"Andromaly―a behavioral malware detection fran

Journal of Intelligent Information Systems 38, 161-190 DOI: 10.1007/s10844-010-0148-x

Citation Report

#	Article	IF	CITATIONS
1	Security aspects of mobile phone virus: a critical survey. Industrial Management and Data Systems, 2008, 108, 478-494.	2.2	54
2	Crowdroid. , 2011, , .		678
3	Inoculation against malware infection using kernel-level software sensors. , 2011, , .		4
4	Research on Behavior-based Detection Method for Mobile Application Security. , 2012, , .		0
5	A Novel Behavior-Based Virus Detection Method for Smart Mobile Terminals. Discrete Dynamics in Nature and Society, 2012, 2012, 1-12.	0.5	3
6	DroidMat: Android Malware Detection through Manifest and API Calls Tracing. , 2012, , .		395
7	Design and Implementation of SIP Protocol Stack Based on Android. , 2012, , .		0
8	SmartDroid. , 2012, , .		170
9	TCADS: Trustworthy, Context-Related Anomaly Detection for Smartphones. , 2012, , .		5
10	Polite: A policy framework for building managed mobile apps. , 2012, , .		1
11	Malicious code prevention in kernel mode. , 2012, , .		0
12	Android Malware Detection via a Latent Network Behavior Analysis. , 2012, , .		36
13	Monitoring and detecting abnormal behavior in mobile cloud infrastructure. , 2012, , .		5
14	Analysis of malicious and benign android applications. , 2012, , .		37
15	A neural network approach to category validation of Android applications. , 2013, , .		28
16	Detection of malicious code in user mode. , 2013, , .		2
17	MASON: Mobile autonomic security for network access controls. Journal of Information Security and Applications, 2013, 18, 14-29.	1.8	11
18	Analysis of Android malware detection performance using machine learning classifiers. , 2013, , .		25

IF ARTICLE CITATIONS # Random Forest Classification for Detecting Android Malware., 2013,,. 19 127 PANDORA applies non-deterministic obfuscation randomly to Android., 2013, , . 14 Guest editorial: Special issue on data mining for information security. Information Sciences, 2013, 231, 21 4.0 1 1-3 Applying machine learning classifiers to dynamic Android malware detection at scale. , 2013, , . Behavioral Analysis of Android Applications Using Automated Instrumentation., 2013,,. 23 24 Mutiple classifier system based android malware detection., 2013,,. Multi-channel Change-Point Malware Detection., 2013,,. 26 4 Android Malware Detection Technology Based on Improved Bayesian Classification., 2013,,. 28 Machine learning for attack vector identification in malicious source code., 2013, , . 15 Insights into layout patterns of mobile user interfaces by an automatic analysis of android apps., 2013, 30 SmartMal: A Service-Oriented Behavioral Malware Detection Framework for Smartphones., 2013,,. 2 A scalable approach for malware detection through bounded feature space behavior modeling., 2013, Identifying android malicious repackaged applications by thread-grained system call sequences. 32 4.0 73 Computers and Security, 2013, 39, 340-350. Research of Intrusion Detection System on Android., 2013,,. Rapid Permissions-Based Detection and Analysis of Mobile Malware Using Random Decision Forests., 34 26 2013,,. A survey of security risks of mobile social media through blog mining and an extensive literature 1.2 44 search. Information Management and Computer Security, 2013, 21, 381-400. 36 Clustering of Similar Malware Behavior via Structural Host-Sequence Comparison., 2013,,. 2 DroidAPIMiner: Mining API-Level Features for Robust Malware Detection in Android. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2013, ,

CITATION REPORT

86-103.

#	Article	IF	CITATIONS
38	On behavior-based detection of malware on Android platform. , 2013, , .		22
39	Research in the Large. International Journal of Mobile Human Computer Interaction, 2013, 5, 45-61.	0.1	25
40	SmartMal: A Service-Oriented Behavioral Malware Detection Framework for Mobile Devices. Scientific World Journal, The, 2014, 2014, 1-11.	0.8	2
41	Agent-Based Model to Study and Quantify the Evolution Dynamics of Android Malware Infection. Abstract and Applied Analysis, 2014, 2014, 1-10.	0.3	1
42	Characterizing Evaluation Practicesof Intrusion Detection Methodsfor Smartphones. Journal of Cyber Security and Mobility, 2014, 3, 89-132.	0.7	5
43	Demanding Requirement of Security for Wireless Mobile Devices: A Survey. Research Journal of Applied Sciences, Engineering and Technology, 2014, 8, 2381-2387.	0.1	2
44	Attack Tree Based Android Malware Detection with Hybrid Analysis. , 2014, , .		16
45	The analysis of feature selection methods and classification algorithms in permission based Android malware detection. , 2014, , .		49
46	Smartphone malware detection model based on artificial immune system. China Communications, 2014, 11, 86-92.	2.0	18
47	Android malware attacks and countermeasures: Current and future directions. , 2014, , .		17
48	Linux kernel-based feature selection for Android malware detection. , 2014, , .		14
49	Privacy Preservation in Location-Based Mobile Applications: Research Directions. , 2014, , .		7
50	Security threats analysis for Android based Mobile Device. , 2014, , .		5
51	Linear SVM-Based Android Malware Detection for Reliable IoT Services. Journal of Applied Mathematics, 2014, 2014, 1-10.	0.4	86
52	DAGGER: Distributed architecture for granular mitigation of mobile based attacks. , 2014, , .		0
53	High Precision Screening for Android Malware with Dimensionality Reduction. , 2014, , .		11
54	Usage patterns based security attacks for smart devices. , 2014, , .		1
55	Trimming Approach of Robust Clustering for Smartphone Behavioral Analysis. , 2014, , .		1

#	Article	IF	CITATIONS
56	Detection of Android Malicious Apps Based on the Sensitive Behaviors. , 2014, , .		13
57	DroidDolphin. , 2014, , .		112
58	Divide-and-Conquer: Why Android Malware Cannot Be Stopped. , 2014, , .		36
59	Detect Android Malware Variants Using Component Based Topology Graph. , 2014, , .		22
60	Android Malware Detection Using Parallel Machine Learning Classifiers. , 2014, , .		74
62	Data Model for Android Package Information and Its Application to Risk Analysis System. , 2014, , .		3
63	Mining Mobile Internet Packets for Malware Detection. , 2014, , .		2
64	Quantifying and Classifying Covert Communications on Android. Mobile Networks and Applications, 2014, 19, 79-87.	2.2	2
65	SIPmsign: a lightweight mobile signature service based on the Session Initiation Protocol. Software - Practice and Experience, 2014, 44, 511-535.	2.5	2
66	Mobile malware detection through analysis of deviations in application network behavior. Computers and Security, 2014, 43, 1-18.	4.0	137
67	Linear SVM-Based Android Malware Detection. Lecture Notes in Electrical Engineering, 2014, , 575-585.	0.3	15
68	Evolution, Detection and Analysis of Malware for Smart Devices. IEEE Communications Surveys and Tutorials, 2014, 16, 961-987.	24.8	176
69	An Anomaly Detection Module for Firefox OS. , 2014, , .		2
70	The best of both worlds. , 2014, , .		25
71	Using opcode-sequences to detect malicious Android applications. , 2014, , .		55
72	Droid permission miner: Mining prominent permissions for Android malware analysis. , 2014, , .		28
73	Third line of defense strategy to fight against SMS-based malware in android smartphones. , 2014, , .		2
74	Analysis of Features Selection and Machine Learning Classifier in Android Malware Detection. , 2014, , .		40

#	Article	IF	CITATIONS
75	Capturing and characterizing network actions of mobile applications for behavior consistency. , 2015, , .		0
76	Hartley's test ranked opcodes for Android malware analysis. , 2015, , .		2
77	DWroidDump: Executable Code Extraction from Android Applications for Malware Analysis. International Journal of Distributed Sensor Networks, 2015, 11, 379682.	1.3	16
78	Android malware detection based on permission combinations. International Journal of Simulation and Process Modelling, 2015, 10, 315.	0.1	4
79	Security Challenges for Hardware Designers of Mobile Systems. , 2015, , .		1
80	Guess who is listening in to the board meeting: on the use of mobile device applications as roving spy bugs. Security and Communication Networks, 2015, 8, 2813-2825.	1.0	3
81	An effective behavior-based Android malware detection system. Security and Communication Networks, 2015, 8, 2079-2089.	1.0	11
82	Smart malware detection on Android. Security and Communication Networks, 2015, 8, 4254-4272.	1.0	15
83	Mining network traffic for application category recognition on Android platform. , 2015, , .		3
84	Taurus: Preventing Stealthy SMS Activities on Android. Applied Mechanics and Materials, 2015, 764-765, 960-964.	0.2	Ο
85	A Machine Learning Approach to Anomaly-Based Detection on Android Platforms. International Journal of Network Security and Its Applications, 2015, 7, 15-35.	0.4	10
86	API Tracing Tool for Android-Based Mobile Devices. International Journal of Information and Education Technology, 2015, 5, 460-465.	0.9	3
87	Location aware security for smart mobile devices. , 2015, , .		0
88	M0Droid: An Android Behavioral-Based Malware Detection Model. Journal of Information Privacy and Security, 2015, 11, 141-157.	0.4	66
89	Heterogeneous feature space for Android malware detection. , 2015, , .		3
90	Clustering android malware families by http traffic. , 2015, , .		22
91	Identifying Unknown Android Malware with Feature Extractions and Classification Techniques. , 2015, , .		14
92	"Do You Want to Install an Update of This Application?" A Rigorous Analysis of Updated Android Applications. , 2015, , .		9

ARTICLE IF CITATIONS # Performance of malware classifier for android., 2015,,. 93 2 The bright side arguments for the coming smartphones crypto war: The added value of device 94 encryption., 2015,,. SherlockDroid: a research assistant to spot unknown malware in Android marketplaces. Journal of 95 1.6 4 Computer Virology and Hacking Techniques, 2015, 11, 235-245. Detecting malicious Android applications from runtime behavior., 2015,,. Android Security: A Survey of Issues, Malware Penetration, and Defenses. IEEE Communications 98 24.8 402 Surveys and Tutorials, 2015, 17, 998-1022. Charting the API minefield using software telemetry data. Empirical Software Engineering, 2015, 20, 1785-1830. 3.0 Enhancing malware detection for Android systems using a system call filtering and abstraction 100 1.0 9 process. Security and Communication Networks, 2015, 8, 1179-1192. Investigation of Feature Selection Methods for Android Malware Analysis. Procedia Computer 1.2 Science, 2015, 46, 841-848. A game of Droid and Mouse: The threat of split-personality malware on Android. Computers and 102 4.0 26 Security, 2015, 54, 2-15. Securing Android. ACM Computing Surveys, 2015, 47, 1-45. 16.1 Impact of Privacy Issues on User Behavioural Acceptance of Personalized mHealth Services. Springer 104 4 0.1 Series in Bio-/neuroinformatics, 2015, , 1089-1109. Detection and Mitigation of Android Malware Through Hybrid Approach. Communications in 0.4 Computer and Information Science, 2015, , 455-463 HelDroid: Dissecting and Detecting Mobile Ransomware. Lecture Notes in Computer Science, 2015, 106 1.0 140 382-404. Android malware detection using multivariate time-series technique., 2015,,. 108 Cloud based security solution for android smartphones., 2015,,. 1 MARVIN: Efficient and Comprehensive Mobile App Classification through Static and Dynamic Analysis., 109 Research on the Performance of Mining Packets of Educational Network for Malware Detection 110 1 between PM and VM., 2015,,. Appearance similarity evaluation for Android applications., 2015, , .

#	Article	IF	CITATIONS
112	Cloud based intrusion detection architecture for smartphones. , 2015, , .		2
114	DRACO., 2015,,.		24
115	High accuracy android malware detection using ensemble learning. IET Information Security, 2015, 9, 313-320.	1.1	138
116	Exploring Feature Extraction and ELM in Malware Detection for Android Devices. Lecture Notes in Computer Science, 2015, , 489-498.	1.0	8
117	Android based malware detection using a multifeature collaborative decision fusion approach. Neurocomputing, 2015, 151, 905-912.	3.5	87
118	Profiling user-trigger dependence for Android malware detection. Computers and Security, 2015, 49, 255-273.	4.0	90
119	Power-aware anomaly detection in smartphones: An analysis of on-platform versus externalized operation. Pervasive and Mobile Computing, 2015, 18, 137-151.	2.1	25
120	CREDROID. , 2016, , .		39
121	Knowledge-Driven User Behavior Pattern Discovery for System Security Enhancement. International Journal of Software Engineering and Knowledge Engineering, 2016, 26, 379-404.	0.6	3
122	StormDroid., 2016,,.		105
123	Protego: A passive intrusion detection system for Android smartphones. , 2016, , .		5
124	I find your behavior disturbing: Static and dynamic app behavioral analysis for detection of Android malware. , 2016, , .		15
125	Dr. WATTson: Lightweight current-based Intrusion Detection (CBID). , 2016, , .		0
126	An Analysis of the Privacy and Security Risks of Android VPN Permission-enabled Apps. , 2016, , .		65
127	SherLock vs Moriarty. , 2016, , .		36
128	Mining sandboxes. , 2016, , .		29
129	Detection of Android malware security on system calls. , 2016, , .		2
130	Anomadroid: Profiling Android Applications' Behaviors for Identifying Unknown Malapps. , 2016, , .		10

#	Article	IF	CITATIONS
131	Classifying Android Malware with Dynamic Behavior Dependency Graphs. , 2016, , .		4
132	ForceDROID: Extracting Hidden Information in Android Apps by Forced Execution Technique. , 2016, , .		0
133	An Android Malware Detection Approach Using Bayesian Inference. , 2016, , .		10
134	Enhancement of Permission Management for an ARM-Android Platform. , 2016, , .		1
135	Native malware detection in smartphones with android OS using static analysis, feature selection and ensemble classifiers. , 2016, , .		17
136	DySign: dynamic fingerprinting for the automatic detection of android malware. , 2016, , .		16
137	Challenges and Opportunities in Edge Computing. , 2016, , .		307
138	Slowing the spread of Bluetooth-based malware in mobile tactical networks. , 2016, , .		2
139	An Android malware detection method based on AndroidManifest file. , 2016, , .		18
140	AntiWare: An automated Android malware detection tool based on machine learning approach and official market metadata. , 2016, , .		7
141	Spotting the Malicious Moment: Characterizing Malware Behavior Using Dynamic Features. , 2016, , .		24
142	Deep4MalDroid: A Deep Learning Framework for Android Malware Detection Based on Linux Kernel System Call Graphs. , 2016, , .		131
143	Acquiring and Analyzing App Metrics for Effective Mobile Malware Detection. , 2016, , .		32
144	A Host and Network Based Intrusion Detection for Android Smartphones. , 2016, , .		5
145	Android malware analysis approach based on control flow graphs and machine learning algorithms. , 2016, , .		19
146	What does the memory say? Towards the most indicative features for efficient malware detection. , $2016,$, .		10
147	Risks and Security of Internet and Systems. Lecture Notes in Computer Science, 2016, , .	1.0	0
148	A threat monitoring system in enterprise networks with smart mobiles. International Journal of Security and Networks, 2016, 11, 66.	0.1	0

ARTICLE IF CITATIONS SCREDENT: Scalable Real-time Anomalies Detection and Notification of Targeted Malware in Mobile 149 1.2 10 Devices. Procedia Computer Science, 2016, 83, 1219-1225. Computer Safety, Reliability, and Security. Lecture Notes in Computer Science, 2016, , . 1.0 Requirements for designing mobile and flexible applications for online invasion detection and remote 151 0.3 8 control. International Journal of Computer Applications in Technology, 2016, 54, 138. Privacy and Accountability Concerns in the Age of Big Data., 2016, , 357-372. The rise of "malware†Bibliometric analysis of malware study. Journal of Network and Computer 153 5.8 82 Applications, 2016, 75, 58-76. Dynalog: an automated dynamic analysis framework for characterizing android applications., 2016, , . 155 N-opcode analysis for android malware classification and categorization., 2016,,. 52 Malware Development on Mobile Environments., 2016,,. 156 Analyzing Android Repackaged Malware by Decoupling Their Event Behaviors. Lecture Notes in 157 1.0 1 Computer Science, 2016, , 3-20. Generative versus discriminative classifiers for android anomaly-based detection system using system 1.0 calls filtering and abstraction process. Security and Communication Networks, 2016, 9, 3483-3495. MalAware: Effective and Efficient Run-Time Mobile Malware Detector., 2016,,. 159 4 Mobile Application Impersonation Detection Using Dynamic User Interface Extraction. Lecture Notes in Computer Science, 2016, , 217-237. MimeoDroid: Large Scale Dynamic App Analysis on Cloned Devices via Machine Learning Classifiers. 161 5 2016, , . Android platform-based individual privacy information protection system. Personal and Ubiquitous Computing, 2016, 20, 875-884. 163 Adversarial Data Mining., 2016, , . 12 Detecting injected behaviors in HTML5-based Android applications. Journal of High Speed Networks, 164 2016, 22, 15-34. ScanMe mobile. ACM SIGAPP Applied Computing Review: A Publication of the Special Interest Group on 165 0.5 16 Applied Computing, 2016, 16, 36-49. Identifying Android malware with system call coâ€occurrence matrices. Transactions on Emerging Telecommunications Technologies, 2016, 27, 675-684.

#	ARTICLE DroidScreening: a practical framework for realâ€world Android malware analysis. Security and	IF 1.0	CITATIONS 8
168	Communication Networks, 2016, 9, 1435-1449. Evaluation of machine learning classifiers for mobile malware detection. Soft Computing, 2016, 20, 343-357.	2.1	284
169	Identifying malicious Android apps using permissions and system events. International Journal of Embedded Systems, 2016, 8, 46.	0.2	13
170	Seeing the Unseen: Revealing Mobile Malware Hidden Communications via Energy Consumption and Artificial Intelligence. IEEE Transactions on Information Forensics and Security, 2016, 11, 799-810.	4.5	113
171	Dexteroid: Detecting malicious behaviors in Android apps using reverse-engineered life cycle models. Computers and Security, 2016, 59, 92-117.	4.0	29
172	IntelliDroid: A Targeted Input Generator for the Dynamic Analysis of Android Malware. , 2016, , .		111
173	An integrated static detection and analysis framework for android. Pervasive and Mobile Computing, 2016, 32, 15-25.	2.1	40
174	Towards a 2-hybrid Android malware detection test framework. , 2016, , .		10
175	Improve Dynamic Sandbox on the Cloud with Non-QEMU Based OS Through Hooks and Mocks Techniques. Lecture Notes in Electrical Engineering, 2016, , 523-531.	0.3	0
176	ADroid: anomaly-based detection of malicious events in Android platforms. International Journal of Information Security, 2017, 16, 371-384.	2.3	10
177	Identification of malicious android app using manifest and opcode features. Journal of Computer Virology and Hacking Techniques, 2017, 13, 125-138.	1.6	33
178	Backâ€propagation neural network on Markov chains from system call sequences: a new approach for detecting Android malware with system call sequences. IET Information Security, 2017, 11, 8-15.	1.1	43
179	The Evolution of Android Malware and Android Analysis Techniques. ACM Computing Surveys, 2017, 49, 1-41.	16.1	251
180	Malware Threats and Solutions for Trustworthy Mobile Systems Design. , 2017, , 149-167.		6
181	Hardware Security and Trust. , 2017, , .		25
182	Dynamic Permissions based Android Malware Detection using Machine Learning Techniques. , 2017, , .		65
183	Search Rank Fraud and Malware Detection in Google Play. IEEE Transactions on Knowledge and Data Engineering, 2017, 29, 1329-1342.	4.0	22
184	Characterizing Android apps' behavior for effective detection of malapps at large scale. Future Generation Computer Systems, 2017, 75, 30-45.	4.9	66

#	Article	IF	CITATIONS
185	EMULATOR vs REAL PHONE. , 2017, , .		56
186	Fuzzy–synthetic minority oversampling technique: Oversampling based on fuzzy set theory for Android malware detection in imbalanced datasets. International Journal of Distributed Sensor Networks, 2017, 13, 155014771770311.	1.3	12
187	Flow anomaly based intrusion detection system for Android mobile devices. , 2017, , .		5
188	DroidInjector: A process injection-based dynamic tracking system for runtime behaviors of Android applications. Computers and Security, 2017, 70, 224-237.	4.0	8
189	Deep Android Malware Detection. , 2017, , .		293
190	App Miscategorization Detection: A Case Study on Google Play. IEEE Transactions on Knowledge and Data Engineering, 2017, 29, 1591-1604.	4.0	17
191	Detect Sensitive Data Leakage via Inter-application on Android by Using Static Analysis and Dynamic Analysis. Lecture Notes in Electrical Engineering, 2017, , 298-305.	0.3	0
192	Vulnerability detection in recent Android apps: An empirical study. , 2017, , .		14
193	PIndroid: A novel Android malware detection system using ensemble learning methods. Computers and Security, 2017, 68, 36-46.	4.0	157
194	Android malware detection: state of the art. International Journal of Information Technology (Singapore), 2017, 9, 111-117.	1.8	16
196	FgDetector: Fine-Grained Android Malware Detection. , 2017, , .		15
197	DeepFlow: Deep learning-based malware detection by mining Android application for abnormal usage of sensitive data. , 2017, , .		24
198	Towards a Hybrid Intrusion Detection System for Android-based PPDR terminals. , 2017, , .		8
199	Android inter-app communication threats and detection techniques. Computers and Security, 2017, 70, 392-421.	4.0	29
200	Fraud application detection using summary risk score. , 2017, , .		3
201	Android Malware Detection Using Hybrid Analysis and Machine Learning Technique. Lecture Notes in Computer Science, 2017, , 565-575.	1.0	6
202	Assessing the cyber-trustworthiness of human-as-a-sensor reports from mobile devices. , 2017, , .		6
203	An improved Android malware detection scheme based on an evolving hybrid neuro-fuzzy classifier (EHNFC) and permission-based features. Neural Computing and Applications, 2017, 28, 4147-4157.	3.2	38

#	Article	IF	Citations
204	MOCDroid: multi-objective evolutionary classifier for Android malware detection. Soft Computing, 2017, 21, 7405-7415.	2.1	60
205	NeSeDroid—Android Malware Detection Based on Network Traffic and Sensitive Resource Accessing. Advances in Intelligent Systems and Computing, 2017, , 19-30.	0.5	5
206	Key features for the characterization of Android malware families. Logic Journal of the IGPL, 2017, 25, 54-66.	1.3	8
207	A Taxonomy and Qualitative Comparison of Program Analysis Techniques for Security Assessment of Android Software. IEEE Transactions on Software Engineering, 2017, 43, 492-530.	4.3	91
208	Intelligent Distributed Computing X. Studies in Computational Intelligence, 2017, , .	0.7	0
209	String-based Malware Detection for Android Environments. Studies in Computational Intelligence, 2017, , 99-108.	0.7	6
210	XGBoost-Based Android Malware Detection. , 2017, , .		9
211	Towards 3-level hybrid security model for Android Operating Systems. , 2017, , .		0
212	Malware detection in android mobile platform using machine learning algorithms. , 2017, , .		18
213	Study of an effective way of detecting unexpected permission authorization to mobile apps. , 2017, , .		1
214	A survey on rise of mobile malware and detection methods. , 2017, , .		2
215	Android malicious application detection using permission vector and network traffic analysis. , 2017, , \cdot		9
216	Contaminant removal for Android malware detection systems. , 2017, , .		10
217	Detecting blacklisted URLs from unmodified and non-rooted Android devices. , 2017, , .		0
218	Android malware detection based on overlapping of static features. , 2017, , .		4
219	Machine Learning-Based Malicious Application Detection of Android. IEEE Access, 2017, 5, 25591-25601.	2.6	59
220	A novel method to detect android malware using Locality Sensitive Hashing algorithms. , 2017, , .		0
221	Colluded Applications Vulnerabilities in Android Devices. , 2017, , .		3

		15	Circiana
#	ARTICLE	IF	CITATIONS
222	SCANNER: Sequence clustering of android resource accesses. , 2017, , .		1
223	Android malware detection a survey. , 2017, , .		19
224	A Security Threat Analysis and Evaluation Model for Power Field Operation Terminal. , 2017, , .		0
225	Malware Detection Techniques for Mobile Devices. SSRN Electronic Journal, 0, , .	0.4	6
226	Supervised Learning Based Detection of Malware on Android. , 2017, , 101-154.		6
227	Unleash the Power for Tensor: A Hybrid Malware Detection System Using Ensemble Classifiers. , 2017, ,		0
228	Android malware classification based on ANFIS with fuzzy c-means clustering using significant application permissions. Turkish Journal of Electrical Engineering and Computer Sciences, 2017, 25, 2232-2242.	0.9	14
229	Detecting Android malware using Long Short-term Memory (LSTM). Journal of Intelligent and Fuzzy Systems, 2018, 34, 1277-1288.	0.8	101
230	Mobile phishing attacks and defence mechanisms: State of art and open research challenges. Computers and Security, 2018, 73, 519-544.	4.0	92
231	Android Malware Detection Based on Network Traffic Using Decision Tree Algorithm. Advances in Intelligent Systems and Computing, 2018, , 485-494.	0.5	20
233	DDefender: Android application threat detection using static and dynamic analysis. , 2018, , .		26
234	Conceptual framework for the security of mobile health applications on Android platform. Telematics and Informatics, 2018, 35, 1335-1354.	3.5	91
235	A heuristics approach to mine behavioural data logs in mobile malware detection system. Data and Knowledge Engineering, 2018, 115, 129-151.	2.1	23
236	The application of multivariate statistical process monitoring in non-industrial processes. Quality Technology and Quantitative Management, 2018, 15, 526-549.	1.1	33
237	HEMD: a highly efficient random forest-based malware detection framework for Android. Neural Computing and Applications, 2018, 30, 3353-3361.	3.2	47
238	Bio-inspired computational paradigm for feature investigation and malware detection: interactive analytics. Multimedia Tools and Applications, 2018, 77, 17519-17555.	2.6	26
239	Towards a multilayered permission-based access control for extending Android security. Concurrency Computation Practice and Experience, 2018, 30, e4180.	1.4	5
240	DroidDet: Effective and robust detection of android malware using static analysis along with rotation forest model. Neurocomputing, 2018, 272, 638-646.	3.5	146

#	Article	IF	CITATIONS
241	Intelligent OS X malware threat detection with code inspection. Journal of Computer Virology and Hacking Techniques, 2018, 14, 213-223.	1.6	49
242	Mobile Apps identification based on network flows. Knowledge and Information Systems, 2018, 55, 771-796.	2.1	14
243	Empirical Evaluation of a System Call-Based Android Malware Detector. Arabian Journal for Science and Engineering, 2018, 43, 6751-6770.	1.7	6
244	HADM: Hybrid Analysis for Detection of Malware. Lecture Notes in Networks and Systems, 2018, , 702-724.	0.5	33
245	An agent-based modeling framework for cybersecurity in mobile tactical networks. Journal of Defense Modeling and Simulation, 2018, 15, 205-218.	1.2	8
247	Evading android anti-malware by hiding malicious application inside images. International Journal of Systems Assurance Engineering and Management, 2018, 9, 482-493.	1.5	7
248	Automated poisoning attacks and defenses in malware detection systems: An adversarial machine learning approach. Computers and Security, 2018, 73, 326-344.	4.0	177
249	A New Android Botnet Classification for GPS Exploitation Based on Permission and API Calls. Lecture Notes in Electrical Engineering, 2018, , 27-37.	0.3	4
250	Bio-inspired for Features Optimization and Malware Detection. Arabian Journal for Science and Engineering, 2018, 43, 6963-6979.	1.7	34
251	MLStar., 2018, , .		0
251 252		0.4	0
	MLStar., 2018, , . MobiSentry: Towards Easy and Effective Detection of Android Malware on Smartphones. Mobile	0.4	
252	MLStar., 2018, , . MobiSentry: Towards Easy and Effective Detection of Android Malware on Smartphones. Mobile Information Systems, 2018, 2018, 1-14. Chatting Application Monitoring on Android System and its Detection based on the Correlation Test.,	0.4	4
252 253	 MLStar., 2018, , . MobiSentry: Towards Easy and Effective Detection of Android Malware on Smartphones. Mobile Information Systems, 2018, 2018, 1-14. Chatting Application Monitoring on Android System and its Detection based on the Correlation Test., 2018, , . Ranking and Risk Factor Scheme for Malicious applications detection and Classifications. 		4
252 253 254	MLStar. , 2018, , . MobiSentry: Towards Easy and Effective Detection of Android Malware on Smartphones. Mobile Information Systems, 2018, 2018, 1-14. Chatting Application Monitoring on Android System and its Detection based on the Correlation Test. , 2018, , . Ranking and Risk Factor Scheme for Malicious applications detection and Classifications. International Journal of Information System Modeling and Design, 2018, 9, 67-84.		4 1 0
252 253 254 255	MLStar., 2018, , . MobiSentry: Towards Easy and Effective Detection of Android Malware on Smartphones. Mobile Information Systems, 2018, 2018, 1-14. Chatting Application Monitoring on Android System and its Detection based on the Correlation Test. , 2018, , . Ranking and Risk Factor Scheme for Malicious applications detection and Classifications. International Journal of Information System Modeling and Design, 2018, 9, 67-84. SpyDroid: A Framework for Employing Multiple Real-Time Malware Detectors on Android. , 2018, , .		4 1 0 9
252 253 254 255 256	MLStar., 2018, , . MobiSentry: Towards Easy and Effective Detection of Android Malware on Smartphones. Mobile Information Systems, 2018, 2018, 1-14. Chatting Application Monitoring on Android System and its Detection based on the Correlation Test., 2018, , . Ranking and Risk Factor Scheme for Malicious applications detection and Classifications. International Journal of Information System Modeling and Design, 2018, 9, 67-84. SpyDroid: A Framework for Employing Multiple Real-Time Malware Detectors on Android , 2018, , . Survey of Mobile Malware Analysis, Detection Techniques and Tool., 2018, , .		4 1 0 9 11

# 260	ARTICLE Using heuristic approach to build Anti-malware. , 2018, , .	IF	CITATIONS
261	MONITROID: A Runtime Smart Alert Malware Detection System. , 2018, , .		0
262	Na $ ilde{A}$ ve Bayesian and Fuzzy C-Means Algorithm for Mobile Malware Detection Precision. , 2018, , .		0
263	A Novel approach for bootkit detection in Android Platform. , 2018, , .		0
264	Automaticlly Learning Featurs Of Android Apps Using CNN. , 2018, , .		6
266	Towards Dynamically Monitoring Android Applications on Non-rooted Devices in the Wild. , 2018, , .		9
267	Machine learning-assisted signature and heuristic-based detection of malwares in Android devices. Computers and Electrical Engineering, 2018, 69, 828-841.	3.0	73
268	Dalvik Opcode Graph Based Android Malware Variants Detection Using Global Topology Features. IEEE Access, 2018, 6, 51964-51974.	2.6	44
269	EasyPrivacy: Context-Aware Resource Usage Control System for Android Platform. IEEE Access, 2018, 6, 44506-44518.	2.6	3
270	An Analysis of Android Malware Behavior. , 2018, , .		4
272	DroidGene: Detecting Android Malware Using Its Malicious Gene. Communications in Computer and Information Science, 2018, , 315-330.	0.4	1
273	Detecting Android Malware According to Observations on User Activities. , 2018, , .		3
274	Classifying the malware application in the Android-based smart phones using ensemble-ANFIS algorithm. International Journal of Networking and Virtual Organisations, 2018, 19, 257.	0.2	1
275	Safety Detection Method of Android App Based on Drozer. , 2018, , .		0
276	Understanding the relationship between quality and security. , 2018, , .		3
277	Android Malware Detection Using Feature Selections and Random Forest. , 2018, , .		1
278	Comparative Analysis of Feature Selection Methods and Machine Learning Algorithms in Permission based Android Malware Detection. , 2018, , .		3
279	Demadroid: Object Reference Graph-Based Malware Detection in Android. Security and Communication Networks, 2018, 2018, 1-16.	1.0	14

#	Article	IF	CITATIONS
280	Statistical Approach Using Meta Features for Android Malware Detection System. Advances in Intelligent Systems and Computing, 2018, , 269-279.	0.5	0
281	Android Malware Characterization Using Metadata and Machine Learning Techniques. Security and Communication Networks, 2018, 2018, 1-11.	1.0	19
282	Runtime Detection Framework for Android Malware. Mobile Information Systems, 2018, 2018, 1-15.	0.4	11
283	Identifying cyber threats to mobile-IoT applications in edge computing paradigm. Future Generation Computer Systems, 2018, 89, 525-538.	4.9	38
284	Adaptive Android Malware Signature Detection. , 2018, , .		5
285	Discovering optimal features using static analysis and a genetic search based method for Android malware detection. Frontiers of Information Technology and Electronic Engineering, 2018, 19, 712-736.	1.5	52
286	Discovering communities of malapps on Android-based mobile cyber-physical systems. Ad Hoc Networks, 2018, 80, 104-115.	3.4	14
287	The Dark Side(-Channel) of Mobile Devices: A Survey on Network Traffic Analysis. IEEE Communications Surveys and Tutorials, 2018, 20, 2658-2713.	24.8	62
288	Self-hiding behavior in Android apps. , 2018, , .		15
289	An adaptive smartphone anomaly detection model based on data mining. Eurasip Journal on Wireless Communications and Networking, 2018, 2018, .	1.5	9
290	A Detailed Investigation and Analysis of Using Machine Learning Techniques for Intrusion Detection. IEEE Communications Surveys and Tutorials, 2019, 21, 686-728.	24.8	386
291	A Multimodal Deep Learning Method for Android Malware Detection Using Various Features. IEEE Transactions on Information Forensics and Security, 2019, 14, 773-788.	4.5	312
292	A novel approach for mobile malware classification and detection in Android systems. Multimedia Tools and Applications, 2019, 78, 3529-3552.	2.6	34
293	Fingerprinting Android malware families. Frontiers of Computer Science, 2019, 13, 637-646.	1.6	25
294	Android Anti-malware Techniques and Its Vulnerabilities: A Survey. Advances in Intelligent Systems and Computing, 2019, , 315-328.	0.5	5
295	Automatic Malware Clustering using Word Embeddings and Unsupervised Learning. , 2019, , .		18
296	Deep Learning for Secure Mobile Edge Computing in Cyber-Physical Transportation Systems. IEEE Network, 2019, 33, 36-41.	4.9	64
297	Android Malware Detection Based on Convolutional Neural Networks. , 2019, , .		5

	CITATION	Report	
#	ARTICLE	IF	CITATIONS
298	Intrusion Detection System Based on Network Traffic Using Deep Neural Networks. , 2019, , .		8
299	Machine learning-based dynamic analysis of Android apps with improved code coverage. Eurasip Journal on Information Security, 2019, 2019, .	2.4	22
300	Detecting IoT Malware by Markov Chain Behavioral Models. , 2019, , .		22
301	DEMISe. , 2019, , .		20
303	Improved Malware Detection Model with Apriori Association Rule and Particle Swarm Optimization. Security and Communication Networks, 2019, 2019, 1-13.	1.0	20
304	MaxNet: Neural Network Architecture for Continuous Detection of Malicious Activity. , 2019, , .		4
305	Time, accuracy and power consumption tradeoff in mobile malware detection systems. Computers and Security, 2019, 82, 314-328.	4.0	9
306	A Multi-modal Neural Embeddings Approach for Detecting Mobile Counterfeit Apps. , 2019, , .		11
307	Constructing Features for Detecting Android Malicious Applications: Issues, Taxonomy and Directions. IEEE Access, 2019, 7, 67602-67631.	2.6	69
308	CENDroid—A cluster-ensemble classifier for detecting malicious Android applications. Computers and Security, 2019, 85, 25-40.	4.0	18
309	DroidDivesDeep: Android Malware Classification via Low Level Monitorable Features with Deep Neural Networks. Communications in Computer and Information Science, 2019, , 125-139.	0.4	5
310	Identification of Android malware using refined system calls. Concurrency Computation Practice and Experience, 2019, 31, e5311.	1.4	7
311	Analysis of dynamic code updating in Android with security perspective. IET Information Security, 2019, 13, 269-277.	1.1	7
312	A feature-hybrid malware variants detection using CNN based opcode embedding and BPNN based API embedding. Computers and Security, 2019, 84, 376-392.	4.0	74
313	A novel parallel classifier scheme for vulnerability detection in Android. Computers and Electrical Engineering, 2019, 77, 12-26.	3.0	30
315	Mobile malware attacks: Review, taxonomy & future directions. Future Generation Computer Systems, 2019, 97, 887-909.	4.9	112
316	Cross-Method-Based Analysis and Classification of Malicious Behavior by API Calls Extraction. Applied Sciences (Switzerland), 2019, 9, 239.	1.3	36
317	Detecting Android Locker-Ransomware on Chinese Social Networks. IEEE Access, 2019, 7, 20381-20393.	2.6	35

#	Article	IF	CITATIONS
318	Machine learning in cybersecurity: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2019, 9, e1306.	4.6	63
319	Reducing Security Risks of Suspicious Data and Codes Through a Novel Dynamic Defense Model. IEEE Transactions on Information Forensics and Security, 2019, 14, 2427-2440.	4.5	8
320	A Survey on Various Threats and Current State of Security in Android Platform. ACM Computing Surveys, 2020, 52, 1-35.	16.1	48
321	Machine Learning in Anomaly Detection: Example of Colluded Applications Attack in Android Devices. , 2019, , .		2
322	DeepDroid: Feature Selection approach to detect Android malware using Deep Learning. , 2019, , .		14
323	Software Malicious Behavior Analysis Model based on System Call and Function Interface. , 2019, , .		0
324	KerTSDroid: Detecting Android Malware at Scale through Kernel Task Structures. , 2019, , .		4
325	Permission based Android Malicious Application Detection using Machine Learning. , 2019, , .		9
326	MobiDroid: A Performance-Sensitive Malware Detection System on Mobile Platform. , 2019, , .		22
327	A predictive model for phishing detection. Journal of King Saud University - Computer and Information Sciences, 2022, 34, 232-247.	2.7	25
328	Time-frame Analysis of System Calls Behavior in Machine Learning-Based Mobile Malware Detection. , 2019, , .		2
329	System Signals Monitoring and Processing for Colluded Application Attacks Detection in Android OS. , 2019, , .		1
330	Differences in Android Behavior Between Real Device and Emulator: A Malware Detection Perspective. , 2019, , .		5
331	Android malware detection through hybrid features fusion and ensemble classifiers: The AndroPyTool framework and the OmniDroid dataset. Information Fusion, 2019, 52, 128-142.	11.7	97
332	DroidCat: Effective Android Malware Detection and Categorization via App-Level Profiling. IEEE Transactions on Information Forensics and Security, 2019, 14, 1455-1470.	4.5	190
333	Review: machine learning techniques applied to cybersecurity. International Journal of Machine Learning and Cybernetics, 2019, 10, 2823-2836.	2.3	85
334	Anomaly Detection—Empirical Approach. Studies in Computational Intelligence, 2019, , 157-173.	0.7	1
335	"Less Give Moreâ€: Evaluate and zoning Android applications. Measurement: Journal of the International Measurement Confederation, 2019, 133, 396-411.	2.5	11

#	Article	IF	CITATIONS
336	Detecting sensitive data leakage via inter-applications on Android using a hybrid analysis technique. Cluster Computing, 2019, 22, 1055-1064.	3.5	7
337	An Autonomous Host-Based Intrusion Detection System for Android Mobile Devices. Mobile Networks and Applications, 2020, 25, 164-172.	2.2	35
338	Instance-Based Cost-Sensitive Boosting. International Journal of Pattern Recognition and Artificial Intelligence, 2020, 34, 2050002.	0.7	6
339	A Context-Aware Framework for Detecting Sensor-Based Threats on Smart Devices. IEEE Transactions on Mobile Computing, 2020, 19, 245-261.	3.9	31
340	In-vehicle network intrusion detection using deep convolutional neural network. Vehicular Communications, 2020, 21, 100198.	2.7	199
341	<i>PermPair</i> : Android Malware Detection Using Permission Pairs. IEEE Transactions on Information Forensics and Security, 2020, 15, 1968-1982.	4.5	97
342	DL-Droid: Deep learning based android malware detection using real devices. Computers and Security, 2020, 89, 101663.	4.0	233
343	Malware detection in mobile environments based on Autoencoders and API-images. Journal of Parallel and Distributed Computing, 2020, 137, 26-33.	2.7	76
344	Automated Software Engineering: A Deep Learning-Based Approach. Learning and Analytics in Intelligent Systems, 2020, , .	0.5	1
345	Visualizing the outcome of dynamic analysis of Android malware with VizMal. Journal of Information Security and Applications, 2020, 50, 102423.	1.8	37
346	A Comprehensive Review on Malware Detection Approaches. IEEE Access, 2020, 8, 6249-6271.	2.6	242
347	EstiDroid: Estimate API Calls of Android Applications Using Static Analysis Technology. IEEE Access, 2020, 8, 105384-105398.	2.6	7
348	A Review of Android Malware Detection Approaches Based on Machine Learning. IEEE Access, 2020, 8, 124579-124607.	2.6	169
349	A survey on screenlogger attacks as well as countermeasures. International Journal of Embedded Systems, 2020, 12, 441.	0.2	0
350	SOMDROID: android malware detection by artificial neural network trained using unsupervised learning. Evolutionary Intelligence, 2022, 15, 407-437.	2.3	17
351	Artificial Intelligence for Cybersecurity: A Systematic Mapping of Literature. IEEE Access, 2020, 8, 146598-146612.	2.6	30
352	V-Sandbox for Dynamic Analysis IoT Botnet. IEEE Access, 2020, 8, 145768-145786.	2.6	20
353	DeepIntent: ImplicitIntent based Android IDS with E2E Deep Learning architecture. , 2020, , .		10

#	Article	IF	CITATIONS
354	Opcode n-gram based Malware Classification in Android. , 2020, , .		4
355	IPDroid: Android Malware Detection using Intents and Permissions. , 2020, , .		35
356	Smart-Power: A Smart Cyber-Physical System to Detect IoT Security Threat through Behavioral Power Profiling. , 2020, , .		3
357	A self-configuring and adaptive privacy-aware permission system for Android apps. , 2020, , .		2
358	A Power-Efficient Approach to Detect Mobile Threats on the Emergent Network Environment. IEEE Access, 2020, 8, 199840-199851.	2.6	1
359	cHybriDroid: A Machine Learning-Based Hybrid Technique for Securing the Edge Computing. Security and Communication Networks, 2020, 2020, 1-14.	1.0	7
360	Feature Reduction and Optimization of Malware Detection System Using Ant Colony Optimization and Rough Sets. International Journal of Information Security and Privacy, 2020, 14, 95-114.	0.6	6
361	GSDroid: Graph Signal Based Compact Feature Representation for Android Malware Detection. Expert Systems With Applications, 2020, 159, 113581.	4.4	28
362	Distributed Applications and Interoperable Systems. Lecture Notes in Computer Science, 2020, , .	1.0	0
364	Using Multi-Feature Fusion for Detecting Freezing of Gait Episodes in Patients with Parkinson's Disease. , 2020, , .		2
365	Code analysis for intelligent cyber systems: A data-driven approach. Information Sciences, 2020, 524, 46-58.	4.0	25
366	Android Malware Detection using LSI-based Reduced Opcode Feature Vector. Procedia Computer Science, 2020, 173, 291-298.	1.2	14
368	CrowdNet: Identifying Large-Scale Malicious Attacks Over Android Kernel Structures. IEEE Access, 2020, 8, 15823-15837.	2.6	6
369	Parallel NN network for malware detection. IET Information Security, 2020, 14, 210-219.	1.1	13
370	A study of run-time behavioral evolution of benign versus malicious apps in android. Information and Software Technology, 2020, 122, 106291.	3.0	37
371	Android Malware Familial Classification Based on DEX File Section Features. IEEE Access, 2020, 8, 10614-10627.	2.6	35
372	Deep learning for image-based mobile malware detection. Journal of Computer Virology and Hacking Techniques, 2020, 16, 157-171.	1.6	66
373	HIDROID: Prototyping a Behavioral Host-Based Intrusion Detection and Prevention System for Android. IEEE Access, 2020, 8, 23154-23168.	2.6	35

#	Article	IF	CITATIONS
374	Graph Convolutional Networks for Android Malware Detection with System Call Graphs. , 2020, , .		25
375	Packed malware variants detection using deep belief networks. MATEC Web of Conferences, 2020, 309, 02002.	0.1	3
376	LimonDroid: a system coupling three signature-based schemes for profiling Android malware. Iran Journal of Computer Science, 2021, 4, 95-114.	1.8	11
377	SemiDroid: a behavioral malware detector based on unsupervised machine learning techniques using feature selection approaches. International Journal of Machine Learning and Cybernetics, 2021, 12, 1369-1411.	2.3	25
378	Phishing website detection using support vector machines and nature-inspired optimization algorithms. Telecommunication Systems, 2021, 76, 17-32.	1.6	33
379	A Performance-Sensitive Malware Detection System Using Deep Learning on Mobile Devices. IEEE Transactions on Information Forensics and Security, 2021, 16, 1563-1578.	4.5	66
380	Hybrid classification of Android malware based on fuzzy clustering and the gradient boosting machine. Neural Computing and Applications, 2021, 33, 6721-6732.	3.2	14
381	MLDroid—framework for Android malware detection using machine learning techniques. Neural Computing and Applications, 2021, 33, 5183-5240.	3.2	96
382	MMALE—A Methodology for Malware Analysis in Linux Environments. Computers, Materials and Continua, 2021, 67, 1447-1469.	1.5	3
383	AndRev: Reverse Engineering Tool to Extract Permissions of Android Mobile Apps for Analysis. Lecture Notes on Data Engineering and Communications Technologies, 2021, , 1199-1207.	0.5	1
384	Background and Related Work. Advances in Information Security, 2021, , 7-39.	0.9	0
385	An Adaptive Anomaly Detection Algorithm Based on CFSFDP. Computers, Materials and Continua, 2021, 68, 2057-2073.	1.5	2
386	Audio signal processing for Android malware detection and family identification. Journal of Computer Virology and Hacking Techniques, 2021, 17, 139-152.	1.6	8
387	Anomaly Android Malware Detection: A Comparative Analysis of Six Classifiers. Communications in Computer and Information Science, 2021, , 145-157.	0.4	2
388	Android Malware Detection Based on Structural Features of the Function Call Graph. Electronics (Switzerland), 2021, 10, 186.	1.8	10
389	FSDroid:- A feature selection technique to detect malware from Android using Machine Learning Techniques. Multimedia Tools and Applications, 2021, 80, 13271-13323.	2.6	43
390	E-Health Threat Intelligence Within Cyber-Defence Framework for E-Health Organizations. Advanced Information and Knowledge Processing, 2021, , 161-179.	0.2	0
391	Usage of Artificial Intelligence to Improve Secure Software Development. Journal of International Scientific Researches, 2021, 6, 46-57.	0.1	1

#	Article	IF	CITATIONS
392	A Hierarchical Approach for Android Malware Detection Using Authorization-Sensitive Features. Electronics (Switzerland), 2021, 10, 432.	1.8	2
393	Calibrating Network Traffic with One-Dimensional Convolutional Neural Network with Autoencoder and Independent Recurrent Neural Network for Mobile Malware Detection. Security and Communication Networks, 2021, 2021, 1-10.	1.0	10
394	Towards a systematic description of the field using bibliometric analysis: malware evolution. Scientometrics, 2021, 126, 2013-2055.	1.6	15
395	Effective classification of android malware families through dynamic features and neural networks. Connection Science, 2021, 33, 786-801.	1.8	28
396	Hybroid: A Novel Hybrid Android Malware Detection Framework. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2021, 14, 331-356.	0.1	1
397	A survey of malware detection in Android apps: Recommendations and perspectives for future research. Computer Science Review, 2021, 39, 100358.	10.2	48
398	A survey on analysis and detection of Android ransomware. Concurrency Computation Practice and Experience, 2021, 33, e6272.	1.4	21
399	Computing with time: microarchitectural weird machines. , 2021, , .		3
400	Android malware detection through machine learning on kernel task structures. Neurocomputing, 2021, 435, 126-150.	3.5	34
401	Android Malware Detection and Classification using LOFO Feature Selection and Tree-based Models. Journal of Physics: Conference Series, 2021, 1911, 012031.	0.3	3
402	NATICUSdroid: A malware detection framework for Android using native and custom permissions. Journal of Information Security and Applications, 2021, 58, 102696.	1.8	20
403	Permission-Based Approach for Android Malware Analysis Through Ensemble-Based Voting Model. , 2021, , .		10
404	See through Walls: Detecting Malware in SGX Enclaves with SGX-Bouncer. , 2021, , .		4
405	Malware detection employed by visualization and deep neural network. Computers and Security, 2021, 105, 102247.	4.0	41
406	Blockchain Based Detection of Android Malware using Ranked Permissions. International Journal of Engineering and Advanced Technology, 2021, 10, 68-75.	0.2	5
407	Behavioral Host-Based Intrusion Detection and Prevention System for Android. International Journal for Research in Applied Science and Engineering Technology, 2021, 9, 5268-5274.	0.1	0
408	Cluster-Based Antiphishing (CAP) Model for Smart Phones. Scientific Programming, 2021, 2021, 1-9.	0.5	0
409	RPNDroid: Android Malware Detection using Ranked Permissions and Network Traffic. , 2021, , .		12

#	ARTICLE	IF	CITATIONS
410	A novel Android malware detection system: adaption of filter-based feature selection methods. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 1243-1257.	3.3	8
411	Hybrid sequenceâ€based Android malware detection using natural language processing. International Journal of Intelligent Systems, 2021, 36, 5770-5784.	3.3	45
412	A Survey on Encrypted Network Traffic Analysis Applications, Techniques, and Countermeasures. ACM Computing Surveys, 2022, 54, 1-35.	16.1	57
413	Dynamic Detection of Mobile Malware Using Smartphone Data and Machine Learning. Digital Threats Research and Practice, 2022, 3, 1-24.	1.7	2
414	KronoDroid: Time-based Hybrid-featured Dataset for Effective Android Malware Detection and Characterization. Computers and Security, 2021, 110, 102399.	4.0	37
415	An Evolutionary Study of IoT Malware. IEEE Internet of Things Journal, 2021, 8, 15422-15440.	5.5	16
416	A Non-intrusive Machine Learning Solution for Malware Detection and Data Theft Classification in Smartphones. Lecture Notes in Computer Science, 2021, , 200-213.	1.0	0
417	HybriDroid: an empirical analysis on effective malware detection model developed using ensemble methods. Journal of Supercomputing, 2021, 77, 8209-8251.	2.4	14
418	Towards an Autonomous Host-Based Intrusion Detection System for Android Mobile Devices. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2019, , 139-148.	0.2	12
419	Data-Driven Android Malware Intelligence: A Survey. Lecture Notes in Computer Science, 2019, , 183-202.	1.0	14
420	Feature-Based Semi-supervised Learning to Detect Malware from Android. Learning and Analytics in Intelligent Systems, 2020, , 93-118.	0.5	10
421	PerbDroid: Effective Malware Detection Model Developed Using Machine Learning Classification Techniques. Intelligent Systems Reference Library, 2020, , 103-139.	1.0	10
422	Android Malware Detection Based on Software Complexity Metrics. Lecture Notes in Computer Science, 2014, , 24-35.	1.0	8
423	Comprehensive Behavior Profiling for Proactive Android Malware Detection. Lecture Notes in Computer Science, 2014, , 328-344.	1.0	8
425	DroidClassifier: Efficient Adaptive Mining of Application-Layer Header for Classifying Android Malware. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2017, , 597-616.	0.2	20
426	GreatEatlon: Fast, Static Detection of Mobile Ransomware. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2017, , 617-636.	0.2	11
427	Defending Users against Smartphone Apps: Techniques and Future Directions. Lecture Notes in Computer Science, 2011, , 49-70.	1.0	49
428	Randomizing Smartphone Malware Profiles against Statistical Mining Techniques. Lecture Notes in Computer Science, 2012, , 239-254.	1.0	5

#	Article	IF	CITATIONS
429	MADAM: A Multi-level Anomaly Detector for Android Malware. Lecture Notes in Computer Science, 2012, , 240-253.	1.0	123
430	Enhancing Smartphone Malware Detection Performance by Applying Machine Learning Hybrid Classifiers. Communications in Computer and Information Science, 2012, , 131-137.	0.4	5
431	Impact of Dataset Representation on Smartphone Malware Detection Performance. IFIP Advances in Information and Communication Technology, 2013, , 166-176.	0.5	4
432	MADS: Malicious Android Applications Detection through String Analysis. Lecture Notes in Computer Science, 2013, , 178-191.	1.0	8
433	Classifying Android Malware through Subgraph Mining. Lecture Notes in Computer Science, 2014, , 268-283.	1.0	9
434	Android Malware Detection Mechanism Based on Bayesian Model Averaging. Advances in Intelligent Systems and Computing, 2019, , 87-96.	0.5	2
435	DroidLight. , 2020, , .		4
436	АррМоD. , 2019, 3, 1-22.		10
437	Assessing and Improving Malware Detection Sustainability through App Evolution Studies. ACM Transactions on Software Engineering and Methodology, 2020, 29, 1-28.	4.8	72
438	A Survey on Android Malware Detection Techniques. DEStech Transactions on Computer Science and Engineering, 2017, , .	0.1	3
439	Android Malware Detection & Protection: A Survey. International Journal of Advanced Computer Science and Applications, 2016, 7, .	0.5	48
440	A Survey on Security for Smartphone Device. International Journal of Advanced Computer Science and Applications, 2016, 7, .	0.5	9
441	Intelligent Hybrid Approach for Android Malware Detection based on Permissions and API Calls. International Journal of Advanced Computer Science and Applications, 2017, 8, .	0.5	9
442	An Android Malware Detection Architecture based on Ensemble Learning. Transactions on Machine Learning and Artificial Intelligence, 2014, 2, 90-106.	0.3	22
443	Trends in Android Malware Detection. Digital Forensics, Security and Law Journal, 0, , .	0.0	12
444	Host-Based Detection and Analysis of Android Malware. International Journal for Information Security Research, 2019, 9, 871-880.	0.3	1
445	Anomaly Detection Algorithm Based on CFSFDP. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2020, 24, 453-460.	0.5	5
446	Classification of Android Malware Applications using Feature Selection and Classification Algorithms. VAWKUM Transactions on Computer Sciences, 2016, 10, 1.	0.3	10

#	Article	IF	CITATIONS
447	N-gram Opcode Analysis for Android Malware Detection. International Journal on Cyber Situational Awareness, 2016, 1, 231-255.	0.8	10
448	Detecting Applications with Malicious Behavior in Android Device Based on GA and SVM. , 2018, , .		1
449	An Android Malware Detection Method Based on Feature Codes. , 2015, , .		5
450	Intelligent Approach for Android Malware Detection. KSII Transactions on Internet and Information Systems, 2015, 9, 2964-2983.	0.7	14
451	Android Malware Detection System Classification. Research Journal of Information Technology, 2014, 6, 325-341.	0.4	3
452	RobotDroid: A Lightweight Malware Detection Framework On Smartphones. Journal of Networks, 2012, 7, .	0.4	38
453	A Result Fusion based Distributed Anomaly Detection System for Android Smartphones. Journal of Networks, 2013, 8, .	0.4	5
454	A Survey on Various Malware Detection Techniques on Mobile Platform. International Journal of Computer Applications, 2016, 139, 15-20.	0.2	6
455	Detection of Malicious Android Mobile Applications Based on Aggregated System Call Events. International Journal of Computer and Communication Engineering, 2014, 3, 149-154.	0.2	17
456	A Hybrid Modeling of Mobile App Dynamics on Serial Causality for Malware Detection. Security and Communication Networks, 2021, 2021, 1-10.	1.0	1
457	Applications of deep learning for mobile malware detection: A systematic literature review. Neural Computing and Applications, 0, , 1.	3.2	5
458	AIB-SPMDM: A Smartphone Malware Detection Model Based on Artificial Immunology. Communications in Computer and Information Science, 2012, , 457-465.	0.4	0
459	Modular Anomaly Detection for Smartphone Ad Hoc Communication. Lecture Notes in Computer Science, 2012, , 65-81.	1.0	3
462	Instance-based Anomaly Method for Android Malware Detection. , 2013, , .		2
463	A Smartphone Malware Detection Framework Based on Artificial Immunology. Journal of Networks, 2013, 8, .	0.4	7
464	ANDROID MOBILE PLATFORM SECURITY AND MALWARE SURVEY. International Journal of Research in Engineering and Technology, 2013, 02, 764-774.	0.1	2
465	Normal and Malicious Application Pattern Analysis using System Call Event on Android Mobile Devices for Similarity Extraction. Journal of Internet Computing and Services, 2013, 14, 125-139.	0.1	2
466	Identifying Cryptographic Functionality in Android Applications. , 2014, , .		2

	C	TATION REPOR	т
#	Article	IF	CITATIONS
467	A Study on Abnormal Behaviour in Mobile Application. Open Access Library Journal (oalib), 2014, 01,	1-6. 0.1	1
468	Prevention of Malicious Attack on Smart Phones using Amendment Capture Service. International Journal of Computer Applications, 2014, 89, 31-35.	0.2	0
469	Techniques Used for Detection of Mobile Spyware. International Journal of Computer Trends and Technology, 2014, 11, 217-219.	0.1	0
470	Linear SVM-Based Android Malware Detection and Feature Selection for Performance Improvement. The Journal of Korean Institute of Communications and Information Sciences, 2014, 39C, 738-745.	0.0) 3
471	A Comprehensive Analysis of Android Security and Proposed Solutions. International Journal of Computer Network and Information Security, 2014, 6, 9-20.	1.8	9
472	An Algorithm for Privacy-Preserving Location Data Collection by Probabilistic Dummy Generation. IEEJ Transactions on Electronics, Information and Systems, 2015, 135, 660-670.	0.1	. 0
473	RAMSES: Revealing Android Malware Through String Extraction and Selection. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2015, , 498-506.	0.2	1
474	Evaluating Mobile Malware by Extracting User Experience-Based Features. Lecture Notes in Computer Science, 2015, , 497-512.	1.0	1
475	A New Decision Tree Ensembles Method for Fake Apps Detection in Android Platform. , 2015, , .		0
476	Design of Phone Anti-obsessed System Based on the User Behavior. , 0, , .		0
477	Malicious Applications Detection by Analyzing Manifest Files. International Journal of Computer Applications, 2015, 120, 8-12.	0.2	3
478	Improving Distributed Forensics and Incident Response in Loosely Controlled Networked Environments. International Journal of Security and Its Applications, 2016, 10, 385-414.	0.5	3
479	Context-Awareness to Improve Anomaly Detection in Dynamic Service Oriented Architectures. Lectur Notes in Computer Science, 2016, , 145-158.	e 1.0	6
480	The Impact of Hierarchy on Bluetooth-Based Malware Spread in Mobile Tactical Networks. , 2016, , .		1
481	Android Security Vulnerabilities Due to User Unawareness and Frameworks for Overcoming Those Vulnerabilities. International Journal of Computer Applications, 2016, 137, 14-21.	0.2	3
482	AHMDS: Advanced Hybrid Malware Detector System. , 2016, , .		1
483	Runtime Classification of Mobile Malware forÂResource-Constrained Devices. Communications in Computer and Information Science, 2017, , 195-215.	0.4	0
484	Mobile Terminal Security Monitoring System Based on Distributed Agent. , 0, , .		0

#	Article	IF	Citations
485	Android Malware of Static Analysis Technology Based on Data Mining. DEStech Transactions on Computer Science and Engineering, 2017, , .	0.1	0
486	Malicious App Discrimination Mechanism by Measuring Sequence Similarity of Kernel Layer Events on Executing Mobile App. Journal of the Korea Convergence Society, 2017, 8, 25-36.	0.1	0
487	Machine Learning Approach for Malware Detection by Using APKs. DEStech Transactions on Computer Science and Engineering, 2017, , .	0.1	5
488	Android kötücül yazılımlar için izin tabanlı tespit sistemi. Journal of the Faculty of Engineering and Architecture of Gazi University, 2017, 32, 1015-1024.	0.3	8
489	VizMal: A Visualization Tool for Analyzing the Behavior of Android Malware. , 2018, , .		2
490	Comprehensive Behaviour of Malware Detection Using the Machine Learning Classifier. Communications in Computer and Information Science, 2018, , 462-469.	0.4	2
491	PNSDroid: A Hybrid Approach for Detection of Android Malware. Advances in Intelligent Systems and Computing, 2018, , 361-367.	0.5	2
492	Mobile Forged App Identification System with Centralized Signature Self-verification Method. Lecture Notes in Electrical Engineering, 2019, , 176-182.	0.3	1
493	A Systematic Review Analysis for Mobile Botnet Detection using GPS Exploitation. Asian Journal of University Education, 0, 2, .	0.1	0
495	Resilient and Deep Network for Internet of Things (IoT) Malware Detection. Communications in Computer and Information Science, 2019, , 183-197.	0.4	1
496	Smart Cities and Open WiFis: When Android OS Permissions Cease to Protect Privacy. Lecture Notes in Computer Science, 2019, , 457-467.	1.0	0
497	Yet Another Way to Unknowingly Gather People Coordinates and Its Countermeasures. Lecture Notes in Computer Science, 2019, , 130-139.	1.0	2
498	Automatic hybrid analysis technique to improve botnet code coverage using fake server. , 2019, , .		0
499	Combining Multimodal DNN and SigPid technique for detecting Malicious Android Apps. , 2019, , .		2
500	Malware Detection Using System Logs. , 2020, , .		0
501	A Framework for Detection of Android Malware using Static Features. , 2020, , .		10
502	Incorporating Android Code Smells into Java Static Code Metrics for Security Risk Prediction of Android Applications. , 2020, , .		3
503	Methods to Select Features for Android Malware Detection Based on the Protection Level Analysis. Lecture Notes in Computer Science, 2020, , 375-386.	1.0	1

#	Article	IF	CITATIONS
504	Evasion Is Not Enough: A Case Study ofÂAndroid Malware. Lecture Notes in Computer Science, 2020, , 167-174.	1.0	6
505	Malware Detection Framework Using PCA Based ANN. Communications in Computer and Information Science, 2020, , 298-313.	0.4	1
506	RaNetMalDozer: A Novel NN-Based Model for Android Malware Detection Over Task Kernel Structures. Lecture Notes in Computer Science, 2020, , 501-517.	1.0	0
507	A Multi-modal Neural Embeddings Approach for Detecting Mobile Counterfeit Apps: A Case Study on Google Play Store. IEEE Transactions on Mobile Computing, 2020, , 1-1.	3.9	5
508	DroidAutoML: A Microservice Architecture to Automate the Evaluation of Android Machine Learning Detection Systems. Lecture Notes in Computer Science, 2020, , 148-165.	1.0	1
509	Large-Scale Research via App Stores. Advances in Wireless Technologies and Telecommunication Book Series, 0, , 269-292.	0.3	0
510	A Novel Mechanism for Fraud Rank Detection in Social Networks. Lecture Notes in Networks and Systems, 2021, , 519-526.	0.5	0
511	Analysis of Online Education System of Bangladesh during COVID-19 Pandemic Based on NLP and Machine Learning: Problem and Prospect. , 2021, , .		3
512	A Survey on Andro-Financial Malware Attacks, Detection Methods and Current Issues. , 2021, , .		3
513	A collaborative approach to early detection of IoT Botnet. Computers and Electrical Engineering, 2022, 97, 107525.	3.0	24
514	Studying eventual connectivity issues in Android apps. Empirical Software Engineering, 2022, 27, 1.	3.0	2
515	Automatic Malware Categorization Based on K-Means Clustering Technique. Lecture Notes on Data Engineering and Communications Technologies, 2022, , 653-664.	0.5	1
517	EPMDroid: Efficient and privacy-preserving malware detection based on SGX through data fusion. Information Fusion, 2022, 82, 43-57.	11.7	14
518	A Comparative Analysis of Machine Learning Techniques for Classification and Detection of Malware. , 2020, , .		8
519	Malware Detection Based on Feature Library and Machine Learning. , 2020, , .		2
520	Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier. IEEE Access, 2022, 10, 1317-1333.	2.6	1
521	Detection of malware applications from centrality measures of syscall graph. Concurrency Computation Practice and Experience, 2022, 34, .	1.4	8
522	Effectiveness ofÂVideo-Classification inÂAndroid Malware Detection Through API-Streams andÂCNN-LSTM Autoencoders. Communications in Computer and Information Science, 2022, , 171-194.	0.4	2

#	ARTICLE	IF	CITATIONS
523	HamDroid: permission-based harmful android anti-malware detection using neural networks. Neural Computing and Applications, 2022, 34, 15165-15174.	3.2	14
524	A Survey of techniques for fine-grained web traffic identification and classification. Mathematical Biosciences and Engineering, 2022, 19, 2996-3021.	1.0	1
525	Sniffing Android Malware Using Deep Learning. Lecture Notes in Electrical Engineering, 2022, , 489-505.	0.3	2
526	Eavesdropping user credentials via GPU side channels on smartphones. , 2022, , .		4
527	NoSurv: A Framework for Protection against Surveillance Attacks on Mobile Devices. , 2021, , .		0
528	A GAN Based Malware Adversaries Detection Model. , 2021, , .		0
529	Automation Detection of Malware and Stenographical Content using Machine Learning. , 2022, , .		0
531	Efficacy of Android security mechanisms on ransomware analysis and detection. AIP Conference Proceedings, 2022, , .	0.3	2
532	Profiling CPU Behavior for Detection of Android Ransomware. , 2022, , .		2
533	A Lightweight Multi-Source Fast Android Malware Detection Model. Applied Sciences (Switzerland), 2022, 12, 5394.	1.3	6
534	Bring Your Own Device (BYOD) Security Threats and Mitigation Mechanisms: Systematic Mapping. , 2021, , .		2
535	MOBDroid2: An Improved Feature Selection Method for Detecting Malicious Applications in a Mobile Cloud Computing Environment. , 2021, , .		0
536	Cross-device behavioral consistency: Benchmarking and implications for effective android malware detection. Machine Learning With Applications, 2022, 9, 100357.	3.0	3
537	Data-Driven Android Malware Analysis Intelligence. Advances in Information Security, Privacy, and Ethics Book Series, 2022, , 181-200.	0.4	0
538	A Comprehensive Review of Android Security: Threats, Vulnerabilities, Malware Detection, and Analysis. Security and Communication Networks, 2022, 2022, 1-34.	1.0	7
539	Toward Improving the Security of IoT and CPS Devices: An Al Approach. Digital Threats Research and Practice, 2023, 4, 1-30.	1.7	1
540	Behaviour analysis of inter-app communication using a lightweight monitoring app for malware detection. Expert Systems With Applications, 2022, 210, 118404.	4.4	2
541	A Comparative Study of Machine Learning Techniques for Android Malware Detection. International Journal of Software Innovation, 2022, 10, 1-13.	0.3	0

#	Article	IF	CITATIONS
542	Malware Detection Using Machine Learning on Edge Devices. , 2022, , .		1
543	Review on Android Malware Detection System. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 75-93.	0.5	0
545	CAN Intrusion Detection Using Long Short-Term Memory (LSTM). Lecture Notes in Networks and Systems, 2023, , 295-302.	0.5	0
546	A New Wrapper-Based Feature Selection Technique with Fireworks Algorithm for Android Malware Detection. International Journal of Software Science and Computational Intelligence, 2022, 14, 1-19.	1.8	6
547	A comprehensive survey on deep learning based malware detection techniques. Computer Science Review, 2023, 47, 100529.	10.2	36
548	Android Malware Detection Using Deep Learning. , 2023, , 209-246.		0
549	Android malware detection method based on highly distinguishable static features and DenseNet. PLoS ONE, 2022, 17, e0276332.	1.1	3
550	A Review on Malware Analysis for IoT and Android System. SN Computer Science, 2023, 4, .	2.3	0
552	DNNdroid: Android Malware Detection Framework Based onÂFederated Learning andÂEdge Computing. Communications in Computer and Information Science, 2022, , 96-107.	0.4	2
553	Pragmatic Evidence on Android Malware Analysis Techniques: A Systematic Literature Review. International Journal of Innovations in Science and Technology, 2023, , 1-19.	0.1	0
554	Machine learning approach for detecting and combating bring your own device (BYOD) security threats and attacks: a systematic mapping review. Artificial Intelligence Review, 2023, 56, 8815-8858.	9.7	2
555	A bibliometric analysis of cyber security and cyber forensics research. Results in Control and Optimization, 2023, 10, 100204.	1.3	14
556	A New Feature Selection Method Based on Dragonfly Algorithm for Android Malware Detection Using Machine Learning Techniques. International Journal of Information Security and Privacy, 2023, 17, 1-18.	0.6	0
557	Effective Surveillance using Computer Vision. , 2023, , .		1
559	Perception of Cyber Threats. Advances in Information Security, 2023, , 63-81.	0.9	0
560	YarowskyDroid: Semi-supervised based Android malware detection using federation learning. , 2023, , .		0
563	Detection of android malwares using portable executable files with LSTM model. AIP Conference Proceedings, 2023, , .	0.3	0
566	Malware Detection and Classification with Deep Learning Models. , 2023, , .		0

#	Article	IF	CITATIONS
567	The Role of Artificial Intelligence in Cyber Security. Advances in Information Security, Privacy, and Ethics Book Series, 2023, , 1-24.	0.4	0
569	Bytecode-Based Android Malware Detection Applying Convolutional Neural Networks. Lecture Notes in Networks and Systems, 2023, , 111-121.	0.5	0
570	Catch the Intruder: Collaborative and Personalized Malware Detection By On-Device Application Fingerprinting. , 2023, , .		0
575	Geodemographic Profiling of Malicious IP addresses. , 2023, , .		0
576	Cybersecurity Empirics: Evaluating Machine Learning Techniques for Phishing Detection. , 2023, , .		0
579	Analyzing and Detecting Malware Using Machine Learning and Deep Learning. Lecture Notes in Networks and Systems, 2024, , 518-525.	0.5	0
580	Comparing the Effectiveness of Static, Dynamic and Hybrid Malware Detection on a Common Dataset. , 2023, , .		0