Local kinetic energy budget of high-frequency and interclimatology and interannual variability

Climate Dynamics 41, 961-976 DOI: 10.1007/s00382-013-1684-1

Citation Report

#	Article	IF	CITATIONS
1	Intermediate frequency atmospheric disturbances: A dynamical bridge connecting western U.S. extreme precipitation with East Asian cold surges. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3723-3735.	1.2	25
2	Storm track activity over the North Pacific associated with the Madden-Julian Oscillation under ENSO conditions during boreal winter. Journal of Geophysical Research D: Atmospheres, 2014, 119, 10,663-10,683.	1.2	27
3	A Lorenz/Boer energy budget for the atmosphere of Mars from a "reanalysis―of spacecraft observations. Geophysical Research Letters, 2015, 42, 8320-8327.	1.5	13
4	Initial Transient Response of an Intensifying Baroclinic Wave to Increases in Cloud Droplet Number Concentration. Journal of Climate, 2015, 28, 9669-9677.	1.2	8
5	Energetics and dynamics associated with two typical mobile trough pathways over East Asia in boreal winter. Climate Dynamics, 2015, 44, 1611-1626.	1.7	16
6	Intraseasonal Variation of the Strength of the East Asian Trough and Its Climatic Impacts in Boreal Winter. Journal of Climate, 2016, 29, 2557-2577.	1.2	112
7	Wave energetics of the southern hemisphere of Mars. Icarus, 2018, 309, 220-240.	1.1	13
8	Afro-Eurasian Intermediate-Frequency Teleconnection and Modulation by ENSO. Journal of Climate, 2018, 31, 8121-8139.	1.2	3
9	Enhancement of lower tropospheric winter synoptic temperature variations in Southwest China and the northern Indochina Peninsula after 2010. Climate Dynamics, 2019, 53, 2281-2294.	1.7	8
10	Planetary and synoptic-scale dynamic control of extreme cold wave patterns over the United States. Climate Dynamics, 2019, 53, 1477-1495.	1.7	16
11	Northern Hemisphere Blocking in â^¼25â€kmâ€Resolution E3SM v0.3 Atmosphere‣and Simulations. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2465-2482.	1.2	7
12	A Causality-Based View of the Interaction between Synoptic- and Planetary-Scale Atmospheric Disturbances. Journals of the Atmospheric Sciences, 2020, 77, 925-941.	0.6	5
13	The Budget of Local Available Potential Energy of Low-Frequency Eddies in Northern Hemispheric Winter. Journal of Climate, 2021, 34, 1241-1258.	1.2	6
14	Association of the Zonal Migration of North Pacific Storm Track With the East Asian Monsoon in Boreal Wintertime. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033790.	1.2	2
15	The Climatology and the Midwinter Suppression of the Cold Season North Pacific Storm Track in CMIP6 Models. Journal of Climate, 2021, , 1-56.	1.2	3
16	Contrasting interannual impacts of European and Greenland blockings on the winter North Atlantic storm track. Environmental Research Letters, 2021, 16, 104036.	2.2	0
17	Are the Different Eddy Metrics Quantifying the Winter North Pacific Storm Track Consistent with Each Other?. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034979.	1.2	0
18	Transient Eddy Kinetic Energetics on Mars in Three Reanalysis Datasets. Journals of the Atmospheric Sciences, 2022, 79, 361-382.	0.6	5

#	Article	IF	CITATIONS
19	Energetics of Transient Eddies Related to the Midwinter Minimum of the North Pacific Storm-Track Activity. Journal of Climate, 2022, 35, 1137-1156.	1.2	8
20	Energetics of Boreal Wintertime Blocking Highs around the Ural Mountains. Journal of Meteorological Research, 2022, 36, 154-174.	0.9	6
21	Mechanical and Thermal Impacts of the Tibetan–Iranian Plateau on the North Pacific Storm Track: Numerical Experiments by FGOALSâ€f3‣. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
22	Multiple time scales of the southern annular mode. Climate Dynamics, 0, , .	1.7	0