Generation of tumor-targeted human T lymphocytes from for cancer therapy

Nature Biotechnology 31, 928-933 DOI: 10.1038/nbt.2678

Citation Report

#	Article	IF	CITATIONS
1	Literature Search and Review. Assay and Drug Development Technologies, 2010, 8, 526-541.	0.6	0
2	Building a microphysiological skin model from induced pluripotent stem cells. Stem Cell Research and Therapy, 2013, 4, S2.	2.4	30
3	Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells. Blood, 2013, 122, 4035-4046.	0.6	117
4	PD-1– and CTLA-4–Based Inhibitory Chimeric Antigen Receptors (iCARs) Divert Off-Target Immunotherapy Responses. Science Translational Medicine, 2013, 5, 215ra172.	5.8	565
5	Literature Search and Review. Assay and Drug Development Technologies, 2013, 11, 509-531.	0.6	0
6	Immunogenicity and Tumorigenicity of Pluripotent Stem Cells and their Derivatives: Genetic and Epigenetic Perspectives. Current Stem Cell Research and Therapy, 2013, 9, 63-72.	0.6	53
7	Low pH reprograms somatic murine cells into pluripotent stem cells. Cancer Biology and Therapy, 2014, 15, 675-677.	1.5	2
8	Adoptive Tâ€cell therapy: adverse events and safety switches. Clinical and Translational Immunology, 2014, 3, e17.	1.7	73
9	Induced Pluripotent Stem Cells: Challenges and Opportunities for Cancer Immunotherapy. Frontiers in Immunology, 2014, 5, 176.	2.2	35
10	Do We Have a Workable Clinical Protocol for Differentiating Lymphoâ€Hematopoietic Stem Cells from the Source of Embryonic Stem Cells and Induced Pluripotent Stem Cells in Culture?. Scandinavian Journal of Immunology, 2014, 80, 247-249.	1.3	4
11	CD28z CARs and Armored CARs. Cancer Journal (Sudbury, Mass), 2014, 20, 127-133.	1.0	82
12	The Emergence of T-Bodies/CAR T Cells. Cancer Journal (Sudbury, Mass), 2014, 20, 123-126.	1.0	41
13	Engineering T cells for cancer: our synthetic future. Immunological Reviews, 2014, 257, 7-13.	2.8	43
14	Reprogramming antitumor immunity. Trends in Immunology, 2014, 35, 178-185.	2.9	39
15	Clinical utility of natural killer cells in cancer therapy and transplantation. Seminars in Immunology, 2014, 26, 161-172.	2.7	154
16	Induced pluripotent stem cells in hematology: current and future applications. Blood Cancer Journal, 2014, 4, e211-e211.	2.8	21
17	Cytokine release syndrome in cancer immunotherapy with chimeric antigen receptor engineered T cells. Cancer Letters, 2014, 343, 172-178.	3.2	130
18	In vitro generation of mature, naive antigen-specific CD8+ T cells with a single T-cell receptor by agonist selection. Leukemia, 2014, 28, 830-841.	3.3	19

ITATION REDO

#	Article	IF	CITATIONS
19	Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nature Reviews Molecular Cell Biology, 2014, 15, 95-107.	16.1	246
20	Pleiotropic roles of Notch signaling in normal, malignant, and developmental hematopoiesis in the human. EMBO Reports, 2014, 15, 1128-1138.	2.0	30
21	Rise of iPSCs as a cell source for adoptive immunotherapy. Human Cell, 2014, 27, 47-50.	1.2	6
22	Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood, 2014, 123, 2625-2635.	0.6	558
24	Challenges and opportunities of allogeneic donor-derived CAR T cells. Current Opinion in Hematology, 2015, 22, 509-515.	1.2	81
25	Novel Genome-Editing Tools to Model and Correct Primary Immunodeficiencies. Frontiers in Immunology, 2015, 6, 250.	2.2	32
26	Stem cell technology and engineering for cancer treatment. Biomedical Research and Therapy, 2015, 2, .	0.3	2
27	New Cell Sources for T Cell Engineering and Adoptive Immunotherapy. Cell Stem Cell, 2015, 16, 357-366.	5.2	134
28	Programming and Reprogramming Cellular Age in the Era of Induced Pluripotency. Cell Stem Cell, 2015, 16, 591-600.	5.2	147
30	Risks of Insertional Mutagenesis by DNA Transposons in Cancer Gene Therapy. , 2015, , 65-83.		4
31	Synthetic biology approaches to engineer T cells. Current Opinion in Immunology, 2015, 35, 123-130.	2.4	34
32	Synthetic biology in cell-based cancer immunotherapy. Trends in Biotechnology, 2015, 33, 449-461.	4.9	61
33	Rescue of DNA-PK Signaling and T-Cell Differentiation by Targeted Genome Editing in a prkdc Deficient iPSC Disease Model. PLoS Genetics, 2015, 11, e1005239.	1.5	17
34	De novo generation of HSCs from somatic and pluripotent stem cell sources. Blood, 2015, 125, 2641-2648.	0.6	97
35	The promise of γδT cells and the γδT cell receptor for cancer immunotherapy. Cellular and Molecular Immunology, 2015, 12, 656-668.	4.8	102
36	Hematopoiesis: from start to immune reconstitution potential. Stem Cell Research and Therapy, 2015, 6, 52.	2.4	6
37	Cytokine-induced killer (CIK) cells: from basic research to clinical translation. Chinese Journal of Cancer, 2015, 34, 99-107.	4.9	51
38	The Journey from Discoveries in Fundamental Immunology to Cancer Immunotherapy. Cancer Cell, 2015. 27. 439-449.	7.7	194

#	Article	IF	CITATIONS
39	T cell engineering as therapy for cancer and HIV: our synthetic future. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140374.	1.8	23
40	A Safeguard System for Induced Pluripotent Stem Cell-Derived Rejuvenated T Cell Therapy. Stem Cell Reports, 2015, 5, 597-608.	2.3	61
41	CAR Tâ€cell immunotherapy: The path from the byâ€road toÂthe freeway?. Molecular Oncology, 2015, 9, 1994-2018.	2.1	43
42	Development of Auto Antigen-specific Regulatory T Cells for Diabetes Immunotherapy. Immune Network, 2016, 16, 281.	1.6	8
43	Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells. Stem Cells International, 2016, 2016, 1-11.	1.2	17
44	Induced Pluripotent Stem Cell as a New Source for Cancer Immunotherapy. Genetics Research International, 2016, 2016, 1-9.	2.0	9
45	Engineering of synthetic gene circuits for (reâ€)balancing physiological processes in chronic diseases. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 402-422.	6.6	24
46	Chimeric antigen receptors: driving immunology towards synthetic biology. Current Opinion in Immunology, 2016, 41, 68-76.	2.4	77
47	Gene editing and its application for hematological diseases. International Journal of Hematology, 2016, 104, 18-28.	0.7	24
48	Adoptive Transfer of CD8 ⁺ T Cells Generated from Induced Pluripotent Stem Cells Triggers Regressions of Large Tumors Along with Immunological Memory. Cancer Research, 2016, 76, 3473-3483.	0.4	31
49	T-cell adoptive immunotherapy using tumor-infiltrating T cells and genetically engineered TCR-T cells. International Immunology, 2016, 28, 349-353.	1.8	45
50	Recent Advances in Stem Cells. Pancreatic Islet Biology, 2016, , .	0.1	1
51	From Adoptive Immunity to CAR Therapy: An Evolutionary Perspective. , 2016, , 560-568.		1
52	Progress towards generation of human haematopoietic stem cells. Nature Cell Biology, 2016, 18, 1111-1117.	4.6	68
53	Regeneration of CD8αβ T Cells from T-cell–Derived iPSC Imparts Potent Tumor Antigen-Specific Cytotoxicity. Cancer Research, 2016, 76, 6839-6850.	0.4	93
54	Efficient Regeneration of Human Vα24+ Invariant Natural Killer T Cells and Their Anti-Tumor Activity In Vivo. Stem Cells, 2016, 34, 2852-2860.	1.4	65
55	T Cell Genesis: In Vitro Veritas Est ?. Trends in Immunology, 2016, 37, 889-901.	2.9	22
56	Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity. Scientific Reports, 2016, 6, 20588.	1.6	34

ARTICLE IF CITATIONS # Genetically Engineered T Cells., 2016, , 121-132. 0 57 Bispecific antibodies and CARs: generalized immunotherapeutics harnessing T cell redirection. 2.4 Current Opinion in Immunology, 2016, 40, 24-35. Induced Pluripotent Stem Cells Can Effectively Differentiate into Multiple Functional Lymphocyte 59 1.1 8 Lineages In Vivo with Negligible Bias. Stem Cells and Development, 2016, 25, 462-471. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nature Medicine, 2016, 22, 296 26-36. Reprogramming away from the exhausted T cell state. Seminars in Immunology, 2016, 28, 35-44. 61 2.7 25 Stage-Specific Human Induced Pluripotent Stem Cells Map the Progression of Myeloid Transformation to Transplantable Leukemia. Cell Stem Cell, 2017, 20, 315-328.e7. 5.2 114 Hypercholesterolemia Increases Colorectal Cancer Incidence by Reducing Production of NKT and ^[3] (T 63 0.4 46 Cells from Hematopoietic Stem Cells. Cancer Research, 2017, 77, 2351-2362. Antigen receptor-redirected T cells derived from hematopoietic precursor cells lack expression of the endogenous TCR/CD3 receptor and exhibit specific antitumor capacities. On colmmunology, 2017, 6, 2.1 64 e1283460. The swinging pendulum of cancer immunotherapy personalization. Personalized Medicine, 2017, 14, 65 0.8 3 259-270. Chimeric Antigen Receptors: A Cell and Gene Therapy Perspective. Molecular Therapy, 2017, 25, 1117-1124. 79 Cells as advanced therapeutics: State-of-the-art, challenges, and opportunities in large scale biomanufacturing of high-quality cells for adoptive immunotherapies. Advanced Drug Delivery 67 6.6 52 Reviews, 2017, 114, 222-239. Therapeutic T cell engineering. Nature, 2017, 545, 423-431. Development and characterization of naive single-type tumor antigen-specific CD8⁺ T 70 2.1 4 lymphocytes from murine pluripotent stem cells. Oncolmmunology, 2017, 6, e1334027. Antibody-Based Cancer Therapy. International Review of Cell and Molecular Biology, 2017, 331, 289-383. 1.6 Chimeric Antigen Receptors: A Paradigm Shift in Immunotherapy. Annual Review of Cancer Biology, 72 2.328 2017, 1, 447-466. Cytokine-free directed differentiation of human pluripotent stem cells efficiently produces 2.4 33 hémogenic endothelium with lymphoid potential. Stem Cell Research and Therapy, 2017, 8, 67. Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation. Cell Biology 74 2.4 27 and Toxicology, 2017, 33, 233-250. Engineering Therapeutic T Cells: From Synthetic Biology to Clinical Trials. Annual Review of 54 Pathology: Mechanisms of Disease, 2017, 12, 305-330.

#	Article	IF	CITATIONS
76	Derivation of Human Induced Pluripotent Stem Cell (iPSC) Lines and Mechanism of Pluripotency: Historical Perspective and Recent Advances. Stem Cell Reviews and Reports, 2017, 13, 757-773.	5.6	25
77	NK Cell Alloreactivity against KIR-Ligand-Mismatched HLA-Haploidentical Tissue Derived from HLA Haplotype-Homozygous iPSCs. Stem Cell Reports, 2017, 9, 853-867.	2.3	56
78	Hit-and-run programming of therapeutic cytoreagents using mRNA nanocarriers. Nature Communications, 2017, 8, 389.	5.8	133
79	Next-Generation Chimeric Antigen Receptor T-Cell Therapy: Going off the Shelf. BioDrugs, 2017, 31, 473-481.	2.2	105
80	Chimeric Antigen Receptor Therapy in Acute Lymphoblastic Leukemia Clinical Practice. Current Hematologic Malignancy Reports, 2017, 12, 370-379.	1.2	15
81	â€`Off-the-shelf' immunotherapy with iPSC-derived rejuvenated cytotoxic TÂlymphocytes. Experimental Hematology, 2017, 47, 2-12.	0.2	22
82	Chimeric antigen receptors for treatment of glioblastoma: a practical review of challenges and ways to overcome them. Cancer Gene Therapy, 2017, 24, 121-129.	2.2	21
83	Application of Induced Pluripotent Stem Cell Technology to the Study of Hematological Diseases. Cells, 2017, 6, 7.	1.8	12
84	Inherent Immunogenicity or Lack Thereof of Pluripotent Stem Cells: Implications for Cell Replacement Therapy. Frontiers in Immunology, 2017, 8, 993.	2.2	11
85	Current Advances in $\hat{I}^{3}\hat{I}^{\prime}$ T Cell-Based Tumor Immunotherapy. Frontiers in Immunology, 2017, 8, 1401.	2.2	74
86	Perspective on the dynamics of cancer. Theoretical Biology and Medical Modelling, 2017, 14, 18.	2.1	13
87	Cloning and expansion of antigen-specific T cells using iPS cell technology: development of "off-the-shelf―T cells for the use in allogeneic transfusion settings. International Journal of Hematology, 2018, 107, 271-277.	0.7	21
88	GMP CAR-T cell production. Best Practice and Research in Clinical Haematology, 2018, 31, 126-134.	0.7	49
89	Posttransplant chimeric antigen receptor therapy. Blood, 2018, 131, 1045-1052.	0.6	67
90	Generation of Tumor Antigen-Specific iPSC-Derived Thymic Emigrants Using a 3D Thymic Culture System. Cell Reports, 2018, 22, 3175-3190.	2.9	35
91	Concise Review: Human Pluripotent Stem Cells to Produce Cell-Based Cancer Immunotherapy. Stem Cells, 2018, 36, 134-145.	1.4	48
92	Dawn of chimeric antigen receptor T cell therapy in non-Hodgkin Lymphoma. Advances in Cell and Gene Therapy, 2018, 1, e23.	0.6	1
93	Enhancing T Cell Receptor Stability in Rejuvenated iPSC-Derived T Cells Improves Their Use in Cancer Immunotherapy. Cell Stem Cell, 2018, 23, 850-858.e4.	5.2	110

		Citation R	EPORT	
#	Article		IF	CITATIONS
94	Approaches for generation of anti-leukemia specific T cells. Cell Regeneration, 2018, 7	, 40-44.	1.1	3
95	New Strategies and In Vivo Monitoring Methods for Stem Cell-Based Anticancer Thera International, 2018, 2018, 1-9.	pies. Stem Cells	1.2	8
96	Allogeneic CAR-T Cells: More than Ease of Access?. Cells, 2018, 7, 155.		1.8	129
97	A novel λ integrase-mediated seamless vector transgenesis platform for therapeutic p Nucleic Acids Research, 2018, 46, e99-e99.	rotein expression.	6.5	7
98	Bringing Induced Pluripotent Stem Cell Technology to the Bedside. JMA Journal, 2018,	1, 6-14.	0.6	9
99	Combining Induced Pluripotent Stem Cells and Genome Editing Technologies for Clinic Cell Transplantation, 2018, 27, 379-392.	al Applications.	1.2	30
100	CAR T Cells in Solid Tumors: Blueprints for Building Effective Therapies. Frontiers in Imr 2018, 9, 1740.	nunology,	2.2	155
101	Regulation of CD8+ T Cells and Antitumor Immunity by Notch Signaling. Frontiers in In 9, 101.	nmunology, 2018,	2.2	82
102	T cell senescence and CAR-T cell exhaustion in hematological malignancies. Journal of H and Oncology, 2018, 11, 91.	lematology	6.9	172
103	CD8+ iT cell, a budding star for cancer immunotherapy. Cell Biology and Toxicology, 20	018, 34, 417-419.	2.4	1
104	Producing proT cells to promote immunotherapies. International Immunology, 2018, 3	0, 541-550.	1.8	12
105	Cloning and expansion of antigen-specific T cells using iPS cell technology: Possible us regenerated T cells in personalized medicine. Personalized Medicine Universe, 2018, 7,	e of 7-12.	0.1	0
106	Programming CAR-T cells to kill cancer. Nature Biomedical Engineering, 2018, 2, 377-3	91.	11.6	267
107	Application of small molecule CHIR99021 leads to the loss of hemangioblast progenito hematopoiesis of human pluripotent stem cells. Experimental Hematology, 2018, 65, 3	pr and increased 88-48.e1.	0.2	14
108	Microphysiological systems meet hiPSC technology – New tools for disease modelin infections in basic research and drug development. Advanced Drug Delivery Reviews, 2	g of liver 019, 140, 51-67.	6.6	23
109	Medicinal Biotechnology for Disease Modeling, Clinical Therapy, and Drug Discovery ar Development. , 2019, , 89-128.	nd		6
110	Induced pluripotent stem cells as a novel cancer vaccine. Expert Opinion on Biological 19, 1191-1197.	Therapy, 2019,	1.4	10
111	Gene therapy of hematological disorders: current challenges. Gene Therapy, 2019, 26,	296-307.	2.3	8

#	Article	IF	CITATIONS
112	Gene editing: Towards the third generation of adoptive T-cell transfer therapies. Immuno-Oncology Technology, 2019, 1, 19-26.	0.2	7
113	Induced Pluripotent Stem Cell-Derived T Cells for Cancer Immunotherapy. Surgical Oncology Clinics of North America, 2019, 28, 489-504.	0.6	7
114	Attacking Latent HIV with convertibleCAR-T Cells, a Highly Adaptable Killing Platform. Cell, 2019, 179, 880-894.e10.	13.5	95
115	In Vitro Differentiation of T Cell: From CAR-Modified T-iPSC. Methods in Molecular Biology, 2019, 2048, 85-91.	0.4	8
116	A Three-dimensional Thymic Culture System to Generate Murine Induced Pluripotent Stem Cell-derived Tumor Antigen-specific Thymic Emigrants. Journal of Visualized Experiments, 2019, , .	0.2	3
117	NK cells specifically TCR-dressed to kill cancer cells. EBioMedicine, 2019, 40, 106-117.	2.7	56
118	γδ cell-based immunotherapy for cancer. Expert Opinion on Biological Therapy, 2019, 19, 887-895.	1.4	7
119	Induced Pluripotent Stem Cell (iPSC)–Derived Lymphocytes for Adoptive Cell Immunotherapy: Recent Advances and Challenges. Current Hematologic Malignancy Reports, 2019, 14, 261-268.	1.2	72
120	Modeling blood diseases with human induced pluripotent stem cells. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	23
121	Gene editing for immune cell therapies. Nature Biotechnology, 2019, 37, 1425-1434.	9.4	147
122	The Evolving Role of CD8+CD28â^' Immunosenescent T Cells in Cancer Immunology. International Journal of Molecular Sciences, 2019, 20, 2810.	1.8	105
123	Recent Updates on Induced Pluripotent Stem Cells in Hematological Disorders. Stem Cells International, 2019, 2019, 1-15.	1.2	25
124	NextGen cell-based immunotherapies in cancer and other immune disorders. Current Opinion in Immunology, 2019, 59, 79-87.	2.4	15
125	Derivation of mimetic γĨ´T cells endowed with cancer recognition receptors from reprogrammed γĨ´T cell. PLoS ONE, 2019, 14, e0216815.	1.1	22
126	UM171 expands distinct types of myeloid and NK progenitors from human pluripotent stem cells. Scientific Reports, 2019, 9, 6622.	1.6	21
127	Stem Cells in the Treatment of Disease. New England Journal of Medicine, 2019, 380, 1748-1760.	13.9	152
128	When CAR Meets Stem Cells. International Journal of Molecular Sciences, 2019, 20, 1825.	1.8	7
129	Evolution of chimeric antigen receptor (CAR) T cell therapy: current status and future perspectives. Archives of Pharmacal Research, 2019, 42, 607-616.	2.7	36

	CITATION REF	PORT	
#	ARTICLE Close Quarters Can Be a Good Fit for Stem Cells to Become T Cells, Cell Stem Cell, 2019, 24, 345-347.	IF	CITATIONS
131	Applications of molecular engineering in Tâ€cellâ€based immunotherapies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1557.	3.3	6
132	Induced pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Genetics, 2019, 20, 377-388.	7.7	411
133	Immunotherapy – Strategies for Expanding Its Role in the Treatment of All Major Tumor Sites. Cureus, 2019, 11, e5938.	0.2	9
134	From pluripotent stem cells to T cells. Experimental Hematology, 2019, 71, 24-31.	0.2	27
135	NOTCH Activation at the Hematovascular Mesoderm Stage Facilitates Efficient Generation of T Cells with High Proliferation Potential from Human Pluripotent Stem Cells. Journal of Immunology, 2019, 202, 770-776.	0.4	14
136	Organoid-Induced Differentiation of Conventional T Cells from Human Pluripotent Stem Cells. Cell Stem Cell, 2019, 24, 376-389.e8.	5.2	142
137	Toward the development of true "offâ€theâ€shelf―synthetic Tâ€cell immunotherapy. Cancer Science, 2019, 110, 16-22.	1.7	29
138	T-cells "à la CAR-T(e)―– Genetically engineering T-cell response against cancer. Advanced Drug Delivery Reviews, 2019, 141, 23-40.	6.6	17
139	Off-the-shelf cell therapy with induced pluripotent stem cell-derived natural killer cells. Seminars in Immunopathology, 2019, 41, 59-68.	2.8	115
140	Application of induced pluripotent stem cell technology for the investigation of hematological disorders. Advances in Biological Regulation, 2019, 71, 19-33.	1.4	6
141	Arterial identity of hemogenic endothelium: a key to unlock definitive hematopoietic commitment in human pluripotent stem cell cultures. Experimental Hematology, 2019, 71, 3-12.	0.2	31
142	<i>Withdrawal</i> : Generation of hematopoietic cells from mouse pluripotent stem cells in a 3D culture system of selfâ€assembling peptide hydrogel. Journal of Cellular Physiology, 2019, 234, 16654-16654.	2.0	3
143	Generation of hematopoietic cells from mouse pluripotent stem cells in a 3D culture system of selfâ€assembling peptide hydrogel. Journal of Cellular Physiology, 2020, 235, 2080-2090.	2.0	9
144	Future prospects of chimeric antigen receptor Tâ€cell therapy for multiple myeloma. Advances in Cell and Gene Therapy, 2020, 3, e72.	0.6	0
145	Long-term eradication of extranodal natural killer/T-cell lymphoma, nasal type, by induced pluripotent stem cell-derived Epstein-Barr virus-specific rejuvenated T cells <i>in vivo</i> . Haematologica, 2020, 105, 796-807.	1.7	17
146	Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nature Reviews Clinical Oncology, 2020, 17, 147-167.	12.5	786
147	â€~Off-the-shelf' allogeneic CAR T cells: development and challenges. Nature Reviews Drug Discovery, 2020, 19, 185-199.	21.5	632

		CITATION REPORT		
#	Article		IF	Citations
148	Treg cell-based therapies: challenges and perspectives. Nature Reviews Immunology, 2020, 20, 1	58-172.	10.6	383
149	Rapid and Reproducible Differentiation of Hematopoietic and T Cell Progenitors From Pluripoten Stem Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 577464.		1.8	10
150	Use of Cell and Genome Modification Technologies to Generate Improved "Off-the-Shelf―C, CAR NK Cells. Frontiers in Immunology, 2020, 11, 1965.	AR T and	2.2	85
151	Hematopoietic lineage-converted T cells carrying tumor-associated antigen-recognizing TCRs effectively kill tumor cells. , 2020, 8, e000498.			6
152	Strategies for Cancer Immunotherapy Using Induced Pluripotency Stem Cells-Based Vaccines. Ca 2020, 12, 3581.	incers,	1.7	6
153	Future of CAR T cells in multiple myeloma. Hematology American Society of Hematology Educati Program, 2020, 2020, 272-279.	on	0.9	22
154	Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. Journal of Hematology and Oncology, 2020, 13, 153.		6.9	172
155	Multilineage differentiation potential of hematoendothelial progenitors derived from human indupluripotent stem cells. Stem Cell Research and Therapy, 2020, 11, 481.	ıced	2.4	17
156	Targeted Cellular Micropharmacies: Cells Engineered for Localized Drug Delivery. Cancers, 2020, 2175.	12,	1.7	17
157	Engineered multicellular niches for pluripotent stem cell–derived immunotherapy. Current Opi in Biomedical Engineering, 2020, 16, 19-26.	nion	1.8	5
158	Overcoming key challenges in cancer immunotherapy with engineered T cells. Current Opinion ir Oncology, 2020, 32, 398-407.	١	1.1	9
159	Beyond CAR T cells: Engineered Vγ9VÎ′2 T cells to fight solid tumors. Immunological Reviews, 20 117-133.	20, 298,	2.8	9
160	Podoplanin as an Attractive Target of CAR T Cell Therapy. Cells, 2020, 9, 1971.		1.8	8
161	Overhauling CAR T Cells to Improve Efficacy, Safety and Cost. Cancers, 2020, 12, 2360.		1.7	9
162	Engineering Solutions for Mitigation of Chimeric Antigen Receptor T-Cell Dysfunction. Cancers, 2 12, 2326.	.020,	1.7	6
163	Modeling MyD88 Deficiency In Vitro Provides New Insights in Its Function. Frontiers in Immunolc 2020, 11, 608802.	gy,	2.2	4
164	Immune Modulation in Lung Cancer: Current Concepts and Future Strategies. Respiration, 2020, 903-929.	99,	1.2	18
165	Disease modeling and stem cell immunoengineering in regenerative medicine using CRISPR/Cas9 systems. Computational and Structural Biotechnology Journal, 2020, 18, 3649-3665.		1.9	7

	CITATION	Report	
#	Article	IF	CITATIONS
166	Toward "offâ€ŧheâ€shelf―allogeneic CAR T cells. Advances in Cell and Gene Therapy, 2020, 3, e86.	0.6	20
167	Cytotoxic T Lymphocytes Regenerated from iPS Cells Have Therapeutic Efficacy in a Patient-Derived Xenograft Solid Tumor Model. IScience, 2020, 23, 100998.	1.9	17
168	A Bird's-Eye View of Cell Sources for Cell-Based Therapies in Blood Cancers. Cancers, 2020, 12, 1333.	1.7	9
169	The Advent of CAR T-Cell Therapy for Lymphoproliferative Neoplasms: Integrating Research Into Clinical Practice. Frontiers in Immunology, 2020, 11, 888.	2.2	45
170	Genome engineering of induced pluripotent stem cells to manufacture natural killer cell therapies. Stem Cell Research and Therapy, 2020, 11, 234.	2.4	55
171	Next-generation stem cells — ushering in a new era of cell-based therapies. Nature Reviews Drug Discovery, 2020, 19, 463-479.	21.5	161
172	Next-generation CAR T cells to overcome current drawbacks. International Journal of Hematology, 2020, 114, 532-543.	0.7	7
173	Gamma-Delta CAR-T Cells Show CAR-Directed and Independent Activity Against Leukemia. Frontiers in Immunology, 2020, 11, 1347.	2.2	135
174	Improving Cancer Immunotherapy with CRISPRâ€Based Technology. Advanced Biology, 2020, 4, e1900253.	3.0	6
175	T Cell Engineering and the Rise of CAR-T Cell Therapies. , 2020, , 69-90.		0
176	iPSC-Based Modeling of RAG2 Severe Combined Immunodeficiency Reveals Multiple T Cell Developmental Arrests. Stem Cell Reports, 2020, 14, 300-311.	2.3	18
177	New directions in chimeric antigen receptor T cell [CARâ€₹] therapy and related flow cytometry. Cytometry Part B - Clinical Cytometry, 2020, 98, 299-327.	0.7	28
178	Induced Pluripotent Stem Cells: Reprogramming Platforms and Applications in Cell Replacement Therapy. BioResearch Open Access, 2020, 9, 121-136.	2.6	50
179	Blood components from pluripotent stem cells. , 2020, , 765-784.		0
180	The Emerging Landscape of Immune Cell Therapies. Cell, 2020, 181, 46-62.	13.5	247
181	Successes and challenges of NKT cell immunotherapy: Breaking tolerance to cancer resistance. , 2021, , 63-80.		0
182	Preclinical Evaluation of Invariant Natural Killer T Cells Modified with CD38 or BCMA Chimeric Antigen Receptors for Multiple Myeloma. International Journal of Molecular Sciences, 2021, 22, 1096.	1.8	25
183	InÂvitro T lymphopoiesis. , 2021, , 23-53.		0

#	Article	IF	CITATIONS
185	A clinically applicable and scalable method to regenerate T-cells from iPSCs for off-the-shelf T-cell immunotherapy. Nature Communications, 2021, 12, 430.	5.8	111
186	Development of platelet replacement therapy using human induced pluripotent stem cells. Development Growth and Differentiation, 2021, 63, 178-186.	0.6	6
187	Super-Treg: Toward a New Era of Adoptive Treg Therapy Enabled by Genetic Modifications. Frontiers in Immunology, 2020, 11, 611638.	2.2	26
188	CRISPR Takes the Front Seat in CART-Cell Development. BioDrugs, 2021, 35, 113-124.	2.2	10
189	T-Cell Dysfunction as a Limitation of Adoptive Immunotherapy: Current Concepts and Mitigation Strategies. Cancers, 2021, 13, 598.	1.7	19
190	Genetic engineering of T cells for immunotherapy. Nature Reviews Genetics, 2021, 22, 427-447.	7.7	63
191	Harnessing Mesenchymal Stromal Cells for the Engineering of Human Hematopoietic Niches. Frontiers in Immunology, 2021, 12, 631279.	2.2	6
192	Resistance to CART cell therapy: lessons learned from the treatment of hematological malignancies. Leukemia and Lymphoma, 2021, 62, 2052-2063.	0.6	16
193	Allogeneic CAR T Cells: An Alternative to Overcome Challenges of CAR T Cell Therapy in Glioblastoma. Frontiers in Immunology, 2021, 12, 640082.	2.2	64
194	Cellâ€Based Delivery Systems: Emerging Carriers for Immunotherapy. Advanced Functional Materials, 2021, 31, 2100088.	7.8	60
195	A Review of Chimeric Antigen Receptor T-Cell Therapy for Myeloma and Lymphoma. OncoTargets and Therapy, 2021, Volume 14, 2185-2201.	1.0	9
196	Off-the-Shelf Chimeric Antigen Receptor T Cells. Cancer Journal (Sudbury, Mass), 2021, 27, 176-181.	1.0	4
197	Taking T-Cell Oncotherapy Off-the-Shelf. Trends in Immunology, 2021, 42, 261-272.	2.9	14
198	Generation of highly proliferative, rejuvenated cytotoxic TÂcell clones through pluripotency reprogramming for adoptive immunotherapy. Molecular Therapy, 2021, 29, 3027-3041.	3.7	19
199	Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells. Nature Biomedical Engineering, 2021, 5, 429-440.	11.6	70
200	CART-Cell Therapy: Recent Advances and New Evidence in Multiple Myeloma. Cancers, 2021, 13, 2639.	1.7	17
201	A versatile polypharmacology platform promotes cytoprotection and viability of human pluripotent and differentiated cells. Nature Methods, 2021, 18, 528-541.	9.0	72
202	How Can We Engineer CAR T Cells to Overcome Resistance?. Biologics: Targets and Therapy, 2021, Volume 15, 175-198.	3.0	8

#	Article	IF	CITATIONS
203	Symphony of nanomaterials and immunotherapy based on the cancer–immunity cycle. Acta Pharmaceutica Sinica B, 2022, 12, 107-134.	5.7	70
204	Harnessing organs-on-a-chip to model tissue regeneration. Cell Stem Cell, 2021, 28, 993-1015.	5.2	36
205	Induced Pluripotent Stem Cells (iPSCs) Provide a Potentially Unlimited T Cell Source for CAR-T Cell Development and Off-the-Shelf Products. Pharmaceutical Research, 2021, 38, 931-945.	1.7	18
206	Cell Fate Reprogramming in the Era of Cancer Immunotherapy. Frontiers in Immunology, 2021, 12, 714822.	2.2	27
207	In Situ Programming of CAR T Cells. Annual Review of Biomedical Engineering, 2021, 23, 385-405.	5.7	33
208	Early-phenotype CAR-T cells for the treatment of pediatric cancers. Annals of Oncology, 2021, 32, 1366-1380.	0.6	14
209	Optimizing T Cell-Based Therapy for Glioblastoma. Frontiers in Immunology, 2021, 12, 705580.	2.2	9
210	"Builtâ€in―PDâ€1 blocker to rescue NKâ€92 activity from PDâ€L1–mediated tumor escape mechanisms. I Journal, 2021, 35, e21750.	FASEB	5
212	The Potential Applications of Stem Cells for Cancer Treatment. Current Stem Cell Research and Therapy, 2022, 17, 26-42.	0.6	2
213	CAR T cells: Building on the CD19 paradigm. European Journal of Immunology, 2021, 51, 2151-2163.	1.6	43
214	Monitoring and safety of CAR-T therapy in clinical practice. Expert Opinion on Drug Safety, 2022, 21, 363-371.	1.0	0
215	Advances in Adoptive Cell Therapy Using Induced Pluripotent Stem Cell-Derived T Cells. Frontiers in Immunology, 2021, 12, 759558.	2.2	8
216	Single-cell transcriptome of early hematopoiesis guides arterial endothelial-enhanced functional T cell generation from human PSCs. Science Advances, 2021, 7, eabi9787.	4.7	13
218	Macrophage-Based Combination Therapies as a New Strategy for Cancer Immunotherapy. Kidney Diseases (Basel, Switzerland), 2022, 8, 26-43.	1.2	16
219	Thymus Degeneration and Regeneration. Frontiers in Immunology, 2021, 12, 706244.	2.2	21
220	An Alternative Cell Therapy for Cancers: Induced Pluripotent Stem Cell (iPSC)-Derived Natural Killer Cells. Biomedicines, 2021, 9, 1323.	1.4	7
221	Engineering stem cells for cancer immunotherapy. Trends in Cancer, 2021, 7, 1059-1073.	3.8	22
222	Evolution of CD8+ T Cell Receptor (TCR) Engineered Therapies for the Treatment of Cancer. Cells, 2021, 10, 2379.	1.8	23

#	Article	IF	CITATIONS
223	Accelerating vein-to-vein cell therapy workflows with new bioanalytical strategies. Current Opinion in Biotechnology, 2021, 71, 164-174.	3.3	1
224	Delivery strategies for ex vivo and in vivo T-cell reprogramming. , 2022, , 31-62.		0
225	Improving the safety of iPSC-derived TÂcell therapy. , 2022, , 95-115.		3
226	HDAC inhibitors improve CRISPR-mediated HDR editing efficiency in iPSCs. Science China Life Sciences, 2021, 64, 1449-1462.	2.3	13
227	Efficient Generation of iPSC-Derived Hematoendothelial Progenitors and Specification Toward T cell Lineage. Methods in Molecular Biology, 2021, , 423-442.	0.4	3
229	Chimeric antigen receptor–induced BCL11B suppression propagates NK-like cell development. Journal of Clinical Investigation, 2019, 129, 5108-5122.	3.9	16
230	A Novel Ex Vivo Isolation and Expansion Procedure for Chimeric Antigen Receptor Engrafted Human T Cells. PLoS ONE, 2014, 9, e93745.	1.1	37
231	StemRegenin 1 selectively promotes expansion of multipotent hematopoietic progenitors derived from human embryonic stem cell. Journal of Stem Cells and Regenerative Medicine, 2017, 13, 75-79.	2.2	10
232	â€~Off-the-Shelf' Immunotherapy: Manufacture of CD8+ T Cells Derived from Hematopoietic Stem Cells. Cells, 2021, 10, 2631.	1.8	7
233	Modeling of human T cell development <i>in vitro</i> as a read-out for hematopoietic stem cell multipotency. Biochemical Society Transactions, 2021, 49, 2113-2122.	1.6	2
234	Advances in Universal CAR-T Cell Therapy. Frontiers in Immunology, 2021, 12, 744823.	2.2	78
235	Driving Out Chronic Lymphocytic Leukemia With CAR T Cells. Transplantation and Cellular Therapy, 2022, 28, 5-17.	0.6	4
236	Regeneration of antigen-specific T cells by using induced pluripotent stem cell (iPSC) technology. International Immunology, 2021, 33, 827-833.	1.8	15
237	Current Status of CAR-T Cell Therapy in Multiple Myeloma. Hemato, 2021, 2, 660-671.	0.2	2
238	Advances in cellular technology in the hematology field: What have we learned so far?. World Journal of Stem Cells, 2015, 7, 106.	1.3	0
239	Harnessing Stem Cell-Like Memory T Cells for Adoptive Cell Transfer Therapy of Cancer. Cancer Drug Discovery and Development, 2015, , 183-209.	0.2	4
241	Stem Cell-Derived Regulatory T Cells for Therapeutic Use in Arthritis. Autoimmune and Infectious Diseases: Open Access, 2016, 2, .	0.1	0
242	Clinical Applications of Induced Pluripotent Stem Cells in Cancer. Pancreatic Islet Biology, 2016, , 131-158.	0.1	0

#	Article	IF	CITATIONS
243	Redifferentiation of Adaptive NaÃ⁻ve-Like CTL from T-Cell-Derived iPSC. Methods in Molecular Biology, 2019, 2048, 71-75.	0.4	0
244	Adding chimeric antigen receptor–induced killer cells to the medical oncology shelf. Journal of Clinical Investigation, 2019, 129, 5077-5078.	3.9	3
245	Protocol for Isolation, Stimulation and Functional Profiling of Primary and iPSC-derived Human NK Cells. Bio-protocol, 2020, 10, e3845.	0.2	3
246	T Cell Receptor Engineered T Cell Therapy in Oncology. , 2020, , 377-408.		0
247	Generation of T cells from Human and Nonhuman Primate Pluripotent Stem Cells. Bio-protocol, 2020, 10, e3675.	0.2	4
249	Induced pluripotent stem cells–derived hematopoietic progenitors for cellular immunotherapies. , 2022, , 233-263.		1
250	The Potential of Induced Pluripotent Stem Cells to Advance the Treatment of Pancreatic Ductal Adenocarcinoma. Cancers, 2021, 13, 5789.	1.7	2
252	Induced Pluripotent Stem Cells as a Tool for Modeling Hematologic Disorders and as a Potential Source for Cell-Based Therapies. Cells, 2021, 10, 3250.	1.8	12
255	Off-the-shelf, steroid-resistant, IL13Rα2-specific CAR T cells for treatment of glioblastoma. Neuro-Oncology, 2022, 24, 1318-1330.	0.6	32
256	Multi-objective optimization reveals time- and dose-dependent inflammatory cytokine-mediated regulation of human stem cell derived T-cell development. Npj Regenerative Medicine, 2022, 7, 11.	2.5	10
257	Advances in Allogeneic Cancer Cell Therapy and Future Perspectives on "Off-the-Shelf―T Cell Therapy Using iPSC Technology and Gene Editing. Cells, 2022, 11, 269.	1.8	10
258	Resistance and recurrence of malignancies after CAR-T cell therapy. Experimental Cell Research, 2022, 410, 112971.	1.2	4
259	TCR-T Immunotherapy: The Challenges and Solutions. Frontiers in Oncology, 2021, 11, 794183.	1.3	36
260	Sustainable Antiviral Efficacy of Rejuvenated HIV-Specific Cytotoxic T Lymphocytes Generated from Induced Pluripotent Stem Cells. Journal of Virology, 2022, 96, jvi0221721.	1.5	3
261	Gamma delta (γδ) T cells in cancer immunotherapy; where it comes from, where it will go?. European Journal of Pharmacology, 2022, 919, 174803.	1.7	23
262	Multipurposing CARs: Same engine, different vehicles. Molecular Therapy, 2022, 30, 1381-1395.	3.7	9
263	Epigenetics and CD8 ⁺ T cell memory*. Immunological Reviews, 2022, 305, 77-89.	2.8	22
264	Genome Editing of Pluripotent Stem Cells for Adoptive and Regenerative Cell Therapies. , 2022, 1, 77-90.		0

#	Article	IF	CITATIONS
265	Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Molecular Cancer, 2022, 21, 78.	7.9	88
266	Development of off-the-shelf hematopoietic stem cell-engineered invariant natural killer T cells for COVID-19 therapeutic intervention. Stem Cell Research and Therapy, 2022, 13, 112.	2.4	14
268	Augmenting human gamma delta lymphocytes for cancer therapy with chimeric antigen receptors. Exploration of Immunology, 0, , 168-179.	1.7	3
269	3D-organoid culture supports differentiation of human CAR+ iPSCs into highly functional CAR TÂcells. Cell Stem Cell, 2022, 29, 515-527.e8.	5.2	57
270	Strategies to Circumvent the Side-Effects of Immunotherapy Using Allogeneic CAR-T Cells and Boost Its Efficacy: Results of Recent Clinical Trials. Frontiers in Immunology, 2021, 12, 780145.	2.2	11
271	Prospects for Development of Induced Pluripotent Stem Cell-Derived CAR-Targeted Immunotherapies. Archivum Immunologiae Et Therapiae Experimentalis, 2022, 70, 2.	1.0	13
272	Development of Stem Cell-Derived Immune Cells for Off-the-Shelf Cancer Immunotherapies. Cells, 2021, 10, 3497.	1.8	12
277	Off-the-Shelf Chimeric Antigen Receptor Immune Cells from Human Pluripotent Stem Cells. Cancer Treatment and Research, 2022, 183, 255-274.	0.2	Ο
278	MicroRNAs as T Lymphocyte Regulators in Multiple Sclerosis. Frontiers in Molecular Neuroscience, 2022, 15, 865529.	1.4	5
279	Engineering Induced Pluripotent Stem Cells for Cancer Immunotherapy. Cancers, 2022, 14, 2266.	1.7	20
280	Generation and clinical potential of functional T lymphocytes from gene-edited pluripotent stem cells. Experimental Hematology and Oncology, 2022, 11, 27.	2.0	6
281	Custom CARs: Leveraging the Adaptability of Allogeneic CAR Therapies to Address Current Challenges in Relapsed/Refractory DLBCL. Frontiers in Immunology, 2022, 13, .	2.2	7
282	CAR-T cells for cancer immunotherapy—the barriers ahead and the pathsÂthrough. International Reviews of Immunology, 2022, 41, 567-581.	1.5	1
283	CARâ€T Therapy in Clinical Practice: Technical Advances and Current Challenges. Advanced Biology, 2022, 6, .	1.4	2
284	Utility of iPSC-Derived Cells for Disease Modeling, Drug Development, and Cell Therapy. Cells, 2022, 11, 1853.	1.8	19
285	Potential of chimeric antigen receptor (<scp>CAR</scp>)â€redirected immune cells in breast cancer therapies: Recent advances. Journal of Cellular and Molecular Medicine, 2022, 26, 4137-4156.	1.6	3
286	Revolution of CAR Engineering For Next-Generation Immunotherapy In Solid Tumors. Frontiers in Immunology, 0, 13, .	2.2	7
287	DLL4 and VCAM1 enhance the emergence of T cell–competent hematopoietic progenitors from human pluripotent stem cells. Science Advances, 2022, 8,	4.7	15

#	Article	IF	CITATIONS
288	EZH1 repression generates mature iPSC-derived CAR TÂcells with enhanced antitumor activity. Cell Stem Cell, 2022, 29, 1181-1196.e6.	5.2	36
289	Advanced Cell Therapies for Glioblastoma. Frontiers in Immunology, 0, 13, .	2.2	7
290	Generation of T-cell-receptor-negative CD8Î \pm Î ² -positive CAR T cells from T-cell-derived induced pluripotent stem cells. Nature Biomedical Engineering, 2022, 6, 1284-1297.	11.6	27
291	Off-the-shelf third-party HSC-engineered iNKT cells for ameliorating GvHD while preserving GvL effect in the treatment of blood cancers. IScience, 2022, 25, 104859.	1.9	13
292	T淋巴细胞体å¤å�e,²æ−¹æ³•çš"ç"ç©¶èį›å±•. Zhejiang Da Xue Xue Bao Yi Xue Ban = Journal of Zhejiang Univ	ver sitty Me	dic a l Science
293	Production and characterization of virus-free, CRISPR-CAR T cells capable of inducing solid tumor regression. , 2022, 10, e004446.		18
294	Stem cell-based multi-tissue platforms to model human autoimmune diabetes. Molecular Metabolism, 2022, 66, 101610.	3.0	7
295	Lymphoid Lineage γÎ^T Cells Were Successfully Generated from Human Pluripotent Stem Cells via Hemogenic Endothelium. International Journal of Stem Cells, 2022, , .	0.8	0
296	Genome-edited allogeneic donor "universal―chimeric antigen receptor T cells. Blood, 2023, 141, 835-845.	0.6	11

297	Sourcing cells for in vitro models of human vascular barriers of inflammation. Frontiers in Medical Technology, 0, 4, .	1.3	0
298	Notch activation during early mesoderm induction modulates emergence ofÂthe T/NK cell lineage from human iPSCs. Stem Cell Reports, 2022, 17, 2610-2628.	2.3	5
299	Engineered and banked iPSCs for advanced NK- and T-cell immunotherapies. Blood, 2023, 141, 846-855.	0.6	9
300	Reprogramming cell fates towards novel cancer immunotherapies. Current Opinion in Pharmacology, 2022, 67, 102312.	1.7	0
301	Engaging stemness improves cancer immunotherapy. Cancer Letters, 2023, 554, 216007.	3.2	13
302	In vitro systems to study inborn errors of immunity using human induced pluripotent stem cells. Frontiers in Immunology, 0, 13, .	2.2	0
303	Back to the Future: lessons from development drive innovation of human pluripotent stem cell therapies. Experimental Hematology, 2022, , .	0.2	0
304	Simultaneous editing of TCR, HLA-I/II and HLA-E resulted in enhanced universal CAR-T resistance to allo-rejection. Frontiers in Immunology, 0, 13, .	2.2	5

305Optimization of the proliferation and persistency of CAR T cells derived from human induced11.620305pluripotent stem cells. Nature Biomedical Engineering, 0, , .11.620

#	Article	IF	CITATIONS
306	Generation of CD34+CD43+ Hematopoietic Progenitors to Induce Thymocytes from Human Pluripotent Stem Cells. Cells, 2022, 11, 4046.	1.8	3
307	Mucosal-associated invariant TÂcells for cancer immunotherapy. Molecular Therapy, 2023, 31, 631-646.	3.7	21
308	T, NK, then macrophages: Recent advances and challenges in adaptive immunotherapy from human pluripotent stem cells. Differentiation, 2023, 130, 51-57.	1.0	4
309	Antigenâ€specific <scp>TCRâ€T</scp> cells from Rag2 geneâ€deleted pluripotent stem cells impede solid tumour growth in a mouse model. Cell Proliferation, 0, , .	2.4	2
310	Four challenges to CAR T cells breaking the glass ceiling. European Journal of Immunology, 2023, 53, .	1.6	10
311	The role of cell membrane-coated nanoparticles as a novel treatment approach in glioblastoma. Frontiers in Molecular Biosciences, 0, 9, .	1.6	2
312	Immunotherapy using CAR T: What we have learned from trials and where we are heading. , 2023, , 369-384.		0
313	NKT cell: Success and promises in transplantation and immunotherapy. , 2023, , 385-401.		0
314	Re-generation of cytotoxic γÎT cells with distinctive signatures from human γÎT-derived iPSCs. Stem Cell Reports, 2023, 18, 853-868.	2.3	3
315	CAR immune cells: design principles, resistance and the next generation. Nature, 2023, 614, 635-648.	13.7	96
316	Induced pluripotent stem cell-derived engineered T cells, natural killer cells, macrophages, and dendritic cells in immunotherapy. Trends in Biotechnology, 2023, 41, 907-922.	4.9	11
317	â€~Off the shelf' immunotherapies: Generation and application of pluripotent stem cellâ€derived immune cells. Cell Proliferation, 2023, 56, .	2.4	5
318	Unraveling barriers to iPSC-derived CAR-T cell differentiation. Cell Stem Cell, 2023, 30, 248-249.	5.2	2
319	Strength of CAR signaling determines TÂcell versus ILC differentiation from pluripotent stem cells. Cell Reports, 2023, 42, 112241.	2.9	3
321	Lymphoid cell development from fetal hematopoietic progenitors and human pluripotent stem cells. Immunological Reviews, 2023, 315, 154-170.	2.8	2
322	Advancing cell-based cancer immunotherapy through stem cell engineering. Cell Stem Cell, 2023, 30, 592-610.	5.2	14
323	A close look at current $\hat{I}^3\hat{I}^{'}$ T-cell immunotherapy. Frontiers in Immunology, 0, 14, .	2.2	9
324	Engineering T Cell Development for the Next Generation of Stem Cell-Derived Immunotherapies. , 2023, 2, 106-119.		3

#	Article	IF	CITATIONS
325	Humanized mouse models with endogenously developed human natural killer cells for inÂvivo immunogenicity testing of HLA class I-edited iPSC-derived cells. Biochemical and Biophysical Research Communications, 2023, 662, 76-83.	1.0	0
328	Miscellaneous Complications of Chimeric Antigen Receptor T-Cell Therapy. , 2024, , 537-547.		0
329	Cancer Cell Culture: The Basics and Two-Dimensional Cultures. Methods in Molecular Biology, 2023, , 3-40.	0.4	2
335	CAR T therapy beyond cancer: the evolution of a living drug. Nature, 2023, 619, 707-715.	13.7	40
341	Immune Cell Generation from Human-Induced Pluripotent Stem Cells: Current Status and Challenges. Biochemistry, 0, , .	0.8	0
347	Stem Cell-Derived Cell Therapy for Cancer. , 2023, , .		0
351	Technologien und LösungsansÃæe für die effiziente Herstellung von Zelltherapeutika für die CAR-Immuntherapie. , 2023, , 123-137.		0
362	Development of Immune Cell Therapy Using T Cells Generated from Pluripotent Stem Cells. Advances in Experimental Medicine and Biology, 2024, , 207-217.	0.8	0