CITATION REPORT List of articles citing

THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROMZ= 0-8

DOI: 10.1088/0004-637x/770/1/57 Astrophysical Journal, 2013, 770, 57.

Source: https://exaly.com/paper-pdf/54827472/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
1492	Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. 2013, 51, 511-653		2099
1491	Modeling the Panchromatic Spectral Energy Distributions of Galaxies. 2013 , 51, 393-455		447
1490	Can feedback solve the too-big-to-fail problem?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 3539-3546	4.3	127
1489	HMFcalc: An online tool for calculating dark matter halo mass functions. 2013, 3-4, 23-34		169
1488	GALAXY CLUSTER BARYON FRACTIONS REVISITED. Astrophysical Journal, 2013, 778, 14	4.7	183
1487	THE CONNECTION BETWEEN GALAXIES AND DARK MATTER STRUCTURES IN THE LOCAL UNIVERSE. <i>Astrophysical Journal</i> , 2013 , 771, 30	4.7	266
1486	Constraining thermal dust emission in distant galaxies with number counts and angular power spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 1896-1917	4.3	19
1485	The dark side of galaxy colour. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1313-1324	4.3	143
1484	The simplest model of galaxy formation II. A formation history model of galaxy stellar mass growth. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 435, 2445-2459	4.3	35
1483	On the mass assembly of low-mass galaxies in hydrodynamical simulations of structure formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 435, 2736-2752	4.3	17
1482	Spatially unassociated galaxies contribute significantly to the blended submillimetre galaxy population: predictions for follow-up observations of ALMA sources. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 2572-2581	4.3	63
1481	Detecting massive galaxies at high redshift using the Dark Energy Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 296-312	4.3	5
1480	DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY. <i>Astrophysical Journal</i> , 2013 , 777, 38	4.7	7
1479	AN INTENSELY STAR-FORMING GALAXY ATz~ 7 WITH LOW DUST AND METAL CONTENT REVEALED BY DEEP ALMA ANDHSTOBSERVATIONS. <i>Astrophysical Journal</i> , 2013 , 778, 102	4.7	157
1478	USING CUMULATIVE NUMBER DENSITIES TO COMPARE GALAXIES ACROSS COSMIC TIME. 2013 , 777, L10		105
1477	THE STRIKINGLY SIMILAR RELATION BETWEEN SATELLITE AND CENTRAL GALAXIES AND THEIR DARK MATTER HALOS SINCEz= 2. <i>Astrophysical Journal</i> , 2013 , 772, 139	4.7	39
1476	THE MASSIVE SATELLITE POPULATION OF MILKY-WAY-SIZED GALAXIES. <i>Astrophysical Journal</i> , 2013 , 773, 172	4.7	22

(2014-2013)

1475	MAGIICAT III. INTERPRETING SELF-SIMILARITY OF THE CIRCUMGALACTIC MEDIUM WITH VIRIAL MASS USING Mg II ABSORPTION. <i>Astrophysical Journal</i> , 2013 , 779, 87	4.7	46
1474	THE IMACS CLUSTER BUILDING SURVEY. IV. THE LOG-NORMAL STAR FORMATION HISTORY OF GALAXIES. <i>Astrophysical Journal</i> , 2013 , 770, 64	4.7	87
1473	CONSTRAINING THE STAR FORMATION HISTORIES IN DARK MATTER HALOS. I. CENTRAL GALAXIES. <i>Astrophysical Journal</i> , 2013 , 770, 115	4.7	41
1472	CONNECTING TRANSITIONS IN GALAXY PROPERTIES TO REFUELING. <i>Astrophysical Journal</i> , 2013 , 777, 42	4.7	43
1471	THE ASSEMBLY OF MILKY-WAY-LIKE GALAXIES SINCE z ~ 2.5. 2013 , 771, L35		177
1470	THE STRUCTURAL EVOLUTION OF MILKY-WAY-LIKE STAR-FORMING GALAXIES SINCEz~ 1.3. <i>Astrophysical Journal</i> , 2013 , 778, 115	4.7	41
1469	The effect of metal enrichment and galactic winds on galaxy formation in cosmological zoom simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 2929-2949	4.3	69
1468	UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES. <i>Astrophysical Journal</i> , 2013 , 772, 112	4.7	149
1467	DWARF GALAXY FORMATION WITH H2-REGULATED STAR FORMATION. II. GAS-RICH DARK GALAXIES AT REDSHIFT 2.5. <i>Astrophysical Journal</i> , 2013 , 776, 34	4.7	40
1466	A LINK BETWEEN STAR FORMATION QUENCHING AND INNER STELLAR MASS DENSITY IN SLOAN DIGITAL SKY SURVEY CENTRAL GALAXIES. <i>Astrophysical Journal</i> , 2013 , 776, 63	4.7	194
1465	HerMES: THE CONTRIBUTION TO THE COSMIC INFRARED BACKGROUND FROM GALAXIES SELECTED BY MASS AND REDSHIFT. <i>Astrophysical Journal</i> , 2013 , 779, 32	4.7	84
1464	The redshift evolution of the distribution of star formation among dark matter halos as seen in the infrared. 2013 , 557, A66		69
1463	Mass assembly in quiescent and star-forming galaxies sincez? 4 from UltraVISTA. 2013 , 556, A55		669
1462	Origin and evolution of structure and nucleosynthesis for galaxies in the local group. 2014 , 29, 1430012		6
1461	TYPE Ia SUPERNOVA RATE MEASUREMENTS TO REDSHIFT 2.5 FROM CANDELS: SEARCHING FOR PROMPT EXPLOSIONS IN THE EARLY UNIVERSE. 2014 , 148, 13		97
1460	ON THE INTERMEDIATE-REDSHIFT CENTRAL STELLAR MASS-HALO MASS RELATION, AND IMPLICATIONS FOR THE EVOLUTION OF THE MOST MASSIVE GALAXIES SINCE z \sim 1. 2014 , 797, L27		37
1459	A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING MAIN SEQUENCE FROM z \sim 0-6. 2014 , 214, 15		774
1458	DELAYED STAR FORMATION IN ISOLATED DWARF GALAXIES:HUBBLE SPACE TELESCOPESTAR FORMATION HISTORY OF THE AQUARIUS DWARF IRREGULAR. <i>Astrophysical Journal</i> , 2014 , 795, 54	4.7	46

1457	CHARTING THE EVOLUTION OF THE AGES AND METALLICITIES OF MASSIVE GALAXIES SINCEz= 0.7. Astrophysical Journal, 2014 , 788, 72	4.7	101
1456	LOCATING THE MISSINGBARYONS WITH EXTRAGALACTIC DISPERSION MEASURE ESTIMATES. 2014 , 780, L33		179
1455	CO-ORBITING PLANES OF SUB-HALOS ARE SIMILARLY UNLIKELY AROUND PAIRED AND ISOLATED HOSTS. 2014 , 789, L24		29
1454	SATELLITE DWARF GALAXIES IN A HIERARCHICAL UNIVERSE: THE PREVALENCE OF DWARF-DWARF MAJOR MERGERS. <i>Astrophysical Journal</i> , 2014 , 794, 115	4.7	68
1453	SCALING RELATIONS FOR GALAXIES PRIOR TO REIONIZATION. <i>Astrophysical Journal</i> , 2014 , 795, 144	4.7	26
1452	Unveiling the origin of fast radio bursts by optical follow-up observations. 2014 , 66, L9		8
1451	ELVIS: Exploring the Local Volume in Simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 2578-2596	4.3	220
1450	Overconsumption, outflows and the quenching of satellite galaxies. 2014 , 442, L105-L109		63
1449	Bayesian inferences of galaxy formation from the K-band luminosity and H i mass functions of galaxies: constraining star formation and feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 1252-1266	4.3	30
1448	Minor versus major mergers: the stellar mass growth of massive galaxies from z⊯® using number density selection techniques. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 2198-2213	4.3	45
1447	Ages of Type Ia supernovae over cosmic time. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 1898-1911	4.3	59
1446	The diverse formation histories of simulated disc galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 3679-3695	4.3	31
1445	A physical model for the redshift evolution of high-z Lyman-break galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 3341-3350	4.3	4
1444	Galaxy And Mass Assembly (GAMA): stellar mass functions by Hubble type. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 1647-1659	4.3	83
1443	Radiative feedback and the low efficiency of galaxy formation in low-mass haloes at high redshift. <i>Monthly Notices of the Royal Astronomical Society,</i> 2014 , 442, 1545-1559	4.3	142
1442	LoCuSS: the near-infrared luminosity and weak-lensing mass scaling relation of galaxy clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 3309-3317	4.3	15
1441	Dancing in the dark: galactic properties trace spin swings along the cosmic web. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 1453-1468	4.3	455
1440	Cosmic star formation probed via parametric stack-fitting of known sources to radio imaging. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 1286-1293	4.3	5

1439	An empirical model for the star formation history in dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 1294-1312	4.3	52
1438	Star formation and clumps in cosmological galaxy simulations with radiation pressure feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 1389-1399	4.3	46
1437	Mining circumgalactic baryons in the low-redshift universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 2061-2081	4.3	99
1436	The bright end of the galaxy luminosity function at z?7: before the onset of mass quenching?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 2810-2842	4.3	141
1435	The evolution of the star-forming sequence in hierarchical galaxy formation models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 2637-2664	4.3	46
1434	The AIMSS Project II. Bridging the star cluster galaxy divide? Is a. Monthly Notices of the Royal Astronomical Society, 2014 , 443, 1151-1172	4.3	115
1433	A systematic look at the effects of radiative feedback on disc galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 2837-2853	4.3	61
1432	Comparing simple quasar demographics models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 1144-1156	4.3	17
1431	Near-field limits on the role of faint galaxies in cosmic reionization. 2014 , 443, L44-L48		41
1430	On the origin of the fundamental metallicity relation and the scatter in galaxy scaling relations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 168-185	4.3	60
1429	Coming of age in the dark sector: how dark matter haloes grow their gravitational potential wells. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 1713-1730	4.3	59
1428	The role of cold flows and reservoirs in galaxy formation with strong feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 732-740	4.3	27
1427	Star formation and environmental quenching of GEEC2 group galaxies at z \sim 1. Monthly Notices of the Royal Astronomical Society, 2014 , 438, 3070-3085	4.3	28
1426	Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph. 2014 , 66, R1		319
1425	Kinematics and simulations of the stellar stream in the halo of the Umbrella Galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 3544-3564	4.3	42
1424	Using large galaxy surveys to distinguish zPD.5 quiescent galaxy models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 1712-1729	4.3	7
1423	The MaGICC volume: reproducing statistical properties of high-redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 3529-3539	4.3	49
1422	Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 1518-1547	4.3	1336

1421	Reproducing cosmic evolution of galaxy population from $z = 4$ to 0. 2014 , 66, 70		28
1420	The effects of galaxy shape and rotation on the X-ray haloes of early-type galaxies []I. Numerical simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 1351-1369	4.3	29
1419	Ultraviolet emission lines in young low-mass galaxies at z? 2: physical properties and implications for studies at z[]-[]. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 3200-3220	4.3	137
1418	The mass evolution of the first galaxies: stellar mass functions and star formation rates at 4 Monthly Notices of the Royal Astronomical Society, 2014 , 444, 2960-2984	4.3	191
1417	Herschel reveals a molecular outflow in a z I=12.3 ULIRG. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 1877-1883	4.3	24
1416	The stellar mass function and efficiency of galaxy formation with a varying initial mass function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 3188-3204	4.3	7
1415	Brightest cluster galaxies in cosmological simulations with adaptive mesh refinement: successes and failures. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 1500-1508	4.3	29
1414	The GEEC2 spectroscopic survey of Galaxy groups at 0.8 <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 2679-2694	4.3	37
1413	Propagation of superluminal PeV IceCube neutrinos: A high energy spectral cutoff or new constraints on Lorentz invariance violation. 2014 , 90,		35
1412	CENTRAL GALAXIES IN DIFFERENT ENVIRONMENTS: DO THEY HAVE SIMILAR PROPERTIES?. <i>Astrophysical Journal</i> , 2014 , 788, 29	4.7	24
1411	MEASURING THE STELLAR MASSES OF z \sim 7 GALAXIES WITH THE SPITZER ULTRAFAINT SURVEY PROGRAM (SURFS UP). 2014 , 786, L4		17
1410	THE BARYON CYCLE OF DWARF GALAXIES: DARK, BURSTY, GAS-RICH POLLUTERS. <i>Astrophysical Journal</i> , 2014 , 792, 99	4.7	103
1409	ON THE MASS OF THE LOCAL GROUP. Astrophysical Journal, 2014 , 793, 91	4.7	38
1408	FAINT DWARFS IN NEARBY GROUPS. Astrophysical Journal, 2014 , 788, 188	4.7	6
1407	MODELING THE FORMATION OF GLOBULAR CLUSTER SYSTEMS IN THE VIRGO CLUSTER. Astrophysical Journal, 2014 , 796, 10	4.7	68
1406	3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE-MASS DISTRIBUTION SINCEz= 3. Astrophysical Journal, 2014 , 788, 28	4.7	701
1405	THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. 2014 , 210, 14		159
1404	THE MASSES OF LOCAL GROUP DWARF SPHEROIDAL GALAXIES: THE DEATH OF THE UNIVERSAL MASS PROFILE. <i>Astrophysical Journal</i> , 2014 , 783, 7	4.7	62

1403	CO-EVOLUTION OF GALACTIC NUCLEI AND GLOBULAR CLUSTER SYSTEMS. <i>Astrophysical Journal</i> , 2014 , 785, 71	4.7	131
1402	REGULARITY UNDERLYING COMPLEXITY: A REDSHIFT-INDEPENDENT DESCRIPTION OF THE CONTINUOUS VARIATION OF GALAXY-SCALE MOLECULAR GAS PROPERTIES IN THE MASS-STAR FORMATION RATE PLANE. <i>Astrophysical Journal</i> , 2014 , 793, 19	4.7	210
1401	A SCALING RELATION BETWEEN MERGER RATE OF GALAXIES AND THEIR CLOSE PAIR COUNT. Astrophysical Journal, 2014 , 790, 7	4.7	23
1400	THE DWARFS BEYOND: THE STELLAR-TO-HALO MASS RELATION FOR A NEW SAMPLE OF INTERMEDIATE REDSHIFT LOW-MASS GALAXIES. <i>Astrophysical Journal</i> , 2014 , 782, 115	4.7	36
1399	Tracing inflows and outflows with absorption lines in circumgalactic gas. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 1260-1281	4.3	110
1398	Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 581-603	4.3	872
1397	Gas around galaxy haloes: methodology comparisons using hydrodynamical simulations of the intergalactic medium. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 2462-2475	4.3	8
1396	Introducing the Illustris project: the evolution of galaxy populations across cosmic time. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 175-200	4.3	627
1395	Stochastic angular momentum slews and flips and their effect on discs in galaxy formation models. <i>Monthly Notices of the Royal Astronomical Society,</i> 2014 , 443, 2801-2814	4.3	21
1394	Too big to fail in the Local Group. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 222-236	4.3	162
1393	The Secret Life of Galaxies. 2014 , 10, 140-145		4
1392	The bias of DLAs at z~2.3: evidence for very strong stellar feedback in shallow potential wells. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 2313-2321	4.3	33
1392 1391		4.3	33 5
	Monthly Notices of the Royal Astronomical Society, 2014 , 440, 2313-2321	4.3	
1391	Monthly Notices of the Royal Astronomical Society, 2014 , 440, 2313-2321 Testing primordial non-Gaussianities on galactic scales at high redshift. 2014 , 445, L129-L133 The growth of galactic bulges through mergers in Eold dark matter haloes revisited III.		5
1391 1390	Monthly Notices of the Royal Astronomical Society, 2014, 440, 2313-2321 Testing primordial non-Gaussianities on galactic scales at high redshift. 2014, 445, L129-L133 The growth of galactic bulges through mergers in Eold dark matter haloes revisited III. Morphological mix evolution. Monthly Notices of the Royal Astronomical Society, 2014, 441, 417-430 The population of giant clumps in simulated high-z galaxies: in situ and ex situ migration and	4.3	5
1391 1390 1389	Monthly Notices of the Royal Astronomical Society, 2014, 440, 2313-2321 Testing primordial non-Gaussianities on galactic scales at high redshift. 2014, 445, L129-L133 The growth of galactic bulges through mergers in Itold dark matter haloes revisited III. Morphological mix evolution. Monthly Notices of the Royal Astronomical Society, 2014, 441, 417-430 The population of giant clumps in simulated high-z galaxies: in situ and ex situ migration and survival. Monthly Notices of the Royal Astronomical Society, 2014, 443, 3675-3702 THE PROGENITORS OF LOCAL ULTRA-MASSIVE GALAXIES ACROSS COSMIC TIME: FROM DUSTY	4-3	5 15 91

1385	THE SAGES LEGACY UNIFYING GLOBULARS AND GALAXIES SURVEY (SLUGGS): SAMPLE DEFINITION, METHODS, AND INITIAL RESULTS. <i>Astrophysical Journal</i> , 2014 , 796, 52	4.7	121
1384	INTERPRETING SHORT GAMMA-RAY BURST PROGENITOR KICKS AND TIME DELAYS USING THE HOST GALAXY-DARK MATTER HALO CONNECTION. <i>Astrophysical Journal</i> , 2014 , 792, 123	4.7	44
1383	MERGERS AND MASS ACCRETION FOR INFALLING HALOS BOTH END WELL OUTSIDE CLUSTER VIRIAL RADII. <i>Astrophysical Journal</i> , 2014 , 787, 156	4.7	78
1382	OBSERVATIONS OF ENVIRONMENTAL QUENCHING IN GROUPS IN THE 11 GYR SINCEz= 2.5: DIFFERENT QUENCHING FOR CENTRAL AND SATELLITE GALAXIES. <i>Astrophysical Journal</i> , 2014 , 789, 164	1 ^{4.7}	60
1381	LINE OVERLAP AND SELF-SHIELDING OF MOLECULAR HYDROGEN IN GALAXIES. <i>Astrophysical Journal</i> , 2014 , 795, 37	4.7	48
1380	TYPE-Ia SUPERNOVA RATES TO REDSHIFT 2.4 FROM CLASH: THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE. <i>Astrophysical Journal</i> , 2014 , 783, 28	4.7	108
1379	THE STAR FORMATION HISTORIES OF LOCAL GROUP DWARF GALAXIES. I.HUBBLE SPACE TELESCOPE/WIDE FIELD PLANETARY CAMERA 2 OBSERVATIONS. <i>Astrophysical Journal</i> , 2014 , 789, 147	4.7	286
1378	EVIDENCE FOR WIDE-SPREAD ACTIVE GALACTIC NUCLEUS-DRIVEN OUTFLOWS IN THE MOST MASSIVEz~ 1-2 STAR-FORMING GALAXIES. <i>Astrophysical Journal</i> , 2014 , 796, 7	4.7	163
1377	THE ACS LCID PROJECT. X. THE STAR FORMATION HISTORY OF IC 1613: REVISITING THE OVER-COOLING PROBLEM. <i>Astrophysical Journal</i> , 2014 , 786, 44	4.7	57
1376	ESCAPE FRACTION OF IONIZING PHOTONS DURING REIONIZATION: EFFECTS DUE TO SUPERNOVA FEEDBACK AND RUNAWAY OB STARS. <i>Astrophysical Journal</i> , 2014 , 788, 121	4.7	202
1375	SEMI-ANALYTIC MODELS FOR THE CANDELS SURVEY: COMPARISON OF PREDICTIONS FOR INTRINSIC GALAXY PROPERTIES. <i>Astrophysical Journal</i> , 2014 , 795, 123	4.7	82
1374	REVERSAL OF FORTUNE: INCREASED STAR FORMATION EFFICIENCIES IN THE EARLY HISTORIES OF DWARF GALAXIES?. 2014 , 790, L17		12
1373	A GEOMETRICALLY SUPPORTED z \sim 10 CANDIDATE MULTIPLY IMAGED BY THE HUBBLE FRONTIER FIELDS CLUSTER A2744. 2014 , 793, L12		91
1372	WHY BARYONS MATTER: THE KINEMATICS OF DWARF SPHEROIDAL SATELLITES. <i>Astrophysical Journal</i> , 2014 , 786, 87	4.7	221
1371	THE COS-DWARFS SURVEY: THE CARBON RESERVOIR AROUND SUB-L* GALAXIES. <i>Astrophysical Journal</i> , 2014 , 796, 136	4.7	160
1370	BLACK HOLE VARIABILITY AND THE STAR FORMATION-ACTIVE GALACTIC NUCLEUS CONNECTION: DO ALL STAR-FORMING GALAXIES HOST AN ACTIVE GALACTIC NUCLEUS?. <i>Astrophysical Journal</i> , 2014 , 782, 9	4.7	253
1369	DARK MATTER HALOS IN GALAXIES AND GLOBULAR CLUSTER POPULATIONS. 2014 , 787, L5		78
1368	Extreme galaxies during reionization: testing ISM and disc models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 2483-2498	4.3	11

(2014-2014)

1367	A single-merger scenario for the formation of the giant stream and the warp of M31. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 160-175	4.3	28
1366	DWARF GALAXY DARK MATTER DENSITY PROFILES INFERRED FROM STELLAR AND GAS KINEMATICS. <i>Astrophysical Journal</i> , 2014 , 789, 63	4.7	93
1365	Numerical resolution limits on subhalo abundance matching. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 3228-3235	4.3	43
1364	The star formation history of mass-selected galaxies from the VIDEO survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 1459-1471	4.3	18
1363	Massive compact galaxies with high-velocity outflows: morphological analysis and constraints on AGN activity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 3417-3443	4.3	53
1362	SIMULATIONS OF ISOLATED DWARF GALAXIES FORMED IN DARK MATTER HALOS WITH DIFFERENT MASS ASSEMBLY HISTORIES. <i>Astrophysical Journal</i> , 2014 , 785, 58	4.7	17
1361	NEW INSIGHTS ON THE FORMATION AND ASSEMBLY OF M83 FROM DEEP NEAR-INFRARED IMAGING. <i>Astrophysical Journal</i> , 2014 , 789, 126	4.7	18
1360	THE UNIVERSAL RELATION OF GALACTIC CHEMICAL EVOLUTION: THE ORIGIN OF THE MASS-METALLICITY RELATION. <i>Astrophysical Journal</i> , 2014 , 791, 130	4.7	192
1359	A STUDY OF MASSIVE AND EVOLVED GALAXIES AT HIGH REDSHIFT. <i>Astrophysical Journal</i> , 2014 , 794, 68	4.7	38
1358	Cosmology and astrophysics from relaxed galaxy clusters []I. Cosmological constraints. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 2077-2098	4.3	143
1357	Which galaxies dominate the neutral gas content of the Universe?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 920-941	4.3	69
1356	A UNIFORM HISTORY FOR GALAXY EVOLUTION. Astrophysical Journal, 2014 , 796, 25	4.7	16
1355	CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 . Astrophysical Journal, 2014 , 795, 104	4.7	516
1354	Dwarf galaxies in CDM and SIDM with baryons: observational probes of the nature of dark matter. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 3684-3698	4.3	142
1353	A SIMPLE MODEL LINKING GALAXY AND DARK MATTER EVOLUTION. <i>Astrophysical Journal</i> , 2014 , 793, 12	4.7	34
1352	STAR FORMATION AT 4 2014, 791, L25		131
1351	Far-Infrared Surveys of Galaxy Evolution. 2014 , 52, 373-414		62
1350	Cosmic Star-Formation History. 2014 , 52, 415-486		1949

1349	Galaxy masses. 2014 , 86, 47-119		188
1348	Star Formation Rates in Nearby Markarian Galaxies. 2014 , 57, 1-13		2
1347	What Regulates Galaxy Evolution? Open questions in our understanding of galaxy formation and evolution. 2014 , 62-63, 1-14		11
1346	A model for cosmological simulations of galaxy formation physics: multi-epoch validation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 1985-2004	4.3	210
1345	Dusty star-forming galaxies at high redshift. 2014 , 541, 45-161		440
1344	DUST FORMATION, EVOLUTION, AND OBSCURATION EFFECTS IN THE VERY HIGH-REDSHIFT UNIVERSE. 2014 , 788, L30		31
1343	DARK MATTER HEATING AND EARLY CORE FORMATION IN DWARF GALAXIES. 2014 , 789, L17		90
1342	Clustering, host halos, and environment of z D galaxies as a function of their physical properties. 2014 , 567, A103		36
1341	Planck2013 results. XXX. Cosmic infrared background measurements and implications for star formation. 2014 , 571, A30		171
1340	Ultraviolet to infrared emission ofz> 1 galaxies: Can we derive reliable star formation rates and stellar masses?. 2014 , 561, A39		49
1339	A census of stellar mass in ten massive haloes atz~ 1 from the GCLASS Survey. 2014 , 561, A79		51
1338	Physical properties of UDF12 galaxies in cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 731-745	4.3	32
1337	Models of AGN feedback. 2014 , 10, 182-189		2
1336	The Dwarfs Beyond: Relating Stellar and Halo Mass in Dwarf Galaxies to $z \sim 1$. 2014 , 10, 150-153		
1335	Direct Shear Mapping: Prospects for Weak Lensing Studies of Individual Galaxy Lensing Systems. 2015 , 32,		2
1334	Reionisation and High-Redshift Galaxies: The View from Quasar Absorption Lines. 2015 , 32,		83
1333	Formation of elongated galaxies with low masses at high redshift. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 408-413	4.3	35
1332	Stellar feedback from high-mass X-ray binaries in cosmological hydrodynamical simulations. <i>Monthly Notices of the Royal Astronomical Society,</i> 2015 , 448, 3071-3080	4.3	19

(2015-2015)

1331	Bent by baryons: the low-mass galaxy-halo relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 2941-2947	4.3	147
1330	Star formation in semi-analytic galaxy formation models with multiphase gas. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 4338-4368	4.3	89
1329	A unified explanation for the supernova rate-galaxy mass dependence based on supernovae detected in Sloan galaxy spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 905-925	4.3	39
1328	Cosmic evolution of bars in simulations of galaxy formation. 2015 , 67, 63		18
1327	Galaxy And Mass Assembly (GAMA): the bright void galaxy population in the optical and mid-IR. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 3520-3540	4.3	13
1326	Model of the stochastic gravitational-wave background due to core collapse to black holes. 2015 , 92,		17
1325	New reaction rates for improved primordial D/H calculation and the cosmic evolution of deuterium. 2015 , 92,		73
1324	The origin of dispersion in DLA metallicities. 2015 , 452, L36-L40		20
1323	AGN EVOLUTION FROM A GALAXY EVOLUTION VIEWPOINT. Astrophysical Journal, 2015, 811, 148	4.7	38
1322	THE DETECTION OF ULTRA-FAINT LOW SURFACE BRIGHTNESS DWARF GALAXIES IN THE VIRGO CLUSTER: A PROBE OF DARK MATTER AND BARYONIC PHYSICS. <i>Astrophysical Journal</i> , 2015 , 813, 68	4.7	6
1321	SPITZERBRIGHT, ULTRAVISTA FAINT SOURCES IN COSMOS: THE CONTRIBUTION TO THE OVERALL POPULATION OF MASSIVE GALAXIES ATz= 31. Astrophysical Journal, 2015, 810, 73	4.7	61
1320	THE SPLASHBACK RADIUS AS A PHYSICAL HALO BOUNDARY AND THE GROWTH OF HALO MASS. <i>Astrophysical Journal</i> , 2015 , 810, 36	4.7	169
1319	THE GALAXY UV LUMINOSITY FUNCTION BEFORE THE EPOCH OF REIONIZATION. <i>Astrophysical Journal</i> , 2015 , 813, 21	4.7	128
1318	PRECIPITATION-REGULATED STAR FORMATION IN GALAXIES. 2015, 808, L30		58
1317	BEACONS IN THE DARK: USING NOVAE AND SUPERNOVAE TO DETECT DWARF GALAXIES IN THE LOCAL UNIVERSE. 2015 , 805, L2		9
1316	HerMES: ALMA IMAGING OFHERSCHEL-SELECTED DUSTY STAR-FORMING GALAXIES. <i>Astrophysical Journal</i> , 2015 , 812, 43	4.7	68
1315	DO NOT FORGET THE FOREST FOR THE TREES: THE STELLAR-MASS HALO-MASS RELATION IN DIFFERENT ENVIRONMENTS. <i>Astrophysical Journal</i> , 2015 , 812, 104	4.7	17
1314	SCORCH. I. THE GALAXYHALO CONNECTION IN THE FIRST BILLION YEARS. <i>Astrophysical Journal</i> , 2015 , 813, 54	4.7	55

1313	EVOLUTION OF STAR FORMATION PROPERTIES OF HIGH-REDSHIFT CLUSTER GALAXIES SINCEz= 2. Astrophysical Journal, 2015 , 810, 90	4.7	28
1312	THE MORPHOLOGIES OF MASSIVE GALAXIES FROMz~ 3 WITNESSING THE TWO CHANNELS OF BULGE GROWTH. <i>Astrophysical Journal</i> , 2015 , 809, 95	4.7	55
1311	On the cosmic evolution of the specific star formation rate. 2015 , 577, A112		23
1310	THE SPATIAL CLUSTERING OFROSATALL-SKY SURVEY ACTIVE GALACTIC NUCLEI. IV. MORE MASSIVE BLACK HOLES RESIDE IN MORE MASSIVE DARK MATTER HALOS. <i>Astrophysical Journal</i> , 2015 , 815, 21	4.7	31
1309	RAPID ENVIRONMENTAL QUENCHING OF SATELLITE DWARF GALAXIES IN THE LOCAL GROUP. 2015 , 808, L27		74
1308	LOW ANGULAR MOMENTUM IN CLUMPY, TURBULENT DISK GALAXIES. <i>Astrophysical Journal</i> , 2015 , 815, 97	4.7	29
1307	THE MOSDEF SURVEY: DISSECTING THE STAR FORMATION RATE VERSUS STELLAR MASS RELATION USING HAND HEMISSION LINES ATz~ 2. <i>Astrophysical Journal</i> , 2015 , 815, 98	4.7	76
1306	AN INCREASING STELLAR BARYON FRACTION IN BRIGHT GALAXIES AT HIGH REDSHIFT. Astrophysical Journal, 2015 , 814, 95	4.7	43
1305	The bias of the submillimetre galaxy population: SMGs are poor tracers of the most-massive structures in thez [12] Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 878-883	4.3	28
1304	The transformation and quenching of simulated gas-rich dwarf satellites within a group environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 14-28	4.3	12
1303	Cosmological galaxy evolution with superbubble feedback II. Realistic galaxies with moderate feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 3500-3510	4.3	40
1302	NIHAO project II. Reproducing the inefficiency of galaxy formation across cosmic time with a large sample of cosmological hydrodynamical simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 83-94	4.3	205
1301	NIHAO III: the constant disc gas mass conspiracy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 1105-1116	4.3	27
1300	The eagle simulations of galaxy formation: the importance of the hydrodynamics scheme. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 2277-2291	4.3	157
1299	The stellar accretion origin of stellar population gradients in massive galaxies at large radii. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 528-550	4.3	73
1298	Probing the galaxyBalo connection in UltraVISTA to z⊕⊉. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 901-916	4.3	48
1297	Evolution of galaxy stellar masses and star formation rates in the eagle simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 4486-4504	4.3	266
1296	Expanded haloes, abundance matching and too-big-to-fail in the Local Group. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 3920-3934	4.3	52

1295	Galactic conformity and central/satellite quenching, from the satellite profiles of M* galaxies at 0.4 Monthly Notices of the Royal Astronomical Society, 2015 , 451, 1613-1636	4.3	36
1294	The Spitzer South Pole Telescope Deep-Field Survey: linking galaxies and haloes at z = 1.5. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 169-194	4.3	17
1293	A millimetre-wave redshift search for the unlensed HyLIRG, HS1700.850.1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 951-959	4.3	6
1292	The difficulty of getting high escape fractions of ionizing photons from high-redshift galaxies: a view from the FIRE cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 960-975	4.3	104
1291	The evolving relation between star formation rate and stellar mass in the VIDEO survey sincez (#13). <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 2541-2558	4.3	42
1290	Local ultra faint dwarves as a product of Galactic processing during a Magellanic group infall. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 2303-2308	4.3	22
1289	Observed trend in the star formation history and the dark matter fraction of galaxies at redshiftz 10.8. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 1332-1357	4.3	20
1288	The galaxyBalo connection from a joint lensing, clustering and abundance analysis in the CFHTLenS/VIPERS field. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 1352-1379	4.3	106
1287	Star formation and stellar mass assembly in dark matter haloes: from giants to dwarfs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 1604-1617	4.3	31
1286	A lower fragmentation mass scale in high-redshift galaxies and its implications on giant clumps: a systematic numerical study. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 2491-2515	4.3	50
1285	A new method to quantify the effects of baryons on the matter power spectrum. 2015 , 2015, 049-049		82
1284	Thirty Meter Telescope Detailed Science Case: 2015. 2015 , 15, 1945-2140		65
1283	Evolution of the specific star formation rate function atz2015, 579, A2		105
1282	Satellite content and quenching of star formation in galaxy groups atz~ 1.8. 2015 , 581, A56		10
1281	The First Half Billion Years (z > 9): Results from the Frontier Fields. 2015, 11, 804-807		
1280	MATCHING THE EVOLUTION OF THE STELLAR MASS FUNCTION USING LOG-NORMAL STAR FORMATION HISTORIES. 2015 , 801, L12		27
1279	THE STAR FORMATION MAIN SEQUENCE: THE DEPENDENCE OF SPECIFIC STAR FORMATION RATE AND ITS DISPERSION ON GALAXY STELLAR MASS. 2015 , 808, L49		28
1278	Galaxy stellar mass assembly: the difficulty matching observations and semi-analytical predictions. 2015 , 575, A32		18

1277	Towards a new modelling of gas flows in a semi-analytical model of galaxy formation and evolution. 2015 , 575, A33		12
1276	The galaxy stellar mass function at 3.5 🔟 .5 in the CANDELS/UDS, GOODS-South, and HUDF fields. 2015 , 575, A96		175
1275	Predicting galaxy star formation rates via the co-evolution of galaxies and haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 651-662	4.3	40
1274	Orbital decay of supermassive black hole binaries in clumpy multiphase merger remnants. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 494-505	4.3	50
1273	The Argo simulation II. Quenching of massive galaxies at high redshift as a result of cosmological starvation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 1939-1956	4.3	73
1272	Search for gamma-ray emission from dark matter annihilation in the large magellanic cloud with the fermi large area telescope. 2015 , 91,		33
1271	Characterizing simulated galaxy stellar mass histories. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 3253-3267	4.3	8
1270	Consequences of bursty star formation on galaxy observables at high redshifts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 839-848	4.3	43
1269	The response of dark matter haloes to elliptical galaxy formation: a new test for quenching scenarios. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 2448-2465	4.3	21
1268	The impact of environment and mergers on the H i content of galaxies in hydrodynamic simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 3981-3999	4.3	27
1267	The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 1937-1961	4.3	733
1266	Distribution of streaming rates into high-redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 637-648	4.3	21
1265	The equilibrium view on dust and metals in galaxies: Galactic outflows drive low dust-to-metal ratios in dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 3274-3292	4.3	68
1264	On the origin of excess cool gas in quasar host haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 2553-2565	4.3	42
1263	Correlating galaxy colour and halo concentration: a tunable halo model of galactic conformity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 3030-3048	4.3	49
1262	On the possible environmental effect in distributing heavy elements beyond individual gaseous haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 3263-3273	4.3	107
1261	The SLUGGS survey: inferring the formation epochs of metal-poor and metal-rich globular clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 1045-1051	4.3	30
1260	The alignment and shape of dark matter, stellar, and hot gas distributions in the EAGLE and cosmo-OWLS simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 721-738	4.3	77

(2015-2015)

1259	Evolution of the atomic and molecular gas content of galaxies in dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 477-493	4.3	60
1258	The quenching and survival of ultra diffuse galaxies in the Coma cluster. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 937-943	4.3	78
1257	Star formation inHerschel's Monsters versus semi-analytic models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 3419-3426	4.3	56
1256	Simulated Milky Way analogues: implications for dark matter indirect searches. 2015 , 2015, 053-053		38
1255	HOW THE FIRST STARS SHAPED THE FAINTEST GAS-DOMINATED DWARF GALAXIES. <i>Astrophysical Journal</i> , 2015 , 815, 85	4.7	13
1254	The variation of rotation curve shapes as a signature of the effects of baryons on dark matter density profiles. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 1719-1724	4.3	17
1253	Star formation rates in isolated galaxies selected from the Two-Micron All-Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 1482-1495	4.3	10
1252	Quenching and morphological transformation in semi-analytic models and CANDELS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 2933-2956	4.3	46
1251	The EAGLE project: simulating the evolution and assembly of galaxies and their environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 521-554	4.3	1867
1250	THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 ?z? 6.5 IN CANDELS. <i>Astrophysical Journal</i> , 2015 , 799, 183	4.7	212
1249	THE STELLAR MASSHALO MASS RELATION FOR LOW-MASS X-RAY GROUPS AT 0.52015, 799, L17		9
1248	Galaxies as simple dynamical systems: observational data disfavor dark matter and stochastic star formation. 2015 , 93, 169-202		98
1247	SIMULATING DEEP HUBBLE IMAGES WITH SEMI-EMPIRICAL MODELS OF GALAXY FORMATION. Astrophysical Journal, 2015 , 801, 14	4.7	9
1246	BUILDING LATE-TYPE SPIRAL GALAXIES BY IN-SITU AND EX-SITU STAR FORMATION. <i>Astrophysical Journal</i> , 2015 , 799, 184	4.7	102
1245	THE STELLAR-TO-HALO MASS RELATION OF LOCAL GALAXIES SEGREGATES BY COLOR. Astrophysical Journal, 2015 , 799, 130	4.7	85
1244	THE SPECTRUM OF ISOTROPIC DIFFUSE GAMMA-RAY EMISSION BETWEEN 100 MeV AND 820 GeV. Astrophysical Journal, 2015 , 799, 86	4.7	421
1243	QUENCHING OF STAR FORMATION IN SLOAN DIGITAL SKY SURVEY GROUPS: CENTRALS, SATELLITES, AND GALACTIC CONFORMITY. <i>Astrophysical Journal</i> , 2015 , 800, 24	4.7	78
1242	NEW CONSTRAINTS ON THE FAINT END OF THE UV LUMINOSITY FUNCTION ATz~ 7-8 USING THE GRAVITATIONAL LENSING OF THE HUBBLE FRONTIER FIELDS CLUSTER A2744. <i>Astrophysical Journal</i> , 2015 , 800, 18	4.7	111

1241	A SIMPLE TECHNIQUE FOR PREDICTING HIGH-REDSHIFT GALAXY EVOLUTION. <i>Astrophysical Journal</i> , 2015 , 799, 32	4.7	100
1240	RECONCILING THE OBSERVED STAR-FORMING SEQUENCE WITH THE OBSERVED STELLAR MASS FUNCTION. <i>Astrophysical Journal</i> , 2015 , 798, 115	4.7	52
1239	A PARAMETRIC STUDY OF POSSIBLE SOLUTIONS TO THE HIGH-REDSHIFT OVERPRODUCTION OF STARS IN MODELED DWARF GALAXIES. <i>Astrophysical Journal</i> , 2015 , 799, 201	4.7	32
1238	The impact of galactic feedback on the circumgalactic medium. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 895-909	4.3	70
1237	Galaxy formation in the Planck cosmology - II. Star-formation histories and post-processing magnitude reconstruction. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 2681-2691	4.3	8
1236	Galaxy formation in the Planck cosmology II. Matching the observed evolution of star formation rates, colours and stellar masses. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 2663-268	8 0 ·3	371
1235	Diverse structural evolution atz⊕ in cosmologically simulated galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 4290-4310	4.3	39
1234	THE RELATIVE AND ABSOLUTE AGES OF OLD GLOBULAR CLUSTERS IN THE LCDM FRAMEWORK. 2015 , 808, L35		50
1233	A MASSIVE, DISTANT PROTO-CLUSTER AT $z=2.47$ CAUGHT IN A PHASE OF RAPID FORMATION?. 2015 , 808, L33		74
1232	nIFTy cosmology: comparison of galaxy formation models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 4029-4059	4.3	47
1231	Faint dwarfs as a test of DM models: WDM versus CDM. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 792-803	4.3	64
1230	A framework for empirical galaxy phenomenology: the scatter in galaxy ages and stellar metallicities. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 1430-1445	4.3	14
1229	A refined sub-grid model for black hole accretion and AGN feedback in large cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 1504-1525	4.3	101
1228	DISTORTION OF THE LUMINOSITY FUNCTION OF HIGH-REDSHIFT GALAXIES BY GRAVITATIONAL LENSING. <i>Astrophysical Journal</i> , 2015 , 806, 256	4.7	12
1227	Using galaxy pairs to probe star formation during major halo mergers. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 1546-1564	4.3	19
1226	Towards simulating star formation in turbulent high-z galaxies with mechanical supernova feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 2900-2921	4.3	88
1225	PROBING THE ULTRAVIOLET LUMINOSITY FUNCTION OF THE EARLIEST GALAXIES WITH THE RENAISSANCE SIMULATIONS. 2015 , 807, L12		121
1224	The first galaxies: simulating their feedback-regulated assembly. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 1152-1170	4.3	29

(2015-2015)

1223	Equilibrium model constraints on baryon cycling across cosmic time. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 1184-1200	4.3	54
1222	On the importance of using appropriate spectral models to derive physical properties of galaxies at 0.7 Monthly Notices of the Royal Astronomical Society, 2015 , 447, 786-805	4.3	47
1221	Properties of submillimetre galaxies in a semi-analytic model using the Lount Matching Approach: application to the ECDF-S. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 2291-2311	4.3	31
1220	The Argo simulation [II. The early build-up of the Hubble sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 1957-1972	4.3	40
1219	Low-mass galaxy assembly in simulations: regulation of early star formation by radiation from massive stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 1140-1162	4.3	48
1218	Searching for traces of Planck-scale physics with high energy neutrinos. 2015 , 91,		48
1217	Physical Models of Galaxy Formation in a Cosmological Framework. 2015 , 53, 51-113		667
1216	ON THE INTERPLAY BETWEEN STAR FORMATION AND FEEDBACK IN GALAXY FORMATION SIMULATIONS. <i>Astrophysical Journal</i> , 2015 , 804, 18	4.7	150
1215	The accretion history of dark matter haloes []. The physical origin of the universal function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 1514-1520	4.3	67
1214	ZFOURGE/CANDELS: ON THE EVOLUTION OFM* GALAXY PROGENITORS FROMz= 3 TO 0.5. Astrophysical Journal, 2015 , 803, 26	4.7	87
1213	Early formation of massive, compact, spheroidal galaxies with classical profiles by violent disc instability or mergers. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 3291-3310	4.3	69
1212	The star formation main sequence and stellar mass assembly of galaxies in the Illustris simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 3548-3563	4.3	159
1211	STELLAR MASSES FROM THE CANDELS SURVEY: THE GOODS-SOUTH AND UDS FIELDS. Astrophysical Journal, 2015 , 801, 97	4.7	170
1210	A CONNECTION BETWEEN OBSCURATION AND STAR FORMATION IN LUMINOUS QUASARS. Astrophysical Journal, 2015 , 802, 50	4.7	41
1209	THE SINS/zC-SINF SURVEY OFz~ 2 GALAXY KINEMATICS: REST-FRAME MORPHOLOGY, STRUCTURE, AND COLORS FROM NEAR-INFRAREDHUBBLE SPACE TELESCOPEIMAGING. <i>Astrophysical Journal</i> , 2015 , 802, 101	4.7	44
1208	COSMOLOGICAL SIMULATIONS OF THE INTERGALACTIC MEDIUM EVOLUTION. II. GALAXY MODEL AND FEEDBACK. <i>Astrophysical Journal</i> , 2015 , 802, 123	4.7	7
1207	UV LUMINOSITY FUNCTIONS AT REDSHIFTSz~ 4 TOz~ 10: 10,000 GALAXIES FROMHSTLEGACY FIELDS. <i>Astrophysical Journal</i> , 2015 , 803, 34	4.7	761
1206	PREVENTING STAR FORMATION IN EARLY-TYPE GALAXIES WITH LATE-TIME STELLAR HEATING. Astrophysical Journal, 2015 , 803, 77	4.7	43

1205	THE NEXT GENERATION VIRGO CLUSTER SURVEY. IX. ESTIMATING THE EFFICIENCY OF GALAXY FORMATION ON THE LOWEST-MASS SCALES. <i>Astrophysical Journal</i> , 2015 , 807, 88	4.7	20
1204	DARK MATTER HALO MODELS OF STELLAR MASS-DEPENDENT GALAXY CLUSTERING IN PRIMUS+DEEP2 AT 0.2 . <i>Astrophysical Journal</i> , 2015 , 807, 152	4.7	34
1203	MORPHOLOGIES OF ~190,000 GALAXIES AT $z=0110$ REVEALED WITH HST LEGACY DATA. I. SIZE EVOLUTION. 2015 , 219, 15		214
1202	THE STAR FORMATION HISTORIES OF LOCAL GROUP DWARF GALAXIES. III. CHARACTERIZING QUENCHING IN LOW-MASS GALAXIES. <i>Astrophysical Journal</i> , 2015 , 804, 136	4.7	61
1201	STAR FORMATION HISTORY, DUST ATTENUATION, AND EXTRAGALACTIC BACKGROUND LIGHT. Astrophysical Journal, 2015 , 805, 33	4.7	44
1200	FROM DIVERSITY TO DICHOTOMY, AND QUENCHING: MILKY-WAY-LIKE AND MASSIVE-GALAXY PROGENITORS AT 0.5 . <i>Astrophysical Journal</i> , 2015 , 805, 34	4.7	32
1199	AN ALMA SURVEY OF SUB-MILLIMETER GALAXIES IN THE EXTENDEDCHANDRADEEP FIELD SOUTH: PHYSICAL PROPERTIES DERIVED FROM ULTRAVIOLET-TO-RADIO MODELING. <i>Astrophysical Journal</i> , 2015 , 806, 110	4.7	254
1198	DARK MATTER HALOS IN GALAXIES AND GLOBULAR CLUSTER POPULATIONS. II. METALLICITY AND MORPHOLOGY. <i>Astrophysical Journal</i> , 2015 , 806, 36	4.7	59
1197	PROSPECTS FOR CHEMICALLY TAGGING STARS IN THE GALAXY. <i>Astrophysical Journal</i> , 2015 , 807, 104	4.7	48
1196	SATELLITE DWARF GALAXIES IN A HIERARCHICAL UNIVERSE: INFALL HISTORIES, GROUP PREPROCESSING, AND REIONIZATION. <i>Astrophysical Journal</i> , 2015 , 807, 49	4.7	89
1195	Signatures of dark matter halo expansion in galaxy populations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 2133-2143	4.3	20
1194	SURVEYING GALAXY PROTO-CLUSTERS IN EMISSION: A LARGE-SCALE STRUCTURE ATz= 2.44 AND THE OUTLOOK FOR HETDEX. <i>Astrophysical Journal</i> , 2015 , 808, 37	4.7	42
1193	The formation of submillimetre-bright galaxies from gas infall over a billion years. 2015 , 525, 496-9		123
1192	Powering reionization: assessing the galaxy ionizing photon budget at z ⁰ Monthly Notices of the Royal Astronomical Society, 2015 , 451, 2030-2049	4.3	53
1191	On the history and future of cosmic planet formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 1811-1817	4.3	35
1190	Major mergers going Notts: challenges for modern halo finders. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 3020-3029	4.3	43
1189	CFHTLenS: co-evolution of galaxies and their dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 298-314	4.3	108
1188	THE PHYSICAL NATURE OF THE COSMIC ACCRETION OF BARYONS AND DARK MATTER INTO HALOS AND THEIR GALAXIES. <i>Astrophysical Journal</i> , 2015 , 808, 40	4.7	40

1187	BLACK HOLE AND GALAXY COEVOLUTION FROM CONTINUITY EQUATION AND ABUNDANCE MATCHING. <i>Astrophysical Journal</i> , 2015 , 810, 74	4.7	65
1186	Baryonic and dark matter distribution in cosmological simulations of spiral galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 1353-1369	4.3	44
1185	The impact of star formation and gamma-ray burst rates at high redshift on cosmic chemical evolution and reionization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 2575-2587	4.3	63
1184	THE SIZES OFz~ 6 B LENSED GALAXIES FROM THE HUBBLE FRONTIER FIELDS ABELL 2744 DATA. <i>Astrophysical Journal</i> , 2015 , 804, 103	4.7	73
1183	DIRECT INSIGHTS INTO OBSERVATIONAL ABSORPTION LINE ANALYSIS METHODS OF THE CIRCUMGALACTIC MEDIUM USING COSMOLOGICAL SIMULATIONS. <i>Astrophysical Journal</i> , 2015 , 802, 10	4.7	34
1182	CLASSICAL BULGES, SUPERMASSIVE BLACK HOLES, AND AGN FEEDBACK: EXTENSION TO LOW-MASS GALAXIES. <i>Astrophysical Journal</i> , 2015 , 802, 110	4.7	5
1181	AN ANALYTICAL MODEL FOR GALAXY METALLICITY: WHAT DO METALLICITY RELATIONS TELL US ABOUT STAR FORMATION AND OUTFLOW?. <i>Astrophysical Journal</i> , 2015 , 808, 129	4.7	33
1180	STELLAR MASS FUNCTIONS OF GALAXIES AT 4 . Astrophysical Journal, 2015 , 803, 11	4.7	29
1179	FROM H I TO STARS: H I DEPLETION IN STARBURSTS AND STAR-FORMING GALAXIES IN THE ALFALFA HBURVEY. <i>Astrophysical Journal</i> , 2015 , 808, 66	4.7	20
1178	THEGRISM LENS-AMPLIFIED SURVEY FROM SPACE(GLASS). II. GAS-PHASE METALLICITY AND RADIAL GRADIENTS IN AN INTERACTING SYSTEM ATZ? 2. 2015 , 149, 107		48
1177	LUMINOUS AND DARK MATTER PROFILES FROM GALAXIES TO CLUSTERS: BRIDGING THE GAP WITH GROUP-SCALE LENSES. <i>Astrophysical Journal</i> , 2015 , 814, 26	4.7	46
1176	Effect of primordial non-Gaussianities on the far-UV luminosity function of high-redshift galaxies: implications for cosmic reionization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 3235-	3232	6
1175	Galaxy And Mass Assembly (GAMA): the halo mass of galaxy groups from maximum-likelihood weak lensing. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 1356-1379	4.3	57
1174	Formation of disc galaxies in preheated media: a preventative feedback model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 1907-1923	4.3	30
1173	Galactic rotation curves, the baryon-to-dark-halo-mass relation and spacelime scale invariance. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 330-344	4.3	54
1172	STELLAR MASS G AS-PHASE METALLICITY RELATION AT 0.5 © 0.7: A POWER LAW WITH INCREASING SCATTER TOWARD THE LOW-MASS REGIME. <i>Astrophysical Journal</i> , 2016 , 822, 103	4.7	19
1171	THE UBIQUITY OF COEVAL STARBURSTS IN MASSIVE GALAXY CLUSTER PROGENITORS. Astrophysical Journal, 2016 , 824, 36	4.7	60
1170	THE EVOLUTION OF THE GALAXY STELLAR MASS FUNCTION ATz= 48: A STEEPENING LOW-MASS-END SLOPE WITH INCREASING REDSHIFT. <i>Astrophysical Journal</i> , 2016 , 825, 5	4.7	175

1169	THE EVOLUTION OF STAR FORMATION HISTORIES OF QUIESCENT GALAXIES. <i>Astrophysical Journal</i> , 2016 , 832, 79	4.7	72
1168	VARIATIONS OF THE ISM COMPACTNESS ACROSS THE MAIN SEQUENCE OF STAR FORMING GALAXIES: OBSERVATIONS AND SIMULATIONS. <i>Astrophysical Journal</i> , 2016 , 817, 76	4.7	5
1167	CONNECTING THE DOTS: TRACKING GALAXY EVOLUTION USING CONSTANT CUMULATIVE NUMBER DENSITY AT 3 团7. Astrophysical Journal, 2016 , 817, 174	4.7	8
1166	TIMING THE EVOLUTION OF QUIESCENT AND STAR-FORMING LOCAL GALAXIES. <i>Astrophysical Journal</i> , 2016 , 824, 45	4.7	29
1165	HERSCHELOBSERVED STRIPE 82 QUASARS AND THEIR HOST GALAXIES: CONNECTIONS BETWEEN AGN ACTIVITY AND HOST GALAXY STAR FORMATION. <i>Astrophysical Journal</i> , 2016 , 824, 70	4.7	18
1164	COPSS II: THE MOLECULAR GAS CONTENT OF TEN MILLION CUBIC MEGAPARSECS AT REDSHIFTz~ 3. <i>Astrophysical Journal</i> , 2016 , 830, 34	4.7	54
1163	MUSE GAS FLOW AND WIND (MEGAFLOW). I. FIRST MUSE RESULTS ON BACKGROUND QUASARS. Astrophysical Journal, 2016 , 833, 39	4.7	54
1162	THE FATE OF A RED NUGGET: IN SITU STAR FORMATION OF SATELLITES AROUND A MASSIVE COMPACT GALAXY. <i>Astrophysical Journal</i> , 2016 , 816, 87	4.7	10
1161	Observational evidence of a slow downfall of star formation efficiency in massive galaxies during the past 10 Gyr. 2016 , 589, A35		52
1160	Extended LymanHaloes around individual high-redshift galaxies revealed by MUSE. 2016 , 587, A98		171
1160 1159	Extended LymanHaloes around individual high-redshift galaxies revealed by MUSE. 2016 , 587, A98 Properties of galaxies at the faint end of the HHuminosity function atz~ 0.62. 2016 , 591, A151		171 4
1159			
1159	Properties of galaxies at the faint end of the Hauminosity function atz~ 0.62. 2016 , 591, A151	4.3	4
1159 1158	Properties of galaxies at the faint end of the Hauminosity function atz~ 0.62. 2016 , 591, A151 X-ray observations of dust obscured galaxies in the Chandradeep field south. 2016 , 592, A109 Forecasts for the WFIRST High Latitude Survey using the BlueTides simulation. <i>Monthly Notices of</i>	4·3 4·7	4
1159 1158 1157	Properties of galaxies at the faint end of the Haminosity function atz~ 0.62. 2016 , 591, A151 X-ray observations of dust obscured galaxies in the Chandradeep field south. 2016 , 592, A109 Forecasts for the WFIRSTHigh Latitude Survey using the BlueTides simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 3520-3530 THE BURSTY STAR FORMATION HISTORIES OF LOW-MASS GALAXIES AT 0.4 Astrophysical Journal,		4 11 24
1159 1158 1157 1156	Properties of galaxies at the faint end of the Heliminosity function atz~ 0.62. 2016 , 591, A151 X-ray observations of dust obscured galaxies in the Chandradeep field south. 2016 , 592, A109 Forecasts for the WFIRSTHigh Latitude Survey using the BlueTides simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 3520-3530 THE BURSTY STAR FORMATION HISTORIES OF LOW-MASS GALAXIES AT 0.4 Astrophysical Journal, 2016 , 833, 37		4 11 24 43
1159 1158 1157 1156 1155	Properties of galaxies at the faint end of the Hæminosity function atz~ 0.62. 2016 , 591, A151 X-ray observations of dust obscured galaxies in the Chandradeep field south. 2016 , 592, A109 Forecasts for the WFIRSTHigh Latitude Survey using the BlueTides simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 3520-3530 THE BURSTY STAR FORMATION HISTORIES OF LOW-MASS GALAXIES AT 0.4 Astrophysical Journal, 2016 , 833, 37 Observational Searches for Star-Forming Galaxies at z > 6. 2016 , 33,		4 11 24 43 85

(2016-2016)

1151	Galaxy And Mass Assembly (GAMA): the absence of stellar mass segregation in galaxy groups and consistent predictions from GALFORM and EAGLE simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 4194-4209	4.3	8
1150	THE IMPACT OF STELLAR FEEDBACK ON THE STRUCTURE, SIZE, AND MORPHOLOGY OF GALAXIES IN MILKY-WAY-SIZED DARK MATTER HALOS. <i>Astrophysical Journal</i> , 2016 , 824, 79	4.7	81
1149	GLOBULAR CLUSTERS INDICATE THAT ULTRA-DIFFUSE GALAXIES ARE DWARFS. <i>Astrophysical Journal</i> , 2016 , 830, 23	4.7	86
1148	GALAXY PROPERTIES AND UV ESCAPE FRACTIONS DURING THE EPOCH OF REIONIZATION: RESULTS FROM THE RENAISSANCE SIMULATIONS. <i>Astrophysical Journal</i> , 2016 , 833, 84	4.7	110
1147	Flat rotation curves and low velocity dispersions in KMOS star-forming galaxies atz~ 1. 2016 , 594, A77		55
1146	Gamma-Ray Bursts and the Early Star-Formation History. 2016 , 202, 181-194		7
1145	Synthetic model of the gravitational wave background from evolving binary compact objects. 2016 , 94,		18
1144	THE EATING HABITS OF MILKY WAY-MASS HALOS: DESTROYED DWARF SATELLITES AND THE METALLICITY DISTRIBUTION OF ACCRETED STARS. <i>Astrophysical Journal</i> , 2016 , 821, 5	4.7	57
1143	DISSECTING THE HIGH-ZINTERSTELLAR MEDIUM THROUGH INTENSITY MAPPING CROSS-CORRELATIONS. <i>Astrophysical Journal</i> , 2016 , 833, 153	4.7	38
1142	CONNECTING CO INTENSITY MAPPING TO MOLECULAR GAS AND STAR FORMATION IN THE EPOCH OF GALAXY ASSEMBLY. <i>Astrophysical Journal</i> , 2016 , 817, 169	4.7	65
1141	THE MAIN SEQUENCES OF STAR-FORMING GALAXIES AND ACTIVE GALACTIC NUCLEI AT HIGH REDSHIFT. <i>Astrophysical Journal</i> , 2016 , 833, 152	4.7	32
1140	A SUBMILLIMETER CONTINUUM SURVEY OF LOCAL DUST-OBSCURED GALAXIES. <i>Astrophysical Journal</i> , 2016 , 833, 188	4.7	2
1139	THE EFFECTS OF DARK MATTER ANNIHILATION ON COSMIC REIONIZATION. <i>Astrophysical Journal</i> , 2016 , 833, 162	4.7	2
1138	New insights on the formation of nuclear star clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 3620-3629	4.3	33
1137	The Relation between Star-Formation Rate and Stellar Mass of Galaxies at $z \sim 10$. 2016 , 33,		16
1136	Dark influences. 2016 , 595, A56		16
1135	An empirical model to form and evolve galaxies in dark matter halos. 2016 , 16, 013		2
1134	Inferring the star-formation histories of the most massive and passive early-type galaxies atz2016, 592, A19		37

1133	Introducing decorated HODs: modelling assembly bias in the galaxyfialo connection. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 2552-2570	4.3	89
1132	ON THE INCONSISTENCY BETWEEN COSMIC STELLAR MASS DENSITY AND STAR FORMATION RATE UP TOz~ 8. <i>Astrophysical Journal</i> , 2016 , 820, 114	4.7	11
1131	Simulated stellar kinematics studies of high-redshift galaxies with the HARMONI Integral Field Spectrograph. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 2405-2422	4.3	6
1130	AN OVERMASSIVE DARK HALO AROUND AN ULTRA-DIFFUSE GALAXY IN THE VIRGO CLUSTER. 2016 , 819, L20		126
1129	On the physical requirements for a pre-reionization origin of the unresolved near-infrared background. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 282-294	4.3	23
1128	The stellar mass assembly of galaxies in the Illustris simulation: growth by mergers and the spatial distribution of accreted stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 2371-2390	4.3	238
1127	Probing the cool interstellar and circumgalactic gas of three massive lensing galaxies atz= 0.4 D .7. <i>Monthly Notices of the Royal Astronomical Society,</i> 2016 , 458, 2423-2442	4.3	43
1126	Evolution of dispersion in the cosmic deuterium abundance. 2016 , 458, L104-L108		16
1125	Is main-sequence galaxy star formation controlled by halo mass accretion?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 2592-2606	4.3	64
1124	Suppression of galactic outflows by cosmological infall and circumgalactic medium. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 2-8	4.3	
1123	Exploring the nature of the Lyman-Emitter CR7. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 2184-2202	4.3	32
1122	COSMOLOGICAL SIMULATIONS OF MILKY WAY-SIZED GALAXIES. Astrophysical Journal, 2016 , 829, 98	4.7	16
1121	Galaxy Formation and Evolution. 2016 , 202, 79-109		3
1120	SDSS IV MaNGA: the global and local stellar mass assemby histories of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 2799-2818	4.3	69
1119	Multiscale mass transport in z \sim 6 galactic discs: fuelling black holes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 4018-4037	4.3	9
1118	Galaxy growth from redshift 5 to 0 at fixed comoving number density. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 778-793	4.3	8
1117	TIDAL STIRRING OF SATELLITES WITH SHALLOW DENSITY PROFILES PREVENTS THEM FROM BEING TOO BIG TO FAIL. 2016 , 827, L15		14
1116	Halo and subhalo demographics with Planck cosmological parameters: BolshoiPlanck and MultiDarkPlanck simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 893-916	4.3	128

1115	Influence of ~7 keV sterile neutrino dark matter on the process of reionization. 2016 , 2016, 017-017		13
1114	EVOLUTION OF STELLAR-TO-HALO MASS RATIO ATz= 01 IDENTIFIED BY CLUSTERING ANALYSIS WITH THE HUBBLE LEGACY IMAGING AND EARLY SUBARU/HYPER SUPRIME-CAM SURVEY DATA. <i>Astrophysical Journal</i> , 2016 , 821, 123	4.7	71
1113	mufasa: galaxy formation simulations with meshless hydrodynamics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 3265-3284	4.3	178
1112	DISCOVERY OF A GALAXY CLUSTER WITH A VIOLENTLY STARBURSTING CORE ATz= 2.506. Astrophysical Journal, 2016 , 828, 56	4.7	111
1111	Dark-matter haloes and the MIrelation for supermassive black holes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 1864-1881	4.3	7
1110	When and where did GW150914 form?. 2016 , 463, L31-L35		56
1109	A HIGH STELLAR VELOCITY DISPERSION AND ~100 GLOBULAR CLUSTERS FOR THE ULTRA-DIFFUSE GALAXY DRAGONFLY 44. 2016 , 828, L6		149
1108	The realm of the galaxy protoclusters. 2016 , 24, 1		119
1107	IMPACT OF COSMIC VARIANCE ON THE GALAXYHALO CONNECTION FOR LYEMITTERS. Astrophysical Journal, 2016, 828, 5	4.7	3
1106	Search for gamma-ray emission from dark matter annihilation in the Small Magellanic Cloud with the Fermi Large Area Telescope. 2016 , 93,		24
1105	Metallicity-constrained merger rates of binary black holes and the stochastic gravitational wave background. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 3877-3885	4.3	71
1104	The mass profile of the Milky Way to the virial radius from the Illustris simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 3483-3493	4.3	28
1103	A KECK ADAPTIVE OPTICS SURVEY OF A REPRESENTATIVE SAMPLE OF GRAVITATIONALLY LENSED STAR-FORMING GALAXIES: HIGH SPATIAL RESOLUTION STUDIES OF KINEMATICS AND METALLICITY GRADIENTS. <i>Astrophysical Journal</i> , 2016 , 820, 84	4.7	58
1102	RETURN TO [Log-]NORMALCY: RETHINKING QUENCHING, THE STAR FORMATION MAIN SEQUENCE, AND PERHAPS MUCH MORE. <i>Astrophysical Journal</i> , 2016 , 832, 7	4.7	51
1101	HECTOMAP AND HORIZON RUN 4: DENSE STRUCTURES AND VOIDS IN THE REAL AND SIMULATED UNIVERSE. <i>Astrophysical Journal</i> , 2016 , 818, 173	4.7	20
1100	RADIAL TRENDS IN IMF-SENSITIVE ABSORPTION FEATURES IN TWO EARLY-TYPE GALAXIES: EVIDENCE FOR ABUNDANCE-DRIVEN GRADIENTS. <i>Astrophysical Journal</i> , 2016 , 821, 39	4.7	38
1099	NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 2658-2675	4.3	61
1098	Cosmological galaxy evolution with superbubble feedback [II. The limits of supernovae. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 1431-1445	4.3	35

1097	INFERENCES ON THE RELATIONS BETWEEN CENTRAL BLACK HOLE MASS AND TOTAL GALAXY STELLAR MASS IN THE HIGH-REDSHIFT UNIVERSE. 2016 , 820, L6		26
1096	EVOLUTION OF INTRINSIC SCATTER IN THE SFRBTELLAR MASS CORRELATION AT 0.5 2016, 820, L1		53
1095	THE CONNECTION BETWEEN THE HOST HALO AND THE SATELLITE GALAXIES OF THE MILKY WAY. Astrophysical Journal, 2016 , 830, 59	4.7	18
1094	The role of gas infall in the evolution of disc galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 1329-1340	4.3	21
1093	QUASARS PROBING QUASARS. VIII. THE PHYSICAL PROPERTIES OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDING z \sim 2 \overline{B} MASSIVE GALAXIES HOSTING QUASARS. 2016 , 226, 25		49
1092	THE STRUCTURE OF THE CIRCUMGALACTIC MEDIUM OF GALAXIES: COOL ACCRETION INFLOW AROUND NGC 1097. <i>Astrophysical Journal</i> , 2016 , 826, 50	4.7	40
1091	MOND PREDICTION FOR THE VELOCITY DISPERSION OF THE BEEBLE GIANTICRATER II. 2016 , 832, L8		39
1090	Planet destruction and the shaping of planetary nebulae. 2016 , 12, 193-196		1
1089	Galaxy assembly, stellar feedback and metal enrichment: the view from the gaea model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 1760-1785	4.3	89
1088	GAMA/H-ATLAS: a meta-analysis of SFR indicators Comprehensive measures of the SFRM*relation and cosmic star formation history atz Monthly Notices of the Royal Astronomical Society, 2016, 461, 458-485	4.3	80
1087	Dark-ages reionization and galaxy formation simulation III. Modelling galaxy formation and the epoch of reionization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 250-276	4.3	73
1086	Galaxies in the EAGLE hydrodynamical simulation and in the Durham and Munich semi-analytical models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 3457-3482	4.3	72
1085	Shock finding on a moving-mesh III. Hydrodynamic shocks in the Illustris universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 4441-4465	4.3	17
1084	GASS 3505: the prototype of H i-excess, passive galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 382-394	4.3	21
1083	Setting firmer constraints on the evolution of the most massive, central galaxies from their local abundances and ages. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 2001-2010	4.3	8
1082	Mapping the low-surface brightness Universe in the UV band with Lyæmission from IGM filaments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 1961-1971	4.3	7
1081	Star formation and AGN activity in the most luminous LINERs in the local universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 2878-2903	4.3	13
1080	Efficiency of gas cooling and accretion at the discBorona interface. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 4157-4170	4.3	61

1079	CAUGHT IN THE ACT: GAS AND STELLAR VELOCITY DISPERSIONS IN A FAST QUENCHING COMPACT STAR-FORMING GALAXY ATz~ 1.7. <i>Astrophysical Journal</i> , 2016 , 820, 120	4.7	32
1078	THE SCALING OF STELLAR MASS AND CENTRAL STELLAR VELOCITY DISPERSION FOR QUIESCENT GALAXIES ATzAstrophysical Journal, 2016 , 832, 203	4.7	45
1077	On the physical origin of galactic conformity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 2135-2145	4.3	41
1076	GALAXIES IN X-RAY SELECTED CLUSTERS AND GROUPS IN DARK ENERGY SURVEY DATA. I. STELLAR MASS GROWTH OF BRIGHT CENTRAL GALAXIES SINCEZ~ 1.2. Astrophysical Journal, 2016 , 816, 98	4.7	39
1075	The nature of H#[O iii] and [O ii] emitters toz~ 5 with HiZELS: stellar mass functions and the evolution of EWs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 2363-2382	4.3	36
1074	THE QUEST FOR DUSTY STAR-FORMING GALAXIES AT HIGH REDSHIFTz? 4. <i>Astrophysical Journal</i> , 2016 , 823, 128	4.7	36
1073	Evidence for a change in the dominant satellite galaxy quenching mechanism atz [1]. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 4364-4376	4.3	80
1072	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling the clustering and halo occupation distribution of BOSS CMASS galaxies in the Final Data Release. <i>Monthly Notices of the Royal Astronomical Society,</i> 2016 , 460, 1173-1187	4.3	98
1071	Bimodality of low-redshift circumgalactic O vi in non-equilibrium eagle zoom simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 2157-2179	4.3	126
1070	Missing dark matter in dwarf galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 3610-3623	4.3	53
1069	Evolution of density profiles in high-zgalaxies: compaction and quenching inside-out. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 242-263	4.3	140
1068	Modelling the evolution of Ly⊞blobs and Ly⊞mitters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 84-98	4.3	2
1067	Accurate and efficient halo-based galaxy clustering modelling with simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 4015-4024	4.3	36
1066	Baryon cycling in the low-redshift circumgalactic medium: a comparison of simulations to the COS-Halos survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 1745-1763	4.3	58
1065	The diversity of growth histories of Milky Way-mass galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 1929-1945	4.3	14
1064	Constraints on the star formation efficiency of galaxies during the epoch of reionization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 417-433	4.3	83
1063	GARROTXA COSMOLOGICAL SIMULATIONS OF MILKY WAY-SIZED GALAXIES: GENERAL PROPERTIES, HOT-GAS DISTRIBUTION, AND MISSING BARYONS. <i>Astrophysical Journal</i> , 2016 , 824, 94	4.7	17
1062	NIHAO VI. The hidden discs of simulated galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 467-486	4.3	40

1061	Radio galaxies in ZFOURGE/NMBS: no difference in the properties of massive galaxies with and without radio-AGN out to $z = 2.25$. Monthly Notices of the Royal Astronomical Society, 2016 , 455, 2731-2	2744	19
1060	Non-linearity and environmental dependence of the star-forming galaxies main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 2839-2851	4.3	43
1059	Mass and size growth of early-type galaxies by dry mergers in cluster environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 300-313	4.3	11
1058	The evolution of the stellar mass versus halo mass relationship. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 1459-1483	4.3	31
1057	Detecting direct collapse black holes: making the case for CR7. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 4003-4010	4.3	41
1056	Cosmological simulations of dwarf galaxies with cosmic ray feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 3335-3344	4.3	14
1055	The redshift evolution of escape fraction of hydrogen ionizing photons from galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 4051-4062	4.3	81
1054	The scale-dependence of halo assembly bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 1510-1516	4.3	40
1053	Modelling the cosmic neutral hydrogen from DLAs and 21-cm observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 781-788	4.3	23
1052	Column density profiles of multiphase gaseous haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 1164-1187	4.3	54
1051	Ultradiffuse galaxies: the high-spin tail of the abundant dwarf galaxy population. 2016 , 459, L51-L55		140
1050	Mass assembly history and infall time of the Fornax dwarf spheroidal galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 4248-4261	4.3	10
1049	Enhanced tidal stripping of satellites in the galactic halo from dark matter self-interactions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 710-727	4.3	41
1048	IN-N-OUT: THE GAS CYCLE FROM DWARFS TO SPIRAL GALAXIES. <i>Astrophysical Journal</i> , 2016 , 824, 57	4.7	127
1047	RESOLVE AND ECO: THE HALO MASS-DEPENDENT SHAPE OF GALAXY STELLAR AND BARYONIC MASS FUNCTIONS. <i>Astrophysical Journal</i> , 2016 , 824, 124	4.7	11
1046	NIHAO V: too big does not fail [reconciling the conflict between IDM predictions and the circular velocities of nearby field galaxies. 2016 , 457, L74-L78		52
1045	NIHAO IIV: core creation and destruction in dark matter density profiles across cosmic time. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 3542-3552	4.3	151
1044	The very wide-fieldgzKGalaxy Survey [II. The relationship between star-forming galaxies atz~ 2 and their host haloes based upon HOD modelling. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 747-758	4.3	6

1043	Dark matter fraction of low-mass cluster members probed by galaxy-scale strong lensing. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 1493-1503	4.3	4
1042	The galaxy UV luminosity function atz? 2½; new results on faint-end slope and the evolution of luminosity density. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 3194-3211	4.3	69
1041	The confinement of star-forming galaxies into a main sequence through episodes of gas compaction, depletion and replenishment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 2790-2813	4.3	173
1040	Simulating the 21 cm signal from reionization including non-linear ionizations and inhomogeneous recombinations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 1550-1567	4.3	33
1039	Cosmic neutron-star merger rate and gravitational waves constrained by the r-process nucleosynthesis. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 17-34	4.3	48
1038	The formation of massive, quiescent galaxies at cosmic noon. 2016 , 458, L14-L18		61
1037	The origin and evolution of the galaxy massmetallicity relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 2140-2156	4.3	219
1036	A small-scale dynamo in feedback-dominated galaxies as the origin of cosmic magnetic fields []. The kinematic phase. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 1722-1738	4.3	53
1035	Rotation curve decomposition for sizehass relations of bulge, disk, and dark halo components in spiral galaxies. 2016 , 68, 2		24
1034	THESWIFTGAMMA-RAY BURST HOST GALAXY LEGACY SURVEY. I. SAMPLE SELECTION AND REDSHIFT DISTRIBUTION. <i>Astrophysical Journal</i> , 2016 , 817, 7	4.7	83
1033	COSMIC VARIANCE IN THE NANOHERTZ GRAVITATIONAL WAVE BACKGROUND. <i>Astrophysical Journal</i> , 2016 , 819, 163	4.7	8
1032	Spectral distortion of the CMB by the cumulative CO emission from galaxies throughout cosmic history. 2016 , 458, L99-L103		9
1031	Black hole formation and growth with non-Gaussian primordial density perturbations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 1901-1912	4.3	11
1030	Effects of simulated cosmological magnetic fields on the galaxy population. 2016 , 456, L69-L73		29
1029	Space[Warps[]]. New gravitational lens candidates from the CFHTLS discovered through citizen science. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 1191-1210	4.3	56
1028	A White Paper on keV sterile neutrino Dark Matter. 2017 , 2017, 025-025		167
1027	Rotation and mass in the Milky Way and spiral galaxies. 2017 , 69, R1		34
1026	Formation and Assembly History of Stellar Components in Galaxies as a Function of Stellar and Halo Mass. <i>Astrophysical Journal</i> , 2017 , 836, 161	4.7	11

1025	The Frontier Fields: Survey Design and Initial Results. <i>Astrophysical Journal</i> , 2017 , 837, 97	4.7	281
1024	Constraints on the Evolution of the Galaxy Stellar Mass Function. I. Role of Star Formation, Mergers, and Stellar Stripping. <i>Astrophysical Journal</i> , 2017 , 837, 27	4.7	10
1023	Galactic Dark Matter Halos and Globular Cluster Populations. III. Extension to Extreme Environments. <i>Astrophysical Journal</i> , 2017 , 836, 67	4.7	77
1022	Log-normal Star Formation Histories in Simulated and Observed Galaxies. <i>Astrophysical Journal</i> , 2017 , 839, 26	4.7	39
1021	The Velocity Dispersion Function of Very Massive Galaxy Clusters: Abell 2029 and Coma. 2017 , 229, 20		30
1020	The Correlation between Halo Mass and Stellar Mass for the Most Massive Galaxies in the Universe. <i>Astrophysical Journal</i> , 2017 , 839, 121	4.7	42
1019	The GalaxyHalo Connection in High-redshift Universe: Details and Evolution of Stellar-to-halo Mass Ratios of Lyman Break Galaxies on CFHTLS Deep Fields. <i>Astrophysical Journal</i> , 2017 , 841, 8	4.7	16
1018	Star Formation Quenching Timescale of Central Galaxies in a Hierarchical Universe. <i>Astrophysical Journal</i> , 2017 , 841, 6	4.7	19
1017	Revisiting the BulgeHalo Conspiracy. I. Dependence on Galaxy Properties and Halo Mass. <i>Astrophysical Journal</i> , 2017 , 840, 34	4.7	26
1016	Analysis of the Intrinsic Mid-infraredLband to VisibleNear-infrared Flux Ratios in Spectral Synthesis Models of Composite Stellar Populations. <i>Astrophysical Journal</i> , 2017 , 840, 28	4.7	3
1015	Structural and Star-forming Relations sincez~ 3: Connecting Compact Star-forming and Quiescent Galaxies. <i>Astrophysical Journal</i> , 2017 , 840, 47	4.7	131
1014	On the OVI abundance in the circumgalactic medium of low-redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 2966-2982	4.3	48
1013	Line-of-sight effects in strong lensing: putting theory into practice. 2017 , 2017, 049-049		29
1012	The VLA-COSMOS 3 GHz Large Project: Cosmic star formation history sincez~ 5. 2017 , 602, A5		68
1011	Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate. <i>Astrophysical Journal</i> , 2017 , 842, 72	4.7	55
1010	Lensing substructure quantification in RXJ1131-1231: a 2 keV lower bound on dark matter thermal relic mass. 2017 , 2017, 037-037		61
1009	A massive, dead disk galaxy in the early Universe. 2017 , 546, 510-513		65
1008	Theoretical Challenges in Galaxy Formation. 2017 , 55, 59-109		285

1007	CANDELS Sheds Light on the Environmental Quenching of Low-mass Galaxies. 2017 , 841, L22		20
1006	Falling Outer Rotation Curves of Star-forming Galaxies at 0.6 ?z? 2.6 Probed with KMOS3Dand SINS/zC-SINF. <i>Astrophysical Journal</i> , 2017 , 840, 92	4.7	49
1005	Two New Calcium-rich Gap Transients in Group and Cluster Environments. <i>Astrophysical Journal</i> , 2017 , 836, 60	4.7	45
1004	The history of the dark and luminous side of Milky Way-like progenitors. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 1101-1116	4.3	21
1003	Reconstruction of Galaxy Star Formation Histories through SED Fitting:The Dense Basis Approach. <i>Astrophysical Journal</i> , 2017 , 838, 127	4.7	42
1002	Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe. <i>Astrophysical Journal</i> , 2017 , 837, 170	4.7	176
1001	Relations between the Sizes of Galaxies and Their Dark Matter Halos at Redshifts 0 . <i>Astrophysical Journal</i> , 2017 , 838, 6	4.7	51
1000	UVUDF: UV Luminosity Functions at the Cosmic High Noon. <i>Astrophysical Journal</i> , 2017 , 838, 29	4.7	22
999	The properties of darkICDM haloes in the Local Group. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 3913-3926	4.3	27
998	The origin of the Milky Way globular clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 3622-3636	4.3	71
997	THE QUENCHED MASS PORTION OF STAR-FORMING GALAXIES AND THE ORIGIN OF THE STAR FORMATION SEQUENCE SLOPE. <i>Astrophysical Journal</i> , 2017 , 834, 39	4.7	9
996	Equilibrium model prediction for the scatter in the star-forming main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 2766-2776	4.3	28
995	Organized chaos: scatter in the relation between stellar mass and halo mass in small galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 3108-3120	4.3	77
994	STAR CLUSTER FORMATION IN COSMOLOGICAL SIMULATIONS. I. PROPERTIES OF YOUNG CLUSTERS. <i>Astrophysical Journal</i> , 2017 , 834, 69	4.7	77
993	Simulating galaxy formation with black hole driven thermal and kinetic feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 3291-3308	4.3	423
992	Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr. 2017 , 844, L23		73
991	Local two-sample testing: a new tool for analysing high-dimensional astronomical data. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 3273-3282	4.3	4
990	Star Formation in Galaxies atz~ 4B from the SMUVS Survey: A Clear Starburst/Main-sequence Bimodality for HEmitters on the SFRM* Plane. <i>Astrophysical Journal</i> , 2017 , 849, 45	4.7	40

989	The Dependence of Galaxy Clustering on Stellar-mass Assembly History for LRGs. 2017, 848, L2		31
988	Stellar Mass Function of Active and Quiescent Galaxies via the Continuity Equation. <i>Astrophysical Journal</i> , 2017 , 847, 13	4.7	15
987	Gravitational wave searches for ultralight bosons with LIGO and LISA. 2017, 96,		123
986	Stochastic and Resolvable Gravitational Waves from Ultralight Bosons. 2017 , 119, 131101		102
985	Galaxy Zoo: Major Galaxy Mergers Are Not a Significant Quenching Pathway. <i>Astrophysical Journal</i> , 2017 , 845, 145	4.7	19
984	On the kinematic detection of accreted streams in theGaiaera: a cautionary tale. 2017 , 604, A106		43
983	Recoiling supermassive black hole escape velocities from dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 1526-1537	4.3	6
982	Galaxy cluster luminosities and colours, and their dependence on cluster mass and merger state. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 3246-3255	4.3	12
981	Growth of First Galaxies: Impacts of Star Formation and Stellar Feedback. <i>Astrophysical Journal</i> , 2017 , 846, 30	4.7	19
980	Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate. <i>Astrophysical Journal</i> , 2017 , 847, 18	4.7	42
979	A Fast Radio Burst Occurs Every Second throughout the Observable Universe. 2017 , 846, L27		30
978	Baryon effects on void statistics in the EAGLE simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 4434-4452	4.3	14
977	EIG II. Intriguing characteristics of the most extremely isolated galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 347-382	4.3	3
976	A Universal Angular Momentum Profile for Dark Matter Halos. <i>Astrophysical Journal</i> , 2017 , 844, 86	4.7	3
975	The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 4698-4719	4.3	188
974	A galaxyflalo model for multiple cosmological tracers. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 12-27	4.3	2
973	Not so lumpy after all: modelling the depletion of dark matter subhaloes by Milky Way-like galaxies Monthly Notices of the Royal Astronomical Society, 2017 , 471, 1709-1727	4.3	173
972	Supermassive Black Holes as the Regulators of Star Formation in Central Galaxies. <i>Astrophysical Journal</i> , 2017 , 844, 170	4.7	41

(2017-2017)

97	The metallicity and star formation activity of long gamma-ray burst hosts for z\(\text{D}\) Monthly Notices of the Royal Astronomical Society, 2017 , 469, 4921-4932	4.3	9
979	Constraining the galaxyfialo connection over the last 13.3 Gyr: star formation histories, galaxy mergers and structural properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 651-68	37 ^{4.3}	120
969	The little Galaxies that could (reionize the universe): predicting faint end slopes & escape fractions at z>4. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 4077-4092	4.3	24
968	The minimum halo mass for star formation atz 468. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 1633-1639	4.3	19
96 ,	SEARCH FOR THE FOOTPRINTS OF NEW PHYSICS WITH LABORATORY AND COSMIC NEUTRINOS. 2017 , 32,		1
960	A break in the high-redshift stellar mass Tully lisher relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 2599-2610	4.3	6
96	Constraining the Nature of Dark Matter with the Star-formation History of the Faintest Local Group Dwarf Galaxy Satellites. <i>Astrophysical Journal</i> , 2017 , 845, 17	4.7	8
962	The Grism Lens-Amplified Survey from Space (GLASS). X. Sub-kiloparsec Resolution Gas-phase Metallicity Maps at Cosmic Noon behind the Hubble Frontier Fields Cluster MACS1149.6+2223. Astrophysical Journal, 2017 , 837, 89	4.7	35
963	Cosmic Galaxy-IGM H i Relation atz~ 2B Probed in the COSMOS/UltraVISTA 1.6 Deg2Field. Astrophysical Journal, 2017, 835, 281	4.7	14
962	Systematic study of the stochastic gravitational-wave background due to stellar core collapse. 2017 , 95,		20
96:	Connecting the First Galaxies with Ultrafaint Dwarfs in the Local Group: Chemical Signatures of Population III Stars. <i>Astrophysical Journal</i> , 2017 , 848, 85	4.7	59
960	The Fate of Gas-rich Satellites in Clusters. <i>Astrophysical Journal</i> , 2017 , 850, 99	4.7	21
959	Maximum Redshift of Gravitational Wave Merger Events. 2017 , 119, 221104		22
958	SDSS IV MaNGA R otation Velocity Lags in the Extraplanar Ionized Gas from MaNGA Observations of Edge-on Galaxies. <i>Astrophysical Journal</i> , 2017 , 839, 87	4.7	17
957	THE EFFECT OF AGN FEEDBACK ON THE INTERSTELLAR MEDIUM OF EARLY-TYPE GALAXIES: 2D HYDRODYNAMICAL SIMULATIONS OF THE LOW-ROTATION CASE. <i>Astrophysical Journal</i> , 2017 , 835, 15	4.7	58
956	ORIGINS OF SCATTER IN THE RELATIONSHIP BETWEEN HCN 1-0 AND DENSE GAS MASS IN THE GALACTIC CENTER. <i>Astrophysical Journal</i> , 2017 , 835, 76	4.7	21
955	A Unique View of AGN-driven Molecular Outflows: The Discovery of a Massive Galaxy Counterpart to aZ= 2.4 High-metallicity Damped LyAbsorber. <i>Astrophysical Journal</i> , 2017 , 843, 98	4.7	17
954	Angular Momentum of Early- and Late-type Galaxies: Nature or Nurture?. <i>Astrophysical Journal</i> , 2017 , 843, 105	4.7	19

953	Testing models of quasar hosts with strong gravitational lensing by quasar hosts. 2017 , 467, L26-L30		2
952	The FMOS-COSMOS Survey of Star-forming Galaxies atZ~ 1.6. V: Properties of Dark Matter Halos Containing HEmitting Galaxies. <i>Astrophysical Journal</i> , 2017 , 843, 138	4.7	11
951	The Splashback Radius of Halos from Particle Dynamics. II. Dependence on Mass, Accretion Rate, Redshift, and Cosmology. <i>Astrophysical Journal</i> , 2017 , 843, 140	4.7	69
950	Impact of supermassive black hole growth on star formation. 2017 , 1,		116
949	The Spectroscopy and H-band Imaging of Virgo Cluster Galaxies (SHIVir) Survey: Scaling Relations and the Stellar-to-total Mass Relation. <i>Astrophysical Journal</i> , 2017 , 843, 74	4.7	18
948	A Controlled Study of Cold Dust Content in Galaxies fromz= 02. Astrophysical Journal, 2017, 843, 71	4.7	12
947	Identifying true satellites of the Magellanic Clouds. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 1879-1888	4.3	61
946	The Rest-frame Optical (900 nm) Galaxy Luminosity Function atz~ 4½: Abundance Matching Points to Limited Evolution in theMSTAR/MHALORatio atz[4. <i>Astrophysical Journal</i> , 2017 , 843, 36	4.7	40
945	High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM. <i>Astrophysical Journal</i> , 2017 , 843, 47	4.7	50
944	Giant clumps in simulated high-zGalaxies: properties, evolution and dependence on feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 635-665	4.3	70
943	NIHAO IVIII. Circum-galactic medium and outflows IThe puzzles of H iland O vilgas distributions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 2796-2815	4.3	41
942	nIFTy galaxy cluster simulations IV. Investigation of the cluster infall region. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 2027-2038	4.3	16
941	Cosmology with intensity mapping techniques using atomic and molecular lines. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 1948-1965	4.3	43
940	(Star)bursts of FIRE: observational signatures of bursty star formation in galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 88-104	4.3	117
939	A deep ALMA image of theHubble Ultra Deep Field. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 861-883	4.3	212
938	Some observational tests of a minimal galaxy formation model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 2718-2735	4.3	11
937	Constraints on galaxy formation models from the galaxy stellar mass function and its evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 2418-2435	4.3	26
936	Colours, star formation rates and environments of star-forming and quiescent galaxies at the cosmic noon. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 1050-1072	4.3	45

935	The Romulus cosmological simulations: a physical approach to the formation, dynamics and accretion models of SMBHs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 1121-1139	4.3	119
934	Introducing the FirstLight project: UV luminosity function and scaling relations of primeval galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 2791-2798	4.3	34
933	Galaxies in the Illustris simulation as seen by the Sloan Digital Sky Survey []I. Size[]uminosity relations and the deficit of bulge-dominated galaxies in Illustris at low mass. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 467, 2879-2895	4.3	46
932	Testing galaxy quenching theories with scatter in the stellar-to-halo mass relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 467, 3533-3541	4.3	12
931	Young and turbulent: the early life of massive galaxy progenitors. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 467, 4080-4100	4.3	18
930	Quantifying the origin and distribution of intracluster Light in a Fornax-Like Cluster. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 467, 4501-4513	4.3	5
929	The differing relationships between size, mass, metallicity and core velocity dispersion of central and satellite galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 333-345	4.3	12
928	Feeding cosmic star formation: exploring high-redshift molecular gas with CO intensity mapping. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 741-750	4.3	13
927	NIHAO XII: galactic uniformity in a IDM universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 467, 4937-4950	4.3	30
926	Reconciling mass functions with the star-forming main sequence via mergers. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 849-856	4.3	7
925	Blossoms from black hole seeds: properties and early growth regulated by supernova feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 3935-3948	4.3	108
924	fire in the field: simulating the threshold of galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 3547-3562	4.3	122
923	Formation and settling of a disc galaxy during the last 8 billion years in a cosmological simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 467, 2664-2672	4.3	17
922	The edge of galaxy formation []. Formation and evolution of MW-satellite analogues before accretion. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 2356-2366	4.3	29
921	Simplified galaxy formation with mesh-less hydrodynamics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 1673-1686	4.3	6
920	The properties of the first galaxies in the BlueTides simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 2517-2530	4.3	43
919	Approximate Bayesian computation in large-scale structure: constraining the galaxyflalo connection. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 2791-2805	4.3	29
918	The H duminosity-dependent clustering of star-forming galaxies from z⊡0.8 to ~2.2 with HiZELS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 2913-2932	4.3	25

917	Evolution of Galactic Outflows at \$zsim 0mbox{}2\$ Revealed with SDSS, DEEP2, and Keck Spectra. <i>Astrophysical Journal</i> , 2017 , 850, 51	4.7	24
916	D1005+68: A New Faint Dwarf Galaxy in the M81 Group. 2017 , 843, L6		19
915	Constraining the Hillalo Mass Relation from Galaxy Clustering. Astrophysical Journal, 2017, 846, 61	4.7	35
914	On Estimation of Contamination from Hydrogen Cyanide in Carbon Monoxide Line-intensity Mapping. <i>Astrophysical Journal</i> , 2017 , 846, 60	4.7	8
913	The MASSIVE Survey LVII. The relationship of angular momentum, stellar mass and environment of early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 1428-1445	4.3	55
912	A small-scale dynamo in feedback-dominated galaxies III. The saturation phase and the final magnetic configuration. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 2674-2686	4.3	29
911	Galaxygalaxy lensing in EAGLE: comparison with data from 180 deg2 of the KiDS and GAMA surveys. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 2856-2870	4.3	7
910	The impact of chemistry on the structure of high-z galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 4128-4143	4.3	64
909	The evolving far-IR galaxy luminosity function and dust-obscured star formation rate density out to ?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 4155-4169	4.3	47
908	The relationship between star formation activity and galaxy structural properties in CANDELS and a semi-analytic model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 619-640	4.3	38
907	The nature of massive transition galaxies in CANDELS, GAMA and cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 2054-2084	4.3	49
906	Gemini Observations of Galaxies in Rich Early Environments (GOGREEN) I: survey description. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 4168-4185	4.3	26
905	The Hydrangea simulations: galaxy formation in and around massive clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 4186-4208	4.3	114
904	The origin of the mass discrepancy Icceleration relation in IDM. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 1841-1848	4.3	51
903	AGNs and Their Host Galaxies in the Local Universe: Two Mass-independent Eddington Ratio Distribution Functions Characterize Black Hole Growth. <i>Astrophysical Journal</i> , 2017 , 845, 134	4.7	24
902	Three-phase Interstellar Medium in Galaxies Resolving Evolution with Star Formation and Supernova Feedback (TIGRESS): Algorithms, Fiducial Model, and Convergence. <i>Astrophysical Journal</i> , 2017 , 846, 133	4.7	84
901	Thick Disks in theHubble Space TelescopeFrontier Fields. Astrophysical Journal, 2017, 847, 14	4.7	28
900	Mg ii Absorbers: Metallicity Evolution and Cloud Morphology. <i>Astrophysical Journal</i> , 2017 , 850, 156	4.7	24

899	A unifying evolutionary framework for infrared-selected obscured and unobscured quasar host haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 3526-3535	4.3	11	
898	Halo histories versus Galaxy properties at z⊫© []. The quenching of star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 2504-2516	4.3	26	
897	The immitigable nature of assembly bias: the impact of halo definition on assembly bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 1088-1105	4.3	30	
896	An observer's guide to the (Local Group) dwarf galaxies: predictions for their own dwarf satellite populations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 4894-4909	4.3	26	
895	A minimalist feedback-regulated model for galaxy formation during the epoch of reionization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 1576-1592	4.3	35	
894	The morphologydensity relation: impact on the satellite fraction. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 4769-4785	4.3	15	
893	The accreted stellar halo as a window on halo assembly in L* galaxies. 2017, 469, L48-L52		14	
892	The evolution of the star formation rate function in the EAGLE simulations: a comparison with UV, IR and H \oplus bservations from z ~ 8 to z ~ 0. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 919-939	4.3	34	
891	Towards a consistent model for both the H i and stellar mass functions of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 1981-1990	4.3	6	
890	The predicted luminous satellite populations around SMC- and LMC-mass galaxies has missing satellite problem around the LMC?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 1060	-1 07 3	46	
889	Sample variance in the local measurements of the Hubble constant. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 4946-4955	4.3	55	
888	High-redshift Galaxies and Black Holes Detectable with the JWST: A Population Synthesis Model from Infrared to X-Rays. <i>Astrophysical Journal</i> , 2017 , 849, 155	4.7	25	
887	Galactic wind X-ray heating of the intergalactic medium during the Epoch of Reionization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 3632-3645	4.3	4	
886	On the impact of neutron star binaries Thatal-kick distribution on the Galactic r-process enrichment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 4488-4493	4.3	13	
885	NIHAO XIII: Clumpy discs or clumpy light in high-redshift galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 3628-3649	4.3	42	
884	Preprocessing, mass-loss and mass segregation of galaxies in dark matter simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 4625-4634	4.3	16	
883	A complete distribution of redshifts for submillimetre galaxies in the SCUBA-2 Cosmology Legacy Survey UDS field. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 2453-2462	4.3	10	
882	Interpreting ALMA observations of the ISM during the epoch of reionization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 4831-4861	4.3	60	

881	How to quench a galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 465, 547-558	4.3	68
880	The origin of scatter in the stellar massBalo mass relation of central galaxies in the EAGLE simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 2381-2396	4.3	75
879	ZOMG []. How the cosmic web inhibits halo growth and generates assembly bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 594-611	4.3	52
878	The Impact of Modeling Assumptions in Galactic Chemical Evolution Models. <i>Astrophysical Journal</i> , 2017 , 835, 128	4.7	42
877	The bahamas project: calibrated hydrodynamical simulations for large-scale structure cosmology. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 2936-2965	4.3	195
876	The VIMOS Public Extragalactic Redshift Survey (VIPERS). 2017 , 605, A4		32
875	Mg ii Absorption at 2 . Astrophysical Journal, 2017 , 850, 188	4.7	26
874	Insights on star-formation histories and physical properties of 1.2 ☑? 4 Herschel-detected galaxies. 2017 , 605, A29		9
873	A new astrophysical solution to the Too Big To Fail problem. 2017 , 607, A13		16
872	ALMA deep field in SSA22: Blindly detected CO emitters and [C ii] emitter candidates. 2017 , 69,		21
871	On stellar mass loss from galaxies in groups and clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 4170-4193	4.3	21
870	Spreading out and staying sharp treating diverse rotation curves via baryonic and self-interaction effects. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 2283-2295	4.3	81
869	Testing baryon-induced core formation in IDM: A comparison of the DC14 and coreNFW dark matter halo models on galaxy rotation curves. 2017 , 605, A55		11
868	Clumpy galaxies seen in H \(\text{\text{\text{Hinflated}}}\) observed clump properties due to limited spatial resolution and sensitivity. \(\text{Monthly Notices of the Royal Astronomical Society, \textbf{2017}, 468, 4792-4800\)	4.3	19
867	Stellar halo hierarchical density structure identification using (F)OPTICS. 2017, 599, A143		9
866	Separation of stellar populations by an evolving bar: implications for the bulge of the Milky Way. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 1587-1611	4.3	80
865	The KMOS Deep Survey (KDS) II. Dynamical measurements of typical star-forming galaxies at z? 3.5. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 1280-1320	4.3	55
864	TESTING LORENTZ SYMMETRY USING HIGH ENERGY ASTROPHYSICS OBSERVATIONS. 2017 , 9,		10

(2018-2017)

863	The Baryonic Collapse Efficiency of Galaxy Groups in the RESOLVE and ECO Surveys. <i>Astrophysical Journal</i> , 2017 , 849, 20	4.7	8	
862	How stellar feedback simultaneously regulates star formation and drives outflows. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 1682-1698	4.3	113	
861	The new semi-analytic code GalICS 2.0 Ireproducing the galaxy stellar mass function and the Tully Bisher relation simultaneously. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 1401	-1427	31	
860	Bimodal morphologies of massive galaxies at the core of a protocluster at z = 3.09 and the strong size growth of a brightest cluster galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 2235-2250	4.3	10	
859	X-rays across the galaxy population []. Tracing the main sequence of star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 3390-3415	4.3	62	
858	Testing galaxy formation models with galaxy stellar mass functions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 3256-3270	4.3	12	
857	Zooming on the internal structure of z?6 galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 2540-2558	4.3	74	
856	Merging massive black holes the right place and the right time. 2017 , 13, 40-45			
855	The COSMOS2015 galaxy stellar mass function. 2017 , 605, A70		199	
854	The impact of clustering and angular resolution on far-infrared and millimeter continuum observations. 2017 , 607, A89		77	
853	Multiple regimes and coalescence timescales for massive black hole pairs; the critical role of galaxy formation physics. 2017 , 840, 012025		2	
852	A chronicle of galaxy mass assembly in the EAGLE simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 1659-1675	4.3	113	
851	The Fundamental Plane of evolving red nuggets. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 3497-3506	4.3	2	
850	ZOMG II. Does the halo assembly history influence central galaxies and gas accretion?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 1809-1823	4.3	18	
849	MultiDark-Galaxies: data release and first results. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 5206-5231	4.3	45	
848	Comparing galaxy formation in semi-analytic models and hydrodynamical simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 492-521	4.3	35	
847	Brightest group galaxies \Box I: the relative contribution of BGGs to the total baryon content of groups at $z\Box$ <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 2787-2808	4.3	8	
846	SizeIluminosity Relations and UV Luminosity Functions atz= 6 Simultaneously Derived from the CompleteHubbleFrontier Fields Data. <i>Astrophysical Journal</i> , 2018 , 855, 4	4.7	83	

845	The frequency of very young galaxies in the local Universe: I. A test for galaxy formation and cosmological models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 1427-1450	4.3	12
844	Hunting Faint Dwarf Galaxies in the Field Using Integrated Light Surveys. <i>Astrophysical Journal</i> , 2018 , 856, 69	4.7	34
843	A massive core for a cluster of galaxies at a redshift of 4.3. 2018 , 556, 469-472		78
842	The Mass and Absorption Columns of Galactic Gaseous Halos. <i>Astrophysical Journal</i> , 2018 , 856, 5	4.7	24
841	Active Galactic Nuclei Feedback and the Origin and Fate of the Hot Gas in Early-type Galaxies. <i>Astrophysical Journal</i> , 2018 , 856, 115	4.7	18
840	The vertical structure of gaseous galaxy discs in cold dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 1019-1037	4.3	22
839	An Epoch of Reionization simulation pipeline based on BEARS. 2018 , 64, 9-30		2
838	The correlation between the sizes of globular cluster systems and their host dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 3869-3885	4.3	21
837	Recent progress in simulating galaxy formation from the largest to the smallest scales. 2018 , 2, 368-3	73	6
836	Disruption of dark matter substructure: fact or fiction?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 3043-3066	4.3	142
835	The impact of dark energy on galaxy formation. What does the future of our Universe hold?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 3744-3759	4.3	6
834	Star formation quenching in green valley galaxies at 0.5 ? z ? 1.0 and constraints with galaxy morphologies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 1346-1358	4.3	17
833	The need for speed: escape velocity and dynamical mass measurements of the Andromeda galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 4043-4054	4.3	29
832	Galaxy Formation in Sterile Neutrino Dark Matter Models. Astrophysical Journal, 2018, 854, 1	4.7	15
831	Linking black hole growth with host galaxies: the accretion tellar mass relation and its cosmic evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 1887-1911	4.3	43
830	The globular cluster systems of 54 Coma ultra-diffuse galaxies: statistical constraints from HST data. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 4235-4251	4.3	59
829	Dark matter in dwarf spheroidal galaxies and indirect detection: a review. 2018 , 81, 056901		30
828	First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 648-675	4.3	529

(2018-2018)

827	Simulating galaxy formation with the IllustrisTNG model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 4077-4106	4.3	618
826	Gas flows in the circumgalactic medium around simulated high-redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 4279-4301	4.3	14
825	Dark matter self-interactions and small scale structure. 2018 , 730, 1-57		396
824	An Alternate Approach to Measure Specific Star Formation Rates at \$2lt zlt 7\$. <i>Astrophysical Journal</i> , 2018 , 852, 107	4.7	23
823	Dark matter substructure in numerical simulations: a tale of discreteness noise, runaway instabilities, and artificial disruption. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 4066-	4087	139
822	The upper bound on the lowest mass halo. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 2060-2083	4.3	90
821	The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies. <i>Astrophysical Journal</i> , 2018 , 857, 22	4.7	33
820	The relationship between galaxy and dark matter halo size from zI-IB to the present. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 2714-2736	4.3	66
819	Large-scale galaxy bias. 2018 , 733, 1-193		300
818	Star clusters in evolving galaxies. 2018 , 81, 1-38		31
818	Calculia Did Minda Dri en la Constita De Deserva de Astronto di al la constita del 2010 054 00	4.7	31
	Calculia Did Minda Dri en la Constita De Deserva de Astronto di al la constita del 2010 054 00	4.7	
817	Galactic Disk Winds Driven by Cosmic Ray Pressure. <i>Astrophysical Journal</i> , 2018 , 854, 89	4-7	32
817 816	Galactic Disk Winds Driven by Cosmic Ray Pressure. <i>Astrophysical Journal</i> , 2018 , 854, 89 A galaxy lacking dark matter. 2018 , 555, 629-632 Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH). I. Program strategy and clustering properties of ~2000 Lylemitters at zl=1611	4.7	3 ²
817 816 815	Galactic Disk Winds Driven by Cosmic Ray Pressure. <i>Astrophysical Journal</i> , 2018 , 854, 89 A galaxy lacking dark matter. 2018 , 555, 629-632 Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH). I. Program strategy and clustering properties of ~2000 Ly\(\text{\text{\text{Pemitters}}}\) at z\(\text{\t	4-7	32 191 115
817 816 815 814	Galactic Disk Winds Driven by Cosmic Ray Pressure. <i>Astrophysical Journal</i> , 2018 , 854, 89 A galaxy lacking dark matter. 2018 , 555, 629-632 Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH). I. Program strategy and clustering properties of ~2000 Ly\(\text{\text{\text{Pmitters}}}\) at z\(\text{\te		32 191 115 24
817 816 815 814	Galactic Disk Winds Driven by Cosmic Ray Pressure. <i>Astrophysical Journal</i> , 2018 , 854, 89 A galaxy lacking dark matter. 2018 , 555, 629-632 Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH). I. Program strategy and clustering properties of ~2000 Ly\(\text{\text{\text{Pmiltters}}}\) at z\(\text{\t		32 191 115 24

809	The Three Hundred Project: The Influence of Environment on Simulated Galaxy Properties. <i>Astrophysical Journal</i> , 2018 , 868, 130	4.7	21
808	Late Bloomer Galaxies: Growing Up in Cosmic Autumn. <i>Astrophysical Journal</i> , 2018 , 869, 152	4.7	10
807	Stellar Velocity Dispersion: Linking Quiescent Galaxies to Their Dark Matter Halos. <i>Astrophysical Journal</i> , 2018 , 859, 96	4.7	18
806	The Impact of Environment on the Stellar Mass⊞alo Mass Relation. <i>Astrophysical Journal</i> , 2018 , 860, 2	4.7	14
805	Enhanced Rates of Fast Radio Bursts from Galaxy Clusters. <i>Astrophysical Journal</i> , 2018 , 863, 132	4.7	15
804	ZFOURGE: Using Composite Spectral Energy Distributions to Characterize Galaxy Populations at 1 Astrophysical Journal, 2018 , 863, 131	4.7	18
803	Tidal stripping as a possible origin of the ultra diffuse galaxy lacking dark matter. 2018 , 480, L106-L110		54
802	A fresh look into the interacting dark matter scenario. 2018 , 2018, 007-007		24
801	A detection of the environmental dependence of the sizes and stellar haloes of massive central galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 521-537	4.3	16
800	Dependence of galaxy clustering on UV luminosity and stellar mass at z 41. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4885-4894	4.3	4
799	The Halo Masses of Galaxies to z \sim 3: A Hybrid Observational and Theoretical Approach. <i>Astrophysical Journal</i> , 2018 , 863, 42	4.7	5
798	IDM predictions for the satellite population of M33. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 1883-1897	4.3	10
797	Halo occupation distribution (HOD) modelling of high redshift galaxies using the BlueTides simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 3177-3192	4.3	9
796	Post-Newtonian dynamics in dense star clusters: Formation, masses, and merger rates of highly-eccentric black hole binaries. 2018 , 98,		128
795	A Foreground Masking Strategy for [C ii] Intensity Mapping Experiments Using Galaxies Selected by Stellar Mass and Redshift. <i>Astrophysical Journal</i> , 2018 , 856, 107	4.7	25
794	Connections between Star Cluster Populations and Their Host Galaxy Nuclear Rings. <i>Astrophysical Journal</i> , 2018 , 857, 116	4.7	11
793	Cumulative Neutrino and Gamma-Ray Backgrounds from Halo and Galaxy Mergers. <i>Astrophysical Journal</i> , 2018 , 857, 50	4.7	8
792	The Incomplete Conditional Stellar Mass Function: Unveiling the Stellar Mass Functions of Galaxies at 0.1 Astrophysical Journal, 2018 , 858, 30	4.7	19

(2018-2018)

791	Cold Filamentary Accretion and the Formation of Metal-poor Globular Clusters and Halo Stars. Astrophysical Journal, 2018 , 861, 148	4.7	24
790	The Mass and Absorption Column Densities of Galactic Gaseous Halos. II. The High Ionization State Ions. <i>Astrophysical Journal</i> , 2018 , 862, 23	4.7	7
7 ⁸ 9	A Lonely Giant: The Sparse Satellite Population of M94 Challenges Galaxy Formation. <i>Astrophysical Journal</i> , 2018 , 863, 152	4.7	55
788	Revealing the Host Galaxy of a Quasar 2175 A Dust Absorber at $z = 2.12$. 2018 , 857, L12		4
787	SUPER. 2018 , 620, A82		28
786	The Complementary Roles of Feedback and Mergers in Building the Gaseous Halo and the X-Ray Corona of Milky-Way-sized Galaxies. <i>Astrophysical Journal</i> , 2018 , 867, 73	4.7	12
785	Approximations to galaxy star formation rate histories: properties and uses of two examples. Monthly Notices of the Royal Astronomical Society, 2018 , 478, 2291-2314	4.3	5
784	The galaxy clustering crisis in abundance matching. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 359-383	4.3	34
783	Galaxy And Mass Assembly (GAMA): gas fuelling of spiral galaxies in the local Universe II. Idirect measurement of the dependencies on redshift and host halo mass of stellar mass growth in central disc galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 1015-1034	4.3	3
782	The fraction of dark matter within galaxies from the IllustrisTNG simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 1950-1975	4.3	57
781	Systematics in virial mass estimators for pressure-supported systems. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 5073-5090	4.3	52
780	Cosmic evolution of the spatially resolved star formation rate and stellar mass of the CALIFA survey. 2018 , 615, A27		40
779	The Bright-end Galaxy Candidates at $z \sim 9$ from 79 Independent HST Fields. <i>Astrophysical Journal</i> , 2018 , 867, 150	4.7	28
778	The Active Assembly of the Virgo Cluster: Indications for Recent Group Infall From Early-type Dwarf Galaxies. <i>Astrophysical Journal</i> , 2018 , 865, 40	4.7	18
777	Shark: introducing an open source, free, and flexible semi-analytic model of galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 3573-3603	4.3	97
776	Missing Satellites Problem: Completeness Corrections to the Number of Satellite Galaxies in the MilkylWay are Consistent with Cold Dark Matter Predictions. 2018 , 121, 211302		91
775	Inferring the star formation histories of massive quiescent galaxies with bagpipes: evidence for multiple quenching mechanisms. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 4379-440	4.3	111
774	Impact of inter-correlated initial binary parameters on double black hole and neutron star mergers. 2018 , 619, A77		40

773	Quenching and ram pressure stripping of simulated Milky Way satellite galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 548-567	4.3	88
772	The Dawes Review 8: Measuring the Stellar Initial Mass Function. 2018 , 35,		43
771	A Redshift-independent Efficiency Model: Star Formation and Stellar Masses in Dark Matter Halos at z ? 4. <i>Astrophysical Journal</i> , 2018 , 868, 92	4.7	88
770	Selecting ultra-faint dwarf candidate progenitors in cosmological N-body simulations at high redshifts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 5006-5015	4.3	10
769	The clustering of H빠 [O iii] and [O ii] emitters since z卧區: dependencies with line luminosity and stellar mass. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 2999-3015	4.3	11
768	Semi-analytic galaxies IIII. The impact of supernova feedback on the massIhetallicity relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 954-969	4.3	18
767	Search for C ii emission on cosmological scales at redshift ZIPD.6. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 1911-1924	4.3	32
766	The origin of the diverse morphologies and kinematics of Milky Way-mass galaxies in the FIRE-2 simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 4133-4157	4.3	62
765	KMOS LENsing Survey (KLENS): Morpho-kinematic analysis of star-forming galaxies at z \sim 2. 2018 , 613, A72		19
764	Active galactic nucleus outflows in galaxy discs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 2288-2307	4.3	10
763	Early growth of typical high-redshift black holes seeded by direct collapse. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 5016-5025	4.3	29
762	Spatially unresolved SED fitting can underestimate galaxy masses: a solution to the missing mass problem. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 1532-1547	4.3	25
761	Stellar feedback and the energy budget of late-type Galaxies: missing baryons and core creation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 4287-4301	4.3	5
760	Pushing back the limits: detailed properties of dwarf galaxies in a CDM universe. 2018 , 616, A96		49
759	Phenomenological consequences of superfluid dark matter with baryon-phonon coupling. 2018 , 2018, 021-021		33
758	A Census of the LyC photons that form the UV background during reionization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 4986-5005	4.3	16
757	Dissecting the roles of mass and environment quenching in galaxy evolution with EAGLE. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 864-878	4.3	17
756	FIRE-2 simulations: physics versus numerics in galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 800-863	4.3	413

755	Identification of galaxies that experienced a recent major drop of star formation. 2018 , 615, A61		19
754	The Persistence of Population III Star Formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 4544-4559	4.3	24
753	AGN must be very efficient at powering outflows. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 3189-3196	4.3	10
75 ²	The merger that led to the formation of the Milky Way's inner stellar halo and thick disk. 2018 , 563, 85	-88	470
751	Properties of the circumgalactic medium in simulations compared to observations. 2018, 609, A66		3
750	Halo histories versus galaxy properties at $z=0$ III. The properties of star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2018 , 478, 4487-4499	4.3	7
749	On the early evolution of Local Group dwarf galaxy types: star formation and supernova feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 1514-1527	4.3	17
748	Dust attenuation in 2 Monthly Notices of the Royal Astronomical Society, 2018 , 476, 3991-4006	4.3	61
747	Modelling of Lyman-alpha emitting galaxies and ionized bubbles at the epoch of reionization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 5406-5421	4.3	20
746	On Nonlinear Schr¶dinger Equation as a Model for Dark Matter. 2018 , 145-174		
746 745	On Nonlinear Schradinger Equation as a Model for Dark Matter. 2018, 145-174 Fast molecular outflow from a dusty star-forming galaxy in the early Universe. 2018, 361, 1016-1019		45
		4.3	45
745	Fast molecular outflow from a dusty star-forming galaxy in the early Universe. 2018 , 361, 1016-1019 emerge han empirical model for the formation of galaxies since zha.	4.3	
745 744	Fast molecular outflow from a dusty star-forming galaxy in the early Universe. 2018 , 361, 1016-1019 emerge lan empirical model for the formation of galaxies since zland 10. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 1822-1852 Star Cluster Formation in Cosmological Simulations. II. Effects of Star Formation Efficiency and		177
745 744 743	Fast molecular outflow from a dusty star-forming galaxy in the early Universe. 2018 , 361, 1016-1019 emerge lan empirical model for the formation of galaxies since zland. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 1822-1852 Star Cluster Formation in Cosmological Simulations. II. Effects of Star Formation Efficiency and Stellar Feedback. <i>Astrophysical Journal</i> , 2018 , 861, 107 Demographics of Star-forming Galaxies since z ~ 2.5. I. The UVJ Diagram in CANDELS. <i>Astrophysical</i>	4.7	177 34
745 744 743	Fast molecular outflow from a dusty star-forming galaxy in the early Universe. 2018 , 361, 1016-1019 emerge Ian empirical model for the formation of galaxies since zII-II 0. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 1822-1852 Star Cluster Formation in Cosmological Simulations. II. Effects of Star Formation Efficiency and Stellar Feedback. <i>Astrophysical Journal</i> , 2018 , 861, 107 Demographics of Star-forming Galaxies since z ~ 2.5. I. The UVJ Diagram in CANDELS. <i>Astrophysical Journal</i> , 2018 , 858, 100 SOFIA/HAWC+ Detection of a Gravitationally Lensed Starburst Galaxy at z = 1.03. <i>Astrophysical</i>	4·7 4·7	177 34 58
745 744 743 742 741	Fast molecular outflow from a dusty star-forming galaxy in the early Universe. 2018, 361, 1016-1019 emerge Ian empirical model for the formation of galaxies since zII-IIO. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1822-1852 Star Cluster Formation in Cosmological Simulations. II. Effects of Star Formation Efficiency and Stellar Feedback. Astrophysical Journal, 2018, 861, 107 Demographics of Star-forming Galaxies since z ~ 2.5. I. The UVJ Diagram in CANDELS. Astrophysical Journal, 2018, 858, 100 SOFIA/HAWC+ Detection of a Gravitationally Lensed Starburst Galaxy at z = 1.03. Astrophysical Journal, 2018, 864, 60	4·7 4·7	177 34 58 2

A fresh view of magnetic fields and cosmic ray electrons in halos of spiral galaxies. **2018**, 14, 315-318

736	Galaxy evolution in protoclusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 2335-23	3447.3	17
735	Introducing galactic structure finder: the multiple stellar kinematic structures of a simulated Milky Way mass galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 4915-4930	4.3	19
734	Cosmological evolution of the nitrogen abundance. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 56-66	4.3	8
733	The most massive galaxies and black holes allowed by CDM. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 5382-5387	4.3	25
732	MAHALO Deep Cluster Survey I. Accelerated and enhanced galaxy formation in the densest regions of a protocluster at z\pmu\textbf{\textit{\textit{2}}}.5. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 1977-1999	4.3	27
731	Predicting the locations of possible long-lived low-mass first stars: importance of satellite dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 5308-5323	4.3	32
730	The resolved star formation history of M51a through successive Bayesian marginalization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 1862-1872	4.3	3
729	The clustering of $z \mathbb{D}$ galaxies: predictions from the BLUETIDES simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 5393-5405	4.3	13
728	Constraining the CO intensity mapping power spectrum at intermediate redshifts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 1477-1484	4.3	28
727	Inspiraling halo accretion mapped in Ly ⊞mission around a z⊡ B quasar. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 3907-3940	4.3	56
726	Cosmic CARNage I: on the calibration of galaxy formation models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 2936-2954	4.3	18
725	The dependence of galaxy clustering on stellar mass, star-formation rate and redshift at z\perp \overline{0}.8\overline{0}.2, with HiZELS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 3730-3745	4.3	20
724	The stellar mass, star formation rate and dark matter halo properties of LAEs at zЉ⊉. 2018 , 70,		23
723	Tomographic intensity mapping versus galaxy surveys: observing the Universe in H æmission with new generation instruments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 1587-1608	4.3	15
722	IceCubell astrophysical neutrino energy spectrum from CPT violation. 2018, 97,		10
721	Validating Semi-analytic Models of High-redshift Galaxy Formation Using Radiation Hydrodynamical Simulations. <i>Astrophysical Journal</i> , 2018 , 859, 67	4.7	21
720	Mass Modeling of Frontier Fields Cluster MACS J1149.5+2223 Using Strong and Weak Lensing. <i>Astrophysical Journal</i> , 2018 , 859, 58	4.7	6

(2018-2018)

719	Revisiting the bulgefialo conspiracy III. Towards explaining its puzzling dependence on redshift. <i>Monthly Notices of the Royal Astronomical Society,</i> 2018 , 475, 2878-2890	4.3	11
718	Galaxy spin as a formation probe: the stellar-to-halo specific angular momentum relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 232-243	4.3	31
717	The dependence of cosmic ray-driven galactic winds on halo mass. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 570-584	4.3	43
716	Impact of Lyman alpha pressure on metal-poor dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 4617-4635	4.3	27
715	Does the galaxyfialo connection vary with environment?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 741-758	4.3	17
714	Angular momentum of dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 479, 228	8 -23 9	14
713	Numerical Simulations of Multiphase Winds and Fountains from Star-forming Galactic Disks. I. Solar Neighborhood TIGRESS Model. <i>Astrophysical Journal</i> , 2018 , 853, 173	4.7	91
712	Metallicity effects in long gamma-ray burst populations in a IDM Universe. 2018, 65, 73-83		3
711	Angular Momentum Evolution of Stellar Disks at High Redshifts. <i>Astrophysical Journal</i> , 2018 , 854, 22	4.7	9
710	The GalaxyHalo Connection for \$1.5lesssim zlesssim 5\$ as Revealed by theSpitzerMatching Survey of the UltraVISTA Ultra-deep Stripes. <i>Astrophysical Journal</i> , 2018 , 853, 69	4.7	12
709	ELUCID. V. Lighting Dark Matter Halos with Galaxies. Astrophysical Journal, 2018, 860, 30	4.7	14
708	Are cosmological gas accretion streams multiphase and turbulent?. 2018 , 610, A75		15
707	Semi-analytic galaxies I . Synthesis of environmental and star-forming regulation mechanisms. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 2-24	4.3	62
706	The Universe Is Reionizing atz~ 7: Bayesian Inference of the IGM Neutral Fraction Using LyEmission from Galaxies. <i>Astrophysical Journal</i> , 2018 , 856, 2	4.7	141
7°5	Radial distributions of surface mass density and mass-to-luminosity ratio in spiral galaxies. 2018, 70,		4
704	A Limit on the Warm Dark Matter Particle Mass from the Redshifted 21 cm Absorption Line. 2018 , 859, L18		37
703	Gravitational probes of dark matter physics. 2018 , 761, 1-60		48
702	The environment and host haloes of the brightest zI-I6 Lyman-break galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 3760-3774	4.3	9

701	Reconciling volumetric and individual galaxy type Ia supernova rates. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 68-74	4.3	4
700	Deep Extragalactic VIsible Legacy Survey (DEVILS): motivation, design, and target catalogue. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 768-799	4.3	34
699	Self-sustaining Star Formation Fronts in Filaments during the Cosmic Dawn. 2018, 862, L14		1
698	Escape of ionizing radiation from high-redshift dwarf galaxies: role of AGN feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 5607-5625	4.3	46
697	The Connection Between Galaxies and Their Dark Matter Halos. 2018, 56, 435-487		289
696	Cosmic CARNage II: the evolution of the galaxy stellar mass function in observations and galaxy formation models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 1197-1210	4.3	11
695	Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 302-331	4.3	39
694	Exploring stellar evolution with gravitational-wave observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 121-129	4.3	16
693	Formation of globular cluster systems: from dwarf galaxies to giants. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 2343-2356	4.3	60
692	The Globular Cluster Systems of Ultra-diffuse Galaxies in the Coma Cluster. <i>Astrophysical Journal</i> , 2018 , 862, 82	4.7	59
691	Predicting the binary black hole population of the Milky Way with cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 2704-2718	4.3	42
690	The influence of Sagittarius and the Large Magellanic Cloud on the stellar disc of the Milky Way Galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 286-306	4.3	89
689	The escape speed curve of the Galaxy obtained from Gaia DR2 implies a heavy Milky Way. 2018 , 616, L9		66
688	Searching for dark matter annihilation from individual halos: uncertainties, scatter and signal-to-noise ratios. 2018 , 2018, 019-019		5
687	Free-floating molecular clumps and gas mixing: hydrodynamic aftermaths of the intraclusterInterstellar medium interaction. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 2191-2199	4.3	
686	GOLDRUSH. II. Clustering of galaxies at $z \sim 4B$ revealed with the half-million dropouts over the 100 deg2 area corresponding to 1 Gpc3. 2018 , 70,		75
685	On the choice of lens density profile in time delay cosmography. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 4648-4659	4.3	25
684	Interpreting the cosmic far-infrared background anisotropies using a gas regulator model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 3974-3995	4.3	3

683	Simulating galaxies in the reionization era with FIRE-2: galaxy scaling relations, stellar mass functions, and luminosity functions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 1694-1 7	P5	68	
682	First Predictions of the Angular Power Spectrum of the Astrophysical Gravitational Wave Background. 2018 , 120, 231101		42	
681	A Model Connecting Galaxy Masses, Star Formation Rates, and Dust Temperatures across Cosmic Time. <i>Astrophysical Journal</i> , 2018 , 854, 36	7	18	
68o	The route to massive black hole formation via merger-driven direct collapse: a review. 2019 , 82, 016901		30	
679	Ghostly haloes in dwarf galaxies: constraints on the star formation efficiency before reionization. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2673-2688	3	1	
678	Reconciling the Diversity and Uniformity of Galactic Rotation Curves with Self-Interacting Dark Matter. 2019 , 9,		39	
677	Quenching time-scales of galaxies in the eagle simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 3740-3758	3	26	
676	Stochastic modelling of star-formation histories I: the scatter of the star-forming main sequence. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3845-3869 4-3	3	34	
675	NIHAO XVI: the properties and evolution of kinematically selected discs, bulges, and stellar haloes. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4424-4456	3	17	
674	Multiverse Predictions for Habitability: The Number of Stars and Their Properties. 2019 , 5, 149		4	
673	Star formation quenching imprinted on the internal structure of naked red nuggets. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 4939-4950	3	9	
672	Galaxies in X-ray selected clusters and groups in Dark Energy Survey data II. Hierarchical Bayesian modelling of the red-sequence galaxy luminosity function. <i>Monthly Notices of the Royal</i> Astronomical Society, 2019 , 488, 1-17	3	6	
671	Probing cosmic dawn with emission lines: predicting infrared and nebular line emission for ALMA and JWST. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 5902-5921	3	40	
670	NIHAO IXXII. Introducing black hole formation, accretion, and feedback into the NIHAO simulation suite. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 5476-5489	3	7	
669	Possible evolution of the circum-galactic medium around QSOs with QSO age and cosmic time revealed by Ly haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 120-134	3	3	
668	A comparison of the $(R_{mathrm{h}}=ct)$ and $(varLambda)CDM$ cosmologies based on the observed halo mass function. 2019 , 79, 1		5	
667	The galaxyfialo connection in modified gravity cosmologies: environment dependence of galaxy luminosity function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 782-802	3	3	
666	The Inflow and Outflow Rate Evolution of Local Milky Waythass Star-forming Galaxies since z = 1.3. Astrophysical Journal, 2019 , 876, 21	7	1	

665	Realistic simulations of galaxy formation in f(R) modified gravity. 2019 , 3, 945-954		16
664	Uncovering the birth of the Milky Way through accurate stellar ages with Gaia. 2019 , 3, 932-939		91
663	Edge-on H i-bearing Ultra-diffuse Galaxy Candidates in the 40% ALFALFA Catalog. <i>Astrophysical Journal</i> , 2019 , 880, 30	4.7	9
662	Predictions for the spatial distribution of the dust continuum emission in \$boldsymbol {1,lt, z,lt, 5}\$ star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 1779-1789	4.3	35
661	The assembly of the Virgo cluster, traced by its galaxy haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 1111-1126	4.3	1
660	Baryon-induced dark matter cores in the eagle simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 2387-2404	4.3	47
659	Abundance matching with the mean star formation rate: there is no missing satellites problem in the Milky Way above M200 ~ 109 M?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 5799	- \$ 812	29
658	The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 2685-2700	4.3	130
657	Towards a radially resolved semi-analytic model for the evolution of disc galaxies tuned with machine learning. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 3581-3606	4.3	18
656	Phat ELVIS: The inevitable effect of the Milky Way® disc on its dark matter subhaloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 4409-4423	4.3	49
655	The Faintest Dwarf Galaxies. 2019 , 57, 375-415		183
654	Lyman Æmitting galaxies in the epoch of reionization. 2019 , 627, A84		18
653	Halo acceleration relation. 2019 , 488, L41-L46		8
652	Local photoionization feedback effects on galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 1518-1538	4.3	4
651	Quantifying the power spectrum of small-scale structure in semi-analytic galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 5085-5092	4.3	8
650	New perspectives on the BOSS small-scale lensing discrepancy for the Planck IDM cosmology. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 5771-5787	4.3	20
649	The tidal evolution of dark matter substructure []. subhalo density profiles. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 2091-2101	4.3	29
648	The clustering of typical Ly Æmitters from z ~ 2.58: host halo masses depend on Ly Ænd UV luminosities. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 555-573	4.3	20

(2019-2019)

647	Dark and luminous satellites of LMC-mass galaxies in the FIRE simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 5348-5364	4.3	24	
646	Galactic habitability re-examined: indications of bimodality. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 408-416	4.3	8	
645	Discovery of a Dark, Massive, ALMA-only Galaxy at z ~ 50 in a Tiny 3 mm Survey. <i>Astrophysical Journal</i> , 2019 , 884, 154	4.7	43	
644	Constraining scatter in the stellar massfialo mass relation for haloes less massive than the Milky Way. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 4916-4925	4.3	6	
643	The Milky Way® halo and subhaloes in self-interacting dark matter. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 2117-2123	4.3	23	
642	Revealing the galaxyfialo connection in IllustrisTNG. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 5693-5711	4.3	27	
641	Semi-analytic forecasts for JWST III. Physical properties and scaling relations for galaxies at z I= IA II 0. Monthly Notices of the Royal Astronomical Society, 2019 , 490, 2855-2879	4.3	39	
640	The hidden satellites of massive galaxies and quasars at high redshift. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 5181-5186	4.3	3	
639	Resolved and Integrated Stellar Masses in the SDSS-iv/MaNGA Survey. I. PCA Spectral Fitting and Stellar Mass-to-light Ratio Estimates. <i>Astrophysical Journal</i> , 2019 , 883, 82	4.7	8	
638	Learning the relationship between galaxies spectra and their star formation histories using convolutional neural networks and cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 5503-5520	4.3	11	
637	A fast radio burst in the direction of the Virgo Cluster. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 1-8	4.3	13	
636	Be it therefore resolved: cosmological simulations of dwarf galaxies with 30 solar mass resolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 4447-4463	4.3	71	
635	Clustering constraints on the relative sizes of central and satellite galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 1805-1819	4.3	7	
634	Observing AGN feedback with CO intensity mapping. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 260-273	4.3	10	
633	Properties of the stochastic astrophysical gravitational wave background: Astrophysical sources dependencies. 2019 , 100,		22	
632	Spatially Resolved Stellar Kinematics of the Ultra-diffuse Galaxy Dragonfly 44. I. Observations, Kinematics, and Cold Dark Matter Halo Fits. <i>Astrophysical Journal</i> , 2019 , 880, 91	4.7	49	
631	New Analytic Solutions for Galaxy Evolution: Gas, Stars, Metals, and Dust in Local ETGs and Their High-zStar-forming Progenitors. <i>Astrophysical Journal</i> , 2019 , 880, 129	4.7	17	
630	Star formation at the edge of the Local Group: a rising star formation history in the isolated galaxy WLM. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 5538-5550	4.3	12	

629	Is the dark-matter halo spin a predictor of galaxy spin and size?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 4801-4815	4.3	43
628	Black holes: The next generationDepeated mergers in dense star clusters and their gravitational-wave properties. 2019 , 100,		130
627	Dark Energy Survey Year 1 results: the effect of intracluster light on photometric redshifts for weak gravitational lensing. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 4389-4399	4.3	5
626	Origins of scaling relations of globular cluster systems. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 5409-5419	4.3	21
625	How to optimally constrain galaxy assembly bias: supplement projected correlation functions with count-in-cells statistics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 3541-3567	4.3	15
624	Constraining the evolution of [Clii] intensity through the end stages of reionization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 3014-3023	4.3	22
623	MMT/MMIRS spectroscopy of $z = 1.3 - 2.4$ extreme [O iii] emitters: implications for galaxies in the reionization era. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 2572-2594	4.3	43
622	Energy equipartition between stellar and dark matter particles in cosmological simulations results in spurious growth of galaxy sizes. 2019 , 488, L123-L128		34
621	Molecular clouds in the Cosmic Snake normal star-forming galaxy 8 billion years ago. 2019 , 3, 1115-112	:1	29
620	The trajectories of galaxies in groups: mass-loss and preprocessing. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 235-248	4.3	9
619	Does radiative feedback make faint z > 6 galaxies look small?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 4379-4392	4.3	2
618	UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z downward of the Royal Astronomical Society, 2019 , 488, 3143-3194	4.3	346
617	The COSMOS-UltraVISTA stellar-to-halo mass relationship: new insights on galaxy formation efficiency out to $z \sim 5$. Monthly Notices of the Royal Astronomical Society, 2019 , 486, 5468-5481	4.3	14
616	Linear bias forecasts for emission line cosmological surveys. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 5737-5765	4.3	13
615	Cross-correlating Carbon Monoxide Line-intensity Maps with Spectroscopic and Photometric Galaxy Surveys. <i>Astrophysical Journal</i> , 2019 , 872, 186	4.7	14
614	Osaka feedback model: isolated disc galaxy simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 2632-2655	4.3	13
613	Long Gamma-Ray Burst Rate at Very High Redshift. Astrophysical Journal, 2019, 878, 128	4.7	8
612	Dynamics and shocks from H & mission of nearby galaxy mergers. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 1551-1569	4.3	1

611	The Impact of Environment on Late-time Evolution of the Stellar Mass⊞alo Mass Relation. <i>Astrophysical Journal</i> , 2019 , 878, 14	4.7	7
610	Measuring the Delay Time Distribution of Binary Neutron Stars. I. Through Scaling Relations of the Host Galaxies of Gravitational-wave Events. 2019 , 878, L12		11
609	Galaxy formation and evolution science in the era of the Large Synoptic Survey Telescope. 2019 , 1, 450-	462	9
608	A Consistent Set of Empirical Scaling Relations for Spiral Galaxies: The (v max, M oM)(ID, M BH, ?) Relations. <i>Astrophysical Journal</i> , 2019 , 877, 64	4.7	12
607	The signal of decaying dark matter with hydrodynamical simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 4071-4089	4.3	7
606	The dynamics and distribution of angular momentum in HiZELS star-forming galaxies atz哇厄.8B.3. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 175-194	4.3	11
605	The E-MOSAICS project: tracing galaxy formation and assembly with the agethetallicity distribution of globular clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 3134-3179	g4·3	61
604	Line Intensity Mapping with [C ii] and CO(1-0) as Probes of Primordial Non-Gaussianity. <i>Astrophysical Journal</i> , 2019 , 872, 126	4.7	29
603	Revisiting the SizeIluminosity Relation in the Era of Ultra Diffuse Galaxies. <i>Astrophysical Journal</i> , 2019 , 875, 155	4.7	15
602	NIHAO XV: the environmental impact of the host galaxy on galactic satellite and field dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 1314-1341	4.3	59
601	The dependence of the X-ray AGN clustering on the properties of the host galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 1374-1387	4.3	6
600	Observational Constraints on the Merger History of Galaxies since z ြ6: Probabilistic Galaxy Pair Counts in the CANDELS Fields. <i>Astrophysical Journal</i> , 2019 , 876, 110	4.7	55
599	Quasar Sightline and Galaxy Evolution (QSAGE) survey \blacksquare . The galaxy environment of O vi absorbers up to z = 1.4 around PKS 0232 \blacksquare 4. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 21-41	4.3	19
598	A semi-analytical perspective on massive galaxies at z ~ 0.55. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 1316-1331	4.3	4
597	simba: Cosmological simulations with black hole growth and feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 2827-2849	4.3	257
596	Explaining the enhanced star formation rate of Jellyfish galaxies in galaxy clusters. 2019 , 486, L26-L30		5
595	NIHAO XX: the impact of the star formation threshold on the cuspflore transformation of cold dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 655-671	4.3	36
594	The minimum metallicity of globular clusters and its physical origin Implications for the galaxy massfinetallicity relation and observations of proto-globular clusters at high redshift. 2019 , 486, L20-L25	;	26

593	Study of gravitational fields and globular cluster systems of early-type galaxies. 2019, 625, A32		9
592	Magnetogenesis at Cosmic Dawn: tracing the origins of cosmic magnetic fields. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 2620-2631	4.3	10
591	Feedback by supermassive black holes in galaxy evolution: impacts of accretion and outflows on the star formation rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 1509-1522	4.3	9
590	How Are Galaxies Assigned to Halos? Searching for Assembly Bias in the SDSS Galaxy Clustering. <i>Astrophysical Journal</i> , 2019 , 872, 115	4.7	19
589	Joint Power Spectrum and Voxel Intensity Distribution Forecast on the CO Luminosity Function with COMAP. <i>Astrophysical Journal</i> , 2019 , 871, 75	4.7	16
588	Evolution of Star-forming Galaxies from $z = 0.7$ to 1.2 with eBOSS Emission-line Galaxies. Astrophysical Journal, 2019 , 871, 147	4.7	21
587	The Origin of r-process Enhanced Metal-poor Halo Stars In Now-destroyed Ultra-faint Dwarf Galaxies. <i>Astrophysical Journal</i> , 2019 , 871, 247	4.7	24
586	The Effect of Dark MatterDark Radiation Interactions on Halo Abundance: A PressBchechter Approach. <i>Astrophysical Journal</i> , 2019 , 874, 101	4.7	12
585	Detection and Classification of Supernovae Beyond z ~ 2 Redshift with the James Webb Space Telescope. <i>Astrophysical Journal</i> , 2019 , 874, 158	4.7	3
584	Dark Energy Survey Year 1 Results: Detection of Intracluster Light at Redshift ~ 0.25. <i>Astrophysical Journal</i> , 2019 , 874, 165	4.7	45
583	The Galaxy⊞alo Connection in Low-mass Halos. 2019 , 871, L21		9
582	Black versus Dark: Rapid Growth of Supermassive Black Holes in Dark Matter Halos at $z\sim 6$. 2019 , 872, L29		6
581	Abundance matching for low-mass galaxies in the CDM and FDM models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 4364-4371	4.3	5
580	Galaxies of the z ~ 2 Universe. I. Grism-selected Rest-frame Optical Emission-line Galaxies. <i>Astrophysical Journal</i> , 2019 , 875, 152	4.7	7
579	Covariances of galaxy stellar mass functions and correlation functions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 1062-1079	4.3	
578	Dark matter response to galaxy assembly history. 2019 , 622, A197		6
577	Spatially resolved mass-to-light from the CALIFA survey. 2019 , 621, A120		26
576	Characterizing circumgalactic gas around massive ellipticals atz (10.4 (111). The galactic environment of a chemically pristine Lyman limit absorber. Monthly Notices of the Royal Astronomical Society,	4.3	13

(2019-2019)

The evolution of cold neutral gas and the star formation history. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 3911-3920	4.3	8	
The Auriga stellar haloes: connecting stellar population properties with accretion and merging history. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 2589-2616	4.3	71	
NIHAO XIX: how supernova feedback shapes the galaxy baryon cycle. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 2511-2531	4.3	24	
Cosmological simulations of dwarfs: the need for ISM physics beyond SN feedback alone. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 3317-3333	4.3	17	
The KMOS3D Survey: Demographics and Properties of Galactic Outflows at $z=0.6\overline{D}$. <i>Astrophysical Journal</i> , 2019 , 875, 21	4.7	75	
arepo-rt: radiation hydrodynamics on a moving mesh. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 117-149	4.3	41	
Tracing the sources of reionization in cosmological radiation hydrodynamics simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 1029-1041	4.3	12	
The formation of ultra-diffuse galaxies in cored dark matter haloes through tidal stripping and heating. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 382-395	4.3	70	
The origin of the mass scales for maximal star formation efficiency and quenching: the critical role of supernovae. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 3446-3456	4.3	22	
Scalar stochastic gravitational-wave background in Brans-Dicke theory of gravity. 2019 , 99,		3	
Kiloparsec Scale Properties of Star Formation Driven Outflows at $z \sim 2.3$ in the SINS/zC-SINF AO Survey. <i>Astrophysical Journal</i> , 2019 , 873, 122	4.7	40	
A Second Galaxy Missing Dark Matter in the NGC 1052 Group. 2019 , 874, L5		93	
The Stellar-to-halo Mass Ratios of Passive and Star-forming Galaxies at $z\sim2B$ from the SMUVS Survey. Astrophysical Journal, 2019 , 874, 114	4.7	6	
Still Missing Dark Matter: KCWI High-resolution Stellar Kinematics of NGC1052-DF2. 2019 , 874, L12		62	
Evident black hole-bulge coevolution in the distant universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 3721-3737	4.3	31	
Two-face(s): ionized and neutral gas winds in the local Universe. 2019 , 622, A188		18	
ATLAS probe: Breakthrough science of galaxy evolution, cosmology, Milky Way, and the Solar System. 2019 , 36,		6	
	Astronomical Society, 2019, 484, 3911-3920 The Auriga stellar haloes: connecting stellar population properties with accretion and merging history. Monthly Notices of the Rayal Astronomical Society, 2019, 485, 2589-2616 NIHAO XIX: how supernova feedback shapes the galaxy baryon cycle. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2511-2531 Cosmological simulations of dwarfs: the need for ISM physics beyond SN feedback alone. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3317-3333 The KMOS3D Survey: Demographics and Properties of Galactic Outflows at z = 0.62.7. Astrophysical Journal, 2019, 875, 21 areport: radiation hydrodynamics on a moving mesh. Monthly Notices of the Royal Astronomical Society, 2019, 485, 117-149 Tracing the sources of reionization in cosmological radiation hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1029-1041 The formation of ultra-diffuse galaxies in cored dark matter haloes through tidal stripping and heating. Monthly Notices of the Royal Astronomical Society, 2019, 485, 382-395 The origin of the mass scales for maximal star formation efficiency and quenching: the critical role of supernovae. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3446-3456 Scalar stochastic gravitational-wave background in Brans-Dicke theory of gravity. 2019, 99, Kiloparsec Scale Properties of Star Formation Driven Outflows at z ~ 2.3 in the SINS/zC-SINF AO Survey. Astrophysical Journal, 2019, 873, 122 A Second Galaxy Missing Dark Matter in the NGC 1052 Group. 2019, 874, L5 The Stellar-to-halo Mass Ratios of Passive and Star-forming Galaxies at z ~ 2B from the SMUVS Survey. Astrophysical Journal, 2019, 874, 114 Still Missing Dark Matter: KCWI High-resolution Stellar Kinematics of NGC1052-DF2. 2019, 874, L12 Evident black hole-bulge coevolution in the distant universe. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3721-3737	Astronomical Society, 2019, 484, 3911-3920 The Auriga stellar haloes: connecting stellar population properties with accretion and merging history. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2589-2616 NIHAO XIX: how supernova feedback shapes the galaxy baryon cycle. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2511-2531 Cosmological simulations of dwarfs: the need for ISM physics beyond SN feedback alone. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3317-3333 The KMOS3D Survey: Demographics and Properties of Galactic Outflows at z = 0.62.7. Astrophysical Journal, 2019, 875, 21 areport: radiation hydrodynamics on a moving mesh. Monthly Notices of the Royal Astronomical Society, 2019, 485, 117-149 Tracing the sources of reionization in cosmological radiation hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1029-1041 The formation of ultra-diffuse galaxies in cored dark matter haloes through tidal stripping and heating. Monthly Notices of the Royal Astronomical Society, 2019, 485, 382-395 The origin of the mass scales for maximal star formation efficiency and quenching: the critical role of supernovae. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3446-3456 Scalar stochastic gravitational-wave background in Brans-Dicke theory of gravity. 2019, 99, Kiloparsec Scale Properties of Star Formation Driven Outflows at z ~ 2.3 in the SINS/zC-SINF AO Survey. Astrophysical Journal, 2019, 873, 122 A Second Galaxy Missing Dark Matter: in the NGC 1052 Group. 2019, 874, L5 The Stellar-to-halo Mass Ratios of Passive and Star-forming Galaxies at z ~ 28 from the SMUVS Survey. Astrophysical Journal, 2019, 874, 114 Still Missing Dark Matter: KCWI High-resolution Stellar Kinematics of NGC1052-DF2. 2019, 874, L12 Evident black hole-bulge coevolution in the distant universe. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3721-3737	Astronomical Society, 2019, 484, 3911-3920 The Auriga stellar haloes: connecting stellar population properties with accretion and merging history. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2589-2616 NIHAO XIX: how supernova feedback shapes the galaxy baryon cycle. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2511-2531 Cosmological simulations of dwarfs: the need for ISM physics beyond SN feedback alone. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3317-3333 The KMOS3D Survey: Demographics and Properties of Galactic Outflows at z = 0.68.7. Astrophysical Journal, 2019, 875, 21 areport: radiation hydrodynamics on a moving mesh. Monthly Notices of the Royal Astronomical Society, 2019, 485, 117-149 Tracing the sources of reionization in cosmological radiation hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1029-1041 The formation of ultra-diffuse galaxies in cored dark matter haloes through tidal stripping and heating. Monthly Notices of the Royal Astronomical Society, 2019, 485, 382-395 The origin of the mass scales for maximal star formation efficiency and quenching: the critical role of supernovae. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3446-3456 Scalar stochastic gravitational-wave background in Brans-Dicke theory of gravity. 2019, 99, Kiloparsec Scale Properties of Star Formation Driven Outflows at z ~ 2.3 in the SINS/zC-SINFAO Survey. Astrophysical Journal, 2019, 873, 122 A Second Galaxy Missing Dark Matter in the NGC 1052 Group. 2019, 874, L15 Still Missing Dark Matter: KCWI High-resolution Stellar Kinematics of NGC1052-DF2. 2019, 874, L12 Evident black hole-bulge coevolution in the distant universe. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3721-3737

557	New synthesis models of consistent extragalactic background light over cosmic time. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 4174-4199	4.3	49
556	Sensitivity of dark matter haloes to their accretion histories. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 1906-1915	4.3	11
555	Millimeter Mapping at z ~ 1: Dust-obscured Bulge Building and Disk Growth. <i>Astrophysical Journal</i> , 2019 , 870, 130	4.7	18
554	IQ-Collaboratory 1.1: The Star-forming Sequence of Simulated Central Galaxies. <i>Astrophysical Journal</i> , 2019 , 872, 160	4.7	15
553	Modeling the Connection between Subhalos and Satellites in Milky WayIlke Systems. <i>Astrophysical Journal</i> , 2019 , 873, 34	4.7	35
552	Constraints on the H i Mass for NGC 1052-DF2. 2019 , 871, L31		13
551	LoCuSS: scaling relations between galaxy cluster mass, gas, and stellar content. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 60-80	4.3	20
550	Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation. 2019 , 2019, 020-020		64
549	Searching for environmental effects on galaxy kinematics in groups and clusters atz~ 1 from the ORELSE survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 3514-3549	4.3	12
548	Semi-analytic forecasts for JWST \blacksquare . UV luminosity functions at $z=4\blacksquare0$. Monthly Notices of the Royal Astronomical Society, 2019 , 483, 2983-3006	4.3	64
547	The origin of scatter in the star formation ratelltellar mass relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 915-932	4.3	57
546	The cosmic evolution of magnesium isotopes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 3561-3572	4.3	6
545	Gamma-Ray Production in the Extended Halo of the Galaxy and Possible Implications for the Origin of Galactic Cosmic Rays. <i>Astrophysical Journal</i> , 2019 , 871, 40	4.7	4
544	Morphologies of \sim 190,000 Galaxies at z = 0100 Revealed with HST Legacy Data. III. Continuum Profile and Size Evolution of Ly \oplus mitters. <i>Astrophysical Journal</i> , 2019 , 871, 164	4.7	34
543	Anomalously Low-metallicity Regions in MaNGA Star-forming Galaxies: Accretion Caught in Action?. <i>Astrophysical Journal</i> , 2019 , 872, 144	4.7	19
542	How to Measure Galaxy Star Formation Histories. I. Parametric Models. <i>Astrophysical Journal</i> , 2019 , 873, 44	4.7	65
541	Size Scaling of Clump Instabilities in Turbulent, Feedback-regulated Disks. <i>Astrophysical Journal</i> , 2019 , 874, 170	4.7	
540	Sunscreen: Photometric Signatures of Galaxies Partially Cloaked in Dyson Spheres. 2019 , 131, 024102		1

539	A distance of 13 Mpc resolves the claimed anomalies of the galaxy lacking dark matter. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 1192-1219	4.3	76
538	Probing cosmic dawn: modelling the assembly history, SEDs, and dust content of selected z ~ 9 galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 4054-4068	4.3	19
537	The relative specific Type Ia supernovae rate from three years of ASAS-SN. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 3785-3796	4.3	11
536	Galactic outflows in star-forming galaxies at z \sim 6 studied with deep UV spectra and ALMA emission line. 2019 , 15, 307-308		
535	Lorentz Violation Footprints in the Spectrum of High-Energy Cosmic Neutrinos Deformation of the Spectrum of Superluminal Neutrinos from Electron-Positron Pair Production in Vacuum. 2019 , 11, 1419		4
534	Coevolution (or not) of supermassive black holes and host galaxies: Black hole scaling relations are not biased by selection effects. 2019 , 14, 186-198		
533	Imprint of the galactic acceleration scale on globular cluster systems. 2019 , 629, L5		4
532	Stellar and Dust Properties of a Complete Sample of Massive Dusty Galaxies at 1 ½ ¼ from MAGPHYS Modeling of UltraVISTA DR3 and Herschel Photometry. <i>Astrophysical Journal</i> , 2019 , 882, 65	4.7	9
531	Conditions for Reionizing the Universe with a Low Galaxy Ionizing Photon Escape Fraction. <i>Astrophysical Journal</i> , 2019 , 879, 36	4.7	102
530	Galaxy disc scaling relations: A tight linear galaxyfialo connection challenges abundance matching. 2019 , 629, A59		21
529	Star-forming galaxies at low-redshift in the SHARDS survey. 2019 , 621, A52		5
528	The XMM-Newton wide field survey in the COSMOS field: Clustering dependence of X-ray selected AGN on host galaxy properties. 2019 , 629, A14		4
527	The Radial Acceleration Relation Is a Natural Consequence of the Baryonic Tully isher Relation. <i>Astrophysical Journal</i> , 2019 , 882, 46	4.7	5
526	Planck Far-infrared Detection of Hyper Suprime-Cam Protoclusters at $z \sim 4$: Hidden AGN and Star Formation Activity. <i>Astrophysical Journal</i> , 2019 , 887, 214	4.7	12
525	Structural and dynamical modeling of WINGS clusters. 2019 , 631, A131		16
524	The angular momentum of disc galaxies at $z = 1$. 2019 , 621, L6		14
523	The MUSE-Wide Survey: survey description and first data release. 2019 , 624, A141		45
522	Globular Cluster Systems and X-Ray Atmospheres in Galaxies. <i>Astrophysical Journal</i> , 2019 , 887, 259	4.7	1

521	Under the FIRElight: Stellar Tracers of the Local Dark Matter Velocity Distribution in the Milky Way. <i>Astrophysical Journal</i> , 2019 , 883, 27	4.7	21
520	Column Density, Kinematics, and Thermal State of Metal-bearing Gas within the Virial Radius of z ~ 2 Star-forming Galaxies in the Keck Baryonic Structure Survey. <i>Astrophysical Journal</i> , 2019 , 885, 61	4.7	38
519	A few StePS forward in unveiling the complexity of galaxy evolution: light-weighted stellar ages of intermediate-redshift galaxies with WEAVE. 2019 , 632, A9		9
518	Measuring the Star Formation Rate with Gravitational Waves from Binary Black Holes. 2019 , 886, L1		43
517	The Galaxy® Gas Content Regulated by the Dark Matter Halo Mass Results in a Superlinear M BHM? Relation. 2019 , 885, L36		11
516	Modified gravity theories in light of the anomalous velocity dispersion of NGC1052-DF2. 2019 , 100,		3
515	Galactic Winds in Low-mass Galaxies. Astrophysical Journal, 2019, 886, 74	4.7	25
514	Fast Outflows Identified in Early Star-forming Galaxies at z = 5B. <i>Astrophysical Journal</i> , 2019 , 886, 29	4.7	25
513	ChandraCOSMOS Legacy Survey: Clustering dependence of Type 2 active galactic nuclei on host galaxy properties. 2019 , 632, A88		5
512	GABE: Galaxy Assembly with Binary Evolution. 2019 , 19, 151		2
512 511	GABE: Galaxy Assembly with Binary Evolution. 2019 , 19, 151 Cosmological Simulations of Satellites around Isolated Dwarf Galaxies. <i>Astrophysical Journal</i> , 2019 , 881, 115	4.7	2
	Cosmological Simulations of Satellites around Isolated Dwarf Galaxies. <i>Astrophysical Journal</i> , 2019 ,	4.7	
511	Cosmological Simulations of Satellites around Isolated Dwarf Galaxies. <i>Astrophysical Journal</i> , 2019 , 881, 115 The REQUIEM Survey. I. A Search for Extended Lythebular Emission Around 31 z > 5.7 Quasars.		1
511	Cosmological Simulations of Satellites around Isolated Dwarf Galaxies. <i>Astrophysical Journal</i> , 2019 , 881, 115 The REQUIEM Survey. I. A Search for Extended LyENebular Emission Around 31 z > 5.7 Quasars. <i>Astrophysical Journal</i> , 2019 , 887, 196		1 36
511 510 509	Cosmological Simulations of Satellites around Isolated Dwarf Galaxies. <i>Astrophysical Journal</i> , 2019 , 881, 115 The REQUIEM Survey. I. A Search for Extended Lythebular Emission Around 31 z > 5.7 Quasars. <i>Astrophysical Journal</i> , 2019 , 887, 196 EDGE: The Origin of Scatter in Ultra-faint Dwarf Stellar Masses and Surface Brightnesses. 2019 , 886, L3 Chandracentres for COSMOS X-ray galaxy groups: differences in stellar properties between central dominant and offset brightest group galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.7	1 36 20
511510509508	Cosmological Simulations of Satellites around Isolated Dwarf Galaxies. <i>Astrophysical Journal</i> , 2019 , 881, 115 The REQUIEM Survey. I. A Search for Extended Lythebular Emission Around 31 z > 5.7 Quasars. <i>Astrophysical Journal</i> , 2019 , 887, 196 EDGE: The Origin of Scatter in Ultra-faint Dwarf Stellar Masses and Surface Brightnesses. 2019 , 886, L3 Chandracentres for COSMOS X-ray galaxy groups: differences in stellar properties between central dominant and offset brightest group galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 3545-3565 A statistical semi-empirical model: satellite galaxies in groups and clusters. <i>Monthly Notices of the</i>	4-7	1 36 20 30
511510509508507	Cosmological Simulations of Satellites around Isolated Dwarf Galaxies. <i>Astrophysical Journal</i> , 2019 , 881, 115 The REQUIEM Survey. I. A Search for Extended Lythebular Emission Around 31 z > 5.7 Quasars. <i>Astrophysical Journal</i> , 2019 , 887, 196 EDGE: The Origin of Scatter in Ultra-faint Dwarf Stellar Masses and Surface Brightnesses. 2019 , 886, L3 Chandracentres for COSMOS X-ray galaxy groups: differences in stellar properties between central dominant and offset brightest group galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 3545-3565 A statistical semi-empirical model: satellite galaxies in groups and clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 2506-2523 The formation and hierarchical assembly of globular cluster populations. <i>Monthly Notices of the</i>	4·7 4·3 4·3	1 36 20 30 16

(2020-2019)

503	Candidate massive galaxies atz [-] in the Dark Energy Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 3060-3081	4.3	14
502	A hypervelocity star with a Magellanic origin. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 2007-2013	4.3	34
501	The formation and assembly history of the Milky Way revealed by its globular cluster population. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 3180-3202	4.3	153
500	How feedback shapes galaxies: an analytic model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 5083-5100	4.3	3
499	L-GALAXIES 2020: Spatially resolved cold gas phases, star formation, and chemical enrichment in galactic discs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 5795-5814	4.3	28
498	The evolution of galaxy intrinsic alignments in the MassiveBlackII universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 4116-4130	4.3	8
497	A model for core formation in dark matter haloes and ultra-diffuse galaxies by outflow episodes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 4523-4542	4.3	26
496	Swirls of FIRE: spatially resolved gas velocity dispersions and star formation rates in FIRE-2 disc environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 1620-1637	4.3	17
495	Exploring extensions to the standard cosmological model and the impact of baryons on small scales. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 3809-3829	4.3	8
494	How dark are filaments in the cosmic web?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 3158-3170	4.3	3
493	Quenching as a Contest between Galaxy Halos and Their Central Black Holes. <i>Astrophysical Journal</i> , 2020 , 897, 102	4.7	33
492	Modelling the tightest relation between galaxy properties and dark matter halo properties from hydrodynamical simulations of galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 4453-4462	4.3	3
491	A comparison of H2 formation models at high redshift. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 5008-5023	4.3	3
490	Star-Forming Galaxies at Cosmic Noon. 2020 , 58, 661-725		29
489	The impact of scatter in the galaxy UV luminosity to halo mass relation on Ly disibility during the epoch of reionization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 3602-3613	4.3	21
488	Rapid filamentary accretion as the origin of extended thin discs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 4346-4356	4.3	13
487	Dark matter cores and cusps in spiral galaxies and their explanations. 2020 , 2020, 027-027		24
486	New empirical constraints on the cosmological evolution of gas and stars in galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 1124-1131	4.3	4

485	Connecting SDSS central galaxies to their host haloes using total satellite luminosity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 5463-5481	4.3	5
484	Effects of self-consistent rest-ultraviolet colours in semi-empirical galaxy formation models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 2645-2661	4.3	9
483	Projection effects on the observed angular spectrum of the astrophysical stochastic gravitational wave background. 2020 , 101,		20
482	Cosmic evolution of molecular gas mass density from an empirical relationship between L1.4 GHz and L?CO. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 1760-1770	4.3	1
481	Lyman Habsorption beyond the disc of simulated spiral galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 152-168	4.3	11
480	SHDE: survey description and masslinematics scaling relations for dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 5885-5903	4.3	6
479	Starbursting [O iii] emitters and quiescent [C ii] emitters in the reionization era. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 5541-5556	4.3	13
478	Simulating the spatial distribution and kinematics of globular clusters within galaxy clusters in illustris. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 5357-5368	4.3	7
477	Modelling the large-scale mass density field of the universe as a function of cosmology and baryonic physics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 4800-4819	4.3	28
476	The ALPINEALMA [C ii] Survey: on the nature of an extremely obscured serendipitous galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 875-887	4.3	12
475	Calibration of a star formation and feedback model for cosmological simulations with enzo. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 5203-5219	4.3	5
474	X-ray emission from hot gas in galaxy groups and clusters in simba. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 3061-3076	4.3	11
473	Linking compact dwarf starburst galaxies in the RESOLVE survey to downsized blue nuggets. <i>Monthly Notices of the Royal Astronomical Society,</i> 2020 , 494, 4730-4750	4.3	
472	Kraken reveals itself Ithe merger history of the Milky Way reconstructed with the E-MOSAICS simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 2472-2491	4.3	59
471	[O ii] emitters in MultiDark-Galaxies and DEEP2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 5432-5453	4.3	6
47°	Overdensity of SMGs in fields containing $z \sim 0.3$ galaxies: magnification bias and the implications for studies of galaxy evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 4635-4649	4.3	3
469	The Dekel-Zhao profile: a mass-dependent dark-matter density profile with flexible inner slope and analytic potential, velocity dispersion, and lensing properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 2912-2933	4.3	14
468	Dark Matters on the Scale of Galaxies. 2020 , 6, 107		27

(2020-2020)

467	The diversity and variability of star formation histories in models of galaxy evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 430-463	4.3	25
466	Enhanced spectrum of primordial perturbations, galaxy formation, and small-scale structure. 2020 , 102,		3
465	The CO universe: modelling CO emission and H2 abundance in cosmological galaxy formation simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 5960-5971	4.3	5
464	Self-Interacting Dark Matter and the Origin of Ultradiffuse Galaxies NGC1052-DF2 and -DF4. 2020 , 125, 111105		10
463	Limit on the LMC mass from a census of its satellites. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 2554-2563	4.3	47
462	Evidence for galaxy quenching in the green valley caused by a lack of a circumgalactic medium. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 2289-2301	4.3	3
461	The dependence of the galaxy stellar-to-halo mass relation on galaxy morphology. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 3578-3593	4.3	11
460	H i study of isolated and paired galaxies: the MIR SFR-M? sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 3193-3213	4.3	2
459	Structure formation models weaken limits on WIMP dark matter from dwarf spheroidal galaxies. 2020 , 102,		16
458	Modelling a bright $z \not \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	4.3	9
457	GalICS 2.1: a new semianalytic model for cold accretion, cooling, feedback, and their roles in galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 279-301	4.3	2
456	Stochastic modelling of star-formation histories II: star-formation variability from molecular clouds and gas inflow. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 698-725	4.3	26
455	scampy 🖪 sub-halo clustering 🗈 nd abundance matching based python interface for painting galaxies on the dark matter halo/sub-halo hierarchy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 2095-2113	4.3	1
454	The globular cluster system massBalo mass relation in the E-MOSAICS simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 1050-1061	4.3	10
453	A single galaxy population? Statistical evidence that the star-forming main sequence might be the tip of the iceberg. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 573-586	4.3	4
452	The three causes of low-mass assembly bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 4763-4782	4.3	23
451	Abundance matching tested on small scales with galaxy dynamics. 2020 , 496, L101-L105		2
450	High-redshift JWST predictions from IllustrisTNG: II. Galaxy line and continuum spectral indices and dust attenuation curves. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 4747-4768	4.3	13

449	Differences and similarities of stellar populations in LAEs and LBGs at z ~ 3.4B.8. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 1807-1824	4.3	7
448	Spatial correlations of extended cosmological structures. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 3227-3234	4.3	
447	Explaining the chemical trajectories of accreted and in-situ halo stars of the Milky Way. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 2645-2651	4.3	4
446	Early-type galaxy density profiles from IllustrisTNG II. Galaxy correlations and the impact of baryons. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 5188-5215	4.3	11
445	Balmer Break Galaxy Candidates at $z \sim 6$: A Potential View on the Star Formation Activity at z ? 14. <i>Astrophysical Journal</i> , 2020 , 889, 137	4.7	16
444	Formation channels of slowly rotating early-type galaxies. 2020 , 635, A129		13
443	The stellar-to-halo mass relation over the past 12 Gyr. 2020 , 634, A135		23
442	An ALMA survey of the SCUBA-2 CLS UDS field: physical properties of 707 sub-millimetre galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 3828-3860	4.3	80
441	Where did the globular clusters of the Milky Way form? Insights from the E-MOSAICS simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 4248-4267	4.3	17
440	A systematic search for galaxy proto-cluster cores at $z\mathbb{R}$ 2. Monthly Notices of the Royal Astronomical Society, 2020 , 496, 3169-3181	4.3	7
439	The missing dwarf galaxies of the Local Group. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 2596-2605	4.3	7
438	The milky way total mass profile as inferred from Gaia DR2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 4291-4313	4.3	94
437	The maximum accretion rate of hot gas in dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 6042-6058	4.3	19
436	Cosmic evolution of star-forming galaxies to z ? 1.8 in the faint low-frequency radio source population. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 5911-5924	4.3	9
435	On the (Lack of) Evolution of the Stellar Mass Function of Massive Galaxies from $z=1.5$ to 0.4. Astrophysical Journal, 2020 , 892, 7	4.7	20
434	Applying Noether Theorem to Matter in the Milky Way: Evidence for External Perturbations and Non-steady-state Effects from Gaia Data Release 2. <i>Astrophysical Journal</i> , 2020 , 890, 110	4.7	6
433	Dynamical Evolution of Cosmic Supermassive Binary Black Holes and Their Gravitational-wave Radiation. <i>Astrophysical Journal</i> , 2020 , 897, 86	4.7	7
432	The Evolution of the Star-Forming Interstellar Medium Across Cosmic Time. 2020 , 58, 157-203		78

(2020-2020)

431	The fates of the circumgalactic medium in the FIRE simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 3581-3595	4.3	26
430	Timing the Early Assembly of the Milky Way with the H3 Survey. 2020 , 897, L18		32
429	Rapid early coeval star formation and assembly of the most-massive galaxies in the Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 4607-4621	4.3	9
428	A recent starbust in the low surface brightness galaxy UGCI628. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 55-69	4.3	1
427	The frequency of very young galaxies in the local Universe [II. The view from SDSS spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 1791-1811	4.3	8
426	Globular Cluster Formation from Colliding Substructure. <i>Astrophysical Journal</i> , 2020 , 890, 18	4.7	13
425	Weak lensing reveals a tight connection between dark matter halo mass and the distribution of stellar mass in massive galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 3685-3707	4.3	9
424	UV and NIR size of the low-mass field galaxies: the UV compact galaxies. 2020 , 633, A105		2
423	The impact of wind scalings on stellar growth and the baryon cycle in cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 1-28	4.3	3
422	Early-type Host Galaxies of Type Ia Supernovae. II. Evidence for Luminosity Evolution in Supernova Cosmology. <i>Astrophysical Journal</i> , 2020 , 889, 8	4.7	36
421	Forming early-type galaxies without AGN feedback: a combination of merger-driven outflows and inefficient star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 1385-1398	4.3	13
420	The ALPINE-ALMA [C II] survey: Star-formation-driven outflows and circumgalactic enrichment in the early Universe. 2020 , 633, A90		51
419	Constraining the recent star formation history of galaxies: an approximate Bayesian computation approach. 2020 , 635, A136		10
418	Stochastic gravitational wave background anisotropies in the mHz band: astrophysical dependencies. 2020 , 493, L1-L5		9
417	Early Low-mass Galaxies and Star-cluster Candidates at $z \sim 6D$ Identified by the Gravitational-lensing Technique and Deep Optical/Near-infrared Imaging. <i>Astrophysical Journal</i> , 2020 , 893, 60	4.7	21
416	Evolution of dwarf galaxy observable parameters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 638-650	4.3	1
415	EDGE: the massfinetallicity relation as a critical test of galaxy formation physics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 1656-1672	4.3	45
414	Feedback from supermassive black holes transforms centrals into passive galaxies by ejecting circumgalactic gas. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 2939-2952	4.3	34

413	The Formation History of Subhalos and the Evolution of Satellite Galaxies. <i>Astrophysical Journal</i> , 2020 , 893, 139	4.7	7
412	Galaxy sizes and the galaxyfialo connection I I. The remarkable tightness of the size distributions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 1671-1690	4.3	23
411	Gravity and the non-linear growth of structure in the Carnegie-Spitzer-IMACS Redshift Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 2628-2640	4.3	4
410	Entropy-driven winds: Outflows and fountains lifted gently by buoyancy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 2149-2170	4.3	13
409	Cool outflows in galaxies and their implications. 2020 , 28, 1		115
408	Clustering with JWST: Constraining galaxy host halo masses, satellite quenching efficiencies, and merger rates at z [][1][0. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1178-1196	4.3	9
407	Spatial Distribution of O vi Covering Fractions in the Simulated Circumgalactic Medium. <i>Astrophysical Journal</i> , 2021 , 907, 8	4.7	2
406	Simple halo model formalism for the cosmic infrared background and its correlation with the thermal Sunyaev-Zel d ovich effect. 2021 , 645, A40		8
405	Magnetogenesis around the first galaxies: the impact of different field seeding processes on galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 5726-5744	4.3	11
404	Reproducing submillimetre galaxy number counts with cosmological hydrodynamic simulations. <i>Monthly Notices of the Royal Astronomical Society,</i> 2021 , 502, 772-793	4.3	11
403	Probing the existence of a rich galaxy overdensity at z ≠ 5.2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 4558-4575	4.3	1
402	A titanic interstellar medium ejection from a massive starburst galaxy at redshift 1.4. 2021 , 5, 319-330		5
401	Shadows in the Dark: Low-surface-brightness Galaxies Discovered in the Dark Energy Survey. 2021 , 252, 18		27
400	The luminosity functions and redshift evolution of satellites of low-mass galaxies in the COSMOS survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 1205-1217	4.3	3
399	The galaxyfialo connection of emission-line galaxies in IllustrisTNG. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 3599-3617	4.3	13
398	The properties and environment of very young galaxies in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 4815-4841	4.3	2
397	Formation of the largest galactic cores through binary scouring and gravitational wave recoil. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 4794-4814	4.3	8
396	The origin of X-ray coronae around simulated disc galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 2934-2951	4.3	4

395	The AGNBalaxyBalo connection: the distribution of AGN host halo masses to $z = 2.5$. Monthly Notices of the Royal Astronomical Society, 2021 , 502, 5962-5980	4.3	3
394	Luminosity Functions and Host-to-host Scatter of Dwarf Satellite Systems in the Local Volume. <i>Astrophysical Journal</i> , 2021 , 908, 109	4.7	22
393	The MOSDEF Survey: Environmental Dependence of the Gas-phase Metallicity of Galaxies at 1.4 ½ D.6. <i>Astrophysical Journal</i> , 2021 , 908, 120	4.7	5
392	Multiwavelength dissection of a massive heavily dust-obscured galaxy and its blue companion at $z\sim2$. 2021 , 646, A127		1
391	ALMA Measures Rapidly Depleted Molecular Gas Reservoirs in Massive Quiescent Galaxies at z \sim 1.5. Astrophysical Journal, 2021 , 908, 54	4.7	12
390	Dark matter haloes of massive elliptical galaxies at $z \sim 0.2$ are well described by the Navarro Brenk White profile. Monthly Notices of the Royal Astronomical Society, 2021 , 503, 2380-2405	4.3	11
389	FIR-luminous [C ii] Emitters in the ALMA-SCUBA-2 COSMOS Survey (AS2COSMOS): The Nature of Submillimeter Galaxies in a 10 Comoving Megaparsec-scale Structure at zl-4.6. <i>Astrophysical Journal</i> , 2021 , 907, 122	4.7	3
388	The kinematics of globular cluster populations in the E-MOSAICS simulations and their implications for the assembly history of the Milky Way. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 31-58	4.3	7
387	A hierarchical clustering method for quantifying satellite abundance. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 4976-4991	4.3	
386	Size, shade, or shape? The contribution of galaxies of different types to the star formation history of the Universe from SDSS-IV MaNGA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 31	28 ⁴ 3³14	3 ²
386	Size, shade, or shape? The contribution of galaxies of different types to the star formation history of the Universe from SDSS-IV MaNGA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 31 Black Holes as Evidence of God® Care. 2021 , 12, 201	28 ⁴ 3 ³ 14	3 ²
	of the Universe from SDSS-IV MaNGA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 31	28 ⁴ 3 ³ 14 4·7	3 2
385	of the Universe from SDSS-IV MaNGA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 31 Black Holes as Evidence of God® Care. 2021 , 12, 201 Galaxy Look-back Evolution Models: A Comparison with Magneticum Cosmological Simulations and		
385	of the Universe from SDSS-IV MaNGA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 31 Black Holes as Evidence of God® Care. 2021 , 12, 201 Galaxy Look-back Evolution Models: A Comparison with Magneticum Cosmological Simulations and Observations. <i>Astrophysical Journal</i> , 2021 , 910, 87 Incidence, scaling relations and physical conditions of ionized gas outflows in MaNGA. <i>Monthly</i>	4.7	2
385 384 383	of the Universe from SDSS-IV MaNGA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 31 Black Holes as Evidence of GodB Care. 2021 , 12, 201 Galaxy Look-back Evolution Models: A Comparison with Magneticum Cosmological Simulations and Observations. <i>Astrophysical Journal</i> , 2021 , 910, 87 Incidence, scaling relations and physical conditions of ionized gas outflows in MaNGA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 5134-5160	4.7	2
385 384 383 382	of the Universe from SDSS-IV MaNGA. Monthly Notices of the Royal Astronomical Society, 2021, 502, 31 Black Holes as Evidence of GodB Care. 2021, 12, 201 Galaxy Look-back Evolution Models: A Comparison with Magneticum Cosmological Simulations and Observations. Astrophysical Journal, 2021, 910, 87 Incidence, scaling relations and physical conditions of ionized gas outflows in MaNGA. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5134-5160 Bar-like galaxies in IllustrisTNG. 2021, 647, A143 Multiwavelength mock galaxy catalogues of the low-redshift Universe. Monthly Notices of the Royal	4.7	10
385 384 383 382 381	of the Universe from SDSS-IV MaNGA. Monthly Notices of the Royal Astronomical Society, 2021, 502, 31 Black Holes as Evidence of GodB Care. 2021, 12, 201 Galaxy Look-back Evolution Models: A Comparison with Magneticum Cosmological Simulations and Observations. Astrophysical Journal, 2021, 910, 87 Incidence, scaling relations and physical conditions of ionized gas outflows in MaNGA. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5134-5160 Bar-like galaxies in IllustrisTNG. 2021, 647, A143 Multiwavelength mock galaxy catalogues of the low-redshift Universe. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4147-4162 Evidence for Gas-phase Metal Deficiency in Massive Protocluster Galaxies at z ~2.2*. Astrophysical	4·7 4·3 4·7	1 1 3

377	emerge: constraining merging probabilities and time-scales of close galaxy pairs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 5646-5657	4.3	2
376	Simultaneous modelling of matter power spectrum and bispectrum in the presence of baryons. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 3596-3609	4.3	9
375	Galaxy formation in the brane world I: overview and first results. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 3867-3885	4.3	6
374	On the kinetic Sunyaev Z el Z ovich effect as an observational probe for halo spin bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 4568-4582	4.3	3
373	Unravelling the origin of magnetic fields in galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 2517-2534	4.3	3
372	The VLA Frontier Field Survey: A Comparison of the Radio and UV/Optical Size of 0.3 ? z ? 3 Star-forming Galaxies. <i>Astrophysical Journal</i> , 2021 , 910, 106	4.7	5
371	Magellanic satellites in IDM cosmological hydrodynamical simulations of the Local Group. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 4551-4567	4.3	9
370	Introducing piXedfit: A Spectral Energy Distribution Fitting Code Designed for Resolved Sources. 2021 , 254, 15		3
369	From starburst to quiescence: post-starburst galaxies and their large-scale clustering over cosmic time. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 4533-4550	4.3	4
368	Dark acoustic oscillations: imprints on the matter power spectrum and the halo mass function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 3773-3786	4.3	2
367	VINTERGATAN II. The origins of chemically, kinematically, and structurally distinct discs in a simulated Milky Way-mass galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 5826-58	453	25
366	A Stochastic Theory of the Hierarchical Clustering. II. Halo Progenitor Mass Function and Large-scale Bias. <i>Astrophysical Journal</i> , 2021 , 911, 11	4.7	O
365	Estimating Lifetimes of UV-selected Massive Galaxies at 0.5 ½ 12.5 in the COSMOS/UltraVISTA Field through Clustering Analyses. <i>Astrophysical Journal</i> , 2021 , 911, 59	4.7	2
364	The size function of massive satellites from the ReRh and MstarMh relations: constraining the role of environment. 2021 , 505, L84-L89		2
363	The evolution of compact massive quiescent and star-forming galaxies derived from the ReRh and MstarlMh relations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 4555-4570	4.3	8
362	Constraining the intrinsic population of long gamma-ray bursts: Implications for spectral correlations, cosmic evolution, and their use as tracers of star formation. 2021 , 649, A166		1
361	Dynamical evidence for a morphology-dependent relation between the stellar and halo masses of galaxies. 2021 , 649, A119		14
360	The Intrinsic Scatter of Galaxy Scaling Relations. <i>Astrophysical Journal</i> , 2021 , 912, 41	4.7	5

359	Feedback from Active Galactic Nuclei in Galaxy Groups. 2021 , 7, 142		13	
358	Probing the galaxyfialo connection with total satellite luminosity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 5370-5388	4.3	5	
357	Galaxy flybys: evolution of the bulge, disc, and spiral arms. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 98-114	4.3	1	
356	A Duality in the Origin of Bulges and Spheroidal Galaxies. <i>Astrophysical Journal</i> , 2021 , 913, 125	4.7	4	
355	Andromeda XXI has dwarf galaxy in a low-density dark matter halo. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 5686-5701	4.3	7	
354	Kinematics of the Circumgalactic Medium of a $z=0.77$ Galaxy from Mg ii Tomography. <i>Astrophysical Journal</i> , 2021 , 914, 92	4.7	4	
353	The MUSE Hubble Ultra Deep Field Survey. XVI. The angular momentum of low-mass star-forming galaxies: A cautionary tale and insights from TNG50.		2	
352	Characterizing the signatures of star-forming galaxies in the extragalactic #ay background. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 52-72	4.3	3	
351	GalaxyNet: connecting galaxies and dark matter haloes with deep neural networks and reinforcement learning in large volumes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 2115-2136	4.3	5	
350	Surrogate modelling the Baryonic Universe II: On forward modelling the colours of individual and populations of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	5	
349	Highly r-process enhanced stars in ultra-faint dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 1850-1861	4.3	4	
348	Building Robust Active Galactic Nuclei Mock Catalogs to Unveil Black Hole Evolution and for Survey Planning. <i>Astrophysical Journal</i> , 2021 , 916, 34	4.7	2	
347	TheHaloMod: An online calculator for the halo model. 2021 , 36, 100487		2	
346	mirkwood: Fast and Accurate SED Modeling Using Machine Learning. <i>Astrophysical Journal</i> , 2021 , 916, 43	4.7	2	
345	Stacked phase-space density of galaxies around massive clusters: comparison of dynamical and lensing masses. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 3385-3405	4.3	2	
344	New Determinations of the UV Luminosity Functions from $z \sim 9$ to 2 Show a Remarkable Consistency with Halo Growth and a Constant Star Formation Efficiency. 2021 , 162, 47		42	
343	Intervening or associated? Machine learning classification of redshifted H i 21-cm absorption. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 1548-1556	4.3	2	
342	Detection of the LMC-induced sloshing of the Galactic halo. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 2677-2684	4.3	18	

341	Angular clustering and host halo properties of [O ii] emitters at $z > 1$ in the Subaru HSC survey. 2021 , 73, 1186-1207		3
340	Host galaxies of high-redshift quasars: SMBH growth and feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 1-26	4.3	2
339	Space Project for Astrophysical and Cosmological Exploration (SPACE), an ESA stand-alone mission and a possible contribution to the Origins Space Telescope. 2021 , 51, 625		
338	The impact of baryons on cosmological inference from weak lensing statistics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 3406-3417	4.3	4
337	The baryon cycle of Seven Dwarfs with superbubble feedback.		3
336	Introducing the NEWHORIZON simulation: Galaxy properties with resolved internal dynamics across cosmic time. 2021 , 651, A109		22
335	The origin of galaxy colour bimodality in the scatter of the stellar-to-halo mass relation.		10
334	UniverseMachine: Predicting Galaxy Star Formation over Seven Decades of Halo Mass with Zoom-in Simulations. <i>Astrophysical Journal</i> , 2021 , 915, 116	4.7	1
333	Mapping the "invisible" circumgalactic medium around a z~4.5 radio galaxy with MUSE.		4
332	Turbulence in the intragroup and circumgalactic medium.		
332	Turbulence in the intragroup and circumgalactic medium. Constraints on warm dark matter from UV luminosity functions of high-z galaxies with Bayesian model comparison. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 3046-3056	4.3	4
	Constraints on warm dark matter from UV luminosity functions of high-z galaxies with Bayesian	4-3	4
331	Constraints on warm dark matter from UV luminosity functions of high-z galaxies with Bayesian model comparison. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 3046-3056 Spatially resolved star formation and inside-out quenching in the TNG50 simulation and 3D-HST		
331	Constraints on warm dark matter from UV luminosity functions of high-z galaxies with Bayesian model comparison. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 3046-3056 Spatially resolved star formation and inside-out quenching in the TNG50 simulation and 3D-HST observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 508, 219-235 A universal relation between the properties of supermassive black holes, galaxies, and dark matter	4.3	16
331 330 329	Constraints on warm dark matter from UV luminosity functions of high-z galaxies with Bayesian model comparison. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 3046-3056 Spatially resolved star formation and inside-out quenching in the TNG50 simulation and 3D-HST observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 508, 219-235 A universal relation between the properties of supermassive black holes, galaxies, and dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 4274-4293	4.3	16
331 330 329 328	Constraints on warm dark matter from UV luminosity functions of high-z galaxies with Bayesian model comparison. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 3046-3056 Spatially resolved star formation and inside-out quenching in the TNG50 simulation and 3D-HST observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 508, 219-235 A universal relation between the properties of supermassive black holes, galaxies, and dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 4274-4293 The DECam Local Volume Exploration Survey: Overview and First Data Release. 2021 , 256, 2 Telltale signs of metal recycling in the circumgalactic medium of a z ~ 0.77 galaxy. <i>Monthly Notices</i>	4-3	16 1 10
331 330 329 328 327	Constraints on warm dark matter from UV luminosity functions of high-z galaxies with Bayesian model comparison. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 3046-3056 Spatially resolved star formation and inside-out quenching in the TNG50 simulation and 3D-HST observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 508, 219-235 A universal relation between the properties of supermassive black holes, galaxies, and dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 4274-4293 The DECam Local Volume Exploration Survey: Overview and First Data Release. 2021 , 256, 2 Telltale signs of metal recycling in the circumgalactic medium of a z ~ 0.77 galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 663-679 A search for satellite galaxies of nearby star-forming galaxies with resolved stars in LBT-SONG.	4-3	16 1 10 6

(2021-2021)

323	An observational determination of the evolving extragalactic background light from the multiwavelength HST/CANDELS survey in the Fermi and CTA era. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 5144-5160	4.3	7	
322	Galaxy assembly bias and large-scale distribution: a comparison between IllustrisTNG and a semi-analytic model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 508, 698-718	4.3	7	
321	Ionized Gas Outflows in Low-excitation Radio Galaxies Are Radiation Driven. <i>Astrophysical Journal</i> , 2021 , 918, 65	4.7	3	
320	The cumulative star-formation histories of dwarf galaxies with TNG50. I: Environment-driven diversity and connection to quenching. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	10	
319	The importance of mock observations in validating galaxy properties for cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1	
318	The importance of galaxy formation histories in models of reionization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 3872-3887	4.3	3	
317	The OBELISK simulation: Galaxies contribute more than AGN to H I reionization of protoclusters. 2021 , 653, A154		7	
316	SUPER. V. ALMA continuum observations of $z\sim2$ AGN and the elusive evidence of outflows influencing star formation.		4	
315	Ultra diffuse galaxies in the MATLAS low-to-moderate density fields.		4	
314	The Observed Cosmic Star Formation Rate Density Has an Evolution that Resembles a (a, bt) Distribution and Can Be Described Successfully by Only Two Parameters. <i>Astrophysical Journal</i> , 2021 , 919, 88	4.7	1	
313	The Impacts of Modeling Choices on the Inference of Circumgalactic Medium Properties from Sunyaev Zeldovich Observations. <i>Astrophysical Journal</i> , 2021 , 919, 2	4.7	3	
312	Evolving beyond z=0: insights about the future of stars and the intergalactic medium. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 5432-5450	4.3	1	
311	The challenge of simultaneously matching the observed diversity of chemical abundance patterns in cosmological hydrodynamical simulations. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	7	
310	Synthetic Absorption Lines from Simulations of Multiphase Gas in Galactic Winds. <i>Astrophysical Journal</i> , 2021 , 919, 112	4.7	O	
309	The GOGREEN survey: transition galaxies and the evolution of environmental quenching. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 508, 157-174	4.3	4	
308	An Exquisitely Deep View of Quenching Galaxies through the Gravitational Lens: Stellar Population, Morphology, and Ionized Gas. <i>Astrophysical Journal</i> , 2021 , 919, 20	4.7	2	
307	Jet-driven AGN feedback on molecular gas and low star-formation efficiency in a massive local spiral galaxy with a bright X-ray halo. 2021 , 654, A8		5	
306	The role of faint population III supernovae in forming CEMP stars in ultra-faint dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 1-14	4.3	6	

305	An excess of globular clusters in Ultra-Diffuse Galaxies formed through tidal heating. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 398-406	10
304	H i global scaling relations in the WISE-WHISP survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 5711-5725	4
303	Elliptical Galaxies and Bulges of Disc Galaxies: Summary of Progress and Outstanding Issues. 2016 , 431-477	41
302	Gas Accretion and Galactic Chemical Evolution: Theory and Observations. 2017, 221-248	12
301	Galaxy growth in a massive halo in the first billion years of cosmic history. 2018, 553, 51-54	121
300	The XXL Survey. 2016 , 592, A9	10
299	Distribution of star formation rates during the rapid assembly of NGC 1399 as deduced from its globular cluster system. 2016 , 594, A119	7
298	Light breeze in the local Universe. 2017 , 606, A36	30
297	Spatially-resolved star formation histories of CALIFA galaxies. 2017 , 607, A128	40
296	The SFR-M* main sequence archetypal star-formation history and analytical models. 2017, 608, A41	49
295	Impact of polarised extragalactic sources on the measurement of CMBB-mode anisotropies. 2020 , 642, A232	7
294	The MUSE Hubble Ultra Deep Field Survey. 2020 , 638, A12	18
293	GOODS-ALMA: Optically dark ALMA galaxies shed light on a cluster in formation at $z=3.5$. 2020 , 642, A155	12
292	The ALPINE-ALMA [C II] survey. 2020 , 643, A5	23
291	The stellar halos of ETGs in the IllustrisTNG simulations: The photometric and kinematic diversity of galaxies at large radii. 2020 , 641, A60	13
290	In pursuit of giants. 2020 , 644, A144	12
289	Shedding light on the formation mechanism of shell galaxy NGC 474 with MUSE. 2020 , 644, A164	7
288	Discovery of molecular gas fueling galaxy growth in a protocluster at $z = 1.7$. 2020 , 641, L6	6

287	Scaling relations and baryonic cycling in local star-forming galaxies. 2020 , 643, A180		10
286	Baryonic effects for weak lensing. Part I. Power spectrum and covariance matrix. 2020 , 2020, 019-019		32
285	Informing dark matter direct detection limits with the ARTEMIS simulations. 2020 , 2020, 016-016		3
284	THE STELLAR-TO-HALO MASS RELATION FOR LOCAL GROUP GALAXIES. 2014 , 784, L14		75
283	The significant effects of stellar mass estimation on galaxy pair fractions <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 2265-2275	4.3	5
282	emerge Lempirical constraints on the formation of passive galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 4748-4767	4.3	11
281	NIHAO IXXV. Convergence in the cusp-core transformation of cold dark matter haloes at high star formation thresholds. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 2648-2661	4.3	9
280	Prospects for distinguishing galaxy evolution models with surveys at redshifts z[] 4. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 4534-4544	4.3	9
279	The Universe at z > 10: predictions for JWST from the universemachine DR1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 5702-5718	4.3	21
278	The changing circumgalactic medium over the last 10 Gyr I: physical and dynamical properties. Monthly Notices of the Royal Astronomical Society,	4.3	3
277	Cosmological simulations of the same spiral galaxy: the impact of baryonic physics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 501, 62-77	4.3	6
276	From lenticulars to blue compact dwarfs: the stellar mass fraction is regulated by disc gravitational instability. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 5656-5664	4.3	8
275	The LBT satellites of Nearby Galaxies Survey (LBT-SONG): the satellite population of NGC 628. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 3854-3869	4.3	12
274	BIRTH of the COSMOS field: primordial and evolved density reconstructions during cosmic high noon. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 3194-3212	4.3	6
273	First Light And Reionization Epoch Simulations (FLARES) []. Environmental dependence of high-redshift galaxy evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 2127-2145	4.3	8
272	Self-interacting dark matter and the delay of supermassive black hole growth. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 2177-2187	4.3	5
271	Quasi-equilibrium models of high-redshift disc galaxy evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 3394-3412	4.3	4
270	Tidal disruption events in the first billion years of a galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 3944-3956	4.3	5

269	Stellar splashback: the edge of the intracluster light. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 4181-4192	4.3	11	
268	Is diffuse intracluster light a good tracer of the galaxy cluster matter distribution?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 501, 1300-1315	4.3	10	
267	Creating a galaxy lacking dark matter in a dark matter-dominated universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 501, 693-700	4.3	13	
266	How robustly can we constrain the low-mass end of the $z\mathbb{P}$ 6 \mathbb{I} stellar mass function? The limits of lensing models and stellar population assumptions in the Hubble Frontier Fields. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 501, 1568-1590	4.3	5	
265	Realistic mock observations of the sizes and stellar mass surface densities of massive galaxies in FIRE-2 zoom-in simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 501, 1591-1602	4.3	11	
264	A homogeneous measurement of the delay between the onsets of gas stripping and star formation quenching in satellite galaxies of groups and clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 501, 5073-5095	4.3	13	
263	From massive spirals to dwarf irregulars: a new set of tight scaling relations for cold gas and stars driven by disc gravitational instability. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 48	43 ⁴ 485	1 ²⁵	
262	INFRARED COLOR SELECTION OF MASSIVE GALAXIES ATz> 3. Astrophysical Journal, 2016 , 816, 84	4.7	44	
261	STAR FORMATION AND AGN ACTIVITY IN GALAXY CLUSTERS FROMz= 12: A MULTI-WAVELENGTH ANALYSIS FEATURINGHERSCHEL/PACS. <i>Astrophysical Journal</i> , 2016 , 825, 72	4.7	54	
2 60	HIERARCHICAL GALAXY GROWTH AND SCATTER IN THE STELLAR MASSHALO MASS RELATION. <i>Astrophysical Journal</i> , 2016 , 833, 2	4.7	32	
259	Main-sequence Scatter is Real: The Joint Dependence of Galaxy Clustering on Star Formation and Stellar Mass. 2021 , 161, 49		5	
258	DEMONSTRATING DIVERSITY IN STAR-FORMATION HISTORIES WITH THE CSI SURVEY. Astrophysical Journal, 2016 , 833, 251	4.7	22	
257	PRIMUS+DEEP2: The Dependence of Galaxy Clustering on Stellar Mass and Specific Star Formation Rate at 0.2 . <i>Astrophysical Journal</i> , 2017 , 838, 87	4.7	34	
256	On the Orbital Decay of Globular Clusters in NGC 1052-DF2: Testing a Baryon-only Mass Model. <i>Astrophysical Journal</i> , 2019 , 877, 133	4.7	15	
255	The Brightest Galaxies at Cosmic Dawn from Scatter in the Galaxy Luminosity versus Halo Mass Relation. <i>Astrophysical Journal</i> , 2019 , 878, 114	4.7	11	
254	The Coevolution of Massive Quiescent Galaxies and Their Dark Matter Halos over the Last 6 Billion Years. <i>Astrophysical Journal</i> , 2019 , 878, 158	4.7	7	
253	A Partial Inventory of Observational Anisotropies in Single-dish Line-intensity Mapping. <i>Astrophysical Journal</i> , 2019 , 881, 149	4.7	6	
252	The ALMA Spectroscopic Survey in the HUDF: the Molecular Gas Content of Galaxies and Tensions with IllustrisTNG and the Santa Cruz SAM. <i>Astrophysical Journal</i> , 2019 , 882, 137	4.7	49	

(2020-2019)

251	PRIMUS: Clustering of Star-forming and Quiescent Central Galaxies at 0.2 Astrophysical Journal, 2019 , 884, 76	4.7	4	
250	A Dynamical Model for Clustered Star Formation in the Galactic Disk. <i>Astrophysical Journal</i> , 2019 , 884, 173	4.7	11	
249	The MOSDEF Survey: A Census of AGN-driven Ionized Outflows at z = 1.4B.8. <i>Astrophysical Journal</i> , 2019 , 886, 11	4.7	32	
248	Investigating Overdensities around z > 6 Galaxies through ALMA Observations of [C ii]. <i>Astrophysical Journal</i> , 2020 , 889, 98	4.7	5	
247	SZ Scaling Relations of Galaxy Groups and Clusters Near the North Ecliptic Pole. <i>Astrophysical Journal</i> , 2020 , 890, 156	4.7	6	
246	The ALMA Spectroscopic Survey in the HUDF: A Model to Explain Observed 1.1 and 0.85 mm Dust Continuum Number Counts. <i>Astrophysical Journal</i> , 2020 , 891, 135	4.7	14	
245	Wide-field Survey of Dwarf Satellite Systems around 10 Hosts in the Local Volume. <i>Astrophysical Journal</i> , 2020 , 891, 144	4.7	41	
244	The Evolving AGN Duty Cycle in Galaxies Since $z\sim3$ as Encoded in the X-Ray Luminosity Function. <i>Astrophysical Journal</i> , 2020 , 892, 17	4.7	14	
243	CHORUS. III. Photometric and Spectroscopic Properties of LyBlobs at $z=4.91.0$. Astrophysical Journal, 2020 , 891, 177	4.7	8	
242	A Scenario for Ultradiffuse Satellite Galaxies with Low Velocity Dispersions: The Case of [KKS 2000]04. <i>Astrophysical Journal</i> , 2020 , 893, 66	4.7	8	
241	A New Method to Constrain the Origins of Dark-matter-free Galaxies and Their Unusual Globular Clusters. <i>Astrophysical Journal</i> , 2020 , 892, 32	4.7	7	
240	Constraining the Mass of the Emerging Galaxy Cluster SpARCS1049+56 at $z=1.71$ with Infrared Weak Lensing. <i>Astrophysical Journal</i> , 2020 , 893, 10	4.7	6	
239	Milky Way Satellite Census. II. Galaxy⊞alo Connection Constraints Including the Impact of the Large Magellanic Cloud. <i>Astrophysical Journal</i> , 2020 , 893, 48	4.7	43	
238	Dynamical Properties of Molecular-forming Gas Clumps in Galaxies at the Epoch of Reionization. <i>Astrophysical Journal</i> , 2020 , 895, 24	4.7	1	
237	The Radial Acceleration Relation in CLASH Galaxy Clusters. Astrophysical Journal, 2020, 896, 70	4.7	21	
236	Selection of Massive Evolved Galaxies at 3 🗗 🖾 .5 in the CANDELS Fields. <i>Astrophysical Journal</i> , 2020 , 897, 44	4.7	4	
235	The Coevolution of Galaxies and the Cool Circumgalactic Medium Probed with the SDSS and DESI Legacy Imaging Surveys. <i>Astrophysical Journal</i> , 2020 , 897, 97	4.7	16	
234	Emergence of an Ultrared, Ultramassive Galaxy Cluster Core at z = 4. <i>Astrophysical Journal</i> , 2020 , 898, 133	4.7	12	

233	MCSED: A Flexible Spectral Energy Distribution Fitting Code and Its Application to z ~ 2 Emission-line Galaxies. <i>Astrophysical Journal</i> , 2020 , 899, 7	4.7	8
232	Constraints on Dynamical Dark Energy Models from the Abundance of Massive Galaxies at High Redshifts. <i>Astrophysical Journal</i> , 2020 , 900, 108	4.7	4
231	Phase-space Spectral Line Deconfusion in Intensity Mapping. Astrophysical Journal, 2020 , 901, 142	4.7	17
230	An Intensity Mapping Detection of Aggregate CO Line Emission at 3 mm. <i>Astrophysical Journal</i> , 2020 , 901, 141	4.7	16
229	Rotation Curves in z ~ 1½ Star-forming Disks: Evidence for Cored Dark Matter Distributions. <i>Astrophysical Journal</i> , 2020 , 902, 98	4.7	21
228	The Evolution of the Baryons Associated with Galaxies Averaged over Cosmic Time and Space. <i>Astrophysical Journal</i> , 2020 , 902, 111	4.7	27
227	The Subaru HSC Galaxy Clustering with Photometric Redshift. I. Dark Halo Masses versus Baryonic Properties of Galaxies at 0.3 🗈 🗈 .4. <i>Astrophysical Journal</i> , 2020 , 904, 128	4.7	6
226	Biases and Cosmic Variance in Molecular Gas Abundance Measurements at High Redshift. <i>Astrophysical Journal</i> , 2020 , 904, 127	4.7	5
225	Evolution of C iv Absorbers. I. The Cosmic Incidence. <i>Astrophysical Journal</i> , 2020 , 904, 44	4.7	6
224	Morphological and Rotation Structures of Circumgalactic Mg ii Gas in the EAGLE Simulation and the Dependence on Galaxy Properties. <i>Astrophysical Journal</i> , 2020 , 904, 76	4.7	11
223	The BinaryHost Connection: Astrophysics of Gravitational-Wave Binaries from Host Galaxy Properties. <i>Astrophysical Journal</i> , 2020 , 905, 21	4.7	7
222	First Results from SMAUG: The Need for Preventative Stellar Feedback and Improved Baryon Cycling in Semianalytic Models of Galaxy Formation. <i>Astrophysical Journal</i> , 2020 , 905, 4	4.7	7
221	Revisiting the Relationship between the Long GRB Rate and Cosmic Star Formation History Based on a Large Swift Sample. 2020 , 248, 21		2
220	Confronting the Magnetar Interpretation of Fast Radio Bursts through Their Host Galaxy Demographics. 2020 , 905, L30		12
219	FOREVER22: galaxy formation in protocluster regions. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
218	A first estimate of the Milky Way dark matter halo spin.		2
217	The tidal evolution of the Fornax dwarf spheroidal and its globular clusters. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	5
216	Extended HernquistBpringel formalism for cosmic star formation. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	О

Pre-supernova feedback mechanisms drive the destruction of molecular clouds in nearby star-forming disc galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 4-3		
	17	
Scaling relations and baryonic cycling in local star-forming galaxies. III. Outflows, effective yields, and metal loading factors.	O	
From EMBER to FIRE: predicting high resolution baryon fields from dark matter simulations with deep learning. <i>Monthly Notices of the Royal Astronomical Society</i> ,	O	
Bar-driven leading spiral arms in a counter-rotating dark matter halo. <i>Monthly Notices of the Royal Astronomical Society</i> ,	O	
210 Lessons from the Local Group (and Beyond) on Dark Matter. 2015 , 337-352	1	
ON THE IMPORTANCE OF USING APPROPRIATE SPECTRAL MODELS TO DERIVE PHYSICAL PROPERTIES OF GALAXIES. 2015 , 30, 535-537		
208 Modeling Physical Processes at Galactic Scales and Above. 2016 , 1-84		
207 Introduction. 2016 , 1-27		
206 Galaxy Formation and Evolution. 2016, 81-111		
205 Gamma-Ray Bursts and the Early Star-Formation History. 2016 , 183-196		
204 The Downfall of Massive Star-Forming Galaxies During the Last (10,mathrm{Gyr}). 2016 , 127-166		
203 Dispersion in DLA metallicities and deuterium abundances. 2016 , 11, 354-356		
Simulated observations of high-redshift galaxies with the HARMONI spectrograph for the European Extremely Large Telescope. 2016 ,		
	3	
Extremely Large Telescope. 2016 ,	3	
Extremely Large Telescope. 2016, 201 Observations of Ly(alpha) Emitters at High Redshift. 2019, 189-318	3	

197	AGN lifetimes in UV-selected galaxies: a clue to supermassive black hole-galaxy coevolution.		0
196	Measuring Dark Matter in Galaxies: The Mass Fraction within Five Effective Radii. <i>Astrophysical Journal</i> , 2020 , 905, 28	4.7	О
195	Bulge formation through disc instability. 2020 , 644, A56		1
194	OUP accepted manuscript. Monthly Notices of the Royal Astronomical Society,	4.3	1
193	Analysis of the Spatially ResolvedVB.6th Colors and Dust Extinction in 257 Nearby NGC and IC Galaxies. <i>Astrophysical Journal</i> , 2019 , 884, 21	4.7	
192	Reconstructing the mass accretion histories of nearby red nuggets with their globular cluster systems. 2020 , 15, 381-385		
191	Hyper Suprime-Cam Subaru Strategic Program: A Mass-dependent Slope of the Galaxy SizeMass Relation at z Astrophysical Journal, 2021 , 921, 38	4.7	8
190	The MUSE Extremely Deep Field: Evidence for SFR-induced cores in dark-matter dominated galaxies at z~1.		3
189	Constraining the host galaxy halos of massive black holes from LISA event rates. 2020 , 2020, 055-055		1
188	Stellar and weak lensing profiles of massive galaxies in the Hyper-Suprime Cam survey and in hydrodynamic simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 432-447	4.3	3
187	OUP accepted manuscript. Monthly Notices of the Royal Astronomical Society,	4.3	2
186	A quantitative assessment of completeness correction methods and public release of a versatile simulation code. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
185	Galaxy Stellar Mass Functions from $z \sim 10$ to $z \sim 6$ using the Deepest Spitzer/Infrared Array Camera Data: No Significant Evolution in the Stellar-to-halo Mass Ratio of Galaxies in the First Gigayear of Cosmic Time. <i>Astrophysical Journal</i> , 2021 , 922, 29	4.7	13
184	First direct dynamical detection of a dual super-massive black hole system at sub-kpc separation.		О
183	The emergence of dark matter-deficient ultra-diffuse galaxies driven by scatter in the stellar massfialo mass relation and feedback from globular clusters. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	5
182	A new model for including galactic winds in simulations of galaxy formation II: Implementation of PhEW in cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
181	Massive Black-Hole Mergers. 2021 , 1-33		1
180	A multi-messenger view of cosmic dawn: Conquering the final frontier. 2021 , 30,		О

179	The Structure of Multiphase Galactic Winds. Astrophysical Journal, 2022, 924, 82	4.7	6
178	Simultaneously constraining cosmology and baryonic physics via deep learning from weak lensing. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 511, 1518-1528	4.3	3
177	The Cen A galaxy group: Dynamical mass and missing baryons.		1
176	Evolution of C iv Absorbers. II. Where Does C iv Live?. Astrophysical Journal, 2022, 924, 12	4.7	1
175	Strong conformity and assembly bias: towards a physical understanding of the galaxyflalo connection in SDSS clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 511, 1789-1807	4.3	3
174	The Galaxy Replacement Technique (GRT): A New Approach to Study Tidal Stripping and Formation of Intracluster Light in a Cosmological Context. <i>Astrophysical Journal</i> , 2022 , 925, 103	4.7	1
173	The Impact of the First Galaxies on Cosmic Dawn and Reionization. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	3
172	EMPRESS. IV. Extremely Metal-poor Galaxies Including Very Low-mass Primordial Systems with M * = 104🛮 05 M ? and 2% 🖰 (O/H): High (Fe/O) Suggestive of Metal Enrichment by Hypernovae/Pair-instability Supernovae. <i>Astrophysical Journal</i> , 2022 , 925, 111	4.7	3
171	Origin of the spectacular tidal shells of galaxy NGC474.		2
170	Spectroscopic Confirmation of a Protocluster at $z=3.37$ with a High Fraction of Quiescent Galaxies. <i>Astrophysical Journal</i> , 2022 , 926, 37	4.7	1
169	The dark side of galaxy stellar populations I: The stellar-to-halo mass relation and the velocity dispersion - halo mass relation. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	Ο
168	Large-scale dark matter simulations. 2022 , 8, 1		3
167	OUP accepted manuscript. Monthly Notices of the Royal Astronomical Society,	4.3	O
166	A Mock Catalog of Gravitationally-lensed Quasars for the LSST Survey. 2022 , 163, 139		O
165	Probing cosmology and gastrophysics with fast radio bursts: Pross-correlations of dark matter haloes and cosmic dispersion measures. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 512, 1730-1750	4.3	1
164	Fast, Slow, Early, Late: Quenching Massive Galaxies at z ~ 0.8. <i>Astrophysical Journal</i> , 2022 , 926, 134	4.7	7
163	Evidence for Cold-stream to Hot-accretion Transition as Traced by LyÆmission from Groups and Clusters at 2 < z < 3.3. 2022 , 926, L21		2
162	First Results from SMAUG: Insights into Star Formation Conditions from Spatially Resolved ISM Properties in TNG50. <i>Astrophysical Journal</i> , 2022 , 926, 139	4.7	1

161	Precision tests of CO and [CII] power spectra models against simulated intensity maps. 2022 , 2022, 026		2
160	Clearing the Hurdle: The Mass of Globular Cluster Systems as a Function of Host Galaxy Mass. <i>Astrophysical Journal</i> , 2022 , 926, 162	4.7	1
159	Galaxies lacking dark matter produced by close encounters in a cosmological simulation.		4
158	Blue Rest-frame UV-optical Colors in $z \sim 8$ Galaxies from GREATS: Very Young Stellar Populations at \sim 650 Myr of Cosmic Time. <i>Astrophysical Journal</i> , 2022 , 927, 48	4.7	1
157	Cold and hot gas distribution around the Milky-Way IM31 system in the HESTIA simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 512, 3717-3737	4.3	4
156	An Intensity Mapping Constraint on the CO-galaxy Cross-power Spectrum at Redshift ~3. <i>Astrophysical Journal</i> , 2022 , 927, 161	4.7	3
155	The formation of dark-matter-deficient galaxies through galaxy collisions. 2022, 2207, 012049		1
154	The Effect of Adiabatic Compression on Dark Matter Halos and the Radial Acceleration Relation. <i>Astrophysical Journal</i> , 2022 , 927, 198	4.7	O
153	The Observed Evolution of the Stellar MassHalo Mass Relation for Brightest Central Galaxies. <i>Astrophysical Journal</i> , 2022 , 928, 28	4.7	2
152	Mechanical feedback from stellar winds with an application to galaxy formation at high redshift. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 512, 4573-4592	4.3	1
151	Stochastic gravitational-wave background from stellar core-collapse events. 2022, 105,		O
150	GOLDRUSH. IV. Luminosity Functions and Clustering Revealed with \sim 4,000,000 Galaxies at z \sim 2 \square : Galaxy AGN Transition, Star Formation Efficiency, and Implication for Evolution at z > 10. 2022 , 259, 20		8
149	LYRA II: Cosmological dwarf galaxy formation with inhomogeneous Population III enrichment. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	5
148	The ASTRID simulation: galaxy formation and reionization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 512, 3703-3716	4.3	2
147	NIHAO-LG: The uniqueness of local group dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	О
146	An empirical measurement of the Halo Mass function from the combination of GAMAIDR4, SDSSIDR12, and REFLEXIII data. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
145	Tracing stars in Milky Way satellites with A-SLOTH. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	2
144	ACACIA: a new method to produce on-the-fly merger trees in the ramses code. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 510, 959-979	4.3	

143	A Physical Model for the Quasar Luminosity Function Evolution between Cosmic Dawn and High Noon. <i>Astrophysical Journal</i> , 2021 , 923, 110	4.7	1	
142	The effect of impact parameters on the formation of massive black hole binaries in galactic mergers. 2021 , 366, 1		Ο	
141	A high-resolution investigation of the multiphase ISM in a galaxy during the first two billion years. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 510, 3734-3757	4.3	4	
140	The Spitzer/IRAC Legacy over the GOODS Fields: Full-depth 3.6, 4.5, 5.8, and 8.0 fb Mosaics and Photometry for >9000 Galaxies at z ~ 3.5fl0 from the GOODS Reionization Era Wide-area Treasury from Spitzer (GREATS). 2021 , 257, 68		1	
139	Reproducing NGC 3109 association in numerical simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 510, 1923-1933	4.3		
138	The Phantom Dark Matter Halos of the Local Volume in the Context of Modified Newtonian Dynamics. <i>Astrophysical Journal</i> , 2021 , 923, 68	4.7	4	
137	On the origin of surprisingly cold gas discs in galaxies at high redshift. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 510, 3266-3275	4.3	5	
136	Quantifying Scatter in Galaxy Formation at the Lowest Masses. <i>Astrophysical Journal</i> , 2021 , 923, 35	4.7	2	
135	The dark matter haloes of HI selected galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 511, 2585-2599	4.3	0	
134	Testing the Relationship between Bursty Star Formation and Size Fluctuations of Local Dwarf Galaxies. <i>Astrophysical Journal</i> , 2021 , 922, 217	4.7	2	
133	Momentum deposition of supernovae with cosmic rays. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 511, 1247-1264	4.3	1	
132	A Model of Spectral Line Broadening in Signal Forecasts for Line-intensity Mapping Experiments. <i>Astrophysical Journal</i> , 2021 , 923, 188	4.7	3	
131	Preparing for low surface brightness science with the Vera C. Rubin Observatory: characterisation of tidal features from mock images. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	3	
130	A systematic search for galaxy protocluster cores at the transition epoch of their star formation activity. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1	
129	On Estimating the Cosmic Molecular Gas Density from CO Line Intensity Mapping Observations. <i>Astrophysical Journal</i> , 2022 , 929, 30	4.7	0	
128	Apostle-Auriga: Effects of different subgrid models on the baryon cycle around Milky Way-mass galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	4	
127	A Rich Satellite Population of the NGC 4437 Group and Implications of a Magnitude Gap for Galaxy Group Assembly History. <i>Astrophysical Journal</i> , 2022 , 929, 36	4.7	0	
126	Degeneracies between self-interacting dark matter and supernova feedback as cusp-core transformation mechanisms. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1	

125	Empirical Evidence of Nonminimally Coupled Dark Matter in the Dynamics of Local Spiral Galaxies?. <i>Astrophysical Journal</i> , 2022 , 929, 48	4.7	O
124	Mapping the Universe in hydrogen deuteride. 2022 , 105,		О
123	Decoding the star forming properties of gas-rich galaxy pairs. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	0
122	COSMOS2020: Cosmic evolution of the stellar-to-halo mass relation for central and satellite galaxies up to $z\sim5$.		O
121	Cross-correlations between mm-wave line-intensity mapping and weak lensing surveys: preliminary consideration of long-term prospects. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	О
120	An Empirical Representation of a Physical Model for the ISM [C ii], CO, and [C i] Emission at Redshift 1 & B. Astrophysical Journal, 2022 , 929, 140	4.7	2
119	Estimating transient rates from cosmological simulations and BPASS. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	7
118	The evolution of turbulent galactic discs: gravitational instability, feedback and accretion. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	3
117	The SAMI Galaxy Survey: The Internal Orbital Structure and Mass Distribution of Passive Galaxies from Triaxial Orbit-superposition Schwarzschild Models. <i>Astrophysical Journal</i> , 2022 , 930, 153	4.7	3
116	The bending of the star-forming main sequence traces the cold- to hot-accretion transition mass over 0 <z<4.< td=""><td></td><td>O</td></z<4.<>		O
115	From dawn till disk: Milky Way\lambda turbulent youth revealed by the APOGEE+Gaia data. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	3
114	Ram pressure stripping in high-density environments. 2022 , 30,		7
113	A Mass Dependent Density Profile from Dwarfs to Clusters. 2022 , 10, 69		
112	Baryon cycles in the biggest galaxies. 2022 , 973, 1-109		4
111	GRUMPY: A simple framework for realistic forward-modelling of dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	3
110	Ghostly stellar haloes and their relationship to ultra-faint dwarfs. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	O
109	The Three Hundred project: The Gizmo-Simba run. <i>Monthly Notices of the Royal Astronomical Society</i>	4.3	4
108	Priors on red galaxy stochasticity from hybrid effective field theory. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	2

107	Establishing the Nonprimordial Origin of Black HoleNeutron Star Mergers. <i>Astrophysical Journal</i> , 2022 , 931, 2	4.7	Ο
106	ADDGALS: Simulated Sky Catalogs for Wide Field Galaxy Surveys. Astrophysical Journal, 2022, 931, 145	4.7	О
105	A population of ultraviolet-dim protoclusters detected in absorption. 2022, 606, 475-478		О
104	Reionization Era Bright Emission Line Survey: Selection and Characterization of Luminous Interstellar Medium Reservoirs in the z > 6.5 Universe. <i>Astrophysical Journal</i> , 2022 , 931, 160	4.7	7
103	The XXL survey. XLIX. Linking the members star formation histories to the cluster mass assembly in the $z = 1.98$ galaxy cluster XLSSC 122. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	O
102	Hot-mode accretion and the physics of thin-disklalaxylformation. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	7
101	Modeling the kinematics of globular cluster systems. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	0
100	A general framework to test gravity using galaxy clusters IVI. Realistic galaxy formation simulations to study clusters in modified gravity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 514, 3349-3365	4.3	О
99	A Bayesian Population Model for the Observed Dust Attenuation in Galaxies. <i>Astrophysical Journal</i> , 2022 , 932, 54	4.7	2
98	Massive Black-Hole Mergers. 2022 , 851-883		
97	Candidate high-redshift protoclusters and lensed galaxies in the Planck list of high-z sources overlapping with Herschel-SPIRE imaging. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 514, 5004-5023	4.3	0
96	Cosmic star formation history with tomographic cosmic infrared background-galaxy cross-correlation.		1
95	CLASS_GWB: robust modeling of the astrophysical gravitational wave background anisotropies. 2022 , 2022, 030		0
94	Effect of Dust in Circumgalactic Halos on the Cosmic Shear Power Spectrum. <i>Astrophysical Journal</i> , 2022 , 933, 19	4.7	
93	The outer stellar mass of massive galaxies: A simple tracer of halo mass with scatter comparable to richness and reduced projection effects. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
92	Constraining the Milky Way Halo Kinematics via Its Linear Response to the Large Magellanic Cloud. <i>Astrophysical Journal</i> , 2022 , 933, 113	4.7	1
91	COMAP Early Science. VII. Prospects for CO Intensity Mapping at Reionization. Astrophysical Journal	4 =	
	, 2022 , 933, 188	4.7	2

89	A multi-wavelength study of Star Formation in nearby galaxies: Evidence for inside-out growth of the stellar disc. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	O
88	Spatially Resolved Gas-phase Metallicity in FIRE-2 Dwarfs: Late-Time Evolution of Metallicity Relations in Simulations with Feedback and Mergers. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
87	Satellite mass functions and the faint end of the galaxy mass-halo mass relation in LCDM. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	O
86	Intensity mapping from the sky: synergizing the joint potential of [O iii] and [C ii] surveys at reionization. 2022 , 515, 5813-5822		O
85	Semi-analytic forecasts for JWST IVI. Simulated light-cones and galaxy clustering predictions. 2022 , 515, 5416-5436		1
84	Fingerprints of modified gravity on galaxies in voids. 2022 , 515, 5358-5374		O
83	Dust, CO and [Ci]: Cross-calibration of molecular gas mass tracers in metal-rich galaxies across cosmic time.		1
82	Testing multiflavored ultralight dark matter models with SPARC. 2022 , 106,		О
81	Intervelocity of galaxy pairs in IDM. 2022 , 664, L6		
80	How baryons affect haloes and large-scale structure: a unified picture from the Simba simulation.		2
79	Two can play at that game: constraining the role of supernova and AGN feedback in dwarf galaxies with cosmological zoom-in simulations.		1
78	Spin-driven jet feedback in idealised simulations of galaxy groups and clusters.		3
77	Cosmological Simulations of the Intergalactic Medium Evolution. III. SPH Simulations. 2022 , 935, 124		
76	MOCCA-SURVEY Database I: tidal disruption events of white dwarfs in globular clusters and young mass clusters. 2022 , 515, 4038-4054		
75	The GOGREEN survey: constraining the satellite quenching time-scale in massive clusters at z ? 1. 2022 , 515, $5479-5494$		О
74	The miniJPAS survey: The role of group environment in quenching the star formation.		O
73	Tidal Distortions in NGC1052-DF2 and NGC1052-DF4: Independent Evidence for a Lack of Dark Matter. 2022 , 935, 160		2
72	The eROSITA Final Equatorial Depth Survey (eFEDS). X-ray emission around star-forming and quiescent galaxies at 0.05 < z < 0.3.		O

71	A galaxy group candidate at z $\square 3.7$ in the COSMOS field. 2022 , 665, L7	О
70	Properties of the interstellar medium in star-forming galaxies at redshifts 2 < z < 5 from the VANDELS survey.	o
69	Impact of the turnover in the high-z galaxy luminosity function on the 21-cm signal during Cosmic Dawn and Epoch of Reionization. 2022 , 516, 1573-1583	0
68	A universal profile for stacked filaments from cold dark matter simulations. 2022 , 516, 6041-6054	O
67	Forward-modelling the luminosity, distance, and size distributions of the Milky Way satellites. 2022 , 516, 3944-3971	2
66	CONCERTO: High-fidelity simulation of millimeter line emissions of galaxies and [CII] intensity mapping.	O
65	Testing the key role of the stellar massfialo mass relation in galaxy merger rates and morphologies via DECODE, a novel Discrete statistical sEmi-empiriCal mODEl. 2022 , 516, 3206-3233	О
64	Subhalo abundance and satellite spatial distribution in Milky Way-Andromeda-like paired haloes.	О
63	Probing the magaparsec-scale environment of hyperluminous infrared galaxies.	0
62	Evidence for strong progenitor age dependence of type Ia supernova luminosity standardization process.	O
61	Trinity I: Self-consistently modeling the dark matter halogalaxy α upermassive black hole connection from α = 0 α 0.	1
60	Where Did the Outskirts Go? Outer Stellar Halos as a Sensitive Probe of Supernova Feedback. 2022 , 939, 4	1
59	The effect of the deforming dark matter haloes of the Milky Way and the Large Magellanic Cloud on the Orphan-Chenab stream.	4
58	DIGS: Deep Inference of Galaxy Spectra with Neural Posterior Estimation.	1
57	A super-linear 'radio-AGN main sequence' links mean radio-AGN power and galaxy stellar mass since $z\sim3$.	0
56	An intergalactic medium temperature from a giant radio galaxy.	O
55	A tale of a tail: A tidally-disrupting ultra-diffuse galaxy in the M81 group.	0
54	A lensed protocluster candidate at $z=7.66$ identified in JWST observations of the galaxy cluster SMACS0723 \blacksquare 327. 2022 , 667, L3	O

53	Keck Spectroscopy of the Coma Cluster Ultra-Diffuse Galaxy Y358: Dynamical Mass in a Wider Context.	2
52	Photometric Objects Around Cosmic Webs (PAC) Delineated in a Spectroscopic Survey. III. Accurate Measurement of Galaxy Stellar Mass Function with the Aid of Cosmological Redshift Surveys. 2022 , 939, 104	O
51	Diffstar: a fully parametric physical model for galaxy assembly history. 2022 , 518, 562-584	1
50	The Main Sequence of star forming galaxies across cosmic times.	O
49	Extreme value statistics of the halo and stellar mass distributions at high redshift: are JWST results in tension with IDM?.	2
48	Modeling Redshift-space Clustering with Abundance Matching. 2022 , 940, 13	O
47	How do the dynamics of the Milky Way - Large Magellanic Cloud system affect gamma-ray constraints on particle dark matter?.	0
46	$z\sim29$ Galaxies Magnified by the Hubble Frontier Field Clusters. II. Luminosity Functions and Constraints on a Faint-end Turnover. 2022 , 940, 55	2
45	The dark side of galaxy stellar populations III. The dependence of star-formation histories on halo mass and on the scatter of the main sequence. 2022 , 518, 6325-6339	0
44	Distinguishing Dark Matter, Modified Gravity, and Modified Inertia with the Inner and Outer Parts of Galactic Rotation Curves. 2022 , 941, 55	O
43	Comparing weak lensing peak counts in baryonic correction models to hydrodynamical simulations. 2022 , 519, 573-584	0
42	Hidden depths in the local Universe: The Stellar Stream Legacy Survey.	O
41	The Merger Rate of Primordial Black HoleNeutron Star Binaries in Ellipsoidal-collapse Dark Matter Halo Models. 2022 , 941, 36	O
40	CO(J = $1\overline{D}$) Mapping Survey of 64 Galaxies in the Fornax Cluster with the ALMA Morita Array. 2022 , 263, 40	O
39	Dark matter halos and scaling relations of extremely massive spiral galaxies from extended H i rotation curves. 2022 , 518, 6340-6354	О
38	Ironing the folds: the phase space chevrons of a GSE-like merger as a dark matter subhalo detector. 2022 , 519, 530-547	O
37	Constraining the physical properties of the first lensed z \sim 9 \Box 16 galaxy candidates with JWST.	2
36	How long do high-redshift massive black hole seeds remain outliers in black hole vs. host galaxy relations?.	O

35	A Stochastic Theory of the Hierarchical Clustering. III. The Nonuniversality and Nonstationarity of the Halo Mass Function. 2022 , 941, 14	0
34	Notion of Mass in (A)dS\$\$_4\$\$ Relativity. 2023 , 187-214	O
33	Semi-analytic forecasts for Roman Ithe beginning of a new era of deep-wide galaxy surveys.	0
32	CONCERTO: Simulating the CO, [CII], and [CI] line emission of galaxies in a 117 deg2 field and the impact of field-to-field variance.	O
31	A Selection of HEmitters at $z = 2.10.5$ Using the K s -band Photometry of ZFOURGE. 2022 , 941, 70	0
30	Constraining galactic baryon cycle using the galaxy Stellar-to-Halo Mass Relations.	O
29	The XIIhooter/ALMA Sample of Quasars in the Epoch of Reionization. II. Black Hole Masses, Eddington Ratios, and the Formation of the First Quasars. 2022 , 941, 106	1
28	Unveiling cosmological information on small scales with line intensity mapping. 2022, 106,	O
27	Properties of Globular Clusters in Galaxy Clusters: Sensitivity from the Formation and Evolution of Globular Clusters. 2022 , 941, 91	Ο
26	Leveraging cross-correlations and linear covariance-based filtering for line-intensity map reconstructions at linear scales. 2023 , 107,	O
25	Matching the mass function of Milky Way satellites in competing dark matter models. 2023 , 520, 1567-1589	О
24	A Comprehensive Study of Galaxies at $z \sim 9116$ Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch. 2023 , 265, 5	3
23	[C ii] Haloes in ALPINE galaxies: smoking-gun of galactic outflows?. 2023 , 519, 4608-4621	О
22	The deconvolved distribution estimator: enhancing reionization-era CO line-intensity mapping analyses with a cross-correlation analogue for one-point statistics. 2023 , 520, 5305-5316	O
21	Did JWST observe imprints of axion miniclusters or primordial black holes?. 2023, 107,	0
20	Precision redshift-space galaxy power spectra using Zel'dovich control variates. 2023, 2023, 008	O
19	COSMOS2020: Identification of High-z Protocluster Candidates in COSMOS. 2023 , 943, 153	О
18	The Formation of the Brightest Cluster Galaxy and Intracluster Light in Cosmological N-body Simulations with the Galaxy Replacement Technique. 2023 , 943, 148	О

17	On the edge: the relation between stellar and dark matter haloes of Milky Way-mass galaxies. 2023 , 520, 3767-3787	O
16	Prospects for 21 cm Galaxy Cross-correlations with HERA and the Roman High-latitude Survey. 2023 , 944, 59	O
15	Atmospheric Pressure and Molecular Cloud Formation in Early-type Galaxies. 2023, 944, 69	0
14	Characterizing the intracluster light over the redshift range 0.2 & amp;lt; z & amp;lt; 0.8 in the DES-ACT overlap. 2023 , 521, 478-496	O
13	Great balls of FIRE II: The evolution and destruction of star clusters across cosmic time in a Milky Way-mass galaxy. 2023 , 521, 124-147	O
12	Photometric Objects Around Cosmic Webs (PAC) Delineated in a Spectroscopic Survey. IV. High-precision Constraints on the Evolution of the Stellar Halo Mass Relation at Redshift z < 0.7. 2023 , 944, 200	O
11	Galaxy Rotation Curves and Universal Scaling Relations: Comparison between Phenomenological and Fermionic Dark Matter Profiles. 2023 , 945, 1	0
10	COSMOS2020: Discovery of a Protocluster of Massive Quiescent Galaxies at $z = 2.77$. 2023 , 945, L9	О
9	Using the star-forming main sequence to explore quiescent galaxies across cosmic time. 2023 , 522, L11-L15	0
8	Symphony: Cosmological Zoom-in Simulation Suites over Four Decades of Host Halo Mass. 2023 , 945, 159	O
7	The hierarchical clustering method: abundance and properties of local satellite populations. 2023 , 521, 6019-6033	0
6	A cosmic stream of atomic carbon gas connected to a massive radio galaxy at redshift 3.8. 2023 , 379, 1323-1326	1
5	Origin and evolution of ultradiffuse galaxies in different environments. 2023, 522, 1033-1048	0
4	A MUSE view of the multiple interacting system HCGB1.	O
3	Compact Binary Merger Rate in Dark-matter Spikes. 2023 , 947, 46	0
2	Effects of feedback on galaxies in the VELA simulations: elongation, clumps, and compaction. 2023 , 522, 3912-3925	O
1	Anatomy of galactic star formation history: roles of different modes of gas accretion, feedback, and recycling. 2023 , 522, 4691-4717	0