Article	IF	CITATIONS
563	Designing Porous Materials to Resist Compression: Mechanical Reinforcement of a Zr-MOF with Structural Linkers. Chemistry of Materials, 2020, 32, 3545-3552.	3.2	36
564	Synthesis of Multilevel Structured MoS ₂ @Cu/Cu ₂ O@C Visible-Light-Driven Photocatalyst Derived from MOF–Guest Polyhedra for Cyclohexane Oxidation. ACS Sustainable Chemistry and Engineering, 2020, 8, 6622-6633.	3.2	53
565	Shaping the Future of Fuel: Monolithic Metal–Organic Frameworks for High-Density Gas Storage. Journal of the American Chemical Society, 2020, 142, 8541-8549.	6.6	182
566	Reticular Chemistry 3.2: Typical Minimal Edge-Transitive <i>Derived</i> and <i>Related</i> Nets for the Design and Synthesis of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8039-8065.	23.0	149
567	Synthesis of high-performance polycrystalline metal–organic framework membranes at room temperature in a few minutes. Journal of Materials Chemistry A, 2020, 8, 7633-7640.	5.2	34
568	Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science, 2020, 368, 297-303.	6.0	429
569	Novel Metal–Organic Framework-Based Photocrosslinked Hydrogel System for Efficient Antibacterial Applications. ACS Applied Materials & Interfaces, 2020, 12, 20234-20242.	4.0	112
570	Recent advancements in metal–organic frameworks for green applications. Green Energy and Environment, 2021, 6, 33-49.	4.7	111
571	A robust soc-MOF platform exhibiting high gravimetric uptake and volumetric deliverable capacity for on-board methane storage. Nano Research, 2021, 14, 512-517.	5.8	40
572	A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage. Nano Research, 2021, 14, 507-511.	5.8	57
573	Unveiling the structural transitions during activation of a CO2 methanation catalyst Ru0/ZrO2 synthesised from a MOF precursor. Catalysis Today, 2021, 368, 66-77.	2.2	27
574	Modulation of MIL-101(Cr) morphology and selective removal of dye from water. Journal of the Iranian Chemical Society, 2021, 18, 159-166.	1.2	3
575	MOF materials as therapeutic agents, drug carriers, imaging agents and biosensors in cancer biomedicine: Recent advances and perspectives. Progress in Materials Science, 2021, 117, 100743.	16.0	120
576	Metal-organic framework membranes: Recent development in the synthesis strategies and their application in oil-water separation. Chemical Engineering Journal, 2021, 405, 127004.	6.6	147
577	Separation of toluene from benzene derivatives and extraction of toluene from water based on a flexible naphthalene diimide coordination network. Separation and Purification Technology, 2021, 256, 117781.	3.9	3
578	Molecular simulation of adsorption and diffusion of CH4 and H2O in flexible metal-organic framework ZIF-8. Fuel, 2021, 286, 119342.	3.4	20
579	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	1.6	70
580	UiO-66(Ce) metal-organic framework as a highly active and selective catalyst for the aerobic oxidation of benzyl amines. Molecular Catalysis, 2021, 499, 111277.	1.0	22

#	Article	IF	CITATIONS
581	Highlighting the Greener Shift in Transportation Energy and Fuels Based on Novel Catalytic Materials. Energy & Fuels, 2021, 35, 25-44.	2.5	10
582	Recent advances in the design of metal–organic frameworks for methane storage and delivery. Journal of Porous Materials, 2021, 28, 213-230.	1.3	13
583	Design and Synthesis of Conductive Metalâ€Organic Frameworks and Their Composites for Supercapacitors. ChemElectroChem, 2021, 8, 1021-1034.	1.7	37
584	Synthesis of Metal Organic Frameworks (MOF) and Covalent Organic Frameworks (COF). Indian Institute of Metals Series, 2021, , 503-556.	0.2	0
585	Metal-Organic Frameworks for Environmental Applications. Engineering Materials, 2021, , 1-39.	0.3	0
586	Permeable metal-organic frameworks for fuel (gas) storage applications. , 2021, , 111-126.		0
587	Methane adsorption properties of N-doped graphdiyne: a first-principles study. Structural Chemistry, 2021, 32, 1517-1527.	1.0	6
588	On the correlation between Raman spectra and structural properties of activated carbons derived by hyper-crosslinked polymers. Research on Chemical Intermediates, 2021, 47, 419-431.	1.3	6
589	Metal-Organic Frameworks Derived From Multitopic Ligands: Structural Aspects. , 2021, , 1021-1054.		0
590	Monolithic metal–organic frameworks for carbon dioxide separation. Faraday Discussions, 2021, 231, 51-65.	1.6	12
591	Spiers Memorial Lecture: Coordination networks that switch between nonporous and porous structures: an emerging class of soft porous crystals. Faraday Discussions, 2021, 231, 9-50.	1.6	34
592	Gas hydrates in confined space of nanoporous materials: new frontier in gas storage technology. Nanoscale, 2021, 13, 7447-7470.	2.8	28
593	Multifunctionality in an Ion-Exchanged Porous Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 1365-1376.	6.6	31
594	Recent developments in chemical energy storage. , 2021, , 447-494.		2
595	The application of machine learning for predicting the methane uptake and working capacity of MOFs. Faraday Discussions, 2021, 231, 224-234.	1.6	9
596	Mechanically stable structured porous boron nitride with high volumetric adsorption capacity. Journal of Materials Chemistry A, 2021, 9, 13366-13373.	5.2	9
597	Zinc(<scp>ii</scp>) and cadmium(<scp>ii</scp>) amorphous metal–organic frameworks (aMOFs): study of activation process and high-pressure adsorption of greenhouse gases. RSC Advances, 2021, 11, 20137-20150.	1.7	16
598	Control over interpenetration for boosting methane storage capacity in metal–organic frameworks. Journal of Materials Chemistry A, 2021, 9, 24857-24862.	5.2	14

#	Article	IF	CITATIONS
599	Adsorbed Natural Gas Storage for Onboard Applications. Advanced Sustainable Systems, 2021, 5, 2000200.	2.7	16
600	Hierarchically Porous Boron Nitride/HKUST-1 Hybrid Materials: Synthesis, CO ₂ Adsorption Capacity, and CO ₂ /N ₂ and CO ₂ /CH ₄ Selectivity. Industrial & Engineering Chemistry Research, 2021, 60, 2463-2471.	1.8	14
601	Co-pelletization of a zirconium-based metal-organic framework (UiO-66) with polymer nanofibers for improved useable capacity in hydrogen storage. International Journal of Hydrogen Energy, 2021, 46, 8607-8620.	3.8	14
602	Post-synthetic metalation of porous framework materials for achieving high natural gas storage and working capacity: A GCMC simulation study. Microporous and Mesoporous Materials, 2021, 315, 110931.	2.2	3
603	Effect of the Ethanol/BTC Ratio on the Methane Uptake of Mechanochemically Synthesized MOFâ€199. Chemistry - an Asian Journal, 2021, 16, 1086-1091.	1.7	10
604	Copper benzene-1,3,5-tricarboxylate (HKUST-1) – graphene oxide pellets for methane adsorption. Microporous and Mesoporous Materials, 2021, 316, 110948.	2.2	16
605	Recent advancement in consolidation of MOFs as absorbents for hydrogen storage. International Journal of Energy Research, 2021, 45, 12481-12499.	2.2	32
606	Metal–organic frameworks for biogas upgrading: Recent advancements, challenges, and future recommendations. Applied Materials Today, 2021, 22, 100925.	2.3	16
607	Preparation and Carbonization of Metal Organic Framework Zn(bdc)(ted) _{0.5} for Enhancing Moisture Resistance and Methane Storage Capacity. Industrial & Engineering Chemistry Research, 2021, 60, 3809-3818.	1.8	12
608	Synthesis and Characterization of an Isoreticular Family of Calixarene-Capped Porous Coordination Cages. Inorganic Chemistry, 2021, 60, 5607-5616.	1.9	18
609	Buffered Coordination Modulation as a Means of Controlling Crystal Morphology and Molecular Diffusion in an Anisotropic Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 5044-5052.	6.6	35
610	Prediction of methane storage in covalent organic frameworks using big-data-mining approach. Chinese Journal of Chemical Engineering, 2021, 39, 286-296.	1.7	4
611	Machine learning assisted rediscovery of methane storage and separation in porous carbon from material literature. Fuel, 2021, 290, 120080.	3.4	11
612	Physical properties of porphyrin-based crystalline metal‒organic frameworks. Communications Chemistry, 2021, 4, .	2.0	54
613	Open Framework Material Based Thin Films: Electrochemical Catalysis and Stateâ€ofâ€theâ€art Technologies. Advanced Energy Materials, 2022, 12, 2003499.	10.2	25
614	A new strategy for upgrading ventilation air methane emissions combining adsorption and combustion in a lean-gas turbine. Journal of Natural Gas Science and Engineering, 2021, 88, 103808.	2.1	6
615	Physicochemical activation and palletisation of Azadirachta indica wood carbons for increased biomethane adsorbed energy storage. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105102.	2.6	17
616	Kinetics and enthalpies of methane adsorption in microporous materials AX-21, MIL-101 (Cr) and TE7. Chemical Engineering Research and Design, 2021, 169, 153-164.	2.7	9

#	Article	IF	CITATIONS
617	Assembly of a Metal–Organic Framework (MOF) Membrane on a Solid Electrocatalyst: Introducing Molecular‣evel Control Over Heterogeneous CO ₂ Reduction. Angewandte Chemie, 2021, 133, 13535-13541.	1.6	8
618	Largeâ€Area Crystalline Zeolitic Imidazolate Framework Thin Films. Angewandte Chemie, 2021, 133, 14243-14249.	1.6	4
619	Heterogeneous Metal Azolate Framework-6 (MAF-6) Catalysts with High Zinc Density for Enhanced Polyethylene Terephthalate (PET) Conversion. ACS Sustainable Chemistry and Engineering, 2021, 9, 6541-6550.	3.2	74
620	Largeâ€Area Crystalline Zeolitic Imidazolate Framework Thin Films. Angewandte Chemie - International Edition, 2021, 60, 14124-14130.	7.2	30
621	Assembly of a Metal–Organic Framework (MOF) Membrane on a Solid Electrocatalyst: Introducing Molecular‣evel Control Over Heterogeneous CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 13423-13429.	7.2	48
622	Volumetrics of Hydrogen Storage by Physical Adsorption. Inorganics, 2021, 9, 45.	1.2	18
623	Porous metal–organic frameworks for methane storage and capture: status and challenges. New Carbon Materials, 2021, 36, 468-496.	2.9	37
624	First-principles-assisted band gap predictions of methylammonium metal formates. Materials Research Bulletin, 2021, 138, 111239.	2.7	1
625	Grand canonical Monte Carlo simulations of methane adsorption in fullerene pillared graphene nanocomposites. Journal of Molecular Graphics and Modelling, 2021, 106, 107909.	1.3	5
626	25 Jahre retikulÃre Chemie. Angewandte Chemie, 2021, 133, 24142.	1.6	6
627	New Reticular Chemistry of the Rod Secondary Building Unit: Synthesis, Structure, and Natural Gas Storage of a Series of Three-Way Rod Amide-Functionalized Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 12202-12211.	6.6	44
628	Oxalamide-Functionalized Metal Organic Frameworks for CO ₂ Adsorption. ACS Applied Materials & amp; Interfaces, 2021, 13, 33188-33198.	4.0	35
629	Methane Adsorption on Heteroatom-Modified <i>Maquettes</i> of Porous Carbon Surfaces. Journal of Physical Chemistry A, 2021, 125, 6042-6058.	1.1	5
630	25 Years of Reticular Chemistry. Angewandte Chemie - International Edition, 2021, 60, 23946-23974.	7.2	204
631	Adsorption of organic compounds from aqueous solution by pyridine-2-carboxaldehyde grafted MIL-101(Cr)-NH2 metal-organic frameworks. Journal of Environmental Chemical Engineering, 2021, 9, 105275.	3.3	28
632	Surviving Under Pressure: The Role of Solvent, Crystal Size, and Morphology During Pelletization of Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 52106-52112.	4.0	15
633	Four Novel d10 Metal-Organic Frameworks Incorporating Amino-Functionalized Carboxylate Ligands: Synthesis, Structures, and Fluorescence Properties. Frontiers in Chemistry, 2021, 9, 708314.	1.8	3
634	Firstâ€principles study on the methane adsorption properties by Tiâ€modified graphyne. International Journal of Quantum Chemistry, 2021, 121, e26811.	1.0	8

#	Article	IF	CITATIONS
635	Application of Metal-Organic Framework-Based Composites for Gas Sensing and Effects of Synthesis Strategies on Gas-Sensitive Performance. Chemosensors, 2021, 9, 226.	1.8	18
636	Electron-Conductive Metal–Organic Framework, Fe(dhbq)(dhbq = 2,5-Dihydroxy-1,4-benzoquinone): Coexistence of Microporosity and Solid-State Redox Activity. ACS Applied Materials & Interfaces, 2021, 13, 38188-38193.	4.0	21
637	Tuning Open Metal Site-Free ncb Type of Metal–Organic Frameworks for Simultaneously High Gravimetric and Volumetric Methane Storage Working Capacities. ACS Applied Materials & Interfaces, 2021, 13, 44956-44963.	4.0	13
638	Two-dimensional imine covalent organic frameworks for methane and ethane separation: A GCMC simulation study. Microporous and Mesoporous Materials, 2021, 326, 111386.	2.2	5
639	Metal-Organic Frameworks (MOFs) as methane adsorbents: From storage to diluted coal mining streams concentration. Science of the Total Environment, 2021, 790, 148211.	3.9	24
640	Electrochemical behavior of MOF-801/MWCNT-COOH/AuNPs: A highly selective electrochemical sensor for determination of guanine and adenine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127195.	2.3	13
641	Construction and gas uptake performance of cyano-functional hypercrosslinked polymers via knitting strategy. Chemical Engineering Journal, 2021, 426, 130731.	6.6	32
642	Di-topic hybrid ligands with an isoxazole ring in the central unit: Synthesis, structural characterization and molecular modeling. Journal of Molecular Structure, 2021, 1245, 131129.	1.8	1
643	The investigation of methane storage at the Ni-MOF-74 material: a periodic DFT calculation. Physical Chemistry Chemical Physics, 2021, 23, 12270-12279.	1.3	5
644	Metal-Organic Frameworks: Synthetic Methods and Potential Applications. Materials, 2021, 14, 310.	1.3	112
645	Synthesis and use of new porous metal complexes containing a fusidate moiety as gas storage media. Korean Journal of Chemical Engineering, 2021, 38, 179-186.	1.2	3
646	Analysis and correlations of metal-organic frameworks: applications and toxicity. , 2021, , 253-290.		1
647	Crystal engineering of coordination networks: then and now. , 2021, , 17-60.		0
648	Surface Area and Porosity of Co ₃ (ndc) ₃ (dabco) Metal–Organic Framework and Its Methane Storage Capacity: A Combined Experimental and Simulation Study. Journal of Physical Chemistry C, 2021, 125, 2411-2423.	1.5	7
649	Mechanochemical synthesis of three-component graphene oxide/ordered mesoporous carbon/metal-organic framework composites. Journal of Colloid and Interface Science, 2020, 577, 163-172.	5.0	22
650	Probing the Core–Shell Organization of Nanoconfined Methane in Cylindrical Silica Pores Using <i>In Situ</i> Small-Angle Neutron Scattering and Molecular Dynamics Simulations. Energy & Fuels, 2020, 34, 15246-15256.	2.5	7
651	Applications of pair distribution function analyses to the emerging field of <i>non-ideal</i> metal–organic framework materials. Nanoscale, 2020, 12, 15577-15587.	2.8	42
652	A review: methane capture by nanoporous carbon materials for automobiles. Carbon Letters, 2016, 17, 18-28.	3.3	50

#	Article	IF	CITATIONS
653	Synthesis of zeolite-templated carbons for methane storage: A molecular simulation study. Tanso, 2018, 2018, 197-203.	0.1	4
654	A Triazole Functionalized <i>txt</i> -Type Metal–Organic Framework with High Performance for CH ₄ Uptake and Selective CO ₂ Adsorption. Inorganic Chemistry, 2021, 60, 15646-15652.	1.9	5
655	Methane storage in clathrate hydrates containing <scp>waterâ€miscible</scp> oxirane promoters. International Journal of Energy Research, 2022, 46, 3249-3259.	2.2	7
656	Molecular insights into hybrid CH4 physisorption-hydrate growth in hydrophobic metal–organic framework ZIF-8: Implications for CH4 storage. Chemical Engineering Journal, 2022, 430, 132901.	6.6	8
657	Hydrocarbon adsorption in a series of mesoporous metal-organic frameworks. Microporous and Mesoporous Materials, 2021, 328, 111477.	2.2	10
658	Nitrogen Gas on Graphene: Pairwise Interaction Potentials. Lecture Notes in Computer Science, 2018, , 563-578.	1.0	3
659	Synthesis and Characterization of Mixed Ligand Complexes of Zirconium(IV) with Sulphur, Nitrogen and Oxygen Donor Ligands. Chemistry and Chemical Technology, 2019, 13, 23-32.	0.2	2
660	pH effect on hydrothermal synthesis of the coordination polymers containing pyrazine-2,3-dicarboxylate: Investigation of thermal stability, luminescence and electrical conductivity properties. Journal of the Turkish Chemical Society, Section A: Chemistry, 2020, 7, 243-258.	0.4	1
661	Machine Learning-Guided Equations for Super-Fast Prediction of Methane Storage Capacities of COFs. SSRN Electronic Journal, 0, , .	0.4	0
662	Multifunctional material Cer@MHKUST-1 with efficient preservation capability. Chemical Engineering Journal, 2022, 433, 133267.	6.6	13
663	Metal-Organic Frameworks (MOFs). Engineering Materials, 2021, , 105-146.	0.3	0
664	Methane and Hydrogen Storage in Metal Organic Frameworks: A Mini Review. Journal of Environmental & Earth Sciences, 2020, 2, .	0.4	1
665	Regulating pyrolysis strategy to construct CNTs-linked porous cubic Prussian blue analogue derivatives for lightweight and broadband microwave absorption. Chemical Engineering Journal, 2022, 430, 132879.	6.6	105
666	Computational screening of zeolite templated carbons for hydrogen storage. Computational Materials Science, 2022, 202, 110950.	1.4	15
667	Nanotechnology for Mitigation of Global Warming Impacts. , 2020, , 315-336.		1
668	Calixarene-based Porous 3D Polymers and Copolymers with High Capacity and Binding Energy for CO2, CH4 and Xe Capture. Journal of Materials Chemistry A, 0, , .	5.2	11
669	HKUST-1 Metal–Organic Framework Nanoparticle/Graphene Oxide Nanocomposite Aerogels for CO ₂ and CH ₄ Adsorption and Separation. ACS Applied Nano Materials, 2021, 4, 12712-12725.	2.4	19
670	Synthesis and Structural Characterization of a Cobalt Coordination Polymer Assembled by Bis(4-(1H-benzo[d]imidazol-1-yl)phenyl)methanone and Phthalate. Crystallography Reports, 2020, 65, 1142-1144.	0.1	0

щ		IF	CITATIONS
#	ARTICLE Design of ultra-stable Yttrium-organic framework adsorbents for efficient methane purification and	IF	CITATIONS
671	storage. Separation and Purification Technology, 2022, 283, 120211.	3.9	9
672	Enhanced Sieving of C2â€Hydrocarbon from Methane by Fluoroâ€Functionalization of Inâ€MOF with Robust Stability. Chemistry - an Asian Journal, 2022, 17, .	1.7	2
673	Structural resolution and mechanistic insight into hydrogen adsorption in flexible ZIF-7. Chemical Science, 2021, 12, 15620-15631.	3.7	18
674	A confinement of N-heterocyclic molecules in a metal–organic framework for enhancing significant proton conductivity. RSC Advances, 2021, 12, 355-364.	1.7	2
675	Light-induced switchable adsorption in azobenzene- and stilbene-based porous materials. Trends in Chemistry, 2022, 4, 32-47.	4.4	11
676	Porous carbons for energy storage and conversion. , 2022, , 239-540.		1
677	Gas Adsorption and Storage at Metal-Organic Frameworks. Engineering Journal, 2022, 28, 65-75.	0.3	3
678	Combining crystal graphs and domain knowledge in machine learning to predict metal-organic frameworks performance in methane adsorption. Microporous and Mesoporous Materials, 2022, 331, 111666.	2.2	16
679	Chemistry-Encoded Convolutional Neural Networks for Predicting Gaseous Adsorption in Porous Materials. Journal of Physical Chemistry C, 2022, 126, 2813-2822.	1.5	19
680	First-principles study of the impact of hydrogen on the adsorption properties of Ti-decorated graphdiyne storage methane. Chemical Physics Letters, 2022, 790, 139329.	1.2	10
681	Shaping of Metal–Organic Frameworks: A Review. Energy & Fuels, 2022, 36, 2927-2944.	2.5	56
682	Water-stable metal organic framework-199@polyaniline with high-performance removal of copper II. Environmental Science and Pollution Research, 2022, 29, 44883-44892.	2.7	12
683	Carbon-Based Monoliths with Improved Thermal and Mechanical Properties for Methane Storage. SSRN Electronic Journal, 0, , .	0.4	0
684	The effect of pore sizes on D ₂ /H ₂ separation conducted by MOF-74 analogues. Inorganic Chemistry Frontiers, 2022, 9, 1674-1680.	3.0	10
685	Carbon-Based Monoliths with Improved Thermal and Mechanical Properties for Methane Storage. SSRN Electronic Journal, 0, , .	0.4	0
686	Carbon-Based Monoliths with Improved Thermal and Mechanical Properties for Methane Storage. SSRN Electronic Journal, 0, , .	0.4	0
687	Molecular Dynamics of CH4 Hydrate Growth in Confined Space of ZIF-8: Micro-insights in Technology of Adsorption-Hydration Hybrid to CH4 Storage. Lecture Notes in Civil Engineering, 2022, , 342-349.	0.3	0
688	Computational Approach Toward Identification and Catalytic Degradation of Chemical Warfare Agents Using MOFs. , 2022, , 431-451.		3

#	Article	IF	CITATIONS
689	Dua L-Signal ElectrochemicalÂBiosensor for Neutrophil Gelatinase-Associated LipocalinÂBased on Mxene and Cu-Metal Organic Framework/Single-Walled Carbon Nanohorns HeterogeneousÂNanocomposites. SSRN Electronic Journal, 0, , .	0.4	0
690	Recent advances in metal–organic frameworks for gas adsorption/separation. Nanoscale Advances, 2022, 4, 2077-2089.	2.2	59
692	Binding Materials for MOF Monolith Shaping Processes: A Review towards Real Life Application. Energies, 2022, 15, 1489.	1.6	6
693	Flexible Metal–Organic Frameworks as CO ₂ Adsorbents en Route to Energyâ€Efficient Carbon Capture. Small Structures, 2022, 3, .	6.9	15
694	Evaluation of metal-organic frameworks for natural gas storage. , 2022, , .		1
695	Modifying HKUST-1 Crystals for Selective Ethane Adsorption Using Ionic Liquids as Synthesis Media. Crystals, 2022, 12, 279.	1.0	5
696	Metal-organic framework-derived hierarchical porous carbon fiber bundles/Y2Co8Fe9 composite as a thin and broadband electromagnetic wave absorber. Materials Research Bulletin, 2022, 152, 111838.	2.7	9
697	Generation of Environmentally Persistent Free Radicals on Metal–Organic Frameworks. Langmuir, 2022, 38, 3265-3275.	1.6	3
698	A review on high-density methane storage in confined nanospace by adsorption-hydration hybrid technology. Journal of Energy Storage, 2022, 50, 104195.	3.9	12
699	Efficiently Regulating the Electrical Properties of Flexible Fabricâ€Based Cu ₃ (BTC) ₂ Thin Film by Introducing Various Guest Molecules. Advanced Materials Interfaces, 2022, 9, .	1.9	3
700	Polyurethane Foam Incorporated with Nanosized Copper-Based Metal-Organic Framework: Its Antibacterial Properties and Biocompatibility. International Journal of Molecular Sciences, 2021, 22, 13622.	1.8	13
701	An Electrically Conductive Tetrathiafulvalene-Based Hydrogen-Bonded Organic Framework. , 2022, 4, 128-135.		34
702	Graph neural network predictions of metal organic framework CO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e488" altimg="si38.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> adsorption properties. Computational Materials Science, 2022, 210, 111388.</mml:math 	1.4	19
704	Multicriteria decision making in organic-metal frameworks for fuel storage. , 2022, , 609-630.		0
705	Methane Hydrate Formation in Hollow ZIF-8 Nanoparticles for Improved Methane Storage Capacity. Catalysts, 2022, 12, 485.	1.6	3
706	Computational Identification and Experimental Demonstration of Highâ€Performance Methane Sorbents. Angewandte Chemie - International Edition, 2022, 61, e202203575.	7.2	13
707	Computational Identification and Experimental Demonstration of Highâ€Performance Methane Sorbents. Angewandte Chemie, 2022, 134, .	1.6	2
708	Evaluating the High-Pressure Volumetric CH ₄ , H ₂ , and CO ₂ Storage Properties of Denser-Version Isostructural soc -Metal–Organic Frameworks. Journal of Chemical &: Engineering Data, 2022, 67, 1732-1742.	1.0	8

#	Article	IF	CITATIONS
709	Progress on 3Dâ€Printed Metalâ€Organic Frameworks with Hierarchical Structures. Advanced Materials Technologies, 2022, 7, .	3.0	10
710	Discovery of Highâ€Performing Metal–Organic Frameworks for Onâ€Board Methane Storage and Delivery via LNG–ANG Coupling: Highâ€Throughput Screening, Machine Learning, and Experimental Validation. Advanced Science, 2022, 9, e2201559.	5.6	14
711	Metal-organic framework based on iron and terephthalic acid as a multiporous support for lipase <i>Burkholderia lata</i> LBBIO-BLO2 and its potential for biocatalysis. Biocatalysis and Biotransformation, 2023, 41, 332-343.	1.1	1
712	Application of MXenes for air purification, gas separation and storage: A review. Renewable and Sustainable Energy Reviews, 2022, 164, 112527.	8.2	42
713	A series of novel Cu-based MOFs: syntheses, structural diversity, catalytic properties and mimic peroxidase activity for colorimetric detection of H2O2. New Journal of Chemistry, 0, , .	1.4	4
714	Synthesis of MIL-101(Cr)/graphite oxide composite and enhanced the capacity of methane. Journal of Natural Gas Science and Engineering, 2022, 103, 104647.	2.1	5
715	Methane storage in flexible and dynamical metal–organic frameworks. Chemical Physics Reviews, 2022, 3, .	2.6	7
716	Investigation of methane adsorption onto metal–organic frameworks under subcritical condition employing adsorption isotherm models. Bulletin of Materials Science, 2022, 45, .	0.8	1
717	Syntheses, Structures, and Properties of Coordination Polymers with 2,5-Dihydroxy-1,4-Benzoquinone and 4,4′-Bipyridyl Synthesized by <i>In Situ</i> Hydrolysis Method. ACS Omega, 0, , .	1.6	0
718	Porous carbon-based material as a sustainable alternative for the storage of natural gas (methane) and biogas (biomethane): A review. Chemical Engineering Journal, 2022, 446, 137373.	6.6	22
719	Metalâ^'Organic Frameworks for Capturing Carbon Dioxide from Flue Gas. ACS Symposium Series, 0, , 355-391.	0.5	1
720	Revealing Zeolites Active Sites Role as Kinetic Hydrate Promoters: Combined Computational and Experimental Study. ACS Sustainable Chemistry and Engineering, 2022, 10, 8002-8010.	3.2	7
721	Highly Porous Materials as Potential Components of Natural Gas Storage Systems: Part 1 (A Review). Petroleum Chemistry, 2022, 62, 561-582.	0.4	5
722	Carbon-based monoliths with improved thermal and mechanical properties for methane storage. Fuel, 2022, 324, 124753.	3.4	2
723	The unique opportunities of mechanosynthesis in green and scalable fabrication of metal–organic frameworks. Journal of Materials Chemistry A, 2022, 10, 15332-15369.	5.2	9
724	Ligand Tailoring Strategy of a Metal–Organic Framework for Optimizing Methane Storage Working Capacities. Inorganic Chemistry, 2022, 61, 10417-10424.	1.9	5
725	A Review on Metal- Organic Frameworks (MOFS), Synthesis, Activation, Characterisation, and Application. Oriental Journal of Chemistry, 2022, 38, 490-516.	0.1	3
726	Reticular Chemistry for the Construction of Highly Porous Aluminum-Based nia -Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 10661-10666.	1.9	8

#	Article	IF	CITATIONS
727	Life cycle assessment as a comparison tool for activated carbon preparations and biomethane storage for vehicular applications. International Journal of Energy Research, 2022, 46, 17362-17375.	2.2	2
728	Hydrothermal Synthesis and Symmetrical Supercapacitor Study of 1D Lnâ€H ₂ PDA (Ln=La and) Tj ET	Q8110.7	'84314 rgBT
729	Controllable fabrication of nanofibrillated cellulose supported HKUST-1 hierarchically porous membranes for highly efficient removal of formaldehyde in air. Industrial Crops and Products, 2022, 186, 115269.	2.5	26
730	Zeolitic ice: A route toward net zero emissions. Renewable and Sustainable Energy Reviews, 2022, 168, 112768.	8.2	8
731	Microporous metal-organic frameworks based on deep eutectic solvents for adsorption of toxic gases and volatile organic compounds: A review. Chemical Engineering Journal Advances, 2022, 12, 100361.	2.4	11
732	A contemporary report on explications of flexible metal-organic frameworks with regards to structural simulation, dynamics and material applications. Polyhedron, 2022, 225, 116041.	1.0	2
733	Analysis of CH4 Adsorption Isotherms onto MIL-101 (Cr) Metal-Organic Framework and Its Derivatives with Alkali Ion Dopants. Protection of Metals and Physical Chemistry of Surfaces, 2022, 58, 478-485.	0.3	1
734	RSM optimization of biodiesel production by a novel composite of Fe(ΙΙΙ)-based MOF and phosphomolybdic acid. Research on Chemical Intermediates, 2022, 48, 3773-3793.	1.3	5
735	Progress and potential of metal-organic frameworks (MOFs) for gas storage and separation: A review. Journal of Environmental Chemical Engineering, 2022, 10, 108300.	3.3	86
736	Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity. Journal of the American Chemical Society, 2022, 144, 13729-13739.	6.6	39
737	Highly Porous Materials as Potential Components of Natural Gas Storage Systems: Part 2 (A Review). Petroleum Chemistry, 2022, 62, 677-713.	0.4	3
738	Electrochemical Sensor Based on Au NPs@NiPc-Cu MOFs Modified Electrode for the Rapid Detection of Luteolin. Journal of the Electrochemical Society, 2022, 169, 087511.	1.3	2
739	Continuum Modeling with Functional Lennard-Jones Parameters for Methane Storage inside Various Carbon Nanostructures. ACS Omega, 2022, 7, 29773-29786.	1.6	4
740	Microporous metal–organic frameworks: Synthesis and applications. Journal of Industrial and Engineering Chemistry, 2022, 115, 1-11.	2.9	20
741	Toward Economical Seawater-Based Methane Hydrate Formation at Ambient Temperature: A Combined Experimental and Computational Study. ACS Sustainable Chemistry and Engineering, 2022, 10, 11617-11626.	3.2	4
742	Controllable Nitric Oxide Storage and Release in Cu-BTC: Crystallographic Insights and Bioactivity. International Journal of Molecular Sciences, 2022, 23, 9098.	1.8	10
743	Active learning boosted computational discovery of covalent–organic frameworks for ultrahigh <scp>CH₄</scp> storage. AICHE Journal, 2022, 68, .	1.8	8
744	How does the metal doping in mixed metal MOFs influence their photodynamics? A direct evidence for improved photocatalysts. Materials Today Energy, 2022, 29, 101125.	2.5	4

#	Article	IF	CITATIONS
745	Metal–organic-framework composite-based rapid self-detoxifying smart textile filters for chemical warfare agents. , 2023, , 33-79.		0
746	Generalised predictability in the synthesis of biocarbons as clean energy materials: targeted high performance CO ₂ and CH ₄ storage. Energy and Environmental Science, 2022, 15, 4710-4724.	15.6	7
747	Enzymeâ€Immobilized Metalâ€Organic Frameworks: From Preparation to Application. Chemistry - an Asian Journal, 2022, 17, .	1.7	10
748	Metal–Organic Frameworks and Their Composites for Environmental Applications. Advanced Science, 2022, 9, .	5.6	26
749	Development of a High-Accuracy Statistical Model to Identify the Key Parameter for Methane Adsorption in Metal-Organic Frameworks. Analytica—A Journal of Analytical Chemistry and Chemical Analysis, 2022, 3, 335-370.	0.8	1
750	MIL-101-Cr/Fe/Fe-NH ₂ for Efficient Separation of CH ₄ and C ₃ H ₈ from Simulated Natural Gas. ACS Applied Materials & Interfaces, 2022, 14, 45444-45450.	4.0	18
751	Deep Learning Models for Predicting Gas Adsorption Capacity of Nanomaterials. Nanomaterials, 2022, 12, 3376.	1.9	10
752	An indium-based microporous metal–organic framework with unique three-way rod-shaped secondary building units for efficient methane and hydrogen storage. Inorganic Chemistry Frontiers, 2022, 9, 6527-6533.	3.0	5
753	Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chemical Society Reviews, 2022, 51, 9068-9126.	18.7	30
754	One-step rapid fabrication of MOF@polymer core–shell particles through non-solvent induced surface deposition. Journal of Materials Chemistry A, 2022, 10, 24676-24684.	5.2	4
755	Impact of Loading-Dependent Intrinsic Framework Flexibility on Adsorption in UiO-66. Journal of Physical Chemistry C, 2022, 126, 17699-17711.	1.5	7
756	Graphene-Based Metal–Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chemical Reviews, 2022, 122, 17241-17338.	23.0	81
757	Reduced graphene oxide based composite aerogels for energy storage and transportation of methane. Journal of Cleaner Production, 2022, 379, 134770.	4.6	5
758	Natural gas storage by adsorption. , 2023, , 261-297.		0
759	Metalâ€Organic Frameworks for Catalytic Construction of Câ^B Bond and Related Reactions. ChemCatChem, 2023, 15, .	1.8	4
760	Evaluation of HKUST-1 as Volatile Organic Compound Adsorbents for Respiratory Filters. Langmuir, 2022, 38, 14465-14474.	1.6	8
761	Rational design of carbon-based materials for purification and storage of energy carrier gases of methane and hydrogen. Journal of Energy Storage, 2022, 56, 105967.	3.9	9
762	Promotion of methane storage capacity with metal–organic frameworks of high porosity. Inorganic Chemistry Frontiers, 2023, 10, 454-459.	3.0	9

ARTICLE IF CITATIONS # Hydrate-based adsorption-hydration hybrid approach enhances methane storage density in ZIF-8@AC. 763 6.6 2 Chemical Engineering Journal, 2023, 455, 140503. Metalâ€Organic Frameworks for Greenhouse Gas Applications. Small, 2023, 19, . 764 5.2 765 Metal-organic Frameworks for Natural Gas Storage., 0, 21, 57-63. 0 A monolithic gold nanoparticle@metal-organic framework composite as CO2 photoreduction 2.3 catalyst. Materials Today Nano, 2023, 21, 100293. Metal Organic Polygons and Polyhedra: Instabilities and Remedies. Inorganics, 2023, 11, 36. 767 1.2 1 Effects of MOF linker rotation and functionalization on methane uptake and diffusion. Molecular 768 1.7 Systems Design and Engineering, 2023, 8, 527-537 769 Strategies, Synthesis, and Applications of Metal-Organic Framework Materials., 2023, , 1-82. 0 Investigating CO2 storage properties of Pd(II) and Co(II) chelates of a Schiff's base ligand., 0, , . Machine Learning for Predicting Gas Adsorption Capacities of Metal Organic Framework. 771 0.3 0 Computational Methods in Engineering & the Sciences, 2023, , 629-654. Porosity Engineering of Hyper-Cross-Linked Polymers Based on Fine-Tuned Rigidity in Building Blocks 2.2 and High-Pressure Methane Storage Applications. Macromolecules, 2023, 56, 1213-1222. Metal organic frameworks adsorbent for Iraq dry gas. AIP Conference Proceedings, 2023, , . 773 0 0.3 Current overview of the valorization of bio-wastes for adsorbed natural gas applications. Carbon 774 3.3 Letters, 2023, 33, 1519-1547. Firstâ€principles study on the <scp>CH₄</scp> adsorption performance of Mnâ€modified 775 1.0 0 Nâ€doped graphdiyné. International Journal of Quantum Chemistry, 2023, 123, . Recent progress in mixed rare earth metal-organic frameworks: From synthesis to application. Coordination Chemistry Reviews, 2023, 485, 215121. Deep dive into anionic metal-organic frameworks based quasi-solid-state electrolytes. Journal of 777 7.1 4 Energy Chemistry, 2023, 81, 313-320. Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coordination Chemistry Reviews, 2023, 484, 215112. Co-adsorption of hydrogen and methane can improve the energy storage capacity of Mn-modified 779 3.9 0 graphene. Journal of Energy Storage, 2023, 63, 106973. Metal Doping to Control Gate Opening and Increase Methane Working Capacity in Isostructural Flexible Diamondoid Networks. ChemSusChem, 2023, 16, .

#	Article	IF	CITATIONS
781	Metal–organic frameworks as catalysts and biocatalysts for methane oxidation: The current state of the art. Coordination Chemistry Reviews, 2023, 481, 215042.	9.5	19
782	Methane storage in metal-organic framework HKUST-1 with enhanced heat management using 3D printed metal lattices. Chemical Engineering Research and Design, 2023, 192, 362-370.	2.7	2
783	Direct synthesis of organic salt-derived porous carbons for enhanced CO ₂ and methane storage. Journal of Materials Chemistry A, 2023, 11, 6952-6965.	5.2	4
784	Monolithic Zirconiumâ€Based Metal–Organic Frameworks for Energyâ€Efficient Water Adsorption Applications. Advanced Materials, 2023, 35, .	11.1	7
785	Methane Storage by Forming sll Hydrate in the Presence of a Novel Kinetic Promoter with the Function of Alleviating the Wall-Climbing Growth. Energy & Fuels, 2023, 37, 5087-5101.	2.5	5
786	ReDD-COFFEE: a ready-to-use database of covalent organic framework structures and accurate force fields to enable high-throughput screenings. Journal of Materials Chemistry A, 2023, 11, 7468-7487.	5.2	7
787	Water-Stable <i>etb</i> -MOFs for Methane and Carbon Dioxide Storage. Inorganic Chemistry, 2023, 62, 5496-5504.	1.9	2
788	Highly selective adsorption of light hydrocarbons in a HKUST-like MOF constructed from spirobifluorene-based octacarboxylate ligand by a substitution strategy. Nano Research, 2023, 16, 10652-10659.	5.8	4
790	Boosting the Ceramics with In Situ MOF-Derived Nanocarbons. , 0, , 1537-1545.		2
792	Tuning the functionality of metal–organic frameworks (MOFs) for fuel cells and hydrogen storage applications. Journal of Materials Science, 2023, 58, 8637-8677.	1.7	3
795	A critical review on emerging photoactive porous materials for sulfide oxidation and sulfur mustard decontamination. Green Chemistry, 2023, 25, 5789-5812.	4.6	5
801	14 examples of how LLMs can transform materials science and chemistry: a reflection on a large language model hackathon. , 2023, 2, 1233-1250.		11
805	Metal–Organic Frameworks: Challenges Addressed via Magnetic Resonance Spectroscopy. Applied Magnetic Resonance, 0, , .	0.6	0
828	Investigation of porous coordination polymers for gas storage and separation. , 2024, , 137-176.		0
829	Progress toward the computational discovery of new metal–organic framework adsorbents for energy applications. Nature Energy, 2024, 9, 121-133.	19.8	1