Noncanonical Autophagy Promotes the Visual Cycle

Cell 154, 365-376 DOI: 10.1016/j.cell.2013.06.012

Citation Report

#	ARTICLE	IF	CITATIONS
1	Spinal descent of cerebrospinal fluid in man. Neurology, 1976, 26, 1-1.	1.5	160
2	Revising and validating the 2000 Word Level and University Word Level Vocabulary Tests. Language Testing, 1999, 16, 131-162.	1.7	88
3	Recycling in sight. Nature, 2013, 501, 40-42.	13.7	3
4	Rhodopsin homeostasis and retinal degeneration: lessons from the fly. Trends in Neurosciences, 2013, 36, 652-660.	4.2	68
5	Associations Between Abnormal Rod-Mediated Dark Adaptation and Health and Functioning in Older Adults With Normal Macular Health. , 2014, 55, 4776.		62
6	Circadian and Noncircadian Modulation of Autophagy in Photoreceptors and Retinal Pigment Epithelium. , 2014, 55, 3237.		63
7	Transcellular degradation of axonal mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9633-9638.	3.3	476
8	Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD. Autophagy, 2014, 10, 1989-2005.	4.3	352
9	Retinal pigment epithelial cells undergoing mitotic catastrophe are vulnerable to autophagy inhibition. Cell Death and Disease, 2014, 5, e1303-e1303.	2.7	35
10	Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal. Cell Death and Disease, 2014, 5, e1328-e1328.	2.7	37
11	Quantitative Autofluorescence and Cell Density Maps of the Human Retinal Pigment Epithelium. , 2014, 55, 4832.		182
12	Inhibition of autophagy induces retinal pigment epithelial cell damage by the lipofuscin fluorophore A2E. FEBS Open Bio, 2014, 4, 1007-1014.	1.0	37
13	Impaired OMA1 dependent OPA1 cleavage and reduced DRP1 fission activity combine to prevent mitophagy in OXPHOS dependent cells. Journal of Cell Science, 2014, 127, 2313-25.	1.2	90
14	Autophagosome formation in response to intracellular bacterial invasion. Cellular Microbiology, 2014, 16, 1619-1626.	1.1	27
15	A genome-wide association study identifies a functional ERAP2 haplotype associated with birdshot chorioretinopathy. Human Molecular Genetics, 2014, 23, 6081-6087.	1.4	115
16	Selective autophagy against membranous compartments. Autophagy, 2014, 10, 397-407.	4.3	23
17	To Be or Not to Be? How Selective Autophagy and Cell Death Govern Cell Fate. Cell, 2014, 157, 65-75.	13.5	606
18	Progressive dysfunction of the retinal pigment epithelium and retina due to increased VEGFâ€A levels.	0.2	48

ATION RED

ARTICLE

IF CITATIONS

19	Vertebrate Photoreceptors. , 2014, , .		7
20	Lysosomal-mediated waste clearance in retinal pigment epithelial cells is regulated by CRYBA1/l²A3/A1-crystallin via V-ATPase-MTORC1 signaling. Autophagy, 2014, 10, 480-496.	4.3	113
21	Approaches for detecting lysosomal alkalinization and impaired degradation in fresh and cultured RPE cells: Evidence for a role in retinal degenerations. Experimental Eye Research, 2014, 126, 68-76.	1.2	70
22	Studying melanin and lipofuscin in RPE cell culture models. Experimental Eye Research, 2014, 126, 61-67.	1.2	67
23	Screening in Planarians Identifies MORN2 as a Key Component in LC3-Associated Phagocytosis and Resistance to Bacterial Infection. Cell Host and Microbe, 2014, 16, 338-350.	5.1	95
24	Polyethylene glycol induced mouse model of retinal degeneration. Experimental Eye Research, 2014, 127, 143-152.	1.2	20
25	Autophagy in Tuberculosis. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a018481-a018481.	2.9	77
26	Atomistic Autophagy: The Structures of Cellular Self-Digestion. Cell, 2014, 157, 300-311.	13.5	173
27	Autophagy in the eye: Implications for ocular cell health. Experimental Eye Research, 2014, 124, 56-66.	1.2	125
28	Noncanonical autophagy: one small step for LC3, one giant leap for immunity. Current Opinion in Immunology, 2014, 26, 69-75.	2.4	93
29	<scp>KIM</scp> â€lâ€{ <scp>TIM</scp> â€lâ€mediated phagocytosis links <scp>ATG</scp> 5â€{ <scp>ULK</scp> 1â€dependent clearance of apoptotic cells to antigen presentation. EMBO Journal, 2015, 34, 2441-2464.	3.5	76
30	Autophagic Regulation of Retinal Pigment Epithelium Homeostasis. Journal of Pigmentary Disorders, 2015, 2, .	0.2	0
31	Disease Expression in Autosomal Recessive Retinal Dystrophy Associated With Mutations in the <i>DRAM2</i> Gene. , 2015, 56, 8083.		13
32	NLRP3 Inflammasome and Pathobiology in AMD. Journal of Clinical Medicine, 2015, 4, 172-192.	1.0	74
33	Lack of Acid Sphingomyelinase Induces Age-Related Retinal Degeneration. PLoS ONE, 2015, 10, e0133032.	1.1	13
34	Role of Autophagy in Photoreceptor Cell Survival and Death. Critical Reviews in Eukaryotic Gene Expression, 2015, 25, 23-32.	0.4	14
35	Chitosan nanoparticle-mediated delivery of miRNA-34a decreases prostate tumor growth in the bone and its expression induces non-canonical autophagy. Oncotarget, 2015, 6, 29161-29177.	0.8	105
36	Autophagy in cellular metabolism and cancer. Journal of Clinical Investigation, 2015, 125, 47-54.	3.9	173

		CITATION REPORT		
#	Article		IF	CITATIONS
37	V-ATPase and osmotic imbalances activate endolysosomal LC3 lipidation. Autophagy, 20	015, 11, 88-99.	4.3	160
38	Autophagy supports survival and phototransduction protein levels in rod photoreceptor and Differentiation, 2015, 22, 488-498.	rs. Cell Death	5.0	68
39	Autophagy in the physiology and pathology of the central nervous system. Cell Death a Differentiation, 2015, 22, 398-407.	nd	5.0	169
40	The Contribution of Melanoregulin to Microtubule-Associated Protein 1 Light Chain 3 (L Phagocytosis in Retinal Pigment Epithelium. Molecular Neurobiology, 2015, 52, 1135-1	.C3) Associated 151.	1.9	59
41	The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein m inducing autophagy and NFE2L2 in human retinal pigment epithelial cells. Autophagy, 2	isfolding by 015, 11, 1636-1651.	4.3	83
42	Photo-damage, photo-protection and age-related macular degeneration. Photochemical Photobiological Sciences, 2015, 14, 1560-1577.	and	1.6	29
43	Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rub NOX2Âand autophagy proteins. Nature Cell Biology, 2015, 17, 893-906.	vicon,	4.6	702
44	Deletion of autophagy inducer <i>RB1CC1</i> results in degeneration of the retinal pign Autophagy, 2015, 11, 939-953.	nent epithelium.	4.3	103
45	Cholesterol-mediated activation of acid sphingomyelinase disrupts autophagy in the ret epithelium. Molecular Biology of the Cell, 2015, 26, 1-14.	inal pigment	0.9	91
46	Unsaturated fatty acidâ€induced nonâ€canonical autophagy: unusual? orÂunappreciate 2015, 34, 978-980.	ed?. EMBO Journal,	3.5	6
47	Retinal thickness in children with anisohypermetropic amblyopia. British Journal of Opht 2015, 99, 1060-1064.	:halmology,	2.1	19
48	Photoreceptor phagosome processing defects and disturbed autophagy in retinal pigme of <i>Cln3^{Δex1-6}</i> mice modelling juvenile neuronal ceroid lipofuscinosis	ent epithelium s (Batten) Tj ETQq1 1 0.78	34 ₿. ≩4 rgB	T ¦Q verlock
49	Microtubule motors transport phagosomes in the RPE, and lack of KLC1 leads to AMD-li pathogenesis. Journal of Cell Biology, 2015, 210, 595-611.	ke	2.3	76
50	Di-retinoid-pyridinium-ethanolamine (A2E) Accumulation and the Maintenance of the Vi Independent of Atg7-mediated Autophagy in the Retinal Pigmented Epithelium. Journal Chemistry, 2015, 290, 29035-29044.		1.6	31
51	Prix Fixe: Efferocytosis as a Four-Course Meal. Current Topics in Microbiology and Immu 403, 1-36.	nology, 2015,	0.7	25
52	Pharmacological Modulation of Photoreceptor Outer Segment Degradation in a Human Model of Inherited Macular Degeneration. Molecular Therapy, 2015, 23, 1700-1711.	iPS Cell	3.7	56
53	Autophagy supports color vision. Autophagy, 2015, 11, 1821-1832.		4.3	32
54	Lysosomal membrane permeabilization and autophagy blockade contribute to photored death in a mouse model of retinitis pigmentosa. Cell Death and Differentiation, 2015, 2		5.0	114

#	Article	IF	CITATIONS
55	Mutations in MFSD8, Encoding a Lysosomal Membrane Protein, Are Associated with Nonsyndromic Autosomal Recessive Macular Dystrophy. Ophthalmology, 2015, 122, 170-179.	2.5	60
56	Autophagy in Ocular Pathophysiology. , 0, , .		1
57	Cytomegalovirus Blocks Autophagy During Infection of the Retinal Pigment Epithelial Cells. , 2016, , 267-279.		0
58	Melatonin in Retinal Physiology and Pathology: The Case of Age-Related Macular Degeneration. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12.	1.9	44
59	Mitochondria Know No Boundaries: Mechanisms and Functions of Intercellular Mitochondrial Transfer. Frontiers in Cell and Developmental Biology, 2016, 4, 107.	1.8	296
60	The Role of Autophagy-Related Proteins in Candida albicans Infections. Pathogens, 2016, 5, 34.	1.2	17
61	Tyrosinase-Cre-Mediated Deletion of the Autophagy Gene Atg7 Leads to Accumulation of the RPE65 Variant M450 in the Retinal Pigment Epithelium of C57BL/6 Mice. PLoS ONE, 2016, 11, e0161640.	1.1	13
63	<i>C. elegans</i> midbodies are released, phagocytosed, and undergo LC3-dependent degradation independent of macroautophagy. Journal of Cell Science, 2016, 129, 3721-3731.	1.2	38
64	Clearance of autophagy-associated dying retinal pigment epithelial cells – a possible source for inflammation in age-related macular degeneration. Cell Death and Disease, 2016, 7, e2367-e2367.	2.7	47
65	Autophagy and Mammalian Viruses. Advances in Virus Research, 2016, 95, 149-195.	0.9	92
66	Systemic Analysis of Atg5-Null Mice Rescued from Neonatal Lethality by Transgenic ATG5 Expression in Neurons. Developmental Cell, 2016, 39, 116-130.	3.1	99
67	Mice deficient in the Vici syndrome gene <i>Epg5</i> exhibit features of retinitis pigmentosa. Autophagy, 2016, 12, 2263-2270.	4.3	19
68	LC3-associated phagocytosis: a crucial mechanism for antifungal host defence against <i>Aspergillus fumigatus</i> . Cellular Microbiology, 2016, 18, 1208-1216.	1.1	42
69	Autophagy in the eye: Development, degeneration, and aging. Progress in Retinal and Eye Research, 2016, 55, 206-245.	7.3	184
70	Golgi-associated LC3 lipidation requires V-ATPase in noncanonical autophagy. Cell Death and Disease, 2016, 7, e2330-e2330.	2.7	38
71	Autophagy proteins are not universally required for phagosome maturation. Autophagy, 2016, 12, 1440-1446.	4.3	35
72	Autophagy in kidney disease and aging: lessons from rodent models. Kidney International, 2016, 90, 950-964.	2.6	114
73	LAP: the protector against autoimmunity. Cell Research, 2016, 26, 865-866.	5.7	12

#	Article	IF	CITATIONS
74	TAK1 is involved in the autophagy process in retinal pigment epithelial cells. Biochemistry and Cell Biology, 2016, 94, 188-196.	0.9	2
75	Regulation of Phagolysosomal Digestion by Caveolin-1 of the Retinal Pigment Epithelium Is Essential for Vision. Journal of Biological Chemistry, 2016, 291, 6494-6506.	1.6	46
76	The clearance of dying cells: table for two. Cell Death and Differentiation, 2016, 23, 915-926.	5.0	239
77	Aspergillus Cell Wall Melanin Blocks LC3-Associated Phagocytosis to Promote Pathogenicity. Cell Host and Microbe, 2016, 19, 79-90.	5.1	183
78	Introduction to Autophagy in the Eye (or "What's Eatin' You?â€). Experimental Eye Research, 2016, 144, 1-3.	1.2	9
79	Lysosomes: Regulators of autophagy in the retinal pigmented epithelium. Experimental Eye Research, 2016, 144, 46-53.	1.2	76
80	Autophagy in light-induced retinal damage. Experimental Eye Research, 2016, 144, 64-72.	1.2	34
81	Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration. Progress in Retinal and Eye Research, 2016, 51, 69-89.	7.3	190
82	iFly: The eye of the fruit fly as a model to study autophagy and related trafficking pathways. Experimental Eye Research, 2016, 144, 90-98.	1.2	8
83	Retrograde signaling from autophagy modulates stress responses. Science Signaling, 2017, 10, .	1.6	65
84	Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nature Reviews Drug Discovery, 2017, 16, 487-511.	21.5	642
85	Sigma Receptors: Their Role in Disease and as Therapeutic Targets. Advances in Experimental Medicine and Biology, 2017, , .	0.8	16
86	Peeking into Sigma-1 Receptor Functions Through the Retina. Advances in Experimental Medicine and Biology, 2017, 964, 285-297.	0.8	14
87	LC3-Associated Phagocytosis and Inflammation. Journal of Molecular Biology, 2017, 429, 3561-3576.	2.0	207
88	RUBCN/rubicon and EGFR regulate lysosomal degradative processes in the retinal pigment epithelium (RPE) of the eye. Autophagy, 2017, 13, 2072-2085.	4.3	57
89	The phagocyte respiratory burst: Historical perspectives and recent advances. Immunology Letters, 2017, 192, 88-96.	1.1	126
90	Safely removing cell debris with LC3â€associated phagocytosis. Biology of the Cell, 2017, 109, 355-363.	0.7	23
91	ATG-dependent phagocytosis in dendritic cells drives myelin-specific CD4 ⁺ T cell pathogenicity during CNS inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, F11228-F11237	3.3	67

#	ARTICLE Host Response to Pulmonary Fungal Infections: a Highlight on Cell-Driven Immunity to Cryptococcus	IF	Citations
92	Species and Aspergillus fumigatus. Current Pharmacology Reports, 2017, 3, 335-345.	1.5	0
93	Lipopolysaccharide mediates hepatic stellate cell activation by regulating autophagy and retinoic acid signaling. Autophagy, 2017, 13, 1813-1827.	4.3	89
94	Retinal Degeneration In A Mouse Model Of CLN5 Disease Is Associated With Compromised Autophagy. Scientific Reports, 2017, 7, 1597.	1.6	50
95	Atorvastatin Promotes Phagocytosis and Attenuates Pro-Inflammatory Response in Human Retinal Pigment Epithelial Cells. Scientific Reports, 2017, 7, 2329.	1.6	19
96	CB2 receptor activation causes an ERK1/2-dependent inflammatory response in human RPE cells. Scientific Reports, 2017, 7, 16169.	1.6	11
97	Prominin-1 Is a Novel Regulator of Autophagy in the Human Retinal Pigment Epithelium. , 2017, 58, 2366.		44
98	Autophagy and LC3-Associated Phagocytosis Mediate the Innate Immune Response. , 2017, , 303-319.		1
99	The Use of DQ-BSA to Monitor the Turnover of Autophagy-Associated Cargo. Methods in Enzymology, 2017, 587, 43-54.	0.4	53
100	Autophagy Regulates Proteasome Inhibitor-Induced Pigmentation in Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells. International Journal of Molecular Sciences, 2017, 18, 1089.	1.8	10
101	Impaired Autophagy in Retinal Pigment Epithelial Cells Induced from iPS Cells obtained from a Patient with Sialidosis. Cell & Developmental Biology, 2017, 06, .	0.3	4
102	Loss of Pigment Epithelial Cells Is Prevented by Autophagy. , 2017, , 105-117.		1
104	Host cell cytosolic immune response during Plasmodium liver stage development. FEMS Microbiology Reviews, 2018, 42, 324-334.	3.9	44
105	c-Jun-mediated microRNA-302d-3p induces RPE dedifferentiation by targeting p21Waf1/Cip1. Cell Death and Disease, 2018, 9, 451.	2.7	15
106	Retinal organotypic culture – A candidate for research on retinas. Tissue and Cell, 2018, 51, 1-7.	1.0	19
107	Beyond self-eating: The control of nonautophagic functions and signaling pathways by autophagy-related proteins. Journal of Cell Biology, 2018, 217, 813-822.	2.3	92
108	The <scp>WD</scp> 40 domain of <scp>ATG</scp> 16L1 is required for itsÂnonâ€canonical role in lipidation of <scp>LC</scp> 3 at singleÂmembranes. EMBO Journal, 2018, 37, .	3.5	187
109	Microtubule-Associated Protein 1 Light Chain 3 (LC3) Isoforms in RPE and Retina. Advances in Experimental Medicine and Biology, 2018, 1074, 609-616.	0.8	18
110	Mechanistical retinal drug targets and challenges. Advanced Drug Delivery Reviews, 2018, 126, 177-184.	6.6	20

#	Article	IF	CITATIONS
111	Cancer cell cannibalism: Multiple triggers emerge for entosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 831-841.	1.9	49
112	Modeling Retinal Diseases Using Genetic Approaches in Mice. Methods in Molecular Biology, 2018, 1753, 41-59.	0.4	3
113	17β-estradiol ameliorates oxidative stress and blue light-emitting diode-induced retinal degeneration by decreasing apoptosis and enhancing autophagy. Drug Design, Development and Therapy, 2018, Volume 12, 2715-2730.	2.0	19
114	LAP it up, fuzz ball: a short history of LC3-associated phagocytosis. Current Opinion in Immunology, 2018, 55, 54-61.	2.4	49
115	Microtubule-Associated Protein 1 Light Chain 3B, (LC3B) Is Necessary to Maintain Lipid-Mediated Homeostasis in the Retinal Pigment Epithelium. Frontiers in Cellular Neuroscience, 2018, 12, 351.	1.8	34
116	LC3-Associated Phagocytosis in Myeloid Cells Promotes Tumor Immune Tolerance. Cell, 2018, 175, 429-441.e16.	13.5	242
117	Transient acceleration of autophagic degradation by pharmacological Nrf2 activation is important for retinal pigment epithelium cell survival. Redox Biology, 2018, 19, 354-363.	3.9	29
118	Protective Effect of Melatonin against Oxidative Stress-Induced Apoptosis and Enhanced Autophagy in Human Retinal Pigment Epithelium Cells. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	1.9	64
119	Phagocytosed photoreceptor outer segments activate mTORC1 in the retinal pigment epithelium. Science Signaling, 2018, 11, .	1.6	29
120	Mitochondrial quality control in AMD: does mitophagy play a pivotal role?. Cellular and Molecular Life Sciences, 2018, 75, 2991-3008.	2.4	60
121	Novel insight into circular RNA <i>HECTD1</i> in astrocyte activation via autophagy by targeting <i>MIR142</i> -TIPARP: implications for cerebral ischemic stroke. Autophagy, 2018, 14, 1164-1184.	4.3	276
122	How the phagocyte NADPH oxidase regulates innate immunity. Free Radical Biology and Medicine, 2018, 125, 44-52.	1.3	36
123	Compromised phagosome maturation underlies RPE pathology in cell culture and whole animal models of Smith-Lemli-Opitz Syndrome. Autophagy, 2018, 14, 1796-1817.	4.3	19
124	Sodium Iodate Disrupted the Mitochondrial-Lysosomal Axis in Cultured Retinal Pigment Epithelial Cells. Journal of Ocular Pharmacology and Therapeutics, 2018, 34, 500-511.	0.6	16
125	Topographic Rod Recovery Profiles after a Prolonged Dark Adaptation in Subjects with Reticular Pseudodrusen. Ophthalmology Retina, 2018, 2, 1206-1217.	1.2	18
126	Subretinal Drusenoid Deposits and the Loss of Rod Function in Intermediate Age-Related Macular Degeneration. , 2018, 59, 4154.		26
127	Regulation of phagolysosomal activity by miR-204 critically influences structure and function of retinal pigment epithelium/retina. Human Molecular Genetics, 2019, 28, 3355-3368.	1.4	18
128	MicroRNA-24 protects retina from degeneration in rats by down-regulating chitinase-3-like protein 1. Experimental Eye Research, 2019, 188, 107791.	1.2	14

#	Article	IF	CITATIONS
130	Disruptions of Autophagy in the Rat Retina with Age During the Development of Age-Related-Macular-Degeneration-like Retinopathy. International Journal of Molecular Sciences, 2019, 20, 4804.	1.8	18
131	Autophagy Dysfunction, Cellular Senescence, and Abnormal Immune-Inflammatory Responses in AMD: From Mechanisms to Therapeutic Potential. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	1.9	46
132	Autophagy-Independent Functions of the Autophagy Machinery. Cell, 2019, 177, 1682-1699.	13.5	591
133	Voices from the dead: The complex vocabulary and intricate grammar of dead cells. Advances in Protein Chemistry and Structural Biology, 2019, 116, 1-90.	1.0	3
134	Oxidative Stress and Dysfunctional Intracellular Traffic Linked to an Unhealthy Diet Results in Impaired Cargo Transport in the Retinal Pigment Epithelium (RPE). Molecular Nutrition and Food Research, 2019, 63, e1800951.	1.5	15
135	Macropinocytosis and autophagy crosstalk in nutrient scavenging. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180154.	1.8	29
136	KCNQ1OT1 promotes autophagy by regulating miRâ€⊋00a/FOXO3/ATG7 pathway in cerebral ischemic stroke. Aging Cell, 2019, 18, e12940.	3.0	100
137	LC3-associated phagocytosis at a glance. Journal of Cell Science, 2019, 132, .	1.2	144
138	A comparative map of macroautophagy and mitophagy in the vertebrate eye. Autophagy, 2019, 15, 1296-1308.	4.3	53
139	Regulation of the innate immune system by autophagy: monocytes, macrophages, dendritic cells and antigen presentation. Cell Death and Differentiation, 2019, 26, 715-727.	5.0	205
140	Regulation of the innate immune system by autophagy: neutrophils, eosinophils, mast cells, NK cells. Cell Death and Differentiation, 2019, 26, 703-714.	5.0	77
141	Genetic LAMP2 deficiency accelerates the age-associated formation of basal laminar deposits in the retina. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23724-23734.	3.3	54
142	Autophagy mediates phosphatidylserine exposure and phagosome degradation during apoptosis through specific functions of GABARAP/LGG-1 and LC3/LGG-2. Autophagy, 2019, 15, 228-241.	4.3	16
143	CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. Autophagy, 2019, 15, 453-465.	4.3	50
144	Correlative Light and Electron Microscopy to Analyze LC3 Proteins in Caenorhabditis elegans Embryo. Methods in Molecular Biology, 2019, 1880, 281-293.	0.4	3
145	Biological Functions of Autophagy Genes: A Disease Perspective. Cell, 2019, 176, 11-42.	13.5	1,721
146	A platform for assessing outer segment fate in primary human fetal RPE cultures. Experimental Eye Research, 2019, 178, 212-222.	1.2	7
147	Protective effects of autophagy against blue light-induced retinal degeneration in aged mice. Science China Life Sciences, 2019, 62, 244-256.	2.3	19

ARTICLE IF CITATIONS Loss of NRF-2 and PGC-11± genes leads to retinal pigment epithelium damage resembling dry age-related 148 3.9 117 macular degeneration. Redox Biology, 2019, 20, 1-12. Autophagy: A Role in the Apoptosis, Survival, Inflammation, and Development of the Retina. Ophthalmic 149 1.0 Research, 2019, 61, 65-72. Autophagy: a potential key contributor to the therapeutic action of mesenchymal stem cells. 150 4.3 96 Autophagy, 2020, 16, 28-37. Haploinsufficiency of GCP4 induces autophagy and leads to photoreceptor degeneration due to defective spindle assembly in retina. Cell Death and Differentiation, 2020, 27, 556-572. 5.0 Progenitor death drives retinal dysplasia and neuronal degeneration in a mouse model of Atrip-Seckel 152 1.2 5 syndrome. DMM Disease Models and Mechanisms, 2020, 13, . Complement activation, lipid metabolism, and mitochondrial injury: Converging pathways in age-related macular degeneration. Redox Biology, 2020, 37, 101781. Equine lentivirus counteracts SAMHD1 restriction by Rev-mediated degradation of SAMHD1 via the 154 4.3 8 BECN1-dependent lysosomal pathway. Autophagy, 2021, 17, 2800-2817. A Re-Appraisal of Pathogenic Mechanisms Bridging Wet and Dry Age-Related Macular Degeneration Leads to Reconsider a Role for Phytochemicals. International Journal of Molecular Sciences, 2020, 21, 1.8 5563. Inter and Intracellular mitochondrial trafficking in health and disease. Ageing Research Reviews, 156 5.0 71 2020, 62, 101128. MTORâ€initiated metabolic switch and degeneration in the retinal pigment epithelium. FASEB Journal, 0.2 2020, 34, 12502-12520. FKBP5 Exacerbates Impairments in Cerebral Ischemic Stroke by Inducing Autophagy via the AKT/FOXO3 158 1.8 23 Pathway. Frontiers in Cellular Neuroscience, 2020, 14, 193. Protective Effect of Metformin against Hydrogen Peroxide-Induced Oxidative Damage in Human Retinal Pigment Epithelial (RPE) Cells by Enhancing Autophagy through Activation of AMPK Pathway. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14. Noncanonical function of an autophagy protein prevents spontaneous Alzheimer's disease. Science 160 4.7 62 Advances, 2020, 6, eabb9036. Autophagy in the control and pathogenesis of parasitic infections. Cell and Bioscience, 2020, 10, 101. 2.1 14 Impact of neurotrophic factors combination therapy on retinitis pigmentosa. Journal of International 162 0.4 3 Medical Research, 2020, 48, 030006052096783. Cholesterol Regulation in Age-Related Macular Degeneration: A Framework for Mathematical Modelling of Drusen Biogenesis. Bulletin of Mathematical Biology, 2020, 82, 135. Granulosa cells provide elimination of apoptotic oocytes through unconventional 164 0.4 17 autophagy-assisted phagocytosis. Human Reproduction, 2020, 35, 1346-1362. LC3-Associated Phagocytosis (LAP): A Potentially Influential Mediator of Efferocytosis-Related Tumor 1.3 Progression and Aggressiveness. Frontiers in Oncology, 2020, 10, 1298.

#	Article	IF	Citations
166	Transcriptome-Wide Analysis of CXCR5 Deficient Retinal Pigment Epithelial (RPE) Cells Reveals Molecular Signatures of RPE Homeostasis. Biomedicines, 2020, 8, 147.	1.4	11
167	Autophagy promotes mammalian survival by suppressing oxidative stress and p53. Genes and Development, 2020, 34, 688-700.	2.7	61
168	Loss of CLN3, the gene mutated in juvenile neuronal ceroid lipofuscinosis, leads to metabolic impairment and autophagy induction in retinal pigment epithelium. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165883.	1.8	24
169	The cell biology of the retinal pigment epithelium. Progress in Retinal and Eye Research, 2020, 78, 100846.	7.3	199
170	Circular Noncoding RNA NR3C1 Acts as a miR-382-5p Sponge to Protect RPE Functions via Regulating PTEN/AKT/mTOR Signaling Pathway. Molecular Therapy, 2020, 28, 929-945.	3.7	41
171	Investigating AKT activation and autophagy in immunoproteasome-deficient retinal cells. PLoS ONE, 2020, 15, e0231212.	1.1	16
172	Diurnal Rhythmicity of Autophagy Is Impaired in the Diabetic Retina. Cells, 2020, 9, 905.	1.8	33
173	A triterpenoid Nrf2 activator, RS9, promotes LC3-associated phagocytosis of photoreceptor outer segments in a p62-independent manner. Free Radical Biology and Medicine, 2020, 152, 235-247.	1.3	19
174	The clearance of dead cells by efferocytosis. Nature Reviews Molecular Cell Biology, 2020, 21, 398-414.	16.1	395
175	Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells, 2020, 9, 931.	1.8	56
176	Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Progress in Retinal and Eye Research, 2020, 79, 100858.	7.3	239
177	Lightâ€responsive microRNA miRâ€211 targets Ezrin to modulate lysosomal biogenesis and retinal cell clearance. EMBO Journal, 2020, 39, e102468.	3.5	30
178	Phosphoinositides in Retinal Function and Disease. Cells, 2020, 9, 866.	1.8	20
179	The developmental and physiological roles of phagocytosis in Caenorhabditis elegans. Current Topics in Developmental Biology, 2021, 144, 409-432.	1.0	7
180	The Impact of miRNAs in Health and Disease of Retinal Pigment Epithelium. Frontiers in Cell and Developmental Biology, 2020, 8, 589985.	1.8	11
181	Metabolic aspects of canonical versus noncanonical autophagy. , 2021, , 133-165.		0
183	Knockdown of Claudin-19 in the Retinal Pigment Epithelium Is Accompanied by Slowed Phagocytosis and Increased Expression of SQSTM1. , 2021, 62, 14.		5
184	Guidelines for Regulated Cell Death Assays: A Systematic Summary, A Categorical Comparison, A Prospective. Frontiers in Cell and Developmental Biology, 2021, 9, 634690.	1.8	61

#	Article	IF	CITATIONS
185	KRT8 (keratin 8) attenuates necrotic cell death by facilitating mitochondrial fission-mediated mitophagy through interaction with PLEC (plectin). Autophagy, 2021, 17, 3939-3956.	4.3	15
186	Rubicon regulates A2E-induced autophagy impairment in the retinal pigment epithelium implicated in the pathology of age-related macular degeneration. Biochemical and Biophysical Research Communications, 2021, 551, 148-154.	1.0	8
187	Assessment of a Small Molecule Synthetic Lignan in Enhancing Oxidative Balance and Decreasing Lipid Accumulation in Human Retinal Pigment Epithelia. International Journal of Molecular Sciences, 2021, 22, 5764.	1.8	7
188	Non-canonical autophagy drives alternative ATG8 conjugation to phosphatidylserine. Molecular Cell, 2021, 81, 2031-2040.e8.	4.5	100
190	Autophagy in the retinal pigment epithelium: a new vision and future challenges. FEBS Journal, 2022, 289, 7199-7212.	2.2	25
191	Miro proteins connect mitochondrial function and intercellular transport. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 1-25.	2.3	11
192	CIB2 regulates mTORC1 signaling and is essential for autophagy and visual function. Nature Communications, 2021, 12, 3906.	5.8	28
193	MERTK-Mediated LC3-Associated Phagocytosis (LAP) of Apoptotic Substrates in Blood-Separated Tissues: Retina, Testis, Ovarian Follicles. Cells, 2021, 10, 1443.	1.8	12
194	Reduced Photoreceptor Outer Segment Layer Thickness and Association with Vision in Amblyopic Children and Adolescents with Unilateral High Myopia. Current Eye Research, 2021, , 1-8.	0.7	2
195	The role of IncRNAs in ischemic stroke. Neurochemistry International, 2021, 147, 105019.	1.9	9
196	Formation of Lipofuscin-Like Autofluorescent Granules in the Retinal Pigment Epithelium Requires Lysosome Dysfunction. , 2021, 62, 39.		6
197	Involvement of Oxidative and Endoplasmic Reticulum Stress in RDH12-Related Retinopathies. International Journal of Molecular Sciences, 2021, 22, 8863.	1.8	8
198	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	3.5	615
200	Atg8ylation as a general membrane stress and remodeling response. Cell Stress, 2021, 5, 128-142.	1.4	29
201	Macroautophagy and aging: The impact of cellular recycling on health and longevity. Molecular Aspects of Medicine, 2021, 82, 101020.	2.7	30
202	Dying by fire: noncanonical functions of autophagy proteins in neuroinflammation and neurodegeneration. Neural Regeneration Research, 2022, 17, 246.	1.6	14
203	LC3-associated phagocytosis. , 2021, , 69-91.		1
204	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /	Overlgc <u>k 1</u>	0 Tf 50,62 To

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
205	Detection of LC3â€Associated Phagocytosis (LAP). Current Protocols in Cell Biology, 2020, 87, e104.	2.3	17
206	RPE Phagocytosis. , 2020, , 47-63.		5
207	Autophagy and post-ischemic conditioning in retinal ischemia. Autophagy, 2021, 17, 1479-1499.	4.3	34
211	Group A Streptococcus Induces LAPosomes via SLO/β1 Integrin/NOX2/ROS Pathway in Endothelial Cells That Are Ineffective in Bacterial Killing and Suppress Xenophagy. MBio, 2019, 10, .	1.8	26
212	Dysregulated claudin-5 cycling in the inner retina causes retinal pigment epithelial cell atrophy. JCI Insight, 2019, 4, .	2.3	33
213	αvβ5 Integrin/FAK/PGC-1α Pathway Confers Protective Effects on Retinal Pigment Epithelium. PLoS ONE, 2015, 10, e0134870.	1.1	24
214	Interplay between reactive oxygen species and autophagy in the course of age-related macular degeneration. EXCLI Journal, 2020, 19, 1353-1371.	0.5	7
215	Loss of PGC-1α in RPE induces mesenchymal transition and promotes retinal degeneration. Life Science Alliance, 2019, 2, e201800212.	1.3	31
216	<i>Pseudomonas aeruginosa</i> lectin LecB impairs keratinocyte fitness by abrogating growth factor signalling. Life Science Alliance, 2019, 2, e201900422.	1.3	11
217	Membrane characteristics tune activities of endosomal and autophagic human VPS34 complexes. ELife, 2020, 9, .	2.8	34
218	Phagocytic Activity of Rat Primary Astrocytes Is Regulated by Insulin and Ganglioside GM1. Journal of Evolutionary Biochemistry and Physiology, 2021, 57, 1072-1080.	0.2	1
219	Mitochondria dynamics in the aged mice eye and the role in the RPE phagocytosis. Experimental Eye Research, 2021, 213, 108800.	1.2	10
220	New insights into the role of autophagy in retinal and eye diseases. Molecular Aspects of Medicine, 2021, 82, 101038.	2.7	20
221	Measurement of the Absorption Coefficient of Biological Materials Using Integrating Cavity Ring-Down Spectroscopy. , 2014, , .		0
222	Photoreceptor Degeneration: Molecular Mechanisms of Photoreceptor Degeneration. , 2014, , 275-308.		0
225	Autophagy coordinates chondrocyte development and early joint formation in zebrafish. FASEB Journal, 2021, 35, e22002.	0.2	9
226	Retinal Pigment Epithelium in Age-Related Macular Degeneration. , 2020, , 161-171.		0
227	Reticular pseudodrusen: A critical phenotype in age-related macular degeneration. Progress in Retinal and Eye Research, 2022, 88, 101017.	7.3	56

# 228	ARTICLE Suppressor of Cytokine Signaling 2 Regulates Retinal Pigment Epithelium Metabolism by Enhancing Autophagy. Frontiers in Neuroscience, 2021, 15, 738022.	IF 1.4	CITATIONS
230	Interplay of autophagy and apoptosis during murine cytomegalovirus infection of RPE cells. Molecular Vision, 2014, 20, 1161-73.	1.1	13
231	Early AMD-like defects in the RPE and retinal degeneration in aged mice with RPE-specific deletion of or. Molecular Vision, 2017, 23, 228-241.	1.1	33
232	Myelinosome Organelles in the Retina of R6/1 Huntington Disease (HD) Mice: Ubiquitous Distribution and Possible Role in Disease Spreading. International Journal of Molecular Sciences, 2021, 22, 12771.	1.8	4
233	Efferocytosis: An Interface between Apoptosis and Pathophysiology. , 0, , .		0
234	Rubicon in Metabolic Diseases and Ageing. Frontiers in Cell and Developmental Biology, 2021, 9, 816829.	1.8	5
235	Drp1 knockdown represses apoptosis of rat retinal endothelial cells by inhibiting mitophagy. Acta Histochemica, 2022, 124, 151837.	0.9	11
236	Intravitreal gene therapy restores the autophagy-lysosomal pathway and attenuates retinal degeneration in cathepsin D-deficient mice. Neurobiology of Disease, 2022, 164, 105628.	2.1	8
238	Lipid Droplet Accumulation Promotes RPE Dysfunction. International Journal of Molecular Sciences, 2022, 23, 1790.	1.8	13
239	<i>Prph2</i> disease mutations lead to structural and functional defects in the RPE. FASEB Journal, 2022, 36, e22284.	0.2	3
240	When the Phagosome Gets Leaky: Pore-Forming Toxin-Induced Non-Canonical Autophagy (PINCA). Frontiers in Cellular and Infection Microbiology, 2022, 12, 834321.	1.8	4
241	MicroRNAs and Efferocytosis: Implications for Diagnosis and Therapy. Mini-Reviews in Medicinal Chemistry, 2022, 22, .	1.1	1
242	Triglyceride-derived fatty acids reduce autophagy in a model of retinal angiomatous proliferation. JCI Insight, 2022, 7, .	2.3	9
243	An Overview of Autophagy in Helicobacter pylori Infection and Related Gastric Cancer. Frontiers in Cellular and Infection Microbiology, 2022, 12, 847716.	1.8	8
244	mTOR Inhibition via Rapamycin Treatment Partially Reverts the Deficit in Energy Metabolism Caused by FH Loss in RPE Cells. Antioxidants, 2021, 10, 1944.	2.2	5
245	Chaperonin-Containing TCP1 Subunit 5 Protects Against the Effect of Mer Receptor Tyrosine Kinase Knockdown in Retinal Pigment Epithelial Cells by Interacting With Filamentous Actin and Activating the LIM-Kinase 1/Cofilin Pathway. Frontiers in Medicine, 2022, 9, 861371.	1.2	1
252	Autophagy in age-related macular degeneration. Autophagy, 2023, 19, 388-400.	4.3	56
253	Dawn and dusk peaks of outer segment phagocytosis, and visual cycle function require Rab28. FASEB Journal, 2022, 36, e22309.	0.2	6

#	Article	IF	CITATIONS
254	V-ATPase is a universal regulator of LC3-associated phagocytosis and non-canonical autophagy. Journal of Cell Biology, 2022, 221, .	2.3	53
255	Macroautophagy in CNS health and disease. Nature Reviews Neuroscience, 2022, 23, 411-427.	4.9	44
256	Rubicon promotes the M2 polarization of Kupffer cells via LC3-associated phagocytosis-mediated clearance to improve liver transplantation. Cellular Immunology, 2022, 378, 104556.	1.4	7
257	A guide to membrane atg8ylation and autophagy with reflections on immunity. Journal of Cell Biology, 2022, 221, .	2.3	28
258	Vitamin D3 Inhibits Phagocytic Activity of Rat Brain Astrocytes in Primary Culture. Journal of Evolutionary Biochemistry and Physiology, 2022, 58, 666-676.	0.2	1
259	Cell culture models to study retinal pigment epithelium-related pathogenesis in age-related macular degeneration. Experimental Eye Research, 2022, 222, 109170.	1.2	27
260	<i>Ambra1</i> haploinsufficiency in CD1 mice results in metabolic alterations and exacerbates age-associated retinal degeneration. Autophagy, 2023, 19, 784-804.	4.3	5
261	Pathological mechanisms and crosstalk among different forms of cell death in systemic lupus erythematosus. Journal of Autoimmunity, 2022, 132, 102890.	3.0	10
262	Sensitivity of the Dorsal-Central Retinal Pigment Epithelium to Sodium Iodate-Induced Damage Is Associated With Overlying M-Cone Photoreceptors in Mice. , 2022, 63, 29.		0
263	The role of UXT in tumors and prospects for its application in hepatocellular carcinoma. Future Oncology, 2022, 18, 3335-3348.	1.1	2
264	Nrf2 Pathway and Autophagy Crosstalk: New Insights into Therapeutic Strategies for Ischemic Cerebral Vascular Diseases. Antioxidants, 2022, 11, 1747.	2.2	8
265	Role of autophagy in the eye: from physiology to disease. Current Opinion in Physiology, 2022, , 100592.	0.9	2
266	NLRP3 Inflammasome Simultaneously Involved in Autophagy and Phagocytosis of THP-1 Cells to Clear Aged Erythrocytes. Journal of Immunology Research, 2022, 2022, 1-24.	0.9	1
267	LC3-associated endocytosis and the functions of Rubicon and ATG16L1. Science Advances, 2022, 8, .	4.7	15
268	Many roads lead to CASM: Diverse stimuli of noncanonical autophagy share a unifying molecular mechanism. Science Advances, 2022, 8, .	4.7	29
270	Targeting Phospholipase D Pharmacologically Prevents Phagocytic Function Loss of Retinal Pigment Epithelium Cells Exposed to High Glucose Levels. International Journal of Molecular Sciences, 2022, 23, 11823.	1.8	0
271	Network biology analysis of P23H rhodopsin interactome identifies protein and mRNA quality control mechanisms. Scientific Reports, 2022, 12, .	1.6	1
273	Canonical and non-canonical roles for ATG8 proteins in autophagy and beyond. Frontiers in Molecular Biosciences, 0, 9, .	1.6	5

#	Article	IF	CITATIONS
274	TRIM72 Alleviates Muscle Inflammation in mdx Mice via Promoting Mitophagy-Mediated NLRP3 Inflammasome Inactivation. Oxidative Medicine and Cellular Longevity, 2023, 2023, 1-15.	1.9	3
275	Inflammation of the retinal pigment epithelium drives early-onset photoreceptor degeneration in <i>Mertk</i> -associated retinitis pigmentosa. Science Advances, 2023, 9, .	4.7	5
276	Autophagy in the eye: from physiology to pathophysology. , 2023, 2, .		2
277	Human intestinal epithelial cells can internalize luminal fungi via LC3-associated phagocytosis. Frontiers in Immunology, 0, 14, .	2.2	1
278	Aging induces cell loss and a decline in phagosome processing in the mouse retinal pigment epithelium. Neurobiology of Aging, 2023, 128, 1-16.	1.5	5
280	Transcriptomic Changes Predict Metabolic Alterations in LC3 Associated Phagocytosis in Aged Mice. International Journal of Molecular Sciences, 2023, 24, 6716.	1.8	Ο
294	Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nature Reviews Molecular Cell Biology, 2024, 25, 223-245.	16.1	5
300	Retinal Pigmented Epithelium and the Outer Blood-Retinal Barrier. , 2024, , .		Ο
301	RPE-Phagozytose. , 2024, , 51-69.		0
302	Retinales Pigmentepithel bei altersbedingter Makuladegeneration. , 2024, , 179-190.		0