An siRNA screen for NFAT activation identifies septins a Ca2+ entry

Nature 499, 238-242 DOI: 10.1038/nature12229

Citation Report

#	Article	IF	CITATIONS
1	Motors and MAPs Collaborate to Size Up Microtubules. Developmental Cell, 2013, 26, 118-120.	3.1	7
2	Fibronectin contributes to pathological cardiac hypertrophy but not physiological growth. Basic Research in Cardiology, 2013, 108, 375.	2.5	50
3	Phosphorylationâ€dependent Trafficking of Plasma Membrane Proteins in Animal and Plant Cells. Journal of Integrative Plant Biology, 2013, 55, 789-808.	4.1	42
4	Location Memory: Separate Cortical Coding for Distal and Local Cues. Current Biology, 2013, 23, R685-R687.	1.8	0
5	Calcium Signaling: Septins Organize the SOC Channel. Current Biology, 2013, 23, R684-R685.	1.8	1
6	Septins Set the Stage for Orai1 to Bind STIM1 at ER-PM Junctions. Developmental Cell, 2013, 26, 116-118.	3.1	2
7	Septins promote dendrite and axon development by negatively regulating microtubule stability via HDAC6-mediated deacetylation. Nature Communications, 2013, 4, 2532.	5.8	106
8	Role of Endothelial Cell Septin 7 in the Endocytosis of Candida albicans. MBio, 2013, 4, e00542-13.	1.8	38
9	The STIM1/Orai signaling machinery. Channels, 2013, 7, 330-343.	1.5	42
10	Expression of genes encoding the calcium signalosome in cellular and transgenic models of Huntington's disease. Frontiers in Molecular Neuroscience, 2013, 6, 42.	1.4	43
11	Decreased Store Operated Ca2+ Entry in Dendritic Cells Isolated from Mice Expressing PKB/SGK-Resistant GSK3. PLoS ONE, 2014, 9, e88637.	1.1	8
12	Amplified lipid rafts of malignant cells constitute a target for inhibition of aberrantly active NFAT and melanoma tumor growth by the aminobisphosphonate zoledronic acid. Carcinogenesis, 2014, 35, 2555-2566.	1.3	22
13	Septin functions in organ system physiology and pathology. Biological Chemistry, 2014, 395, 123-141.	1.2	144
14	Calcium and Calcineurin-NFAT Signaling Regulate Granulocyte-Monocyte Progenitor Cell Cycle via Flt3-L. Stem Cells, 2014, 32, 3232-3244.	1.4	20
15	Off-Target Effects of the Septin Drug Forchlorfenuron on Nonplant Eukaryotes. Eukaryotic Cell, 2014, 13, 1411-1420.	3.4	24
16	Translocation between PI(4,5)P2-poor and PI(4,5)P2-rich microdomains during store depletion determines STIM1 conformation and Orai1 gating. Nature Communications, 2014, 5, 5843.	5.8	121
17	Single-molecule analysis of diffusion and trapping of STIM1 and Orai1 at endoplasmic reticulum–plasma membrane junctions. Molecular Biology of the Cell, 2014, 25, 3672-3685.	0.9	107
18	Recruitment of septin cytoskeletal proteins by Botulinum toxin A protease determines its remarkable stability. Journal of Cell Science, 2014, 127, 3294-308.	1.2	27

ATION REDO

#	Article	IF	CITATIONS
19	Filamin A Promotes Dynamin-dependent Internalization of Hyperpolarization-activated Cyclic Nucleotide-gated Type 1 (HCN1) Channels and Restricts Ih in Hippocampal Neurons. Journal of Biological Chemistry, 2014, 289, 5889-5903.	1.6	28
20	Ca2+ signaling and regulation of fluid secretion in salivary gland acinar cells. Cell Calcium, 2014, 55, 297-305.	1.1	70
21	lonic protein–lipid interaction at the plasma membrane: what can the charge do?. Trends in Biochemical Sciences, 2014, 39, 130-140.	3.7	99
22	Barriers to uniformity within the endoplasmic reticulum. Current Opinion in Cell Biology, 2014, 29, 31-38.	2.6	8
23	How ORAI and TRP channels interfere with each other: Interaction models and examples from the immune system and the skin. European Journal of Pharmacology, 2014, 739, 49-59.	1.7	51
24	Polarization of the Endoplasmic Reticulum by ER-Septin Tethering. Cell, 2014, 158, 620-632.	13.5	92
25	Counterion-Assisted Cation Transport in a Biological Calcium Channel. Journal of Physical Chemistry B, 2014, 118, 9668-9676.	1.2	15
26	STIM1 triggers a gating rearrangement at the extracellular mouth of the ORAI1 channel. Nature Communications, 2014, 5, 5164.	5.8	75
27	Calcium signaling in B cells: Regulation of cytosolic Ca2+ increase and its sensor molecules, STIM1 and STIM2. Molecular Immunology, 2014, 62, 339-343.	1.0	34
28	Fungal pathogens are platforms for discovering novel and conserved septin properties. Current Opinion in Microbiology, 2014, 20, 42-48.	2.3	25
29	Key Components of Store-Operated Ca2+ Entry in Non-Excitable Cells. Journal of Pharmacological Sciences, 2014, 125, 340-346.	1.1	28
30	Time-Resolved Imaging Reveals Heterogeneous Landscapes of Nanomolar Ca2+ in Neurons and Astroglia. Neuron, 2015, 88, 277-288.	3.8	108
31	Nanodomains in early and later phases of FcɛRI signalling. Essays in Biochemistry, 2015, 57, 147-163.	2.1	15
32	Retrograde regulation of STIM1-Orai1 interaction and store-operated Ca2+ entry by calsequestrin. Scientific Reports, 2015, 5, 11349.	1.6	42
33	Φ-score: A cell-to-cell phenotypic scoring method for sensitive and selective hit discovery in cell-based assays. Scientific Reports, 2015, 5, 14221.	1.6	6
34	Cytoskeletal dynamics: A view from the membrane. Journal of Cell Biology, 2015, 209, 329-337.	2.3	147
35	Store-operated calcium entry: Mechanisms and modulation. Biochemical and Biophysical Research Communications, 2015, 460, 40-49.	1.0	166
36	Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G. Nucleic Acids Research, 2015, 43, 1380-1391.	6.5	62

#	Article	IF	CITATIONS
37	TMEM110 regulates the maintenance and remodeling of mammalian ER–plasma membrane junctions competent for STIM–ORAI signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7083-92.	3.3	58
38	Impact of Janus Kinase 3 on Cellular Ca2+ Release, Store Operated Ca2+ Entry and Na+/Ca2+ Exchanger Activity in Dendritic Cells. Cellular Physiology and Biochemistry, 2015, 36, 2287-2298.	1.1	12
39	Structural and Functional Mechanisms of CRAC Channel Regulation. Journal of Molecular Biology, 2015, 427, 77-93.	2.0	79
40	Sep(t)arate or not – how some cells take septin-independent routes through cytokinesis. Journal of Cell Science, 2015, 128, 1877-1886.	1.2	41
41	Septin Dynamics Are Essential for Exocytosis. Journal of Biological Chemistry, 2015, 290, 5280-5297.	1.6	68
42	The STIM1–ORAI1 microdomain. Cell Calcium, 2015, 58, 357-367.	1.1	81
43	Functional analysis of phosphorylation of the mitotic centromere-associated kinesin by Aurora B kinase in human tumor cells. Cell Cycle, 2015, 14, 3755-3767.	1.3	29
44	Septin Form and Function at the Cell Cortex. Journal of Biological Chemistry, 2015, 290, 17173-17180.	1.6	119
45	Critical role for Orai1 C-terminal domain and TM4 in CRAC channel gating. Cell Research, 2015, 25, 963-980.	5.7	77
46	Molecular determinants of TRPC1 regulation within ER–PM junctions. Cell Calcium, 2015, 58, 376-386.	1.1	32
47	STIM1L traps and gates Orai1 channels without remodeling the cortical ER. Journal of Cell Science, 2015, 128, 1568-79.	1.2	44
48	Role of Calcium Signaling in B Cell Activation and Biology. Current Topics in Microbiology and Immunology, 2015, 393, 143-174.	0.7	44
49	CD103+ Dendritic Cells Control Th17 Cell Function in the Lung. Cell Reports, 2015, 12, 1789-1801.	2.9	89
50	STIMATE reveals a STIM1 transitional state. Nature Cell Biology, 2015, 17, 1232-1234.	4.6	19
51	Nanoscale patterning of STIM1 and Orai1 during store-operated Ca ²⁺ entry. Proceedings of the United States of America, 2015, 112, E5533-42.	3.3	55
52	Store-Operated Calcium Channels. Physiological Reviews, 2015, 95, 1383-1436.	13.1	922
53	The Carboxy-Terminal Tails of Septins Cdc11 and Shs1 Recruit Myosin-II Binding Factor Bni5 to the Bud Neck in <i>Saccharomyces cerevisiae</i> . Genetics, 2015, 200, 843-862.	1.2	42
54	STIM2 enhances receptor-stimulated Ca ²⁺ signaling by promoting recruitment of STIM1 to the endoplasmic reticulum–plasma membrane junctions. Science Signaling, 2015, 8, ra3.	1.6	83

#	Article	IF	Citations
55	Sphingomyelin, ORAI1 channels, and cellular Ca2+ signaling. Journal of General Physiology, 2015, 146, 195-200.	0.9	7
56	Proteomic mapping of ER–PM junctions identifies STIMATE as a regulator of Ca2+ influx. Nature Cell Biology, 2015, 17, 1339-1347.	4.6	179
57	Comprehensive Genetic Analysis of Paralogous Terminal Septin Subunits Shs1 and Cdc11 in <i>Saccharomyces cerevisiae</i> . Genetics, 2015, 200, 821-841.	1.2	44
58	The ER/PM microdomain, PI(4,5)P2 and the regulation of STIM1–Orai1 channel function. Cell Calcium, 2015, 58, 342-348.	1.1	47
59	Post-transcriptional Wnt Signaling Governs Epididymal Sperm Maturation. Cell, 2015, 163, 1225-1236.	13.5	180
60	Septins and Generation of Asymmetries in Fungal Cells. Annual Review of Microbiology, 2015, 69, 487-503.	2.9	26
61	New insights into the activation interaction partners and possible functions of MK5 PRAK. Frontiers in Bioscience - Landmark, 2016, 21, 374-384.	3.0	13
62	Septins As Modulators of Endo-Lysosomal Membrane Traffic. Frontiers in Cell and Developmental Biology, 2016, 4, 124.	1.8	30
63	Regulation of Store-Operated Ca2+ Entry by Septins. Frontiers in Cell and Developmental Biology, 2016, 4, 142.	1.8	20
64	Calcium Dyshomeostasis in Tubular Aggregate Myopathy. International Journal of Molecular Sciences, 2016, 17, 1952.	1.8	15
65	Septins: Cytoskeletal Filaments with Structural and Regulatory Functions. , 2016, , 579-587.		1
66	Mutant IP3 receptors attenuate store-operated Ca2+ entry by destabilizing STIM-Orai interactions in <i>Drosophila</i> neurons. Journal of Cell Science, 2016, 129, 3903-3910.	1.2	32
67	Role of TRPC Channels in Store-Operated Calcium Entry. Advances in Experimental Medicine and Biology, 2016, 898, 87-109.	0.8	74
68	The TRPCs, Orais and STIMs in ER/PM Junctions. Advances in Experimental Medicine and Biology, 2016, 898, 47-66.	0.8	15
69	Homeostatic regulation of the PI(4,5)P 2 –Ca 2+ signaling system at ER–PM junctions. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 862-873.	1.2	49
70	Junctophilin-4, a component of the endoplasmic reticulum–plasma membrane junctions, regulates Ca ²⁺ dynamics in T cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2762-2767.	3.3	56
71	New Regulatory Roles of Galectin-3 in High-Affinity IgE Receptor Signaling. Molecular and Cellular Biology, 2016, 36, 1366-1382.	1.1	25
72	Manifestation of Huntington's disease pathology in human induced pluripotent stem cell-derived neurons. Molecular Neurodegeneration, 2016, 11, 27.	4.4	140

#	Article	IF	CITATIONS
73	Molecular modulators of store-operated calcium entry. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2037-2043.	1.9	53
74	Microdomains Associated to Lipid Rafts. Advances in Experimental Medicine and Biology, 2016, 898, 353-378.	0.8	7
75	Small molecule perturbations of septins. Methods in Cell Biology, 2016, 136, 311-319.	0.5	7
76	Fluorescence microscopy of actin- and microtubule-associated septins in mammalian cells. Methods in Cell Biology, 2016, 136, 243-268.	0.5	1
77	Endoplasmic reticulum–plasma membrane junctions: structure, function and dynamics. Journal of Physiology, 2016, 594, 2837-2847.	1.3	37
78	A cholesterol-binding domain in STIM1 modulates STIM1-Orai1 physical and functional interactions. Scientific Reports, 2016, 6, 29634.	1.6	42
79	Store-independent modulation of Ca2+ entry through Orai by Septin 7. Nature Communications, 2016, 7, 11751.	5.8	44
80	Molecular mechanisms of STIM/Orai communication. American Journal of Physiology - Cell Physiology, 2016, 310, C643-C662.	2.1	110
81	Orai1 and STIM1 in ER/PM junctions: roles in pancreatic cell function and dysfunction. American Journal of Physiology - Cell Physiology, 2016, 310, C414-C422.	2.1	18
82	Septin oligomerization regulates persistent expression of ErbB2/HER2Âin gastric cancer cells. Biochemical Journal, 2016, 473, 1703-1718.	1.7	25
83	cGAS-STING Signaling Regulates Initial Innate Control of Cytomegalovirus Infection. Journal of Virology, 2016, 90, 7789-7797.	1.5	113
84	Septins guide microtubule protrusions induced by actin-depolymerizing toxins like <i>Clostridium difficile</i> transferase (CDT). Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7870-7875.	3.3	41
85	Roles of Calcium Stores and Store-Operated Channels in Plasticity of Dendritic Spines. Neuroscientist, 2016, 22, 477-485.	2.6	34
86	Cooperative Binding of Stromal Interaction Molecule 1 (STIM1) to the N and C Termini of Calcium Release-activated Calcium Modulator 1 (Orai1). Journal of Biological Chemistry, 2016, 291, 334-341.	1.6	42
87	Signalling at membrane contact sites: two membranes come together to handle second messengers. Current Opinion in Cell Biology, 2016, 39, 77-83.	2.6	40
88	A septin requirement differentiates autonomous and contact-facilitated T cell proliferation. Nature Immunology, 2016, 17, 315-322.	7.0	22
89	B Cell Receptor Signaling. Current Topics in Microbiology and Immunology, 2016, , .	0.7	1
90	Extracellular calcium elicits feedforward regulation of the Toll-like receptor-triggered innate immune response. Cellular and Molecular Immunology, 2017, 14, 180-191.	4.8	29

		CITATION REPORT		
#	Article		IF	Citations
91	Optogenetic toolkit for precise control of calcium signaling. Cell Calcium, 2017, 64, 36	5-46.	1.1	56
92	Endoplasmic Reticulum–Plasma Membrane Contact Sites. Annual Review of Biochen 659-684.	histry, 2017, 86,	5.0	257
93	RASSF4 controls SOCE and ER–PM junctions through regulation of PI(4,5)P2. Journa 2017, 216, 2011-2025.	ıl of Cell Biology,	2.3	54
94	ER-plasma membrane junctions: Why and how do we study them?. Biochimica Et Biopl Molecular Cell Research, 2017, 1864, 1494-1506.	nysica Acta -	1.9	59
95	The Role of Mitochondria in the Activation/Maintenance of SOCE: Membrane Contact Signaling Hubs Sustaining Store-Operated Ca2+ Entry. Advances in Experimental Medi 2017, 993, 277-296.	Sites as cine and Biology,	0.8	9
96	Cardiovascular and Hemostatic Disorders: Role of STIM and Orai Proteins in Vascular D Advances in Experimental Medicine and Biology, 2017, 993, 425-452.	isorders.	0.8	25
97	The STIM-Orai Pathway: Light-Operated Ca2+ Entry Through Engineered CRAC Channe Experimental Medicine and Biology, 2017, 993, 117-138.	ls. Advances in	0.8	12
98	STIM-TRP Pathways and Microdomain Organization: Auxiliary Proteins of the STIM/Ora Advances in Experimental Medicine and Biology, 2017, 993, 189-210.	i Complex.	0.8	5
99	New Aspects of the Contribution of ER to SOCE Regulation: The Role of the ER and ER- Membrane Junctions in the Regulation of SOCE. Advances in Experimental Medicine ar 993, 217-237.	Plasma 1d Biology, 2017,	0.8	0
100	The STIM-Orai Pathway: Orai, the Pore-Forming Subunit of the CRAC Channel. Advance Medicine and Biology, 2017, 993, 39-57.	rs in Experimental	0.8	19
101	The STIM-Orai Pathway: The Interactions Between STIM and Orai. Advances in Experim and Biology, 2017, 993, 59-81.	ental Medicine	0.8	17
102	Store-Operated Ca2+ Entry as a Prostate Cancer Biomarker — a Riddle with Perspect Molecular Biology Reports, 2017, 3, 208-217.	ives. Current	0.8	14
103	The role of the storeâ€operated calcium entry channel Orai1 in cultured rat hippocamp formation and plasticity. Journal of Physiology, 2017, 595, 125-140.	oal synapse	1.3	60
104	The Interplay between Cytoskeleton and Calcium Dynamics. , 0, , .			11
105	Editorial: Emerging Functions of Septins. Frontiers in Cell and Developmental Biology,	2017, 5, 73.	1.8	4
106	Assembly of ER-PM Junctions: A Critical Determinant in the Regulation of SOCE and TR Experimental Medicine and Biology, 2017, 981, 253-276.	PC1. Advances in	0.8	7
107	Participation of Septin Cytoskeletal Proteins in the Nervous System Functioning. Bioch (Moscow) Supplement Series A: Membrane and Cell Biology, 2018, 12, 1-9.	iemistry	0.3	1
108	CaMKII Potentiates Store-Operated Ca2+ Entry Through Enhancing STIM1 Aggregation with Orai1. Cellular Physiology and Biochemistry, 2018, 46, 1042-1054.	n and Interaction	1.1	13

		LEPORT	
#	Article	IF	CITATIONS
109	Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochemical Pharmacology, 2018, 153, 91-122.	2.0	107
110	Coiled-Coil Formation Conveys a STIM1 Signal from ER Lumen to Cytoplasm. Cell Reports, 2018, 22, 72-83.	2.9	64
111	EB1 binding restricts STIM1 translocation to ER–PM junctions and regulates store-operated Ca2+ entry. Journal of Cell Biology, 2018, 217, 2047-2058.	2.3	57
112	RPGR protein complex regulates proteasome activity and mediates store-operated calcium entry. Oncotarget, 2018, 9, 23183-23197.	0.8	16
113	Regulation of Calcium Signaling by STIM1 and ORAI1. , 0, , .		8
114	Septin 7 mediates high glucose-induced podocyte apoptosis. Biochemical and Biophysical Research Communications, 2018, 506, 522-528.	1.0	9
115	Identification of novel regulatory partners of the glutamate transporter GLTâ€1. Glia, 2018, 66, 2737-2755.	2.5	18
116	Calcium sensing by the STIM1 ER-luminal domain. Nature Communications, 2018, 9, 4536.	5.8	51
117	Unfolded Protein Response-Dependent Communication and Contact among Endoplasmic Reticulum, Mitochondria, and Plasma Membrane. International Journal of Molecular Sciences, 2018, 19, 3215.	1.8	39
118	Storeâ€Operated Calcium Entry Mediated byÂORAIÂand STIM. , 2018, 8, 981-1002.		37
119	GRAM domain proteins specialize functionally distinct ER-PM contact sites in human cells. ELife, 2018, 7, .	2.8	96
120	CRAC channels as targets for drug discovery and development. Cell Calcium, 2018, 74, 147-159.	1.1	68
121	SEPT7â€mediated regulation of Ca 2+ entry through Orai channels requires other septin subunits. Cytoskeleton, 2019, 76, 104-114.	1.0	7
122	A requirement for septins and the autophagy receptor p62 in the proliferation of intracellular <i>Shigella</i> . Cytoskeleton, 2019, 76, 163-172.	1.0	17
123	Redox signals at the <scp>ER</scp> –mitochondria interface control melanoma progression. EMBO Journal, 2019, 38, e100871.	3.5	59
124	Septins organize endoplasmic reticulum-plasma membrane junctions for STIM1-ORAI1 calcium signalling. Scientific Reports, 2019, 9, 10839.	1.6	29
125	A Ciliary View of the Immunological Synapse. Cells, 2019, 8, 789.	1.8	42
126	CRAC channel regulation of innate immune cells in health and disease. Cell Calcium, 2019, 78, 56-65.	1.1	37

#	Article	IF	CITATIONS
127	Distinct segregation patterns of yeast cell-peripheral proteins uncovered by a method for protein segregatome analysis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8909-8918.	3.3	19
128	Tmem178 negatively regulates store-operated calcium entry in myeloid cells via association with STIM1. Journal of Autoimmunity, 2019, 101, 94-108.	3.0	12
129	Reorganization of Septins Modulates Synaptic Transmission at Neuromuscular Junctions. Neuroscience, 2019, 404, 91-101.	1.1	8
130	The regulators of BCR signaling during B cell activation. Blood Science, 2019, 1, 119-129.	0.4	21
131	Partners in Crime: Towards New Ways of Targeting Calcium Channels. International Journal of Molecular Sciences, 2019, 20, 6344.	1.8	6
132	Structural and Mechanistic Insights of CRAC Channel as a Drug Target in Autoimmune Disorder. Current Drug Targets, 2019, 21, 55-75.	1.0	4
133	Microtubules Stabilization by Mutant Spastin Affects ER Morphology and Ca2+ Handling. Frontiers in Physiology, 2019, 10, 1544.	1.3	19
134	STIM1 activation of Orai1. Cell Calcium, 2019, 77, 29-38.	1.1	75
135	IP3 receptors and Ca2+ entry. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1092-1100.	1.9	52
136	Store-operated calcium entry in disease: Beyond STIM/Orai expression levels. Seminars in Cell and Developmental Biology, 2019, 94, 66-73.	2.3	26
137	Interorganellar calcium signaling in the regulation of cell metabolism: A cancer perspective. Seminars in Cell and Developmental Biology, 2020, 98, 167-180.	2.3	35
138	The Endoplasmic Reticulum–Plasma Membrane Junction: A Hub for Agonist Regulation of Ca ²⁺ Entry. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035253.	2.3	18
139	Store-Operated Calcium Channels: From Function to Structure and Back Again. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035055.	2.3	82
140	Diverse Functions of Lipids and Lipid Metabolism in Development. Small Methods, 2020, 4, 1900564.	4.6	14
141	Increased Confinement and Polydispersity of STIM1 and Orai1 after Ca2+ Store Depletion. Biophysical Journal, 2020, 118, 70-84.	0.2	8
142	SEPT7 regulates Ca2+ entry through Orai channels in human neural progenitor cells and neurons. Cell Calcium, 2020, 90, 102252.	1.1	20
143	Coordinating Cytoskeleton and Molecular Traffic in T Cell Migration, Activation, and Effector Functions. Frontiers in Cell and Developmental Biology, 2020, 8, 591348.	1.8	36
144	STIM1/ORAI1 Loss-of-Function and Gain-of-Function Mutations Inversely Impact on SOCE and Calcium Homeostasis and Cause Multi-Systemic Mirror Diseases. Frontiers in Physiology, 2020, 11, 604941.	1.3	40

#	Article	IF	CITATIONS
145	Septin2 mediates podosome maturation and endothelial cell invasion associated with angiogenesis. Journal of Cell Biology, 2020, 219, .	2.3	10
146	Molecular Choreography and Structure of Ca2+ Release-Activated Ca2+ (CRAC) and KCa2+ Channels and Their Relevance in Disease with Special Focus on Cancer. Membranes, 2020, 10, 425.	1.4	9
147	Target Molecules of STIM Proteins in the Central Nervous System. Frontiers in Molecular Neuroscience, 2020, 13, 617422.	1.4	25
148	Dysregulation of Neuronal Calcium Signaling via Store-Operated Channels in Huntington's Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 611735.	1.8	29
149	The history of septin biology and bacterial infection. Cellular Microbiology, 2020, 22, e13173.	1.1	21
150	Septins, a cytoskeletal protein family, with emerging role in striated muscle. Journal of Muscle Research and Cell Motility, 2020, 42, 251-265.	0.9	8
151	A Septin Cytoskeleton-Targeting Small Molecule, Forchlorfenuron, Inhibits Epithelial Migration via Septin-Independent Perturbation of Cellular Signaling. Cells, 2020, 9, 84.	1.8	12
152	Novel Functions of the Septin Cytoskeleton. American Journal of Pathology, 2021, 191, 40-51.	1.9	18
153	Molecular machineries and physiological relevance of ER-mediated membrane contacts. Theranostics, 2021, 11, 974-995.	4.6	15
154	Calcium Sensors STIM1 and STIM2 Regulate Different Calcium Functions in Cultured Hippocampal Neurons. Frontiers in Synaptic Neuroscience, 2020, 12, 573714.	1.3	13
155	More Than Just Simple Interaction between STIM and Orai Proteins: CRAC Channel Function Enabled by a Network of Interactions with Regulatory Proteins. International Journal of Molecular Sciences, 2021, 22, 471.	1.8	18
156	The tumor suppressor kinase DAPK3 drives tumor-intrinsic immunity through the STING–IFN-β pathway. Nature Immunology, 2021, 22, 485-496.	7.0	45
157	Endoplasmic Reticulumâ€Plasma Membrane Contact Sites as an Organizing Principle for Compartmentalized Calcium and cAMP Signaling. International Journal of Molecular Sciences, 2021, 22, 4703.	1.8	12
159	Calcium signals regulate the functional differentiation of thymic iNKT cells. EMBO Journal, 2021, 40, e107901.	3.5	3
161	Plasma Membrane and Organellar Targets of STIM1 for Intracellular Calcium Handling in Health and Neurodegenerative Diseases. Cells, 2021, 10, 2518.	1.8	6
162	PIP2 and septin control STIM1/Orai1 assembly by regulating cytoskeletal remodeling via a CDC42-WASP/WAVE-ARP2/3 protein complex. Cell Calcium, 2021, 99, 102475.	1.1	13
163	Review: Structure and Activation Mechanisms of CRAC Channels. Advances in Experimental Medicine and Biology, 2020, 1131, 547-604.	0.8	25
164	STIM-TRP Pathways and Microdomain Organization: Ca2+ Influx Channels: The Orai-STIM1-TRPC Complexes. Advances in Experimental Medicine and Biology, 2017, 993, 139-157.	0.8	31

#	Article	IF	CITATIONS
165	STIM-TRP Pathways and Microdomain Organization: Contribution of TRPC1 in Store-Operated Ca2+ Entry: Impact on Ca2+ Signaling and Cell Function. Advances in Experimental Medicine and Biology, 2017, 993, 159-188.	0.8	24
166	Masters of asymmetry – lessons and perspectives from 50 years of septins. Molecular Biology of the Cell, 2020, 31, 2289-2297.	0.9	33
167	In Silico Docking of Forchlorfenuron (FCF) to Septins Suggests that FCF Interferes with GTP Binding. PLoS ONE, 2014, 9, e96390.	1.1	31
168	Septin remodeling is essential for the formation of cell membrane protrusions (microtentacles) in detached tumor cells. Oncotarget, 2017, 8, 76686-76698.	0.8	23
169	The activity regulation of the mitotic centromere-associated kinesin by Polo-like kinase 1. Oncotarget, 2015, 6, 6641-6655.	0.8	20
170	Relationship between autophagy, apoptosis and endoplasmic reticulum stress induced by melatonin in osteoblasts by septin7 expression. Molecular Medicine Reports, 2020, 21, 2427-2434.	1.1	3
171	Septin. , 2017, , 1-9.		0
174	Septin. , 2018, , 4875-4884.		2
176	Septin4 regulates endoplasmic reticulum stress and apoptosis in melatonin‑induced osteoblasts. Molecular Medicine Reports, 2020, 22, 1179-1186.	1.1	5
177	Biochemical and NMR studies reveal specific interaction between STIMATE C-tail and PI(4,5)P2 or PI(3,4,5)P3-containing membrane. Biochemical and Biophysical Research Communications, 2022, 597, 16-22.	1.0	0
178	The Role of Lipids in CRAC Channel Function. Biomolecules, 2022, 12, 352.	1.8	3
179	Septins tune lipid kinase activity and PI(4,5)P ₂ turnover during G-protein–coupled PLC signalling in vivo. Life Science Alliance, 2022, 5, e202101293.	1.3	3
181	On the Connections between TRPM Channels and SOCE. Cells, 2022, 11, 1190.	1.8	1
182	Deficits Associated With Loss of STIM1 in Purkinje Neurons Including Motor Coordination Can Be Rescued by Loss of Septin 7. Frontiers in Cell and Developmental Biology, 2021, 9, 794807.	1.8	6
188	Contribution of septins to human platelet structure and function. IScience, 2022, , 104654.	1.9	4
189	Editorial: Emerging Functions of Septins—Volume II. Frontiers in Cell and Developmental Biology, 0, 10,	1.8	1
190	STIM Proteins and Regulation of SOCE in ER-PM Junctions. Biomolecules, 2022, 12, 1152.	1.8	6
191	Massive Loss of Transcription Factors Promotes the Initial Diversification of Placental Mammals. International Journal of Molecular Sciences, 2022, 23, 9720.	1.8	1

#	Article	IF	CITATIONS
192	Metabolomic Profiles Differentiate Scleroderma-PAH From Idiopathic PAH and Correspond With Worsened Functional Capacity. Chest, 2023, 163, 204-215.	0.4	4
193	CRAC and SK Channels: Their Molecular Mechanisms Associated with Cancer Cell Development. Cancers, 2023, 15, 101.	1.7	5
194	ER a ²⁺ stores and the regulation of storeâ€operated Ca ²⁺ entry in neurons. Journal of Physiology, 0, , .	1.3	0
195	Decoding postâ€ŧranslational modifications of mammalian septins. Cytoskeleton, 2023, 80, 169-181.	1.0	3
196	Orai1 is an Entotic Ca ²⁺ Channel for Nonâ€Apoptotic Cell Death, Entosis in Cancer Development. Advanced Science, 2023, 10, .	5.6	2
197	Roles of Cholesterol and PtdIns(4,5)P2 in the Regulation of STIM1–Orai1 Channel Function. Advances in Experimental Medicine and Biology, 2023, , 305-326.	0.8	0
205	Stay in touch with the endoplasmic reticulum. Science China Life Sciences, 2024, 67, 230-257.	2.3	0