Fabrication of biocompatible and mechanically reinforce nanocomposite films

Chemistry Central Journal

7, 39

DOI: 10.1186/1752-153x-7-39

Citation Report

#	Article	IF	CITATIONS
1	Synthesis and Electrochromic Characterization of Vanadium Pentoxide/Graphene Nanocomposite Films. Journal of the Electrochemical Society, 2013, 160, H587-H590.	2.9	24
2	Exigency for fusion of graphene and carbon nanotube with biomaterials. Toxicological and Environmental Chemistry, 2014, 96, 699-721.	1.2	5
3	Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy. International Journal of Nanomedicine, 2015, 10, 6257.	6.7	198
4	Preparation and Characterization of EG-Chitosan Nanocomposites via Direct Exfoliation: A Green Methodology. Polymers, 2015, 7, 2584-2594.	4.5	13
5	Physical and chemical reinforcement of chitosan film using nanocrystalline cellulose and tannic acid. Cellulose, 2015, 22, 2529-2541.	4.9	106
6	Influence of hydrogen functionalization on mechanical properties of graphene and CNT reinforced in chitosan biological polymer: Multi-scale computational modelling. Computational Materials Science, 2015, 101, 189-193.	3.0	20
7	Synthesis and Characterization of Poly(vinyl pyrrolidone)/Reduced Graphene Oxide Nanocomposite. Journal of Macromolecular Science - Physics, 2015, 54, 481-491.	1.0	15
8	Drug delivery systems and cartilage tissue engineering scaffolding using marine-derived products. , 2015, , 123-136.		O
9	Highly dispersible graphene oxide reinforced polypyrrole/polyvinyl alcohol blend nanocomposites with high dielectric constant and low dielectric loss. RSC Advances, 2015, 5, 61933-61945.	3.6	93
10	Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. Journal of Nanobiotechnology, 2015, 13, 21.	9.1	137
11	Graphene oxide–chitosan bionanocomposite: a highly efficient nanocatalyst for the one-pot three-component synthesis of trisubstituted imidazoles under solvent-free conditions. RSC Advances, 2015, 5, 33177-33184.	3.6	123
12	A Review on Bionanocomposites Based on Chitosan and Its Derivatives for Biomedical Applications. Advanced Structured Materials, 2015, , 173-208.	0.5	20
13	Preparation of a Three-Dimensional Reduced Graphene Oxide Film by Using the Langmuir–Blodgett Method. Langmuir, 2015, 31, 10426-10434.	3. 5	39
14	Self-assembled Monolayers and Nanocomposite Hydrogels of Functional Nanomaterials for Tissue Engineering Applications. Macromolecular Bioscience, 2015, 15, 445-463.	4.1	46
15	Grapheneâ€Based Materials Functionalization with Natural Polymeric Biomolecules. , 0, , .		10
16	Fabrication of graphene oxide-modified chitosan for controlled release of dexamethasone phosphate. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	10
17	Highly Response and Sensitivity Chitosan-Polyvinyl alcohol Based Hexanal Sensors. MATEC Web of Conferences, 2016, 78, 01072.	0.2	3
18	Synthesis and characterization of chitosan-TiO2:Cu nanocomposite and their enhanced antimicrobial activity with visible light. Colloids and Surfaces B: Biointerfaces, 2016, 148, 566-575.	5.0	78

#	Article	IF	CITATIONS
19	Comprehensive Review on the Use of Graphene-Based Substrates for Regenerative Medicine and Biomedical Devices. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26431-26457.	8.0	141
20	Understanding the significance of O-doped graphene towards biomedical applications. RSC Advances, 2016, 6, 114264-114275.	3.6	34
22	Full polysaccharide crosslinked-chitosan and silver nano composites, for use as an antibacterial membrane. Chinese Journal of Polymer Science (English Edition), 2016, 34, 949-964.	3.8	21
23	Preparation of graphene oxide–chitosan nanocapsules and their applications as carriers for drug delivery. RSC Advances, 2016, 6, 104522-104528.	3.6	15
24	Bionanostructure-catalyzed one-pot three-component synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives under solvent-free conditions. Reactive and Functional Polymers, 2016, 109, 120-124.	4.1	53
25	Physicochemical and antibacterial properties of chitosanâ€polyvinylpyrrolidone films containing selfâ€organized graphene oxide nanolayers. Journal of Applied Polymer Science, 2016, 133, .	2.6	49
26	Functionalization of magnetic chitosan with graphene oxide for removal of cationic and anionic dyes from aqueous solution. Carbohydrate Polymers, 2016, 152, 520-531.	10.2	160
27	Electrophoretic deposition of graphene oxide reinforced chitosan–hydroxyapatite nanocomposite coatings on Ti substrate. Journal of Materials Science: Materials in Medicine, 2016, 27, 48.	3.6	103
28	Synergistic effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for energy storage application. European Polymer Journal, 2016, 76, 14-27.	5.4	91
29	Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au–Ag–Au nanostructure for lead(II) ion detection. Applied Surface Science, 2016, 361, 177-184.	6.1	55
30	Novel green nano composites films fabricated by indigenously synthesized graphene oxide and chitosan. Carbohydrate Polymers, 2016, 146, 131-138.	10.2	68
31	Bionanocomposites: smart biodegradable packaging material for food preservation. , 2017, , 79-110.		17
32	A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments. Scientific Reports, 2017, 7, 46379.	3.3	51
33	Reduced graphene oxide-chitosan-aptamer interface as new platform for ultrasensitive detection of human epidermal growth factor receptor 2. Biosensors and Bioelectronics, 2017, 95, 117-123.	10.1	114
34	The effects of graphene oxide on the properties and drug delivery of konjac glucomannan hydrogel. Journal of Applied Polymer Science, 2017, 134, 45327.	2.6	17
35	Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites. Journal of Polymer Engineering, 2017, 37, 921-931.	1.4	36
36	Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of Celluclast-treated nanofibrillated cellulose composites. International Journal of Biological Macromolecules, 2017, 104, 384-392.	7.5	52
37	Conductive composites based on chitosan and polyvinylpyrrolidone-stabilized graphene. Polymer Science - Series A, 2017, 59, 223-227.	1.0	4

3

#	Article	IF	CITATIONS
38	Convenient approach to making nanocomposites based on a chitosan–poly(vinyl pyrrolidone) polymer matrix and a graphene nanofiller. Journal of Applied Polymer Science, 2017, 134, 45038.	2.6	2
39	Strain sensitive conductive polyurethane foam/graphene nanocomposites prepared by impregnation method. European Polymer Journal, 2017, 90, 323-333.	5.4	16
40	Reinforcing mechanism of graphene at atomic level: Friction, crack surface adhesion and 2D geometry. Carbon, 2017, 114, 557-565.	10.3	78
41	Graphene oxide-chitosan nanocomposites for intracellular delivery of immunostimulatory CpG oligodeoxynucleotides. Materials Science and Engineering C, 2017, 73, 144-151.	7.3	63
42	Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect. Carbohydrate Polymers, 2017, 177, 116-125.	10.2	95
43	Biodiesel production by pervaporation-assisted esterification and pre-esterification using graphene oxide/chitosan composite membranes. Journal of the Taiwan Institute of Chemical Engineers, 2017, 79, 23-30.	5.3	39
44	Chitosan Crossâ€Linked Graphene Oxide Nanocomposite Films with Antimicrobial Activity for Application in Food Industry. Macromolecular Symposia, 2017, 374, 1600114.	0.7	72
45	Scalable Chitosan-Graphene Oxide Membranes: The Effect of GO Size on Properties and Cross-Flow Filtration Performance. ACS Omega, 2017, 2, 8751-8759.	3.5	45
46	Ultrastrong composite film of Chitosan and silica-coated graphene oxide sheets. International Journal of Biological Macromolecules, 2017, 104, 936-943.	7.5	15
47	Graphene oxide reinforced poly (4-styrenesulfonic acid)/polyvinyl alcohol blend composites with enhanced dielectric properties for portable and flexible electronics. Materials Chemistry and Physics, 2017, 186, 188-201.	4.0	93
48	Ultrasound assisted simultaneous reduction and direct functionalization of graphene oxide with thermal and cytotoxicity profile. Ultrasonics Sonochemistry, 2017, 34, 856-864.	8.2	38
49	Chitosan/carbon-based nanomaterials as scaffolds for tissue engineering. , 2017, , 381-397.		11
50	Chitosan-Functionalized Graphene Oxide as a Potential Immunoadjuvant. Nanomaterials, 2017, 7, 59.	4.1	73
51	Metal-Carbon Interactions on Reduced Graphene Oxide under Facile Thermal Treatment: Microbiological and Cell Assay. Journal of Nanomaterials, 2017, 2017, 1-10.	2.7	9
52	A Novel Grafting of Polymers onto the Surface of Graphene Oxide. , 2017, , .		1
53	Tailoring the properties of oxygenated graphene with different oxidation degrees for noble-metal-free photocatalytic hydrogen evolution. Catalysis Today, 2018, 315, 93-102.	4.4	16
54	Antimicrobial and Antibiofilm Efficacy of Graphene Oxide against Chronic Wound Microorganisms. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	114
55	One-pot synthesis of graphene/chitin nanofibers hybrids and their remarkable reinforcement on Poly(vinyl alcohol). Carbohydrate Polymers, 2018, 194, 146-153.	10.2	26

#	Article	IF	Citations
56	TEMPO-treated CNF Composites: Pulp and Matrix Effect. Fibers and Polymers, 2018, 19, 195-204.	2.1	41
57	Tailored Electron Transfer Pathways in Au _{core} /Pt _{shell} –Graphene Nanocatalysts for Fuel Cells. Advanced Energy Materials, 2018, 8, 1702609.	19.5	66
58	Exfoliation and modification of covalent organic frameworks by a green one-step strategy: Enhanced thermal, mechanical and flame retardant performances of biopolymer nanocomposite film. Composites Part A: Applied Science and Manufacturing, 2018, 110, 162-171.	7.6	30
59	Chitosan-based bionanocomposites for biomedical application. Bioinspired, Biomimetic and Nanobiomaterials, 2018, 7, 219-227.	0.9	17
60	Liquid crystal as sensing platforms for determining the effect of graphene oxide-based materials on phospholipid membranes and monitoring antibacterial activity. Sensors and Actuators B: Chemical, 2018, 254, 72-80.	7.8	31
61	Low fouling ultrathin nanocomposite membranes for efficient removal of manganese. Journal of Membrane Science, 2018, 549, 205-216.	8.2	30
62	Rhizomucor miehei lipase immobilized on reinforced chitosan–chitin nanowhiskers support for synthesis of eugenyl benzoate. Preparative Biochemistry and Biotechnology, 2018, 48, 92-102.	1.9	16
63	Snubbing effect in atomic scale friction of graphene. Composites Part B: Engineering, 2018, 136, 119-125.	12.0	3
64	Chitosan/graphene oxideâ€based multifunctional <scp>pH</scp> â€responsive hydrogel with significant mechanical strength, selfâ€healing property, and shape memory effect. Advances in Polymer Technology, 2018, 37, 3665-3679.	1.7	49
65	Electrospun PCL/mupirocin and chitosan/lidocaine hydrochloride multifunctional double layer nanofibrous scaffolds for wound dressing applications. International Journal of Nanomedicine, 2018, Volume 13, 5287-5299.	6.7	69
66	Fabrication and physicochemical characterization of graphene oxide derived from thermally expanded graphite. Russian Chemical Bulletin, 2018, 67, 986-990.	1.5	3
67	Graphene Oxide–Chitosan Composite Material for Treatment of a Model Dye Effluent. ACS Omega, 2018, 3, 13045-13054.	3.5	98
68	Graphene Oxide-Gold Nanosheets Containing Chitosan Scaffold Improves Ventricular Contractility and Function After Implantation into Infarcted Heart. Scientific Reports, 2018, 8, 15069.	3.3	82
69	<i>N</i> â€deoxycholic acidâ€ <i>O</i> â€glycol chitosan as a potential carrier agent for botanical pesticide rotenone. Journal of Applied Polymer Science, 2018, 135, 46855.	2.6	5
70	Chitosan and graphene oxide/reduced graphene oxide hybrid nanocomposites – Evaluation of physicochemical properties. Materials Chemistry and Physics, 2018, 216, 28-36.	4.0	62
71	Enzyme treated CNF biofilms: Characterization. International Journal of Biological Macromolecules, 2018, 117, 713-720.	7.5	11
72	Green methodology for the preparation of chitosan/graphene nanomaterial through electrochemical exfoliation and its applicability in Sunset Yellow detection. Electrochimica Acta, 2018, 283, 578-589.	5 . 2	62
73	Layer-by-layer chitosan-decorated pristine graphene on screen-printed electrodes by one-step electrodeposition for non-enzymatic hydrogen peroxide sensor. Talanta, 2018, 190, 70-77.	5.5	17

#	Article	IF	CITATIONS
74	Fabrication of Coaxial Wet-Spun Biofibres Containing Graphene Core. Springer Theses, 2018, , 79-106.	0.1	0
75	Electrochemical Sensor Based on Nanocomposite of Ionic Liquid Modified Graphene Oxide – Chitosan and its Application for Flow Injection Detection of Anticancer Thiopurine Drugs. Electroanalysis, 2018, 30, 2356-2365.	2.9	11
76	Graphene oxide dispersed polyvinyl chloride/alkyd green nanocomposite film: Processing and physico-mechanical properties. Journal of Industrial and Engineering Chemistry, 2018, 68, 246-256.	5.8	19
77	Synthesis of a novel compound based on chitosan and ammonium polyphosphate for flame retardancy applications. Cellulose, 2019, 26, 8801-8812.	4.9	55
78	Sustainable Drug Delivery of Famotidine Using Chitosanâ€Functionalized Graphene Oxide as Nanocarrier. Global Challenges, 2019, 3, 1900002.	3.6	12
79	N-octyl chitosan derivatives as amphiphilic carrier agents for herbicide formulations. Open Chemistry, 2019, 17, 365-380.	1.9	6
80	Investigating the best strategy to diminish the toxicity and enhance the antibacterial activity of graphene oxide by chitosan addition. Carbohydrate Polymers, 2019, 225, 115220.	10.2	84
81	Gas and Solution Uptake Properties of Graphene Oxide-Based Composite Materials: Organic vs. Inorganic Cross-Linkers. Journal of Composites Science, 2019, 3, 80.	3.0	8
82	Mechanical properties of graphene oxide-based composite layered-materials. Materials Chemistry and Physics, 2019, 234, 81-89.	4.0	13
83	Mechanical Properties of Films of Graphene Oxide Doped with Chitosan. Russian Journal of Physical Chemistry A, 2019, 93, 538-541.	0.6	2
84	Bioactive nanomaterials/chitosan composites as scaffolds for tissue regeneration., 2019,, 559-584.		3
85	Interaction of microcrystalline chitosan with graphene oxide (GO) and magnesium ions in aqueous solution. BMC Chemistry, 2019, 13, 57.	3.8	7
86	Graphene oxide incorporated polycaprolactone/chitosan/collagen electrospun scaffold: Enhanced osteogenic properties for bone tissue engineering. Artificial Organs, 2019, 43, E264-E281.	1.9	69
87	Biocompatible chitosan-pectin polyelectrolyte complex for simultaneous electrochemical determination of metronidazole and metribuzin. Carbohydrate Polymers, 2019, 214, 317-327.	10.2	35
88	Polymer and modified chitosan-based nanocomposite: impending material for technical application. Polymer-Plastics Technology and Materials, 2019, 58, 934-947.	1.3	9
89	Graphene oxide–polyoctahedral silsesquioxane–chitosan composite films with improved mechanical and waterâ€vaporâ€transport properties. Journal of Applied Polymer Science, 2019, 136, 47748.	2.6	8
90	Dynamic increased reinforcing effect of graphene oxide on cementitious nanocomposite. Construction and Building Materials, 2019, 206, 694-702.	7.2	23
91	Sensitivity Enhancement of Pb(II) Ion Detection in Rivers Using SPR-Based Ag Metallic Layer Coated with Chitosan–Graphene Oxide Nanocomposite. Sensors, 2019, 19, 5159.	3.8	25

#	Article	IF	CITATIONS
92	A porous reduced graphene oxide/chitosan-based nanocarrier as a delivery system of doxorubicin. RSC Advances, 2019, 9, 30729-30735.	3.6	16
93	Graphene Paper-Based Electrochemical Sensors for Biomolecules. , 2019, , 297-320.		6
94	Functional Graphenic Materials, Graphene Oxide, and Graphene as Scaffolds for Bone Regeneration. Regenerative Engineering and Translational Medicine, 2019, 5, 190-209.	2.9	33
95	Novel chitosan/polyvinyl alcohol thin membrane adsorbents modified with detonation nanodiamonds: Preparation, characterization, and adsorption performance. Arabian Journal of Chemistry, 2020, 13, 1731-1740.	4.9	49
96	Mesoporous chitosan based conformable and resorbable biostrip for dopamine detection. Biosensors and Bioelectronics, 2020, 147, 111781.	10.1	55
97	Facile design of reduced graphene oxide decorated with Cu2O nanocube composite as antibiofilm active material. Materials Chemistry and Physics, 2020, 239, 122300.	4.0	42
98	Evaluation of physical, mechanical, and biodegradation of chitosan/graphene oxide composite as bone substitutes. Polymer-Plastics Technology and Materials, 2020, 59, 430-440.	1.3	24
99	Enhanced performance of photocatalytic CO2 reduction via synergistic effect between chitosan and Cu:TiO2. Materials Research Bulletin, 2020, 124, 110758.	5.2	17
100	Fabrication and characterization of graphene oxide-chitosan-zinc oxide ternary nano-hybrids for the corrosion inhibition of mild steel. International Journal of Biological Macromolecules, 2020, 148, 1190-1200.	7.5	48
101	Injectable cell-laden poly(N-isopropylacrylamide)/chitosan hydrogel reinforced via graphene oxide and incorporated with dual-growth factors. Materials Letters, 2020, 280, 128572.	2.6	12
102	Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO ₂ hybrid matrix: optoelectronics and biotechnological aspects. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 385-449.	12.3	117
103	Chitosan oligosaccharide enhances binding of nanostructured lipid carriers to ocular mucins: Effect on ocular disposition. International Journal of Pharmaceutics, 2020, 577, 119095.	5.2	41
104	Density functional theory study on the interaction of chitosan monomer with TiO2, SiO2 and carbon nanotubes. Materials Chemistry and Physics, 2020, 255, 123576.	4.0	11
105	Bioproduced Polymers Self-Assemble with Graphene Oxide into Nanocomposite Films with Enhanced Mechanical Performance. ACS Nano, 2020, 14, 14731-14739.	14.6	49
106	Design of \hat{i}^3 -AlOOH, \hat{i}^3 -MnOOH, and \hat{i}_\pm -Mn ₂ O ₃ nanorods as advanced antibacterial active agents. Dalton Transactions, 2020, 49, 8601-8613.	3.3	28
107	Multi-Bit Biomemory Based on Chitosan: Graphene Oxide Nanocomposite with Wrinkled Surface. Micromachines, 2020, 11, 580.	2.9	7
108	Synthesis of zinc oxide nanostructures using orange peel oil for fabricating chitosan-zinc oxide composite films and their antibacterial activity. Journal of Polymer Research, 2020, 27, 1.	2.4	12
109	Chitosan/polyvinyl alcohol thin membrane adsorbents modified with zeolitic imidazolate framework (ZIF-8) nanostructures: Batch adsorption and optimization. Separation and Purification Technology, 2020, 241, 116759.	7.9	70

#	Article	IF	CITATIONS
110	A biocompatible vascularized graphene oxide (GO)-collagen chamber with osteoinductive and anti-fibrosis effects promotes bone regeneration <i>in vivo</i> . Theranostics, 2020, 10, 2759-2772.	10.0	40
111	Highly stable lithium-ion battery anode with polyimide coating anchored onto micron-size silicon monoxide via self-assembled monolayer. Journal of Power Sources, 2020, 453, 227874.	7.8	27
112	Graphene oxide and zinc oxide decorated chitosan nanocomposite biofilms for packaging applications. Journal of Polymer Engineering, 2020, 40, 152-157.	1.4	20
113	Multifunctional Chitosan–rGO Network Binder for Enhancing the Cycle Stability of Li–S Batteries. Advanced Functional Materials, 2020, 30, 1907680.	14.9	55
114	Ternary composite films with simultaneously enhanced strength and ductility: Effects of sodium alginate-gelatin weight ratio and graphene oxide content. International Journal of Biological Macromolecules, 2020, 156, 494-503.	7.5	30
115	Developing anti-biofouling and energy-efficient cation-exchange membranes using conductive polymers and nanomaterials. Journal of Membrane Science, 2020, 603, 118034.	8.2	14
116	Synthesis, characterization and sorption studies of a zirconium(<scp>iv</scp>) impregnated highly functionalized mesoporous activated carbons. RSC Advances, 2020, 10, 13783-13798.	3.6	73
117	Biological applications study of bioâ€nanocomposites based on chitosan/ <scp>TiO₂</scp> nanoparticles polymeric films modified by oleic acid. Journal of Biomedical Materials Research - Part A, 2021, 109, 232-247.	4.0	28
118	An ultrasensitive label-free electrochemical immunosensor based on 3D porous chitosan–graphene–ionic liquid–ferrocene nanocomposite cryogel decorated with gold nanoparticles for prostate-specific antigen. Talanta, 2021, 224, 121787.	5.5	34
119	Development of chitosan membrane using non-toxic crosslinkers for potential wound dressing applications. Polymer Bulletin, 2021, 78, 4919-4929.	3.3	26
120	Chitosan-based nanocomposites for gene delivery: Application and future perspectives., 2021,, 245-262.		0
121	Designing chitosan nanoparticles embedded into graphene oxide as a drug delivery system. Polymer Bulletin, 2022, 79, 541-554.	3.3	18
122	Layer-by-layer of graphene oxide-chitosan assembly on PVA membrane surface for the pervaporation separation of water-isopropanol mixtures. Korean Journal of Chemical Engineering, 2021, 38, 411-421.	2.7	4
123	Electronic, mechanical and thermal properties of SiO2 nanotube interacting with poly lactic-co-glycolic acid: Density functional theory and molecular dynamics studies. Applied Surface Science, 2021, 546, 148894.	6.1	9
124	Bifunctional sharkskin mimicked chitosan/graphene oxide membranes: Reduced biofilm formation and improved cytocompatibility. Applied Surface Science, 2021, 544, 148828.	6.1	21
125	An investigation into Sunitinib malate nanoparticle production by US-RESOLV method: Effect of type of polymer on dissolution rate and particle size distribution. Journal of Supercritical Fluids, 2021, 170, 105163.	3.2	43
126	Synthesis and fabrication of films including graphene oxide functionalized with chitosan for regenerative medicine applications. Heliyon, 2021, 7, e07058.	3.2	10
127	The Influence of Graphene Oxide and Cristobalite Phase of Silica Precipitate on Chitosan – Based Nanocomposites. Journal of Physics: Conference Series, 2021, 1912, 012036.	0.4	0

#	Article	IF	CITATIONS
128	Graphene Family Nanomaterials in Ocular Applications: Physicochemical Properties and Toxicity. Chemical Research in Toxicology, 2021, 34, 1386-1402.	3.3	21
129	Synthesis of biocompatible chitosan functionalized Ag decorated biocomposite for effective antibacterial and anticancer activity. International Journal of Biological Macromolecules, 2021, 178, 270-282.	7.5	17
130	Effect of TiO2 nanoparticles on the structural configurations and thermal, mechanical, and optical properties of chitosan/TiO2 nanoparticle composites. Journal of Physics and Chemistry of Solids, 2021, 152, 109983.	4.0	32
131	Extended Release of Metronidazole Drug Using Chitosan/Graphene Oxide Bionanocomposite Beads as the Drug Carrier. ACS Omega, 2021, 6, 20433-20444.	3.5	25
132	Continuous Detection of Pb(II) utilizing Chitosan-Graphene Oxide Surface Plasmon Resonance Sensors based on Ag/Au and Au/Ag/Au Nanolayers. Groningen Journal of European Law, 0 , , .	0.2	2
133	Graphene oxide based mixed matrix membrane in the presence of eco-friendly natural additive gum Arabic. Journal of Environmental Chemical Engineering, 2021, 9, 105638.	6.7	15
134	Direct sunlight-driven enhanced photocatalytic performance of V2O5 nanorods/ graphene oxide nanocomposites for the degradation of Victoria blue dye. Environmental Research, 2021, 199, 111369.	7.5	18
135	Chitosan/Graphene Oxide/Nanocellulose Composites for Removal of Cu(II) and Pb(II) Ions in Aqueous Solution. Polymer Science - Series A, 2021, 63, 556-567.	1.0	2
136	Rheology and direct write printing of chitosan - graphene oxide nanocomposite hydrogels for differentiation of neuroblastoma cells. Carbohydrate Polymers, 2021, 269, 118254.	10.2	33
137	Tuning polylactic acid scaffolds for tissue engineering purposes by incorporating graphene oxideâ€chitosan nanoâ€hybrids. Polymers for Advanced Technologies, 2021, 32, 1654-1666.	3.2	18
138	Graphene Grafted Chitosan Nanocomposites and Their Applications. Composites Science and Technology, 2021, , 135-147.	0.6	1
139	Chitosan Nanocomposites with Graphene-Based Filler. Materials Research, 2019, 22, .	1.3	7
140	Graphene Oxide: A Carrier for Pharmaceuticals and a Scaffold for Cell Interactions. Current Topics in Medicinal Chemistry, 2015, 15, 309-327.	2.1	45
141	Preparation And Characterization Of Graphene Oxide Cross-Linked Composites. , 2018, , .		5
142	Theoretical study of chitosan-graphene and other chitosan-based nanocomposites stability. AIMS Materials Science, 2017, 4, 317-327.	1.4	2
143	Designing hydrophobic bacterial cellulose film composites assisted by sound waves. RSC Advances, 2021, 11, 32873-32883.	3.6	8
144	Preparation, Characterization and Applications of Chitosan-Nanosilica-Graphene Oxide Nanocomposite. Asian Journal of Chemistry, 2021, 33, 2789-2795.	0.3	0
145	Preparation and Application of Chitosan-Based Membrane: Focusing on Dye Removal. Sustainable Textiles, 2022, , 121-179.	0.7	1

#	Article	IF	CITATIONS
146	Graphene oxide has a neuroprotective effect against glutamate-induced excitoxicity on B35 neuroblastoma cell line. Anatomy, 2015, 9, 156-167.	0.2	0
147	Chitosan and graphene oxide-based biodegradable bags: An eco-friendly and effective packaging alternative to maintain postharvest quality of †Palmer' mango. LWT - Food Science and Technology, 2022, 154, 112741.	5.2	15
148	Terahertz spectroscopic analysis of non-radiated and radiated synthetic and natural polymer / GO nanocomposites. Journal of Molecular Structure, 2022, 1250, 131659.	3.6	7
149	Potential Biopolymer Adsorbent Functionalized with Fe3O4 Nanoparticles for the Removal of Cr(VI) From Aqueous Solution. Journal of Polymers and the Environment, 2022, 30, 2022-2036.	5.0	2
150	Characterization of activated biomass carbon from tea leaf for supercapacitor applications. Chemosphere, 2022, 291, 132931.	8.2	29
151	Synthesis of novel surface-modified nanohydroxyapatite containing chitosan-functionalized graphene oxide decorated with glycidyl methacrylate ($GO\hat{a}\in GMA$) via ATRP for biomedical application. Polymer Bulletin, 2022, 79, 9833-9858.	3.3	3
152	Immobilized arginine/tryptophan-rich cyclic dodecapeptide on reduced graphene oxide anchored with manganese dioxide for microbial biofilm eradication. Journal of Hazardous Materials, 2022, 426, 128035.	12.4	15
153	Physicochemical properties of pullulan/chitosan/graphene oxide composite films. Polymer International, 0, , .	3.1	3
154	Evolution of graphene oxide (GO)-based nanohybrid materials with diverse compositions: an overview. RSC Advances, 2022, 12, 5686-5719.	3.6	27
155	Graphene oxide-chitosan composite material as adsorbent in removing methylene blue dye from synthetic wastewater. Materials Today: Proceedings, 2022, 64, 1587-1596.	1.8	11
156	Enhanced mechanical strength and antibacterial properties of Chitosan/Graphene oxide composite fibres. Cellulose, 2022, 29, 3889-3900.	4.9	4
157	Simultaneous removal of mercury ions and cationic and anionic dyes from aqueous solution using epichlorohydrin cross-linked chitosan @ magnetic Fe3O4/activated carbon nanocomposite as an adsorbent. Diamond and Related Materials, 2022, 124, 108923.	3.9	34
158	Experimental investigation of natural polysaccharide-based mixed matrix membrane modified with graphene oxide and Pd-nanoparticles for enhanced gas separation performance. International Journal of Hydrogen Energy, 2022, 47, 41820-41832.	7.1	18
159	Synergistic effect of chemical crosslinking and addition of graphene-oxide in Chitosan—Hydrogels, films, and drug delivery. Materials Today Communications, 2022, 31, 103430.	1.9	7
160	Highly sensitive and selective thiourea electrochemical sensor based on novel silver nanoparticles/chitosan nanocomposite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128879.	4.7	20
161	A study of the electrophoretic deposition of polycaprolactone-chitosan-bioglass nanocomposite coating on stainless steel (316L) substrates. Journal of Bioactive and Compatible Polymers, 2022, 37, 53-71.	2.1	1
162	Chitin based multi-layered coatings with flame retardancy an approach to mimic nacre: Synthesis, characterization and mechanical properties. Carbohydrate Polymers, 2022, 291, 119488.	10.2	13
163	Recent advances in graphene-based polymer composite scaffolds for bone/cartilage tissue engineering. Journal of Drug Delivery Science and Technology, 2022, 72, 103360.	3.0	5

#	Article	IF	CITATIONS
164	Modelling and optimization for methylene blue adsorption using graphene oxide/chitosan composites via artificial neural network-particle swarm optimization. Materials Today Chemistry, 2022, 24, 100946.	3.5	17
165	Comparative efficiency of polycyclic aromatic hydrocarbon removal by novel graphene oxide composites prepared from conventional and green synthesis. Journal of Cleaner Production, 2022, 361, 132244.	9.3	16
166	Innovativeness and sustainability of polymer nanocomposites. , 2022, , 515-535.		0
167	Ultrasound-assisted preparation of chitosan/nano-silica aerogel/tea polyphenol biodegradable films: Physical and functional properties. Ultrasonics Sonochemistry, 2022, 87, 106052.	8.2	8
168	Development of biodegradable chitosan/ graphene oxide nanocomposite via spray drying method for drug loading and delivery application. Journal of Drug Delivery Science and Technology, 2022, 74, 103555.	3.0	10
169	Chitosan functionalization of metal- and carbon-based nanomaterials as an approach toward sustainability tomorrow. Nanotoxicology, 2022, 16, 425-449.	3.0	2
170	Antibacterial Bio-Nanocomposite Textile Material Produced from Natural Resources. Nanomaterials, 2022, 12, 2539.	4.1	0
171	Various Coated Barrier Membranes for Better Guided Bone Regeneration: A Review. Coatings, 2022, 12, 1059.	2.6	3
172	Can Graphene Oxide Help to Prevent Peri-Implantitis in the Case of Metallic Implants?. Coatings, 2022, 12, 1202.	2.6	4
173	Green synthesis of chitosan-based membrane modified with uniformly micro-sizing selenium particles decorated graphene oxide for antibacterial application. International Journal of Biological Macromolecules, 2022, 220, 348-359.	7. 5	9
174	Development and characterization of locust bean gum-Viola anthocyanin-graphene oxide ternary nanocomposite as an efficient pH indicator for food packaging application. Food Packaging and Shelf Life, 2022, 34, 100934.	7. 5	19
177	Fabrication of Conductive Tissue Engineering Nanocomposite Films Based on Chitosan and Surfactant-Stabilized Graphene Dispersions. Polymers, 2022, 14, 3792.	4.5	2
178	Graphene and chitosan innovative materials for water treatment: Review. Materials Today: Proceedings, 2023, 72, 3577-3588.	1.8	1
179	Development of reduced Graphene oxide modified Ultrahigh molecular weight polyethylene (rGO/UHMWPE) based Nanocomposites for Biomedical Applications. Journal of Thermoplastic Composite Materials, 2023, 36, 3516-3551.	4.2	4
181	Water-based chitosan/reduced graphene oxide ink for extrusion printing of a disposable amperometric glucose sensor. FlatChem, 2022, 36, 100443.	5.6	6
182	Flame retardant polypropylene with a single molecule intumescent flame retardant based on chitosan. Materials Today Communications, 2022, 33, 104689.	1.9	7
184	Chitosan-carbamoylcarboxylic acid grafted polymers for removal of metal ions in wastewater. Chemical Engineering Journal, 2023, 456, 141034.	12.7	14
185	Density functional theory and molecular dynamics studies on electrical, mechanical, and thermal properties of TiO2 nanoparticles interacting with poly lactic-co-glycolic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 667, 131388.	4.7	2

#	Article	IF	CITATIONS
186	Effect of a chitosan-based flame retardant with a caged structure on unsaturated polyester resin. Polymer-Plastics Technology and Materials, 2022, 61, 909-922.	1.3	1
187	Investigating the effect of chitosan functionalized graphene oxide on the performance of biodegradable polycaprolactone. Journal of Reinforced Plastics and Composites, 0, , 073168442311639.	3.1	4
188	Functionalization of Graphene and Factors Affecting Catalytic Performance., 2023, , 154-207.		0
189	Chitosan/Graphene Oxide Nanocomposite Coatings on Magnesium Alloy: Corrosion and Biocompatibility Properties. Materials Performance and Characterization, 2023, 12, 152-169.	0.3	1
190	Incorporation of graphene oxide as a coupling agent in a 3D printed polylactic acid/hardystonite nanocomposite scaffold for bone tissue regeneration applications. International Journal of Biological Macromolecules, 2023, 253, 126510.	7.5	6
191	Electro-conductive chitosan/graphene bio-nanocomposite scaffold for tissue engineering of the central nervous system., 2023, 154, 213596.		3
192	A soft multifunctional film from chitosan modified with disulfide bond cross-links and prepared by a simple method. International Journal of Biological Macromolecules, 2023, 253, 126774.	7.5	0
193	Cellulose nanocrystals reinforced chitosan/titanium dioxide bionanocomposite with enhanced interfacial compatibility: Fabrication, characterization, and application in fresh-cut apple slices. International Journal of Biological Macromolecules, 2023, 253, 127498.	7. 5	0
194	Solketal Production Using Eco-Friendly Reduced Graphene Oxide as the Catalyst. Catalysts, 2023, 13, 1427.	3.5	1
195	Nanofabrication of chitosan-based dressing to treat the infected wounds: $\langle i \rangle$ in vitro $\langle i \rangle$ and $\langle i \rangle$ in vivo $\langle i \rangle$ evaluations. Future Science OA, 2024, 10, .	1.9	0
196	Efficient CO2 adsorption using chitosan, graphene oxide, and zinc oxide composite. Scientific Reports, 2024, 14 , .	3.3	0
197	Utilization of Graphene Oxide-Chitosan Nanocomposite for the Removal of Heavy Metals: Kinetics, Isotherm, and Error Analysis. Water Conservation Science and Engineering, 2024, 9, .	1.7	0
198	Disulfide bond network crosslinked flexible multifunctional chitosan coating on fabric surface prepared by the chitosan grafted with thioctic acid. International Journal of Biological Macromolecules, 2024, 263, 130431.	7.5	0