Damage assessment of churches after Lâ€Aquila earthq

Bulletin of Earthquake Engineering 10, 73-92 DOI: 10.1007/s10518-011-9307-x

Citation Report

#	Article	IF	CITATIONS
1	Field observations and interpretation of the structural performance of constructions after the 11 May 2011 Lorca earthquake. Engineering Failure Analysis, 2013, 34, 670-692.	1.8	114
2	Damage and performance evaluation of masonry churches in the 2009 L'Aquila earthquake. Engineering Failure Analysis, 2013, 34, 693-714.	1.8	189
3	Statistical Assessment of Damage to Churches Affected by the 2010–2011 Canterbury (New Zealand) Earthquake Sequence. Journal of Earthquake Engineering, 2013, 17, 73-97.	1.4	47
4	The Effect of Stiffened Floor and Roof Diaphragms on the Experimental Seismic Response of a Full-Scale Unreinforced Stone Masonry Building. Journal of Earthquake Engineering, 2014, 18, 407-443.	1.4	79
5	Observations of Out-of-Plane Rocking in the Oratory of San Giuseppe Dei Minimi during the 2009 L'Aquila Earthquake. Applied Mechanics and Materials, 0, 621, 101-106.	0.2	21
6	The behaviour of vernacular buildings in the 2012 Emilia earthquakes. Bulletin of Earthquake Engineering, 2014, 12, 2367-2382.	2.3	48
7	Evaluation of Seismic Vulnerability of Santa Maria del Mar in Barcelona by an Integrated Approach Based on Terrestrial Laser Scanner and Finite Element Modeling. International Journal of Architectural Heritage, 2014, 8, 795-819.	1.7	27
8	Damage assessment of fortresses after the 2012 Emilia earthquake (Italy). Bulletin of Earthquake Engineering, 2014, 12, 2333-2365.	2.3	80
9	In-plane stiffening techniques with nail plates or CFRP strips for timber floors in historical masonry buildings. Construction and Building Materials, 2014, 58, 64-76.	3.2	46
10	The effects of L'Aquila earthquake on the St. Cemma church in Goriano Sicoli: part l—damage survey and kinematic analysis. Bulletin of Earthquake Engineering, 2015, 13, 3713-3732.	2.3	27
11	An integrated survey experience for assessing the seismic vulnerability of Senigallia's Fortress (Italy): documentation for conservation and FEM modeling. , 2015, , .		4
12	The dynamic behaviour of the roof interventions in the Basilica San Francesco in Assisi. , 2015, , .		0
13	The relative dynamic resilience of masonry collapse mechanisms. Engineering Structures, 2015, 85, 182-194.	2.6	29
14	Damage Assessment of Unreinforced Stone Masonry Buildings After the 2010–2011 Canterbury Earthquakes. International Journal of Architectural Heritage, 2015, 9, 605-627.	1.7	20
15	Closed form solution for predicting the horizontal capacity of masonry portal frames through limit analysis and comparison with experimental test results. Engineering Failure Analysis, 2015, 55, 246-270.	1.8	22
16	Comparison of seismic analysis methods applied to a historical church struck by 2009 L'Aquila earthquake. Bulletin of Earthquake Engineering, 2015, 13, 3749-3778.	2.3	41
17	Seismic Performance of Historical Masonry Structures Through Pushover and Nonlinear Dynamic Analyses. Geotechnical, Geological and Earthquake Engineering, 2015, , 265-292.	0.1	38
18	PERPETUATE guidelines for seismic performance-based assessment of cultural heritage masonry structures. Bulletin of Earthquake Engineering, 2015, 13, 13-47.	2.3	198

#	Article	IF	CITATIONS
19	Seismic performance of masonry walls retrofitted with steel reinforced grout. Earthquake Engineering and Structural Dynamics, 2016, 45, 229-251.	2.5	42
20	The Dynamic Behavior of the Basilica of San Francesco in Assisi Using Simplified Analytical Models. International Journal of Architectural Heritage, 2016, 10, 938-953.	1.7	8
21	Observed and predicted earthquake damage scenarios: the case study of Pettino (L'Aquila) after the 6th April 2009 event. Bulletin of Earthquake Engineering, 2016, 14, 2643-2678.	2.3	27
22	ANTAEUS Project for the Regional Vulnerability Assessment of the Current Building Stock in Historical Centers. International Journal of Architectural Heritage, 2016, 10, 20-43.	1.7	41
23	Masonry walls with irregular texture of L'Aquila (Italy) seismic area: validation of a method for the evaluation of masonry quality. Materials and Structures/Materiaux Et Constructions, 2016, 49, 2297-2314.	1.3	35
24	Seismic safety assessment of historical structures using updated numerical models: The case of Mallorca cathedral in Spain. Engineering Failure Analysis, 2017, 74, 54-79.	1.8	27
25	A 3D microstructured cohesive–frictional interface model and its rational calibration for the analysis of masonry panels. International Journal of Solids and Structures, 2017, 122-123, 110-127.	1.3	21
26	Structural Characterization and Seismic Performance of San Francisco Church, the Most Ancient Monument in Santiago, Chile. International Journal of Architectural Heritage, 0, , 1-25.	1.7	6
27	Damage assessment of three medieval churches after the 2012 Emilia earthquake. Bulletin of Earthquake Engineering, 2017, 15, 2939-2980.	2.3	36
28	A numerical procedure for the pushover analysis of masonry towers. Soil Dynamics and Earthquake Engineering, 2017, 93, 162-171.	1.9	20
29	Seismic vulnerability evaluation of historical masonry churches: Proposal for a general and comprehensive numerical approach to cross-check results. Engineering Failure Analysis, 2017, 82, 208-228.	1.8	24
30	Experimental cyclic and dynamic in-plane rocking response of a masonry transverse arch typical of historical churches. Engineering Structures, 2017, 147, 285-296.	2.6	4
31	Horizontally restrained rocking blocks: evaluation of the role of boundary conditions with static and dynamic approaches. Bulletin of Earthquake Engineering, 2017, 15, 385-410.	2.3	44
32	Vulnerability Assessment of Unreinforced Masonry Churches Following the 2010–2011 Canterbury Earthquake Sequence. Journal of Earthquake Engineering, 2017, 21, 912-934.	1.4	28
33	An insight in the late Baroque architecture: An integrated approach for a unique Bibiena church. Journal of Cultural Heritage, 2017, 23, 58-67.	1.5	30
34	Multi-Directional Seismic Assessment of Historical Masonry Buildings by Means of Macro-Element Modelling: Application to a Building Damaged during the L'Aquila Earthquake (Italy). Buildings, 2017, 7, 106.	1.4	18
35	Assessment of risks on a territorial scale for archaeological sites in İzmir. International Journal of Architectural Heritage, 2018, 12, 951-980.	1.7	11
36	UB-ALMANAC: An adaptive limit analysis NURBS-based program for the automatic assessment of partial failure mechanisms in masonry churches. Engineering Failure Analysis, 2018, 85, 201-220.	1.8	50

#	Article	IF	CITATIONS
37	Seismic response and damage patterns of masonry churches: Seven case studies in Ferrara, Italy. Engineering Structures, 2018, 177, 809-835.	2.6	44
38	Damage assessment and partial failure mechanisms activation of historical masonry churches under seismic actions: Three case studies in Mantua. Engineering Failure Analysis, 2018, 92, 495-519.	1.8	58
39	The effects of in-plane shear displacements at the springings of Gothic cross vaults. Construction and Building Materials, 2018, 186, 219-232.	3.2	20
40	Reducing the Loss of Built Heritage in Seismic Areas. Buildings, 2018, 8, 19.	1.4	11
41	Assessment of Post-Earthquake Damage: St. Salvatore Church in Acquapagana, Central Italy. Buildings, 2018, 8, 45.	1.4	6
42	Seismic vulnerability scenarios of Unreinforced Masonry churches in New Zealand. Bulletin of Earthquake Engineering, 2018, 16, 3957-3999.	2.3	10
43	Evaluation of Seismic Risk on UNESCO Cultural Heritage sites in Europe. International Journal of Architectural Heritage, 2018, 12, 1231-1244.	1.7	24
44	Seismic damage survey and empirical fragility curves for churches after the August 24, 2016 Central Italy earthquake. Soil Dynamics and Earthquake Engineering, 2018, 111, 98-109.	1.9	51
45	Numerical Simulation and Failure Analysis of St. Konstantinos Church, after the Kozani Earthquake. International Journal of Civil Engineering, 2019, 17, 949-967.	0.9	4
46	Integrated approach for seismic vulnerability analysis of historic massive defensive structures. Journal of Cultural Heritage, 2019, 35, 86-98.	1.5	31
47	Damage survey, simplified assessment, and advanced seismic analyses of two masonry churches after the 2012 Emilia earthquake. International Journal of Architectural Heritage, 2019, 13, 901-924.	1.7	39
48	Hybrid seismic base isolation of a historical masonry church using unbonded fiber reinforced elastomeric isolators and shape memory alloy wires. Engineering Structures, 2019, 196, 109281.	2.6	41
49	Comparative Seismic Assessment Methods for Masonry Building Aggregates: A Case Study. Frontiers in Built Environment, 2019, 5, .	1.2	27
50	Post-Earthquake Damage and Vulnerability Assessment of Churches in the Marche Region Struck by the 2016 Central Italy Seismic Sequence. International Journal of Architectural Heritage, 2021, 15, 1000-1021.	1.7	28
51	Evaluation of the Performance of Unreinforced Stone Masonry Greek "Basilica―Churches When Subjected to Seismic Forces and Foundation Settlement. Buildings, 2019, 9, 106.	1.4	3
52	Performance-based assessment of masonry churches: application to San Clemente Abbey in Castiglione a Casauria (Italy). , 2019, , 55-89.		0
53	Seismic assessment of historical masonry structures through advanced nonlinear dynamic simulations: applications to castles, churches, and palaces. , 2019, , 163-200.		4
54	Seismic Vulnerability Analysis and Retrofitting of the SS. Rosario Church Bell Tower in Finale Emilia (Modena, Italy). Frontiers in Built Environment, 2019, 5, .	1.2	12

#	Article	IF	CITATIONS
55	Predictive model for seismic vulnerability assessment of churches based on the 2009 L'Aquila earthquake. Bulletin of Earthquake Engineering, 2019, 17, 4909-4936.	2.3	41
56	Advanced numerical insights into failure analysis and strengthening of monumental masonry churches under seismic actions. Engineering Failure Analysis, 2019, 103, 410-430.	1.8	50
57	Comparative Seismic Assessment of Ancient Masonry Churches. Frontiers in Built Environment, 2019, 5,	1.2	21
58	Damage to churches in the 2016 central Italy earthquakes. Bulletin of Earthquake Engineering, 2019, 17, 5763-5790.	2.3	71
59	Earthquake damage assessment of masonry churches: proposal for rapid and detailed forms and derivation of empirical vulnerability curves. Bulletin of Earthquake Engineering, 2019, 17, 3327-3364.	2.3	21
60	Performance of a Far-Field Historical Church during the 2016–2017 Central Italy Earthquakes. Journal of Performance of Constructed Facilities, 2019, 33, 04019016.	1.0	6
61	Base seismic isolation of a historical masonry church using fiber reinforced elastomeric isolators. Soil Dynamics and Earthquake Engineering, 2019, 120, 127-145.	1.9	43
62	Urban Seismic Networks, Structural Health and Cultural Heritage Monitoring: The National Earthquakes Observatory (INGV, Italy) Experience. Frontiers in Built Environment, 2019, 5, .	1.2	18
63	Influence of geometry on seismic capacity of circular buttressed arches. Journal of Mechanics of Materials and Structures, 2019, 14, 645-661.	0.4	2
64	The 2005 Kashmir Earthquake – devastation of infrastructures. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2019, 172, 490-501.	0.4	6
65	Window opening effects on structural behavior of historical masonry Fatih Mosque. International Journal of Architectural Heritage, 2019, 13, 585-599.	1.7	9
66	Simplified Seismic Analyses of Ancient Churches in Matera's Landscape. International Journal of Architectural Heritage, 2020, 14, 119-138.	1.7	33
67	Preliminary Assessment on Seismic Vulnerability of Masonry Churches in Central Chile. International Journal of Architectural Heritage, 2020, 14, 829-848.	1.7	17
68	Numerical approaches for cross-laminated timber roof structure optimization in seismic retrofitting of a historical masonry church. Bulletin of Earthquake Engineering, 2020, 18, 487-512.	2.3	20
69	Seismic Vulnerability Assessment and Retrofitting Strategies of Italian Masonry Churches of the Alife-Caiazzo Diocese in Caserta. International Journal of Architectural Heritage, 2020, 14, 1180-1195.	1.7	15
70	Collapse and damage to vernacular buildings induced by 2012 Emilia earthquakes. Bulletin of Earthquake Engineering, 2020, 18, 1049-1080.	2.3	8
71	Experimental test on a fibre-reinforced scaled cross vault subjected to in-plane shear displacements at the springings. Construction and Building Materials, 2020, 265, 120305.	3.2	6
72	The S. Maria di Collemaggio Basilica: From Vulnerability Assessment to First Results of SHM. Journal of Architectural Engineering, 2020, 26, 05020007.	0.8	22

#	Article	IF	CITATIONS
73	Empirical predictive model for seismic damage of historical churches. Bulletin of Earthquake Engineering, 2020, 18, 6015-6037.	2.3	12
74	Damage Assessment of Historic Masonry Churches Exposed to Slow-moving Landslides. International Journal of Architectural Heritage, 2021, 15, 1170-1195.	1.7	11
75	Seismic Vulnerability Analysis of Masonry Churches in Piemonte after 2003 Valle Scrivia Earthquake: Post-event Screening and Situation 17 Years Later. International Journal of Architectural Heritage, 2022, 16, 717-745.	1.7	39
76	Ground Response and Historical Buildings in Avellino (Campania, Southern Italy): Clues from a Retrospective View Concerning the 1980 Irpinia-Basilicata Earthquake. Geosciences (Switzerland), 2020, 10, 503.	1.0	2
77	Seismic Vulnerability and Simplified Safety Assessments of Masonry Churches in the Ischia Island (Italy) after the 2017 Earthquake. International Journal of Architectural Heritage, 2022, 16, 136-162.	1.7	20
78	Analytical modelling of out-of-plane flexural response of unreinforced and strengthened masonry walls. Engineering Structures, 2020, 218, 110797.	2.6	9
79	Seismic capacity of buttressed masonry arches. Engineering Structures, 2020, 215, 110661.	2.6	12
80	Correlation of Vulnerability and Damage between Artistic Assets and Structural Elements: The DataBAES Archive for the Conservation Planning of CH Masonry Buildings in Seismic Areas. Sustainability, 2020, 12, 653.	1.6	7
81	Seismic damage and fragility assessment of ancient masonry churches located in central Chile. Bulletin of Earthquake Engineering, 2020, 18, 3433-3457.	2.3	18
82	Traditional T-F Masonries in the City Centre of L'Aquila – The Baraccato Aquilano. International Journal of Architectural Heritage, 2021, 15, 437-454.	1.7	20
83	Seismic response of a masonry church in Central Italy: the role of interventions on the roof. Bulletin of Earthquake Engineering, 2021, 19, 1151-1179.	2.3	19
84	An Indicator for Post-disaster Economic Loss Valuation of Impacts on Cultural Heritage. International Journal of Architectural Heritage, 2021, 15, 678-697.	1.7	18
85	Integration of a Wearable Mobile Mapping Solution and Advance Numerical Simulations for the Structural Analysis of Historical Constructions: A Case of Study in San Pedro Church (Palencia,) Tj ETQq0 0 0 rgBT	/ D øerlock	₽ 0 Tf 50 25
86	Automatic Procedures for the Safety Assessment of Stand-alone Masonry Arches. International Journal of Architectural Heritage, 2022, 16, 1306-1324.	1.7	7
87	Towards the updated Italian seismic risk assessment: exposure and vulnerability modelling. Bulletin of Earthquake Engineering, 2021, 19, 3253-3286.	2.3	48
88	Tuned Mass Damper Design for Slender Masonry Structures: A Framework for Linear and Nonlinear Analysis. Applied Sciences (Switzerland), 2021, 11, 3425.	1.3	8
89	Damage Assessment of Historical Masonry Churches Subjected to Moderate Intensity Seismic Shaking. Sustainability, 2021, 13, 4710.	1.6	2
90	Experimental and Numerical Assessment of Seismic Retrofit Solutions for Stone Masonry Buildings. Geosciences (Switzerland), 2021, 11, 230.	1.0	4

#	Article	IF	CITATIONS
91	Impulsive Signals Produced by Earthquakes in Italy and Their Potential Relation with Site Effects and Structural Damage. Geosciences (Switzerland), 2021, 11, 261.	1.0	4
92	State of the art of simplified analytical methods for seismic vulnerability assessment of unreinforced masonry buildings. Engineering Structures, 2021, 239, 112280.	2.6	57
93	Integrated framework to structurally model unreinforced masonry Italian medieval churches from photogrammetry to finite element model analysis through heritage building information modeling. Engineering Structures, 2021, 241, 112439.	2.6	14
94	Shaking table testing of groin vaults made by 3D printers. Soil Dynamics and Earthquake Engineering, 2021, 150, 106880.	1.9	7
95	Seismic vulnerability assessment and earthquake response of slender historical masonry bell towers in South-East Lombardia. Engineering Failure Analysis, 2021, 129, 105656.	1.8	45
96	On the collapse of the masonry Medici tower: An integrated discrete-analytical approach. Engineering Structures, 2021, 246, 113046.	2.6	20
97	Seismic risk assessment and intervention prioritization for Italian medieval churches. Journal of Building Engineering, 2021, 43, 103061.	1.6	7
98	Numerical procedures for the analysis of collapse mechanisms of masonry structures using discrete element modelling. Engineering Structures, 2021, 246, 113047.	2.6	21
99	The 2016 Central Italy seismic sequence: linear and non-linear interpretation models for damage evolution in S. Agostino's church in Amatrice. Bulletin of Earthquake Engineering, 2021, 19, 1467-1507.	2.3	5
100	On the Dynamic Performance of the Santa Maria Maddalena Church, Ischia Island (Italy): Numerical and Experimental Comparative Analysis. Lecture Notes in Civil Engineering, 2021, , 699-723.	0.3	2
101	Seismic Upgrading of a Historical Masonry Bell Tower through an Internal Dissipative Steel Structure. Buildings, 2021, 11, 24.	1.4	15
102	Conservation Principles and Performance Based Strengthening of Heritage Buildings in Post-event Reconstruction. Geotechnical, Geological and Earthquake Engineering, 2014, , 489-514.	0.1	12
103	Unidirectional Cyclic Behavior of Old Masonry Walls in Romania. Springer Natural Hazards, 2016, , 351-361.	0.1	4
105	Performance of unreinforced masonry and infilled RC buildings during the 2015 Gorkha, Nepal earthquake sequence. , 2016, , 2399-2408.		9
106	Performance of unreinforced masonry and infilled RC buildings during the 2015 Gorkha, Nepal earthquake sequence. , 2016, , 2399-2407.		3
107	Investigations of masonry churches seismic performance with numerical models: application to a case study. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	1.9	7
108	Structural Design for Large Displacement Demands in Romania. SpringerBriefs in Geotechnical and Earthquake Engineering, 2018, , 41-74.	0.2	0
110	La influencia de las alteraciones estructurales en los daños del terremoto de Amatrice, Italia (2016). Informes De La Construccion, 2020, 72, 349.	0.1	3

#	Article	IF	CITATIONS
111	Masonry vaulted structures under spreading supports: Analyses of fracturing behavior and size effect. Journal of Building Engineering, 2022, 45, 103396.	1.6	10
112	Calibration of vulnerability and fragility curves from moderate intensity Italian earthquake damage data. International Journal of Disaster Risk Reduction, 2022, 67, 102676.	1.8	11
113	Seismic Vulnerability Assessment for Masonry Churches: An Overview on Existing Methodologies. Buildings, 2021, 11, 588.	1.4	7
114	The Performance of Two Unreinforced Masonry Churches in Greece Under Gravitation and Earthquake Actions. Lecture Notes in Civil Engineering, 2022, , 691-710.	0.3	0
115	Emergency Interventions in the Castle Church of Monreal De Ariza (Spain). Lecture Notes in Civil Engineering, 2022, , 857-869.	0.3	0
116	An Aggregated Non-Destructive Testing (Ndt) Framework for the Assessment of Mechanical Properties of Unreinforced Masonry Italian Medieval Churches. SSRN Electronic Journal, 0, , .	0.4	0
117	Seismic behavior and damage assessment of two historical fortified masonry palaces with corner towers. Engineering Failure Analysis, 2022, 134, 106003.	1.8	42
118	Monitoring Horizontal Movement of Top of a Spire in Saint Mary Cathedral of Burgos via Computer Vision. International Journal of Architectural Heritage, 2023, 17, 1405-1427.	1.7	0
119	Damage to Churches after the 2016 Central Italy Seismic Sequence. Geosciences (Switzerland), 2022, 12, 122.	1.0	3
120	Selection and spectral matching of recorded ground motions for seismic fragility analyses. Bulletin of Earthquake Engineering, 2022, 20, 4961-4987.	2.3	29
121	Post-Earthquake Damage Assessments of Historic Mosques and Effects of Near-Fault and Far-Fault Ground Motions on Seismic Responses. International Journal of Architectural Heritage, 2023, 17, 1043-1078.	1.7	13
122	Simplified numerical approach for the structural analysis of monumental historical aggregates: the case study of Certosa di Calci. Bulletin of Earthquake Engineering, 2022, 20, 5269-5300.	2.3	4
123	Dynamic characteristics of built heritage using ambient noise recordings. Heritage Science, 2022, 10, .	1.0	0
124	Factors Affecting the Seismic Analysis of Historical Masonry Structures: Case of a Single-Nave Church Damaged during the 2009 L'Aquila Earthquake. Journal of Architectural Engineering, 2022, 28, .	0.8	0
125	Two Steps Procedure for the Finite Elements Seismic Analysis of the Casamari Gothic Church. Buildings, 2022, 12, 1451.	1.4	2
126	A Geotechnical Analysis to Assess the Effect of Slow-Moving Landslides on Historic Masonry Churches. International Journal of Architectural Heritage, 2023, 17, 3-22.	1.7	3
127	Damage assessment in single-nave churches and analysis of the most recurring mechanisms after the 2016–2017 central Italy earthquakes. Bulletin of Earthquake Engineering, 2022, 20, 8031-8059.	2.3	11
128	An integrated approach for the conservation of archaeological buildings: The "Re Barbaro―Palace in Sardinia. Digital Applications in Archaeology and Cultural Heritage, 2022, 27, e00244.	0.9	Ο

#	ARTICLE	IF	CITATIONS
129	An expeditious tool for the vulnerability assessment of masonry structures in post-earthquake reconstruction. Bulletin of Earthquake Engineering, 2022, 20, 8445-8469.	2.3	2
130	Thermographic investigations and dynamic identification tests for non-destructive structural assessment and enhanced FE modelling of a historical iron-strengthened masonry church. Journal of Civil Structural Health Monitoring, 0, , .	2.0	0
131	Evaluation of the Seismic Vulnerability of Giotto's Bell Tower: Comparison of Different Methodologies. International Journal of Architectural Heritage, 2024, 18, 254-278.	1.7	2
132	Fracturing and collapse behavior of masonry vaulted structures: a lattice-discrete approach. Procedia Structural Integrity, 2023, 44, 1276-1283.	0.3	3
133	Empirical seismic vulnerability of Italian URM churches hit by the 2016-17 Central Italy earthquake sequence. Procedia Structural Integrity, 2023, 44, 91-98.	0.3	0
134	Analysis of the behavior of the masonry Medici tower resorting on a hybrid discrete-kinematic methodology. Procedia Structural Integrity, 2023, 44, 1640-1647.	0.3	2
135	Seismic assessment of typical historical masonry churches in the Banat region, Romania - Part II. Procedia Structural Integrity, 2023, 44, 2044-2051.	0.3	2
136	Collapse mechanisms of churches: typical recurrence rates and damage levels from the analysis of field data after the 2012 Emilia earthquake. Procedia Structural Integrity, 2023, 44, 1132-1139.	0.3	0
137	A comprehensive proposal for rehabilitation of historic Armenian church belonging to 16th century AD (Diyarbakır, Turkey). Structures, 2023, 50, 118-147.	1.7	0
138	Damage survey on churches: A new Observed Damage Database of past Italian earthquakes (Da.D.O.). International Journal of Disaster Risk Reduction, 2023, 87, 103595.	1.8	4
139	Seismic Assessment of the Archangeloi (Başmelekler) Church in Kumyaka, Türkiye. Buildings, 2023, 13, 787.	1.4	0
140	Combining Architectural Conservation and Seismic Strengthening in the Wood-Based Retrofitting of a Monumental Timber Roof: The Case Study of St. Andrew's Church in Ceto, Brescia, Italy. International Journal of Architectural Heritage, 0, , 1-21.	1.7	1
143	Preliminary Assessment of a Historic Masonry Church Strengthened by Reinforced Concrete Elements During 1927–1930. The Case of Recoleta Dominica Basilica in Santiago, Chile. RILEM Bookseries, 2024, , 1134-1146.	0.2	0
144	Preventive Retrofitting Strategies for Archetype Buildings Representative of the Abruzzo Region. RILEM Bookseries, 2024, , 1147-1158.	0.2	0