Organic Solid-State Lasers

Springer Series in Optical Sciences

DOI: 10.1007/978-3-642-36705-2

Citation Report

,

#	Article	IF	CITATIONS
1	Functional organic single crystals for solid-state laser applications. Laser and Photonics Reviews, 2014, 8, 687-715.	4.4	160
2	Highly Efficient Intrinsic Phosphorescence from a σ-Conjugated Poly(silylene) Polymer. Journal of Physical Chemistry C, 2014, 118, 22923-22934.	1.5	6
3	Manipulation of the Aggregation and Deaggregation of Tetraphenylethylene and Silole Fluorophores by Amphiphiles: Emission Modulation and Sensing Applications. Langmuir, 2015, 31, 4593-4604.	1.6	84
4	A borane laser. Nature Communications, 2015, 6, 5958.	5.8	63
5	Solid-state deep blue and UV fluorescent dyes based on para-bis(2-thienyl)phenylene. Journal of Luminescence, 2015, 167, 222-226.	1.5	6
6	Degradation mechanisms of polyfluoreneâ€based organic semiconductor lasers under ambient and oxygenâ€free conditions. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1029-1034.	2.4	17
7	Wavelength Tunability of Plastic Waveguide Laser With Asymmetric Distributed Bragg Reflectors. Journal of Lightwave Technology, 2015, 33, 4600-4605.	2.7	2
8	Synthesis and solid-state fluorescence properties of pentacyclic 7-substituted-indeno[1′,2′:4,5]pyrido[2,1-a]isoindol-5-ones. RSC Advances, 2015, 5, 2715-2723.	1.7	5
9	Recent advances of the emitters for high performance deep-blue organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 913-944.	2.7	492
10	Excitation Wavelength Independence: Toward Low-Threshold Amplified Spontaneous Emission from Carbon Nanodots. ACS Applied Materials & amp; Interfaces, 2016, 8, 25454-25460.	4.0	75
11	Single-exciton optical gain in semiconductor nanocrystals: Positive role of electron-phonon coupling. Physical Review B, 2016, 93, .	1.1	10
12	Molecular Materials That Can Both Emit Light and Conduct Charges: Strategies and Perspectives. Chemistry - A European Journal, 2016, 22, 462-471.	1.7	43
13	Organic nanophotonic materials: the relationship between excited-state processes and photonic performances. Chemical Communications, 2016, 52, 8906-8917.	2.2	25
14	An ultra-narrow linewidth solution-processed organic laser. Light: Science and Applications, 2016, 5, e16026-e16026.	7.7	24
15	Thermochromic Fluorescence from B ₁₈ H ₂₀ (NC ₅ H ₅) ₂ : An Inorganic–Organic Composite Luminescent Compound with an Unusual Molecular Geometry. Advanced Optical Materials, 2017, 5, 1600694.	3.6	45
16	Host–guest composite organic microlasers. Journal of Materials Chemistry C, 2017, 5, 5600-5609.	2.7	38
17	A New Benzodithiopheneâ€Based Cruciform Electronâ€Donor–Electronâ€Acceptor Molecule with Ambipolar/Photoresponsive Semiconducting and Redâ€Lightâ€Emissive Properties. Asian Journal of Organic Chemistry, 2017, 6, 1277-1284.	1.3	4
18	Poly(naphthalene diimide) vinylene: solid state red emission and semiconducting properties for transistors. Chemical Communications, 2017, 53, 4934-4937.	2.2	21

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
19	Control of the Stokes Shift with Strong Coupling. Advanced Optical Materials, 2017, 5, 1600941.	3.6	23
20	The application of TD-DFT to excited states of a family of TPD molecules interesting for optoelectronic use. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	2
21	Emission Anisotropy of Fluorescein Covalently Linked to Oligonucleotides. Journal of Applied Spectroscopy, 2017, 84, 19-24.	0.3	4
22	Synthesis and characterization of high quantum yield and oscillator strength 6â€chloroâ€2â€(4â€cynophenyl)â€4â€phenyl quinoline (clâ€CNâ€DPQ) organic phosphor for solidâ€state ligh Luminescence, 2018, 33, 297-304.	ting 5	5
23	Decomposition of Aromatic Compounds Relevant to Organic Electronics under Exposure to Low-Energy Electrons. Technical Physics, 2018, 63, 1854-1860.	0.2	10
24	Dye Lasers. Springer Series in Optical Sciences, 2018, , 121-130.	0.5	Ο
25	Suppressing Nonradiative Processes of Organic Dye with Metal–Organic Framework Encapsulation toward Near-Infrared Solid-State Microlasers. ACS Applied Materials & Interfaces, 2018, 10, 35455-35461.	4.0	33
26	Tailoring spin mixtures by ion-enhanced Maxwell magnetic coupling in color-tunable organic electroluminescent devices. Light: Science and Applications, 2018, 7, 46.	7.7	11
27	Gain investigation of Perylene-Red-doped PMMA for stimulated luminescent solar concentrators. Applied Optics, 2018, 57, 2459.	0.9	2
28	Unraveling the Microscopic Origin of Triplet Lasing from Organic Solids. Journal of Physical Chemistry Letters, 2018, 9, 4314-4318.	2.1	9
29	Near-Infrared Solid-State Lasers Based on Small Organic Molecules. ACS Photonics, 2019, 6, 2590-2599.	3.2	36
30	Engineered protein-based functional nanopatterned materials for bio-optical devices. Nanoscale Advances, 2019, 1, 3980-3991.	2.2	17
31	Inorganic and Layered Perovskites for Optoelectronic Devices. Advanced Materials, 2019, 31, e1807095.	11.1	94
32	Controlling the Output of Organic Micro/Nanolasers. Advanced Optical Materials, 2019, 7, 1900037.	3.6	17
33	State Modeling to Investigate the CW Pumping Behaviour of Organic Solid-State Lasers. , 2019, , .		0
34	Organic Semiconductors in Optical Communications. , 2019, , .		0
35	Slot-Waveguide Silicon Nitride Organic Hybrid Distributed Feedback Laser. Scientific Reports, 2019, 9, 18438.	1.6	12
36	Design Strategy for Robust Organic Semiconductor Laser Dyes. , 2020, 2, 161-167.		47

#	Article	IF	CITATIONS
37	High performance planar microcavity organic semiconductor lasers based on thermally evaporated top distributed Bragg reflector. Applied Physics Letters, 2020, 117, 153301.	1.5	13
38	Radiative energy transfer assisted amplified spontaneous emission in asymmetric-coupled-waveguide structures. Journal of Applied Physics, 2020, 128, 083104.	1.1	2
39	Optically Pumped Lasing in Microscale Light-Emitting Electrochemical Cell Arrays for Multicolor Displays. Nano Letters, 2020, 20, 7116-7122.	4.5	19
40	Charge and exciton dynamics of OLEDs under high voltage nanosecond pulse: towards injection lasing. Nature Communications, 2020, 11, 4310.	5.8	31
41	Lasing Operation under Longâ€Pulse Excitation in Solutionâ€Processed Organic Gain Medium: Toward CW Lasing in Organic Semiconductors. Advanced Optical Materials, 2020, 8, 2001234.	3.6	23
42	Computational screen-out strategy for electrically pumped organic laser materials. Nature Communications, 2020, 11, 4485.	5.8	48
43	Temporal dynamics of diode-pumped circulation-free liquid dye lasers. Journal of Applied Physics, 2020, 128, .	1.1	6
44	A polymer film with ultra-broadband optical gain characteristics. Applied Physics Letters, 2020, 116, 063301.	1.5	4
45	Intramolecular‣ocked High Efficiency Ultrapure Violetâ€Blue (CIEâ€y <0.046) Thermally Activated Delayed Fluorescence Emitters Exhibiting Amplified Spontaneous Emission. Advanced Functional Materials, 2021, 31, 2009488.	7.8	88
46	Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics. Light: Science and Applications, 2021, 10, 64.	7.7	27
47	Organic composite materials: Understanding and manipulating excited states toward higher lightâ€emitting performance. Aggregate, 2021, 2, e103.	5.2	7
48	Stimulated emission and optical properties of pyranyliden fragment containing compounds in PVK matrix. Optics and Laser Technology, 2017, 95, 74-80.	2.2	12
49	Silicon-nitride waveguide-based integrated photonic circuits for medical diagnostic and other sensing applications. , 2019, , .		8
50	Effect of Förster resonance energy transfer efficiency and pump wavelength absorption on the acceptor's amplified spontaneous emission in an on-chip droplet system. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 273.	0.9	3
51	New developments in the determination of the complex refractive index of arbitrary absorptance thin films from envelope profiles of a single transmittance curve. , 2018, , .		0
52	Vertical External-Cavity Organic Lasers: State of the Art and Application Perspectives. , 2018, , 245-284.		0
53	PECVD silicon nitride optical waveguide devices for sensing applications in the visible and <1ŵm near infrared wavelength region. , 2019, , .		1
54	CMOS-compatible silicon nitride waveguide photonic building blocks and their application for optical coherence tomography and other sensing applications. , 2020, , .		2

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
55	Waveguide Mach-Zehnder biosensor with laser diode pumped integrated single-mode silicon nitride organic hybrid solid-state laser. Biosensors and Bioelectronics, 2022, 197, 113816.	5.3	11
56	Recent advances in luminescent metal–organic frameworks and their photonic applications. Chemical Communications, 2021, 57, 13678-13691.	2.2	22
57	Numerical Study of Triplet Dynamics in Organic Semiconductors Aimed for the Active Utilization of Triplets by TADF under Continuous-Wave Lasing. Journal of Physical Chemistry Letters, 2022, 13, 1323-1329.	2.1	6
58	Gridizationâ€Driven Mesoscale Selfâ€Assembly of Conjugated Nanopolymers into Luminescenceâ€Anisotropic Photonic Crystals. Advanced Materials, 2022, 34, e2109399.	11.1	14
59	Thermally Activated Delayed Fluorescent Gain Materials: Harvesting Triplet Excitons for Lasing. Advanced Science, 2022, 9, e2200525.	5.6	30
60	Highly photo-stable, kHz-repetition-rate, diode pumped circulation-free liquid dye laser with thermal lens management. Applied Physics Letters, 2022, 120, 113301.	1.5	2